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Question 1

(a)

(b)

(c)

We are dealing with three statements p, g, r, each of which can be true ("T") or false
("F"). Using the simple truth tables for aVv b and a = b, we get the following truth table,

showing both (p=r)V(g=r)and (pVq)=r:

p q r |p=rlg=r|(p=>r)Vig=r)|pVql(pVvag)=r
TTT T T T T T
TTF F F F T F
TF T T T T T T
T F F F T T T F
FTT T T T T T
FTF T F T T F
FFT T T T F T
F F F T T T F T

We see that there are two lines in which the truth values for (p = r) VvV (¢ = r) and
(p V q) = r differ, which means that the two statements are not logically equivalent.
[4 + 2 pts, Standard question]

Since §; =1 and S, = 2, the statement is true for n=1 and n = 2.

Now suppose that the statement is true for all n < k, for some k > 2, and consider the
number Siy1. Since k + 1 > 3, we know that Sk4+1 = 25 + Sk-1 — 2.

Now if k41 is even, then k is odd and k—1 is even, and hence by the induction hypothesis
we have that Sy is odd and Si_; is even. This means that 25, + Sx—; — 2 is even ( “two
times odd plus even minus even™ is even).

And if k+ 1 is odd, then k is even and k — 1 is odd, and hence by the induction hypothesis
we have that Sy is even and Sy_; is odd. This means that 25, + Sx—; — 2 is odd ( "“two
times even plus odd minus even” is odd).

We have shown that the statement is true for n = k + 1.

By the Principle of Induction, we can can conclude that P(n) is true for all n € N.
[8 pts, Similar to many questions, although more involved than most seen]

(i) If z= Re® then z2 = R?e?® and 2z = 2Re~"®. So to have z? = 2Z we must have
R? = 2R and €% = ¢~ 7%,
Since R? = 2R is equivalent to R(R —2) =0, we have R=0o0r R=2.
And to have €?® = e~ we must have that 26 and —6 differ by a multiple of 27. So
we have 20 = —6 + 2km for some integer k, while we also want that 0 < 6 < 2.
This gives 36 = 2km. If k =0, then we get 8§ = 0; if k = 1, then we get 6 = %w; and
if k=2, then we get 8 = %W. For all other values of k, we don't find 0 < 8 < 27.
Combining it all, if R = 0, then we have the one solution z = 0. And if R = 2, then
we have z = 2e% = 2, z = 2e2™/3 and z = 2e*"/3,
[8 pts, Unseen]

(ii) We can write 0 =0+ 0/ and 2 = 2+ 0/. For the other two solutions we find

2p2im/3 — 2(cos(§7r) + /sin(%"r)) = 2(_% + /%\/5) = —1+ V3,
2e4/7r/3 - 2(COS(%7T) + I‘Sin(%ﬂ')) — 2(—% — l%\/g) = —1 —_— /.\/5.
[3 pts, Standard]
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Question 2

(a) (i) We have that d is a divisor of m if there exists an integer k such that m=k - d.

The greatest common divisor gcd(m, n) of two integers m, n, not both zero, is the
largest integer d such that d is a divisor of both m and n.
[1 + 1 pts, Bookwork|

(ii) Every integer is a divisor of 0, since we have 0 = 0- d for every integer d. That means
that if we would ask for common divisors of 0 and 0, then we would have the set of
all integers. Hence there would be no largest common divisor.
[3 pts, Discussed in lectures]

(iii) We first note that gcd(—51, 141) = gcd(141,51), and then start taking the steps in
Euclid's algorithm as follows.

141 = 2 x 51 + 39;
51 = 1x39+12,
39 = 3x12+ 3;
12 =4x 34+ 0.

As the final line ends in 0, we have found the greatest common divisor: gcd(—51,141) =
gcd(141,51) = 3.
[4 pts, Standard]

(b) (i) If we have x = 0.0119, then 1000x = 11.9119. This means that 999x = 1000x — x =
19 119 119

_ — 1
11.9119 - 0.0119 =119 = 0 And hence we have x = 10999 — 9.990°
[3 pts, Bookwork]

i) We can write x = 0.01191191. This shows immediately that r = 0.0119]1 = ———
(i) y 100,000

satisfies 0.0119 < r < 0.0119.
[3 pts, Standard]
(iii) From a result in the course we know that v/2 is irrational. We also know that 1 <

2 - .
V2 < 2. This means that 0 < ——\/z— < Since v/2 is irrational, also

o X 200,000 ~ 200,000
2= 0001:—9 ;/5 is irrational. Note that z satisfies z > = 0.0119
and z < + = 0.0119 + 0.00001 = 0.01191 < 0.0119. So z has

indeed the desired properties.
[5 pts, Unseen]

(c) Letxe€ (AUB)\C. That meansthat x € AUB and x ¢ C. And from x € AU B we know
that x € Aor x € B. If x € A, then together with x ¢ C we have x € A\ C, and hence
x € (A\C)U(B\C). While if x € B, then together with x ¢ C we have x € B\ C, giving
x € (A\ C)U(B\ C) again. So we can conclude that (AUB)\ C C (A\C)U(B\ Q).
[5 pts, Unseen]
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Question 3

(@ ()

(i)

The contrapositive of the statement is “if p/q can not be expressed as an Egyptian
fraction with k + 1 terms, then p/qg can not be expressed as an Egyptian fraction

with k terms".

The converse of the statement is “if p/q can be expressed as an Egyptian fraction
with k + 1 terms, then p/q can be expressed as an Egyptian fraction with k terms".

[2 + 1 pts, Standard]

We need to show that we can write 1/a = 1/b+ 1/c, for some natural numbers b, c,
b # c. We greedily take 1/b < 1/a as large as possible, hence we take b =a+1. We
1 1

1
find that l - = . ! . And since
a a+1 a(a+1)

a+1 + a(a+1)
a>2, wehave a(a+1)# a+ 1, as required.
[4 pts, Unseen]

Hence we have 3 =

(iii) Let p/q, 0 < p/q < 1, be a rational number and suppose that we can express

p/q as an Egyptian fraction with kK > 2 terms. In other words we can write E =

1 1 1 .

o + > + -+ o where aj, a,, ..., ax are different natural numbers. So we can
1 2 k

assume that a; < a, < ... < ax. Now in part (ii) we have seen that we can write
1 1

1
— = + cWith ag < ar+1 < ak(ag+1) (since ax > a; > 1). Puttin
ax  ak+1 ak(a+1) k « K(a+1) ( g ! ) .
it together ivesp—1+l+ + ! ! + :
J J g a  a k-1 ak+1  ar(an+1)
expression of p/q as an Egyptian fraction with k + 1 terms.

[6 pts, Unseen]

which gives an

(iv) The contrapositive of a statement is logically equivalent to the statement itself. Since

(b) ()

(i)

we proved in (iii) that P is always true, that means that the contrapositive of P is

also always true.
[2 pts, Bookwork]

5x + 3y =2,
x+2y =1,

gives 5x + 10y = 5. Since 10 = 3 in Z;, that equation is equivalent to 5x + 3y = 5.
But as the first equation is 5x + 3y = 2, we get 5 = 2, which is not valid in Z-.

[3 pts, Standard]

Multiplying the first equation by 2 gives 10x+6y = 4, which is equivalent to 3x+6y =

4 in Z;. Multiplying the second equation by 3 gives 3cx + 6y = 3. Subtracting the
new first equation from the new second one gives (3¢ —3)x = -1 =6 in Z;. Since 7

is a prime number, every element a € Z;, a # 0, has an inverse a~! € Z;. Since

3c —3#0if ¢ # 1, there is an inverse (3¢ — 3)~!. That means that (3¢ — 3)x = 6
has the solution x = 6(3¢c — 3)71.

Substituting this value for x in the first equation leads to 5 6(3c — 3)7! + 3y = 2,

which gives 3y =2 —30(3c —3)"! =2+ 5(3c —3)7! (since =30 = -2 =5 in Z;).

The inverse of 3 in Z7 is 5 (since 3-5=15=1in Z7). So for y we find the solution

y=5 (2+50Bc—=3)71) =10+25(3c —3)"1=3+4(3c—3)"in Z,.

So the solution for the case ¢ # 1is x = 6(3c —3) ! and y =3 +4(3c —3)7 1.

[7 pts, Unseen in this form]

If ¢ =1, the system becomes { Multiplying the second equation by 5
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Question 4

(a) (i) A function is surjective if for all y € Y there exists an x € X such that f(x) = y.

(b)

A function is injective if for all x;, %, € X with x; # x, we have that f(x;) # f(x).

A function is bijective if it is both surjective and injective.
[1+ 1+ 1 pts, Bookwork]

(i) Form 1: For all natural numbers m, n € N, if there is an injection from N, to N,
(where N, = {1,2,3,..., m}), then m < n.

Form 2: Let A, B be two finite sets, and let f be a function from A to B. If |A| > |B],
then there exist a;, a; € A, a; # a,, such that f(a;) = f(ay).
[2 pts, BookworK]

(iii) Suppose f : X — X is injective, but not surjective. Let X’ be the set of elements
in X that appear as an image f(x) for x € X. Since f is not surjective, we have
that X’ # X. But since we also have X’ C X, this means that |X'| < |X|. Since
we can consider f as a function from X to X’, by the Pigeonhole Principle there are
x1, X2 € X, x1 # Xz, such that f(x;) = f(x;). But that contradicts that f is injective.
Hence f must be surjective.

[6 pts, Unseen, and quite hard]

(iv) Define the function f : N — N by f(x) = x+1. Then f is injective, but not surjective
(since there is no element x € N such that f(x) =1).

(3 pts, Unseen]

(i) R is reflexive on N. For this, we use that gcd(a, a) = a (if a € N). And if x € N, then
x+12>2, hence gcd(x+1,x+1) = x+1 > 2. So we have that xRx for all x € N,
[2 pts, Unseen, though similar to many exercises]

(i) R is symmetric on N. For all a, b € N we have gcd(a, b) = gcd(b, a). This means
that gcd(x + 1,y + 1) > 2 if and only if gcd(y + 1,x + 1) > 2. So we have that
xRy = yRx for all x,y € N,

[3 pts, Unseen, though similar to many exercises]

(iii) R is not transitive on N. Take x = 1, y = 5 and z = 2. Then we have that
gcd(x+ 1,y +1) =9gcd(2,6) =2 > 2 and ged(y +1,z+ 1) = gcd(6,3) = 3 > 2,
hence xRy and yRz hold. But gcd(x +1,z+ 1) = gcd(2,3) =1 2 2, hence xRz
does not hold. So it is not the case that (xRy A yRz) = xRz for all x,y,z € N, and
hence R is not transitive.

(4 pts, Unseen]

(iv) Since R is not transitive, it cannot be an equivalence relation.

[2 pts, Bookwork]
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Question b

(a)

(b)

(i) s is an upper bound for A if s > afor all a € A. s is the supremum of A if s is the
least upper bound of A, i.e., s is an upper bound for A, and s < t whenever t is an
upper bound for A.

[3pts, Bookwork]

(i) To show that sup(A U B) > sup(A), it suffices to show that t = sup(AU B) is an
upper bound for A, since it then follows that sup(A) < t. But this is immediate, since,
forevery ae A, a€e AUB, andso a<'t.

[2pts, Similar to exercise]

(iii) Suppose that A dominates B, let s = sup(A), and take any ¢ € AU B. Either
(i) c € A, in which case ¢ < s since s is an upper bound for A, or (ii) ¢ € B, in which
case there is some a € A with ¢ < a < s, since A dominates B and s is an upper
bound for A. Thus s is an upper bound for AU B.

This implies that sup(AU B) < s = sup(A), and combining this with the previous part
gives sup(AU B) = sup A.
[5pts, Unseen]

(iv) This is false. Consider A= (0,1), B =1(0,1]. Then sup(AUB) =sup(A) =1, but A
does not dominate B since 1 € B but there is no element a € A with a > 1.

[2pts, Unseen]

(v) This is true. Take any b € B. As s is an upper bound for B, but s ¢ B, we have
b <'s. Now, as s is the supremum of A, b is not an upper bound for A, and so there
is some a € A with a > b. Hence A dominates B.

[4pts, Unseen]

To show that there is at least one such value, we use the Intermediate Value Theorem: if

g : [a, b] — Ris a continuous function, and g(a) < ¢ < g(b), then there is some x € [a, b]

with g(x) = c.

[2pts]

We apply the Intermediate Value Theorem with g(x) = /x — f(x), and [a, b] = [0, 1].

We know that g is continuous as it is the sum of the continuous functions \/x and —f(x).

Also g(0) = —f(0) = =1, and g(1) = 1—f(1) > 1 — f(0) = 0, since f is decreasing.

Hence g(0) < 0 < g(1), and so there is some x € [0, 1] with g(x) =0, i.e., f(x) = V/x.

[5pts, Unseen but routine]

To see that there is at most one such x, note that g(x) is strictly increasing. Explicitly,

suppose there are two solutions x; and x, with x; < x2. Then f(x1) = /X1 < /%2 = f(x2),

contradicting the assumption that f is decreasing.

[2pts, Unseen]
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Question 6

(a) (i) To say that (an)nen is convergent, with limit 1, means that, for every € > 0, there is
some N € N such that, forn> N, |a, ~ 1| < €.
[3pts, Bookwork]
(i) Suppose that a, — 1. We show that a2 — 1.
Fix e > 0. As a, — 1, there is some N € N such that, for n > N, |a, — 1] <
min(1,e/3). Now we have, for n > N, a, < 2, and therefore

€
la2 — 1| = |a, — 1] |a, + 1| < 3|a, — 1] <33=e
Hence indeed a2 — 1.
[6pts, essentially Bookwork]
(iii) We now show that b, = max(ap, a2) = 1.
Fix € > 0. Take N; € N such that, for n > N, |a, — 1| < €. Take also N, € N
such that, for n > Ny, |a2 — 1| < €. Now take N = max(N;, N2). For n > N, we
have a, < 1+eand a2 < 1+¢€,50 b, <1+¢. Also we have b, > a, > 1—¢€. So
|bn — 1| < €. Hence indeed b, — 1.
[4pts, Unseen, but related to a recent past exam question]

(b) (i) We note that

(VAFI-vi—D(V/nF1+va=1)

VERESL S vn+1++vn-—1
_(n+1)=(n-1) 2
TRt =1 WA IR =L
NG 2

and hence a, =

vVn+l1+vn—-T1 \/1+%+\/1_%
[S5pts, Similar examples have been seen]
By the Algebra of Limits, we have

2

lim a, =

n—o0 1

VI Imed +/1—limy g3 VIFO+VI-O

[3pts]

(i) We proved in the course that 21/" — 1 as n — oco. Hence there is some N € N such
that 2/ > 1 for n > N. We see that b, > 3 for even n > N, and b, < —3 for odd
n > N. This implies.that (b,),en does not converge. (One could write more, but |
think this should suffice.)
[4pts, Unseen]
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Question 7

(a)

(b)

(c)

(i) A function ¢ : G —» G’ is a homomorphism if, for every a, b € G, ¢p(axb) = ¢(a)*'p(b).
[2pts, Bookwork]

(ii) The kernel of ¢ is ker(¢p) = {a € G | ¢p(a) = €'}, where € is the identity element of
(G, +).
[2pts, Bookwork]

(iii) To see that ker(¢) is a subgroup of (G, %), we have three things to check:
1) If a,b € ker(¢), ¢(a) = ¢p(b) = €', so ¢p(ax b) = ¢(a) *x p(b) = € ¥ & = €, so
axb € ker(¢).
2) We are given that ¢(e) = €, so that e € ker(¢).
3) If a € ker(¢), then ¢(a=1) = (¢(a)) ! = (¢)" =€, so a~! € ker(¢).
Hence indeed ker(¢) is a subgroup.
[5pts, Bookwork]

(i) We show first that g x ker(¢) C S;,. An element of g x ker(¢) is of the form g * a,
where a € ker(¢). Now ¢(g*a) = ¢(g)*' ¢p(a) = hx'e' = h, so gxa € S, as required.
[3pts, Unseen]

Now suppose that f € S, so that ¢(f) = h. We note that f = g* (¢! * ), and we
claim that g7t x f € ker(¢). Indeed, ¢(g7' x f) = (¢(9)) ' ¥ ¢(f) = "1 ¥ h = €.
Hence f € g * ker(¢), as required.

[3pts, Unseen)

(ii) For the next part, we know that all left cosets of ker(¢) have size | ker(¢)|, and there
is one coset for each element of im(¢). As the cosets (or indeed the inverse images
of elements of im(¢)) partition the group, we have that |G| is equal to the number of
cosets times the size of each coset, as given.

[2pts, Unseen]

The function 6 is a homomorphism iff we have 8(a* b) = 6(a) *6(b) for all a, b € G, i.e.,

axbxaxb = axaxbxbforall a,b e G. This certainly holds if bxa=axbforall a, b € G,

i.e., if G is Abelian. Conversely, if, for all a,b € G, we have ax b*x axb = ax a* bx* b,

then we also have a ' xaxbxaxbx bl =alxaxaxbxbxb! andsobxa=axb-

hence G is Abelian.
[6pts, Unseen, though related to material in lectures/exercises]

If G is Abelian, then the function 6 is a homomorphism. Its kernel is {g | g * g = e}, and
its image is {a| a = g * g for some g € G}. The result now follows from (b).

[2pts, Unseen)
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Question 8

(a)

(b)

(i) A basis of a vector space V is a set B of vectors in B such that (i) B is linearly
independent, and (ii) B spans V.
The vector space V has dimension d if there is a basis of cardinality d.
[4pts, Bookwork]

(ii) We follow the hint and take bases {u;,u>} of U and {w;,wo} of W. Now con-
sider uy, up, wi, Wy, As there are four vectors here (though not necessarily distinct)
and V has dimension 3, they are linearly dependent. Thus there are real numbers
ay, ap, B1, B2, not all zero, with

aq1Uq + QU2 +,31W1 +ﬁ2W2 = 0.
We can then rewrite this as
iUy + Qous = —ﬁ1w1 —ﬁng = V.

The vector v is in U, since it is a linear combination of the basis elements of U, and
similarly it is in W. Suppose that v=0. As 0 = v = a;u; + asuy, then as uy, u, are
linearly independent, we have a; = ap; = 0. Similarly, as 0 = v = —Biw; — Bowa, we
have B; = B, = 0. But this contradicts the assumption that not all of as, as, B, B>
are zero. Therefore the vector v is a non-zero vector in UN W.

[11pts, Unseen]

We have three things to check:
(i) The set L is closed under addition. Suppose then that f and g are in L; there are

constants Kr and K such that, for all x,y € R, |f(x) — f(y)| < K¢lx — y|, and |g(x) —
9(¥)| < Kg4lx — y|. So we have, for all x,y € R,

I(f + 9)(x) = (F + )W) S [F(x) = FW) + |9(x) — g(¥)I
< Kelx =yl + Kglx = y| = (Kr + Kg)Ix = yI.

So the function f + g is Lipschitz, with constant K¢ + K.
(ii) The zero function is in L: this is clear: we can take Ko = 0.

(iii) The set L is closed under scalar multiplication. Indeed, for f in L with Lipschitz
constant K¢, and o € R, we have

laf(x) —af(y)l = lal|f(x) = f(y)| < |alKrlx =y,

for all x, y € R, so the function af is Lipschitz, with constant |a|Kf.

Thus indeed L is a subspace of X.
[10pts, Unseen]

END OF PAPER
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