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1. (a) A vector parametric equation for the line ` is given by
x1
x2
x3
x4

 =


1
2
3
4

+ t


1
0
1
0

 .

[2 marks]

(b) Eliminating the free parameter from the parametric equation, we get a Cartesian
description for `:

x1 − 1 = x3 − 3, x2 = 2, x4 = 4.

[2 marks]

(c) Performing the row reductions, we obtain 2 3 4 1
1 −2 2 2
5 −3 a b

 −→
 1 −2 2 2

0 7 0 −3
0 7 a− 10 b− 10

 −→
 1 −2 2 2

0 7 0 −3
0 0 a− 10 b− 7

 .

[2 marks]

(i) Therefore, if a 6= 10, the system admits exactly one solution for all values of b.
[2 marks]

(ii) If a = 10 and b 6= 7, the system admits no solutions.
[2 marks]

(iii) If a = 10 and b = 7, the system admits infinitely many solutions.
[2 marks]

(d) A basis for the column space of A consists of the columns of A that correspond to
the leading columns of RRE(A):

B1 =


1

2
3

 ,

 4
−1
2

 .

A basis for the null space of A is obtained by inspecting RRE(A). We get

B2 =




1
−3
1
0

 ,


−5
−2
0
1


 .

[3 marks]
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(e) The linear system is consistent if b belongs to the column space of A; i.e., if b can
be written as a linear combination of the vectors in B1. We have9

0
k

 = λ

1
2
3

+ µ

 4
−1
2

 for some λ, µ.

Solving this system, we find that

λ = 1, µ = 2, k = 7.

[5 marks]

(f) Every vector in the basis B2 of the null space of A gives a linear combination of the
columns of A which is equal to the zero vector. Therefore

c1 − 3c2 + c3 = 0 and − 5c1 − 2c2 + c4 = 0,

from which we find that

c3 =

11
−5
3

 and c4 =

13
8
19

 .

[5 marks]

2. (a) The Taylor polynomial Pn is given by

Pn(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

We have
f(x) = (1− x)−1 f(0) = 1
f ′(x) = (1− x)−2 f ′(0) = 1
f ′′(x) = 2(1− x)−3 f ′′(0) = 2
f ′′′(x) = 3!(1− x)−4 f ′′′(0) = 3!
f (4)(x) = 4!(1− x)−5 f (4)(0) = 4!

and so on, so
Pn(x) = 1 + x+ x2 + x3 + · · ·+ xn.

[7 marks]
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(b) We have
(1− x)Pn(x) = (1− x)(1 + x+ x2 + x3 + · · ·+ xn)

= 1 + x+ x2 + x3 + · · ·+ xn

−x− x2 − · · · − xn − xn+1

= 1− xn+1.

[2 marks]

(c) It follows from the above that

Pn(x) =
1− xn+1

1− x
.

Comparing this expression with

f(x) =
1

1− x

and using the fact that
P∞(x) = lim

n→∞
Pn(x),

we deduce that P∞(x) converges to f(x) only if limn→∞ x
n+1 = 0. This happens only

if |x| < 1.

[4 marks]

(d) We let y = g(x) = arcsin(x), which implies that x = sin(y). Therefore, the derivative
of g is given by

g′(x) =
dy

dx
=

1

dx

dy

=
1

cos(y)
= ± 1√

1− sin2(y)
.

We now use the fact that whenever y ∈
(
−π

2
,
π

2

)
we have that cos(y) > 0, from

which we deduce that cos(y) = +
√

1− sin2(y). Finally, replacing sin2(y) by x2, we
obtain

g′(x) =
dy

dx
=

1√
1− x2

,

as required.

[7 marks]
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(e) The quadratic expression inside the root can be written as

−x2 − 6x− 5 = −(x2 + 6x+ 5) = −
[
(x+ 3)2 − 4

]
= 4− (x+ 3)2,

so the integral becomes∫
dx√

4− (x+ 3)2
=

1

2

∫
dx√

1− (x+3
2

)2
=

∫
d(x+3

2
)√

1− (x+3
2

)2
= arcsin

(
x+ 3

2

)
+ C,

where the last step follows from part (d).

[5 marks]

3. (a) We row reduce (A|b):
1 5 1 0 3
2 10 0 2 8
4 20 1 3 15
1 5 0 1 4

→


1 5 1 0 3
0 0 −2 2 2
0 0 −3 3 3
0 0 −1 1 1



→


1 5 1 0 3
0 0 1 −1 −1
0 0 −3 3 3
0 0 −1 1 1

→


1 5 0 1 4
0 0 1 −1 −1
0 0 0 0 0
0 0 0 0 0


So the general solution is

x1
x2
x3
x4

 =


4
0
−1
0

+ s


−5
1
0
0

+ t


−1
0
1
1

 .

[6 marks]

(b) A basis B for CS(A) is B = {c1, c3} =




1
2
4
1

 ,


1
0
1
0


 since RRE(A) has leading

ones in the 1st and 3rd column. Further, we can read from the part of the general
solution corresponding to the null space of A that

−5c1 + c2 = 0 and − c1 + c3 + c4 = 0.
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Therefore,

(c1)B =

(
1
0

)
B

, (c2)B =

(
5
0

)
B

, (c3)B =

(
0
1

)
B

, (c4)B =

(
1
−1

)
B

.

[6 marks]

(c) Every solution of Ax = b gives b as a linear combination of the columns of A.
Choosing s = 0, t = 0 in the general solution obtained in part (a), we find that

b = 4c1 − c3.

Choosing s = 1, t = 0 we find that

b = −c1 + c2 − c3,

and choosing s = 0, t = 1 we find that

b = 3c1 + c4.

[4 marks]

(d) We row reduce AT
1 2 4 1
5 10 20 5
1 0 1 0
0 2 3 1

→


1 2 4 1
0 0 0 0
0 −2 −3 −1
0 2 3 1

→


1 0 1 0
0 1 3/2 1/2
0 0 0 0
0 0 0 0


so a basis for the null space of AT is


−1
−3

2

1
0

 ,


0
−1

2

0
1




or simply

C =



−2
−3
2
0

 ,


0
−1
0
2


 .

[4 marks]

6



(e) Since N(AT ) ⊥ RS(AT ) = CS(A), a Cartesian description in R4 for the column
space of A is given by

(
−2 −3 2 0
0 −1 0 2

)
x1
x2
x3
x4

 =

(
0
0

)
,

that is, {
−2x1 − 3x2 + 2x3 = 0

−x2 + 2x4 = 0

[3 marks]

(f) For the system Ax = d to be consistent, we must have d ∈ CS(A); i.e., d must
satisfy the Cartesian description for CS(A) found in part (e). So k, l,m, n must
satisfy {

−2k − 3l + 2m = 0
−l + 2n = 0.

[2 marks]

4. (a) The relevant sketch is shown below:

[3 marks]

(b) We have
L(x, y, λ) = 100x1/5y4/5 + λ(100000− 200x− 400y)

7



and 
Lx = 20x−4/5y4/5 − 200λ = 0
Ly = 80x1/5y−1/5 − 400λ = 0
Lλ = 100000− 200x− 400y = 0

Eliminating λ from the first two equations, we find that

y = 2x.

Substituting this equation into the constraint, we find that

x∗ = 100 and y∗ = 200,

which are the coordinates of the point M .

[6 marks]

(c) Yes, any point of the form (x, 0) where 0 ≤ x ≤ 500 and any point of the form (0, y)
where 0 ≤ y ≤ 250 is a constrained minimum of P (x, y) on D.

[2 marks]

(d) The relevant sketch is shown below:

[3 marks]

(e) Setting the derivatives of f to zero, we have

fx = 2(x− 1) = 0, fy = 3(y − 1)2 = 0, fz = 4(z − 1)3 = 0,

so f has a single stationary point at (1, 1, 1).

[2 marks]
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(f) The matrix

f ′′(x, y, z) =

2 0 0
0 6(y − 1) 0
0 0 12(z − 1)2


evaluated at the stationary point becomes

f ′′(1, 1, 1) =

2 0 0
0 0 0
0 0 0

 .

The principal minors test fails, but the eigenvalue test is conclusive. Since the
eigenvalues of f ′′(1, 1, 1) are λ1 = 2, λ2 = λ3 = 0, the symmetric matrix f ′′(1, 1, 1)
is positive semi-definite.

[4 marks]

(g) The classification test to determine the nature of the stationary point based on
f ′′(1, 1, 1) is still inconclusive since the latter is semi-definite. However, inspecting
f(x, y, z) we see that

f(1, 1 + ε, 1) = ε3,

which implies that f(1, 1 + ε, 1) > f(1, 1, 1) = 0 if ε > 0 and f(1, 1 + ε, 1) <
f(1, 1, 1) = 0 if ε < 0. Therefore the point (1, 1, 1) is a saddle point.

[5 marks]

5. (a) Following the Gram-Schmidt process, we obtain

u1 =
f1
||f1||

=
1√
3

1
1
1

 ,

w2 = f2 − 〈f2,u1〉u1

=

1
2
0

−〈
1

2
0

 ,


1√
3
1√
3
1√
3

〉


1√
3
1√
3
1√
3


=

 0
1
−1

 ,

u2 =
w2

||w2||
=

1√
2

 0
1
−1

 .
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So an orthonormal basis for Lin{f1, f2} is

C = {u1,u2} =




1√
3
1√
3
1√
3

 ,

 0
1√
2

− 1√
2


 .

[6 marks]

(b) Since f3 is orthogonal to both f1 and f2, we just rescale it to unit length:

u3 =
f3
||f3||

=
1√
6

 2
−1
−1

 .

So an orthonormal basis K for R3 is

K = {u1,u2,u3} =




1√
3
1√
3
1√
3

 ,

 0
1√
2

− 1√
2

 ,


2√
6

− 1√
6

− 1√
6


 .

[2 marks]

(c) We have AB→BS = ( (Sf1)B(Sf2)B(Sf3)B ) =

2 0 0
0 2 0
0 0 1

 .

We also have AK→KS = ( (Su1)K(Su2)K(Su3)K ) =

2 0 0
0 2 0
0 0 1

 because u1 and u2

belong to Lin{f1, f2} and u3 belongs to Lin{f3}. So u1 and u2 are stretched by S by
a factor of 2 and u3 is stretched by S by a factor of 1.

[5 marks]

(d) The matrix AS that represents S with respect to the standard basis must be sym-
metric because the eigenspaces corresponding to distinct eigenvalues are orthogonal;
i.e., A is orthogonally diagonalisable and hence symmetric.

[4 marks]

(e) Letting P be the transition matrix PE from E-coordinates to standard coordinates,

P = (u1u2u3) =


1√
3

0 2√
6

1√
3

1√
2
− 1√

6
1√
3
− 1√

2
− 1√

6

 ,
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and letting D = AK→KS ,

D =

2 0 0
0 2 0
0 0 1

 ,

we know that AS = PKA
K→K
S PT

K = PDPT .

[3 marks]

(f) Expressing the relations S(f1) = 2f1 and S(f3) = f3 in standard coordinates, we
obtain the matrix equations

(c1c2c3)

1
1
1

 =

2
2
2

 and (c1c2c3)

 2
−1
−1

 =

 2
−1
−1

 .

The first equation implies that c1 + c2 + c3 =

2
2
2

 and the second equation implies

that 2c1 − c2 − c3 =

 2
−1
−1

. Adding these equations together, we obtain

3c1 =

4
1
1

 ; i.e., c1 =
1

3

4
1
1

 .

[5 marks]

6. (a) We write the system of equations as xt+1 = Axt, where

A =

 1 1 0
−2 4 0
0 0 5

 .

The characteristic polynomial of A yields the eigenvalues

λ1 = 2, λ2 = 3 and λ3 = 5.

The corresponding eigenspaces are

N(A− 2I) = N

−1 1 0
−2 2 0
0 0 3

 = Lin


1

1
0


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N(A− 3I) = N

−2 1 0
−2 1 0
0 0 2

 = Lin


1

2
0


N(A− 5I) = N

−4 1 0
−2 −1 0
0 0 0

 = Lin


0

0
1


Hence

P =

1 1 0
1 2 0
0 0 1

 and D =

2 0 0
0 3 0
0 0 5

 .

Therefore, the particular solution of the system subject to the initial conditions isxtyt
zt

 = PDtP−1

1
2
3

 .

[10 marks]

(b) The auxiliary equation is
m2 − 5m+ 6 = 0,

which yields m1 = 2 and m2 = 3.

The complementary sequence is therefore

(CS)n = A 2n +B 3n,

where A and B are arbitrary constants.

For a particular sequence we try

(PS)n = an+ b

for some a, b to be determined. We have

(PS)n+1 = an+ a+ b, (PS)n+2 = an+ 2a+ b,

so substituting these expressions into the non-homogeneous equation we find

an+ 2a+ b− 5(an+ a+ b) + 6(an+ b) = 4n.

This equation must be satisfied identically in n, so, comparing coefficients, we find
that

2a = 4 and − 3a+ 2b = 0
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and hence that
a = 2 and b = 3.

The general solution of the difference equation is therefore

wn = 2n+ 3 + A 2n +B 3n.

[9 marks]

(c) (i) Inspecting the form of the general solution found in (a), we see that wn → ∞
as n→∞ if

• either B > 0 and A is arbitrary; or

• B = 0 and A ≥ 0.

[3 marks]

(ii) Similarly, we see that wn → −∞ as n→∞ if

• either B < 0 and A is arbitrary; or

• B = 0 and A < 0.

[3 marks]

7. (a) Using the relations

y = xz and
dy

dx
= z + x

dz

dx

we obtain an ordinary differential equation for the function z(x):

2x2
(
z + x

dz

dx

)
= x2 + x2z2.

We eliminate the factor x2,

2

(
z + x

dz

dx

)
= 1 + z2,

and send the term 2z to the right hand side. The resulting equation is clearly
separable:

2x
dz

dx
= z2 − 2z + 1.

[6 marks]
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(b) We separate the variables and integrate:

2

∫
dz

z2 − 2z + 1
=

∫
dx

x
.

The denominator of the integrand on the left hand side is a complete square, so we
have

2

∫
dz

(z − 1)2
=

∫
dx

x

which yields the general solution for z(x) in implicit form:

ln(x) +
2

z − 1
= C.

[4 marks]

(c) Before we apply the condition (x, y) = (1, 9) let us find the corresponding solution
for the function y(x). First we make z(x) the subject of the above equation to find
that

z = 1− 2

ln(x)− C

and then replace z by
y

x
to obtain the general solution for y(x):

y = x

(
1− 2

ln(x)− C

)
.

Finally, using the condition that y is equal to 9 when x is equal to 1, we find that

9 = 1 +
2

C
,

which implies that

C =
1

4
.

Hence, the particular solution for y(x) is

y = x

(
1− 2

ln(x)− 1
4

)
.

[5 marks]

14



(d) We see that

f(x) = x

(
1− 2

ln(x)− 1
4

)
has a vertical asymptote when ln(x)− 1

4
= 0; i.e. when x = e1/4. It follows that the

largest set D ⊂ R for which f : D → R is continuous is

D = (0, e1/4),

noting that x = 1 belongs to this interval.

[3 marks]

(e) Regarding w as a function of t and applying the chain rule of differentiation, we find

Ht +Hw
dw

dt
= 0,

so
dw

dt
= −Ht

Hw

.

[4 marks]

(f) The equation
Htdt+Hwdw = 0

has the required form M(t, w)dt + N(t, w)dw = 0 and its general solution is given
implicitly by H(t, w) = k for some arbitrary constant k. Moreover, the equation is
exact, since

∂

∂w
Ht =

∂

∂t
Hw.

[3 marks]

8. (a) The zero vector z ∈ V is defined by the property that for any f ∈ V , we have that
f + z = f . This means that for all x ∈ [−3, 3] we have that

(f + z)(x) = f(x); i.e. f(x) + z(x) = f(x); i.e. z(x) = 0.

In other words, z(x) is the identically zero function on [−3, 3].

[2 marks]

(b) To prove linear independence, we assume that for all x ∈ [−3, 3] we have

α1f1(x) + α2f2(x) + α3f3(x) = z(x).
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This implies the following identity in x:

2α1 + α2(1 + x) + α3(x+ x2) = 0.

Expanding and equating coefficients we get the linear system

2α1 + α2 = 0
α2 + α3 = 0

α3 = 0

which has the unique solution α1 = α2 = α3 = 0. It follows that f1, f2, f3 are linearly
independent.

[5 marks]

(c) To show that B spans V , let a general vector f ∈ V be f(x) = k+ lx+mx2 for some
k, l,m ∈ R. We need to show that there exist α1, α2, α3 ∈ R such that the equation

α1f1(x) + α2f2(x) + α3f3(x) = f(x)

is identically satisfied for all x; that is

(2α1 + α2) + (α2 + α3)x+ α3x
2 = k + lx+mx2.

Equating coefficients, we get the linear system

2α1 + α2 = k
α2 + α3 = l

α3 = m

which implies that

α3 = m, α2 = l −m and α1 =
k − l +m

2
.

So any vector f ∈ V can be written as a linear combination of the vectors in B and
hence B spans V . Moreover, since B is a linearly independent set by part (b), we
deduce that B is a basis for V and hence dim(V ) = |B| = 3.

[7 marks]

(d) We see that W is not a subspace of V because the zero vector z(x) identified in part
(a) is not in W . Alternatively, W is not closed under addition or scalar multiplica-
tion.

[2 marks]
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(e) We calculate the inner product

〈f1, f2〉 =

∫ 3

−3
2(1 + x)dx =

[
2x+ x2

]3
−3 = 12.

Since 〈f1, f2〉 6= 0, the vectors f1 and f2 are not orthogonal with respect to the given
inner product.

Furthermore, we have

||f1|| =
√
〈f1, f1〉 =

√∫ 3

−3
(2)(2)dx =

√
[4x]3−3 =

√
24

and

||f2|| =
√
〈f2, f2〉 =

√∫ 3

−3
(1 + x)2dx =

√∫ 3

−3
(x2 + 2x+ 1)dx

=

√[
x3

3
+ x2 + x

]3
−3

=
√

24,

so their lengths are equal.

[9 marks]
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