MA100

Mathematical Methods

Solutions to summer 2016 Examination - Resit candidates

1. (a) A vector parametric equation for the line ℓ is given by

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)+t\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)
$$

[2 marks]

(b) Eliminating the free parameter from the parametric equation, we get a Cartesian description for ℓ :

$$
x_{1}-1=x_{3}-3, \quad x_{2}=2, \quad x_{4}=4 .
$$

[2 marks]
(c) Performing the row reductions, we obtain

$$
\left(\begin{array}{ccc|c}
2 & 3 & 4 & 1 \\
1 & -2 & 2 & 2 \\
5 & -3 & a & b
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & -2 & 2 & 2 \\
0 & 7 & 0 & -3 \\
0 & 7 & a-10 & b-10
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & -2 & 2 & 2 \\
0 & 7 & 0 & -3 \\
0 & 0 & a-10 & b-7
\end{array}\right)
$$

[2 marks]

(i) Therefore, if $a \neq 10$, the system admits exactly one solution for all values of b. [2 marks]
(ii) If $a=10$ and $b \neq 7$, the system admits no solutions. [2 marks]
(iii) If $a=10$ and $b=7$, the system admits infinitely many solutions. [2 marks]
(d) A basis for the column space of \mathbf{A} consists of the columns of \mathbf{A} that correspond to the leading columns of $R R E(\mathbf{A})$:

$$
B_{1}=\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right)\right\}
$$

A basis for the null space of \mathbf{A} is obtained by inspecting $R R E(\mathbf{A})$. We get

$$
B_{2}=\left\{\left(\begin{array}{c}
1 \\
-3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-5 \\
-2 \\
0 \\
1
\end{array}\right)\right\}
$$

[3 marks]

(e) The linear system is consistent if \mathbf{b} belongs to the column space of \mathbf{A}; i.e., if \mathbf{b} can be written as a linear combination of the vectors in B_{1}. We have

$$
\left(\begin{array}{l}
9 \\
0 \\
k
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right) \quad \text { for some } \lambda, \mu
$$

Solving this system, we find that

$$
\lambda=1, \quad \mu=2, \quad k=7 .
$$

[5 marks]

(f) Every vector in the basis B_{2} of the null space of \mathbf{A} gives a linear combination of the columns of \mathbf{A} which is equal to the zero vector. Therefore

$$
\mathbf{c}_{1}-3 \mathbf{c}_{2}+\mathbf{c}_{3}=\mathbf{0} \quad \text { and } \quad-5 \mathbf{c}_{1}-2 \mathbf{c}_{2}+\mathbf{c}_{4}=\mathbf{0}
$$

from which we find that

$$
\mathbf{c}_{3}=\left(\begin{array}{c}
11 \\
-5 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{c}_{4}=\left(\begin{array}{c}
13 \\
8 \\
19
\end{array}\right)
$$

[5 marks]

2. (a) The Taylor polynomial P_{n} is given by

$$
P_{n}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n} .
$$

We have

$$
\begin{array}{llll}
f(x) & =(1-x)^{-1} & f(0) & =1 \\
f^{\prime}(x) & =(1-x)^{-2} & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =2(1-x)^{-3} & f^{\prime \prime}(0) & =2 \\
f^{\prime \prime \prime}(x) & =3!(1-x)^{-4} & f^{\prime \prime \prime}(0) & =3! \\
f^{(4)}(x) & =4!(1-x)^{-5} & & f^{(4)}(0)=4!
\end{array}
$$

and so on, so

$$
P_{n}(x)=1+x+x^{2}+x^{3}+\cdots+x^{n} .
$$

[7 marks]

(b) We have

$$
\begin{aligned}
(1-x) P_{n}(x)= & (1-x)\left(1+x+x^{2}+x^{3}+\cdots+x^{n}\right) \\
= & 1+x+x^{2}+x^{3}+\cdots+x^{n} \\
& -x-x^{2}-\cdots-x^{n}-x^{n+1} \\
= & 1-x^{n+1}
\end{aligned}
$$

[2 marks]

(c) It follows from the above that

$$
P_{n}(x)=\frac{1-x^{n+1}}{1-x}
$$

Comparing this expression with

$$
f(x)=\frac{1}{1-x}
$$

and using the fact that

$$
P_{\infty}(x)=\lim _{n \rightarrow \infty} P_{n}(x)
$$

we deduce that $P_{\infty}(x)$ converges to $f(x)$ only if $\lim _{n \rightarrow \infty} x^{n+1}=0$. This happens only if $|x|<1$.
[4 marks]
(d) We let $y=g(x)=\arcsin (x)$, which implies that $x=\sin (y)$. Therefore, the derivative of g is given by

$$
g^{\prime}(x)=\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}=\frac{1}{\cos (y)}= \pm \frac{1}{\sqrt{1-\sin ^{2}(y)}}
$$

We now use the fact that whenever $y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ we have that $\cos (y)>0$, from which we deduce that $\cos (y)=+\sqrt{1-\sin ^{2}(y)}$. Finally, replacing $\sin ^{2}(y)$ by x^{2}, we obtain

$$
g^{\prime}(x)=\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

as required.
[7 marks]
(e) The quadratic expression inside the root can be written as

$$
-x^{2}-6 x-5=-\left(x^{2}+6 x+5\right)=-\left[(x+3)^{2}-4\right]=4-(x+3)^{2}
$$

so the integral becomes

$$
\int \frac{d x}{\sqrt{4-(x+3)^{2}}}=\frac{1}{2} \int \frac{d x}{\sqrt{1-\left(\frac{x+3}{2}\right)^{2}}}=\int \frac{d\left(\frac{x+3}{2}\right)}{\sqrt{1-\left(\frac{x+3}{2}\right)^{2}}}=\arcsin \left(\frac{x+3}{2}\right)+C
$$

where the last step follows from part (d). [5 marks]
3. (a) We row reduce $(\mathbf{A} \mid \mathbf{b})$:

$$
\begin{aligned}
&\left(\begin{array}{cccc|c}
1 & 5 & 1 & 0 & 3 \\
2 & 10 & 0 & 2 & 8 \\
4 & 20 & 1 & 3 & 15 \\
1 & 5 & 0 & 1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 5 & 1 & 0 & 3 \\
0 & 0 & -2 & 2 & 2 \\
0 & 0 & -3 & 3 & 3 \\
0 & 0 & -1 & 1 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc|c}
1 & 5 & 1 & 0 & 3 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & -3 & 3 & 3 \\
0 & 0 & -1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 5 & 0 & 1 & 4 \\
0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So the general solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
0 \\
-1 \\
0
\end{array}\right)+s\left(\begin{array}{c}
-5 \\
1 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
0 \\
1 \\
1
\end{array}\right)
$$

[6 marks]

(b) A basis B for $C S(\mathbf{A})$ is $B=\left\{\mathbf{c}_{1}, \mathbf{c}_{3}\right\}=\left\{\left(\begin{array}{l}1 \\ 2 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$ since $R R E(\mathbf{A})$ has leading ones in the 1st and 3rd column. Further, we can read from the part of the general solution corresponding to the null space of \mathbf{A} that

$$
-5 \mathbf{c}_{1}+\mathbf{c}_{2}=\mathbf{0} \quad \text { and } \quad-\mathbf{c}_{1}+\mathbf{c}_{3}+\mathbf{c}_{4}=\mathbf{0}
$$

Therefore,

$$
\left(\mathbf{c}_{1}\right)_{B}=\binom{1}{0}_{B}, \quad\left(\mathbf{c}_{2}\right)_{B}=\binom{5}{0}_{B}, \quad\left(\mathbf{c}_{3}\right)_{B}=\binom{0}{1}_{B}, \quad\left(\mathbf{c}_{4}\right)_{B}=\binom{1}{-1}_{B} .
$$

[6 marks]

(c) Every solution of $\mathbf{A x}=\mathbf{b}$ gives \mathbf{b} as a linear combination of the columns of \mathbf{A}. Choosing $s=0, t=0$ in the general solution obtained in part (a), we find that

$$
\mathbf{b}=4 \mathbf{c}_{1}-\mathbf{c}_{3}
$$

Choosing $s=1, t=0$ we find that

$$
\mathbf{b}=-\mathbf{c}_{1}+\mathbf{c}_{2}-\mathbf{c}_{3},
$$

and choosing $s=0, t=1$ we find that

$$
\mathbf{b}=3 \mathbf{c}_{1}+\mathbf{c}_{4}
$$

[4 marks]

(d) We row reduce \mathbf{A}^{T}

$$
\left(\begin{array}{cccc}
1 & 2 & 4 & 1 \\
5 & 10 & 20 & 5 \\
1 & 0 & 1 & 0 \\
0 & 2 & 3 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 2 & 4 & 1 \\
0 & 0 & 0 & 0 \\
0 & -2 & -3 & -1 \\
0 & 2 & 3 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 3 / 2 & 1 / 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

so a basis for the null space of \mathbf{A}^{T} is

$$
\left\{\left(\begin{array}{c}
-1 \\
-\frac{3}{2} \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right)\right\}
$$

or simply

$$
C=\left\{\left(\begin{array}{c}
-2 \\
-3 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
0 \\
2
\end{array}\right)\right\}
$$

[4 marks]
(e) Since $N\left(\mathbf{A}^{T}\right) \perp R S\left(\mathbf{A}^{T}\right)=C S(\mathbf{A})$, a Cartesian description in \mathbb{R}^{4} for the column space of \mathbf{A} is given by

$$
\left(\begin{array}{cccc}
-2 & -3 & 2 & 0 \\
0 & -1 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\binom{0}{0}
$$

that is,

$$
\left\{\begin{aligned}
-2 x_{1}-3 x_{2}+2 x_{3} & =0 \\
-x_{2}+2 x_{4} & =0
\end{aligned}\right.
$$

[3 marks]

(f) For the system $\mathbf{A x}=\mathbf{d}$ to be consistent, we must have $\mathbf{d} \in C S(\mathbf{A})$; i.e., \mathbf{d} must satisfy the Cartesian description for $C S(\mathbf{A})$ found in part (e). So k, l, m, n must satisfy

$$
\left\{\begin{aligned}
-2 k-3 l+2 m & =0 \\
-l+2 n & =0
\end{aligned}\right.
$$

[2 marks]

4. (a) The relevant sketch is shown below:

[3 marks]
(b) We have

$$
L(x, y, \lambda)=100 x^{1 / 5} y^{4 / 5}+\lambda(100000-200 x-400 y)
$$

and

$$
\left\{\begin{array}{l}
L_{x}=20 x^{-4 / 5} y^{4 / 5}-200 \lambda=0 \\
L_{y}=80 x^{1 / 5} y^{-1 / 5}-400 \lambda=0 \\
L_{\lambda}=100000-200 x-400 y=0
\end{array}\right.
$$

Eliminating λ from the first two equations, we find that

$$
y=2 x
$$

Substituting this equation into the constraint, we find that

$$
x^{*}=100 \quad \text { and } \quad y^{*}=200
$$

which are the coordinates of the point M.
[6 marks]
(c) Yes, any point of the form $(x, 0)$ where $0 \leq x \leq 500$ and any point of the form $(0, y)$ where $0 \leq y \leq 250$ is a constrained minimum of $P(x, y)$ on D.
[2 marks]
(d) The relevant sketch is shown below:

[3 marks]

(e) Setting the derivatives of f to zero, we have

$$
f_{x}=2(x-1)=0, \quad f_{y}=3(y-1)^{2}=0, \quad f_{z}=4(z-1)^{3}=0
$$

so f has a single stationary point at $(1,1,1)$.
[2 marks]
(f) The matrix

$$
f^{\prime \prime}(x, y, z)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 6(y-1) & 0 \\
0 & 0 & 12(z-1)^{2}
\end{array}\right)
$$

evaluated at the stationary point becomes

$$
f^{\prime \prime}(1,1,1)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The principal minors test fails, but the eigenvalue test is conclusive. Since the eigenvalues of $f^{\prime \prime}(1,1,1)$ are $\lambda_{1}=2, \lambda_{2}=\lambda_{3}=0$, the symmetric matrix $f^{\prime \prime}(1,1,1)$ is positive semi-definite.
[4 marks]
(g) The classification test to determine the nature of the stationary point based on $f^{\prime \prime}(1,1,1)$ is still inconclusive since the latter is semi-definite. However, inspecting $f(x, y, z)$ we see that

$$
f(1,1+\epsilon, 1)=\epsilon^{3},
$$

which implies that $f(1,1+\epsilon, 1)>f(1,1,1)=0$ if $\epsilon>0$ and $f(1,1+\epsilon, 1)<$ $f(1,1,1)=0$ if $\epsilon<0$. Therefore the point $(1,1,1)$ is a saddle point.
[5 marks]
5. (a) Following the Gram-Schmidt process, we obtain

$$
\begin{aligned}
\mathbf{u}_{1} & =\frac{\mathbf{f}_{1}}{\left\|\mathbf{f}_{1}\right\|}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
\mathbf{w}_{2} & =\mathbf{f}_{2}-\left\langle\mathbf{f}_{2}, \mathbf{u}_{1}\right\rangle \mathbf{u}_{1} \\
& =\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-\left\langle\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right)\right\rangle\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
\mathbf{u}_{2} & =\frac{\mathbf{w}_{2}}{\left\|\mathbf{w}_{2}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) .
\end{aligned}
$$

So an orthonormal basis for $\operatorname{Lin}\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$ is

$$
C=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\left\{\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right),\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right)\right\} .
$$

[6 marks]

(b) Since \mathbf{f}_{3} is orthogonal to both \mathbf{f}_{1} and \mathbf{f}_{2}, we just rescale it to unit length:

$$
\mathbf{u}_{3}=\frac{\mathbf{f}_{3}}{\left\|\mathbf{f}_{3}\right\|}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

So an orthonormal basis K for \mathbb{R}^{3} is

$$
K=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right),\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right),\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}}
\end{array}\right)\right\} .
$$

[2 marks]

(c) We have $A_{S}^{B \rightarrow B}=\left(\left(S \mathbf{f}_{1}\right)_{B}\left(S \mathbf{f}_{2}\right)_{B}\left(S \mathbf{f}_{3}\right)_{B}\right)=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.

We also have $A_{S}^{K \rightarrow K}=\left(\left(S \mathbf{u}_{1}\right)_{K}\left(S \mathbf{u}_{2}\right)_{K}\left(S \mathbf{u}_{3}\right)_{K}\right)=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ because \mathbf{u}_{1} and \mathbf{u}_{2} belong to $\operatorname{Lin}\left\{\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{2}\right\}$ and \mathbf{u}_{3} belongs to $\operatorname{Lin}\left\{\mathbf{f}_{3}\right\}$. So \mathbf{u}_{1} and \mathbf{u}_{2} are stretched by S by a factor of 2 and \mathbf{u}_{3} is stretched by S by a factor of 1 .

[5 marks]

(d) The matrix \mathbf{A}_{S} that represents S with respect to the standard basis must be symmetric because the eigenspaces corresponding to distinct eigenvalues are orthogonal; i.e., \mathbf{A} is orthogonally diagonalisable and hence symmetric.

[4 marks]

(e) Letting \mathbf{P} be the transition matrix \mathbf{P}_{E} from E-coordinates to standard coordinates,

$$
\mathbf{P}=\left(\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}}
\end{array}\right),
$$

and letting $\mathbf{D}=A_{S}^{K \rightarrow K}$,

$$
\mathbf{D}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

we know that $\mathbf{A}_{S}=\mathbf{P}_{K} \mathbf{A}_{S}^{K \rightarrow K} \mathbf{P}_{K}^{T}=\mathbf{P D P}^{T}$.
[3 marks]
(f) Expressing the relations $S\left(\mathbf{f}_{1}\right)=2 \mathbf{f}_{1}$ and $S\left(\mathbf{f}_{3}\right)=\mathbf{f}_{3}$ in standard coordinates, we obtain the matrix equations

$$
\left(\mathbf{c}_{1} \mathbf{c}_{2} \mathbf{c}_{3}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) \quad \text { and } \quad\left(\mathbf{c}_{1} \mathbf{c}_{2} \mathbf{c}_{3}\right)\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

The first equation implies that $\mathbf{c}_{1}+\mathbf{c}_{2}+\mathbf{c}_{3}=\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$ and the second equation implies that $2 \mathbf{c}_{1}-\mathbf{c}_{2}-\mathbf{c}_{3}=\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$. Adding these equations together, we obtain

$$
3 \mathbf{c}_{1}=\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right) ; \text { i.e., } \quad \mathbf{c}_{1}=\frac{1}{3}\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right)
$$

[5 marks]

6. (a) We write the system of equations as $\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}$, where

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-2 & 4 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

The characteristic polynomial of A yields the eigenvalues

$$
\lambda_{1}=2, \quad \lambda_{2}=3 \quad \text { and } \quad \lambda_{3}=5
$$

The corresponding eigenspaces are

$$
N(\mathbf{A}-2 \mathbf{I})=N\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-2 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)=\operatorname{Lin}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}
$$

$$
\begin{aligned}
& N(\mathbf{A}-3 \mathbf{I})=N\left(\begin{array}{ccc}
-2 & 1 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)=\operatorname{Lin}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right\} \\
& N(\mathbf{A}-5 \mathbf{I})=N\left(\begin{array}{ccc}
-4 & 1 & 0 \\
-2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Lin}\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Hence

$$
\mathbf{P}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{D}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

Therefore, the particular solution of the system subject to the initial conditions is

$$
\left(\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)=\mathbf{P D}^{t} \mathbf{P}^{-1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

[10 marks]

(b) The auxiliary equation is

$$
m^{2}-5 m+6=0
$$

which yields $m_{1}=2$ and $m_{2}=3$.
The complementary sequence is therefore

$$
(C S)_{n}=A 2^{n}+B 3^{n},
$$

where A and B are arbitrary constants.
For a particular sequence we try

$$
(P S)_{n}=a n+b
$$

for some a, b to be determined. We have

$$
(P S)_{n+1}=a n+a+b, \quad(P S)_{n+2}=a n+2 a+b
$$

so substituting these expressions into the non-homogeneous equation we find

$$
a n+2 a+b-5(a n+a+b)+6(a n+b)=4 n .
$$

This equation must be satisfied identically in n, so, comparing coefficients, we find that

$$
2 a=4 \quad \text { and } \quad-3 a+2 b=0
$$

and hence that

$$
a=2 \quad \text { and } \quad b=3 .
$$

The general solution of the difference equation is therefore

$$
w_{n}=2 n+3+A 2^{n}+B 3^{n} .
$$

[9 marks]

(c) (i) Inspecting the form of the general solution found in (a), we see that $w_{n} \rightarrow \infty$ as $n \rightarrow \infty$ if

- either $B>0$ and A is arbitrary; or
- $B=0$ and $A \geq 0$.

[3 marks]

(ii) Similarly, we see that $w_{n} \rightarrow-\infty$ as $n \rightarrow \infty$ if

- either $B<0$ and A is arbitrary; or
- $B=0$ and $A<0$.
[3 marks]

7. (a) Using the relations

$$
y=x z \quad \text { and } \quad \frac{d y}{d x}=z+x \frac{d z}{d x}
$$

we obtain an ordinary differential equation for the function $z(x)$:

$$
2 x^{2}\left(z+x \frac{d z}{d x}\right)=x^{2}+x^{2} z^{2}
$$

We eliminate the factor x^{2},

$$
2\left(z+x \frac{d z}{d x}\right)=1+z^{2}
$$

and send the term $2 z$ to the right hand side. The resulting equation is clearly separable:

$$
2 x \frac{d z}{d x}=z^{2}-2 z+1
$$

[6 marks]

(b) We separate the variables and integrate:

$$
2 \int \frac{d z}{z^{2}-2 z+1}=\int \frac{d x}{x} .
$$

The denominator of the integrand on the left hand side is a complete square, so we have

$$
2 \int \frac{d z}{(z-1)^{2}}=\int \frac{d x}{x}
$$

which yields the general solution for $z(x)$ in implicit form:

$$
\ln (x)+\frac{2}{z-1}=C .
$$

[4 marks]

(c) Before we apply the condition $(x, y)=(1,9)$ let us find the corresponding solution for the function $y(x)$. First we make $z(x)$ the subject of the above equation to find that

$$
z=1-\frac{2}{\ln (x)-C}
$$

and then replace z by $\frac{y}{x}$ to obtain the general solution for $y(x)$:

$$
y=x\left(1-\frac{2}{\ln (x)-C}\right) .
$$

Finally, using the condition that y is equal to 9 when x is equal to 1 , we find that

$$
9=1+\frac{2}{C}
$$

which implies that

$$
C=\frac{1}{4} .
$$

Hence, the particular solution for $y(x)$ is

$$
y=x\left(1-\frac{2}{\ln (x)-\frac{1}{4}}\right) .
$$

[5 marks]

(d) We see that

$$
f(x)=x\left(1-\frac{2}{\ln (x)-\frac{1}{4}}\right)
$$

has a vertical asymptote when $\ln (x)-\frac{1}{4}=0$; i.e. when $x=e^{1 / 4}$. It follows that the largest set $D \subset \mathbb{R}$ for which $f: D \rightarrow \mathbb{R}$ is continuous is

$$
D=\left(0, e^{1 / 4}\right)
$$

noting that $x=1$ belongs to this interval.
[3 marks]
(e) Regarding w as a function of t and applying the chain rule of differentiation, we find

$$
H_{t}+H_{w} \frac{d w}{d t}=0
$$

so

$$
\frac{d w}{d t}=-\frac{H_{t}}{H_{w}} .
$$

[4 marks]

(f) The equation

$$
H_{t} d t+H_{w} d w=0
$$

has the required form $M(t, w) d t+N(t, w) d w=0$ and its general solution is given implicitly by $H(t, w)=k$ for some arbitrary constant k. Moreover, the equation is exact, since

$$
\frac{\partial}{\partial w} H_{t}=\frac{\partial}{\partial t} H_{w}
$$

[3 marks]

8. (a) The zero vector $z \in V$ is defined by the property that for any $f \in V$, we have that $f+z=f$. This means that for all $x \in[-3,3]$ we have that

$$
(f+z)(x)=f(x) \text {; i.e. } f(x)+z(x)=f(x) \text {; i.e. } z(x)=0 .
$$

In other words, $z(x)$ is the identically zero function on $[-3,3]$.
[2 marks]
(b) To prove linear independence, we assume that for all $x \in[-3,3]$ we have

$$
\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)+\alpha_{3} f_{3}(x)=z(x) .
$$

This implies the following identity in x :

$$
2 \alpha_{1}+\alpha_{2}(1+x)+\alpha_{3}\left(x+x^{2}\right)=0 .
$$

Expanding and equating coefficients we get the linear system

$$
\begin{aligned}
2 \alpha_{1}+\alpha_{2} & =0 \\
\alpha_{2}+\alpha_{3} & =0 \\
\alpha_{3} & =0
\end{aligned}
$$

which has the unique solution $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. It follows that f_{1}, f_{2}, f_{3} are linearly independent.

[5 marks]

(c) To show that B spans V, let a general vector $f \in V$ be $f(x)=k+l x+m x^{2}$ for some $k, l, m \in \mathbb{R}$. We need to show that there exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ such that the equation

$$
\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)+\alpha_{3} f_{3}(x)=f(x)
$$

is identically satisfied for all x; that is

$$
\left(2 \alpha_{1}+\alpha_{2}\right)+\left(\alpha_{2}+\alpha_{3}\right) x+\alpha_{3} x^{2}=k+l x+m x^{2} .
$$

Equating coefficients, we get the linear system

$$
\begin{aligned}
2 \alpha_{1}+\alpha_{2} & =k \\
\alpha_{2}+\alpha_{3} & =l \\
\alpha_{3} & =m
\end{aligned}
$$

which implies that

$$
\alpha_{3}=m, \quad \alpha_{2}=l-m \quad \text { and } \quad \alpha_{1}=\frac{k-l+m}{2}
$$

So any vector $f \in V$ can be written as a linear combination of the vectors in B and hence B spans V. Moreover, since B is a linearly independent set by part (b), we deduce that B is a basis for V and hence $\operatorname{dim}(V)=|B|=3$.

[7 marks]

(d) We see that W is not a subspace of V because the zero vector $z(x)$ identified in part (a) is not in W. Alternatively, W is not closed under addition or scalar multiplication.
[2 marks]
(e) We calculate the inner product

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{-3}^{3} 2(1+x) d x=\left[2 x+x^{2}\right]_{-3}^{3}=12
$$

Since $\left\langle f_{1}, f_{2}\right\rangle \neq 0$, the vectors f_{1} and f_{2} are not orthogonal with respect to the given inner product.

Furthermore, we have

$$
\left\|f_{1}\right\|=\sqrt{\left\langle f_{1}, f_{1}\right\rangle}=\sqrt{\int_{-3}^{3}(2)(2) d x}=\sqrt{[4 x]_{-3}^{3}}=\sqrt{24}
$$

and

$$
\begin{aligned}
\left\|f_{2}\right\| & =\sqrt{\left\langle f_{2}, f_{2}\right\rangle}=\sqrt{\int_{-3}^{3}(1+x)^{2} d x}=\sqrt{\int_{-3}^{3}\left(x^{2}+2 x+1\right) d x} \\
& =\sqrt{\left[\frac{x^{3}}{3}+x^{2}+x\right]_{-3}^{3}}=\sqrt{24}
\end{aligned}
$$

so their lengths are equal.
[9 marks]

