MA100 Mathematical Methods Background You Should Know and Exercises

This is background material for MA100 and is intended to be a review of your A-level Mathematics course. Please work through it before term or in your spare time. (You do not need and should not use a calculator.) If you have difficulties with anything, don't panic – but do make a note of any background you are missing and work on it, or see one of the lecturers.

It is also recommended that you look through the review booklets, <u>An Algebra Refresher</u> and <u>A Calculus Refresher</u>. These can be found at: www.maths.lse.ac.uk/Refreshers/. References are made to these booklets (*AlgR* and *CalcR*) for corresponding material in the exercises that follow.

Solutions to the exercises can be found on the MA100 Moodle page at the start of term.

- 1. The set of real numbers, denoted \mathbb{R} , includes the following subsets:
 - \mathbb{N} , the set of natural numbers: 1, 2, 3, 4, ...
 - \mathbb{Z} , the set of integers: ..., -3, -2, -1, 0, 1, 2, 3, ...

 \mathbb{Q} , the set of rational numbers: p/q with $p, q \in \mathbb{Z}$, $q \neq 0$; such as, $\frac{2}{5}, -\frac{9}{2}, \frac{4}{1} = 4$. the set of irrational numbers: real numbers which are not rational; for example, $\sqrt{2}, \pi$.

The absolute value (modulus) of a real number: $|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a \le 0 \end{cases}$.

The absolute value satisfies $|a| = \sqrt{a^2}$, and the Triangle Inequality: $|a + b| \le |a| + |b|$. Intervals of real numbers, such as: $(a,b) = \{x \mid a < x < b\}, \quad [a,b] = \{x \mid a \le x \le b\}, \quad (-\infty,b) = \{x \mid x < b\} \quad [a,\infty) = \{x \mid a \le x\}.$

2. Polynomials of degree n: $P_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$, where the a_i are real constants, $a_n \neq 0$, and x is a real variable.

How to graph: straight lines, $P_1(x) = a_0 + a_1 x$ quadratics, $P_2(x) = a_0 + a_1 x + a_2 x^2$ cubics, $P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. The laws of indices: $x^r x^s = x^{r+s}$ $(x^r)^s = x^{rs}$ How to expand expressions like $(1 + x)^n$, $(x + y)^n$ How to factorize quadratics (such as $x^2 - 5x + 6$ and $3x^2 + 14x - 5$) and simple cubics, (such as $x^3 - 1$ and $x^3 - 2x^2 - 5x + 6$). The Quadratic Formula. How to sum: arithmetic series, a + (a + d) + ... + (a + (n - 1)d)geometric series, $a + ar + ar^2 + ... + ar^{n-1}$ **Exercises**. (AlgR, sections 2–3, 8–10)

(2.1) Sketch $f(x) = 4 - x^2$ and g(x) = 2x + 1 and find their points of intersection.

(2.2) Expand $(2+5x)^4$ and $(x^2-4/x)^3$.

(2.3) Find an expression for the profit function $\Pi(q)$ as a function of q given that

$$\Pi(q) = pq - C(q)$$
, where $2p + 0.4q = 155$ and $C(q) = q^2 - 10q + 300$.

(2.4) Find the complete solution of each of the following systems of equations, both algebraically (by solving the equations simultaneously) and graphically (by illustrating them as lines on a graph).

(a)
$$\begin{cases} x + 2y = 4 \\ 2x - y = 3 \end{cases}$$
 (b) $\begin{cases} x + 2y = 4 \\ 2x + 4y = 4 \end{cases}$ (c) $\begin{cases} x + 2y = 4 \\ 2x + 4y = 8 \end{cases}$

NOTE. (x, y) is a solution of a system of equations if it satisfies all equations simultaneously.

(2.5) Factorise $P(x) = x^3 - 7x + 6$ and sketch the graph of P(x).

3. Be able to manipulate algebraic expressions accurately and efficiently. Be able to manipulate indices.

Exercises. (AlgR, sections 1–7)

- (3.1) Simplify (a) $6ab \frac{a}{b}(b^2 4bc)$ (b) $\frac{49x^{-2}}{35y} \frac{4xy^2}{(2xy)^3}$
- (3.2) Solve for s: $\frac{5}{3s+1} \frac{2}{s+1} = 0$.
- (3.3) Rewrite the simultaneous equations

$$x = \frac{a - c - by}{2b} \qquad \qquad y = \frac{a - c - f - bx}{2b}$$

as a system of linear equations in x and y. Solve the system for x and y (in terms of the constants a, b, c, f), and then show that

$$x + y = \frac{1}{3b}(2a - 2c - f)$$
.

4. Properties of the exponential (e^x) and logarithmic $(\ln x = \log_e x)$ functions and their graphs: $\ln e^x = e^{-x} + e^{-x}$

$$\ln e^{x} = x \qquad (e')^{s} = e'^{s} \qquad \ln x' = r \ln x$$
$$e^{\ln y} = y \qquad e^{r+s} = e^{r}e^{s} \qquad \ln(xy) = \ln x + \ln y$$

Exercises. (AlgR, sections 2–3, 8–10)

(2.1) Sketch $f(x) = 4 - x^2$ and g(x) = 2x + 1 and find their points of intersection.

(2.2) Expand $(2+5x)^4$ and $(x^2-4/x)^3$.

(2.3) Find an expression for the profit function $\Pi(q)$ as a function of q given that

$$\Pi(q) = pq - C(q)$$
, where $2p + 0.4q = 155$ and $C(q) = q^2 - 10q + 300$.

(2.4) Find the complete solution of each of the following systems of equations, both algebraically (by solving the equations simultaneously) and graphically (by illustrating them as lines on a graph).

(a)
$$\begin{cases} x + 2y = 4 \\ 2x - y = 3 \end{cases}$$
 (b) $\begin{cases} x + 2y = 4 \\ 2x + 4y = 4 \end{cases}$ (c) $\begin{cases} x + 2y = 4 \\ 2x + 4y = 8 \end{cases}$

NOTE. (x, y) is a solution of a system of equations if it satisfies all equations simultaneously.

(2.5) Factorise $P(x) = x^3 - 7x + 6$ and sketch the graph of P(x).

3. Be able to manipulate algebraic expressions accurately and efficiently. Be able to manipulate indices.

Exercises. (AlgR, sections 1–7)

- (3.1) Simplify (a) $6ab \frac{a}{b}(b^2 4bc)$ (b) $\frac{49x^{-2}}{35y} \frac{4xy^2}{(2xy)^3}$
- (3.2) Solve for s: $\frac{5}{3s+1} \frac{2}{s+1} = 0$.
- (3.3) Rewrite the simultaneous equations

$$x = \frac{a - c - by}{2b} \qquad \qquad y = \frac{a - c - f - bx}{2b}$$

as a system of linear equations in x and y. Solve the system for x and y (in terms of the constants a, b, c, f), and then show that

$$x + y = \frac{1}{3b}(2a - 2c - f)$$
.

4. Properties of the exponential (e^x) and logarithmic $(\ln x = \log_e x)$ functions and their graphs: $\ln e^x = e^{-x} + e^{-x}$

$$\ln e^{x} = x \qquad (e')^{s} = e'^{s} \qquad \ln x' = r \ln x$$
$$e^{\ln y} = y \qquad e^{r+s} = e^{r}e^{s} \qquad \ln(xy) = \ln x + \ln y$$

Exercises.

- (4.1) Sketch the graphs of e^x , e^{-x} , $\ln x$.
- (4.2) What is the value of e^0 , $\ln 0$, $\ln 1$?
- (4.3) Show that: $\ln\left(\frac{a}{b}\right) = \ln a \ln b \quad (a > 0, b > 0).$
- (4.4) Simplify: $\ln x^5 2 \ln x + \ln y^3$ (x > 0, y > 0). For which values of x and y is this expression positive?
- 5. Properties of the trigonometric functions (sin, tan, *etc.*) using radian measure of an angle: Be able to sketch their graphs.

Know their values at multiples of π , $\frac{\pi}{2}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{6}$. (Know the triangles associated with these last values.)

Know the basic trigonometric identities, e.g.

$$\sin^2 x + \cos^2 x = 1$$

 $\sin(a+b) = \sin a \cos b + \cos a \sin b; \qquad \cos(a+b) = \cos a \cos b - \sin a \sin b;$ $\sin x = -\sin(-x) \quad \text{is an odd function;} \qquad \cos x = \cos(-x) \quad \text{is an even function.}$

Exercises.

- (5.1) Sketch the graphs of $\sin x$, $\cos x$, $2\cos 3x$, $\tan x$.
- (5.2) Deduce the formulas for $\sin 2x$, $\cos 2x$ from the identities above, and deduce that

$$\sec^2 x = \tan^2 x + 1; \qquad \tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$
$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)].$$

;

(5.3) Evaluate (without using a calculator): $\sec \frac{\pi}{3}$, $\cot(-\frac{\pi}{6})$, $\sin(\frac{5\pi}{4})$, $\cos(\frac{11\pi}{4})$.

6. Rules of differentiation: Product, quotient and chain rules Be able to differentiate polynomials. Know the derivatives of the exponential, logarithmic and trigonometric functions.

Exercises. (CalcR, sections 1–9)(6.1) Calculate

(a)
$$\frac{d}{dx} (e^{-3x})$$
 (b) $\frac{d}{dx} \ln(5-2x)$ (c) $\frac{d}{dx} (e^{-3x} \ln(5-2x))$ (d) $\frac{d}{dx} \ln\left(\frac{1}{x^2}\right)$
(e) $\frac{d}{dx} \left(\frac{xe^x}{2x^2+1}\right)$ (f) $\frac{d}{dx} \sqrt{3x^2-1}$ (g) $\frac{d}{dx} \tan 3x$ (h) $\frac{d}{dx} \sin(x^2-5)$

7. Know that the equation of the tangent line to the curve y = f(x) at the point where x = a is given by:

$$y - f(a) = f'(x)(x - a)$$

Exercise.

- (7.1) Find the equation of the tangent line to the curve $y = 2x^3 9x^2 38x + 21$ at the point where x = 1.
- 8. Find the stationary (turning) points of graphs of functions and determine which point is a maximum and which is a minimum.

Exercises.

- (8.1) Do this for the function $y = 2x^3 9x^2 38x + 21$.
- (8.2) Sketch the graph of f(x) = x³ 3x².
 Find the maximum and the minimum value of f on the interval [0,3], and on the interval [0,4].
- 9. Techniques of integration: partial fractions, integration by parts, substitution.

Exercise. (CalcR, sections 10-17; AlgR, section 11)(9.1) Calculate

(a)
$$\int \sin 3x \, dx$$
 (b) $\int_0^{\frac{\pi}{4}} \sec^2 x \, dx$ (c) $\int \frac{1}{x^2 - 5x + 6} \, dx$
(d) $\int \frac{x}{x - 1} \, dx$ (e) $\int x \cos 2x \, dx$ (f) $\int x^2 e^x \, dx$
(g) $\int x(x^2 - 2)^4 \, dx$ (h) $\int (2x + 2)e^{x^2 + 2x + 3} \, dx$

10. The technique of *Completing the Square* in a quadratic expression.

Exercise. (AlgR, section 9)

- (10.1) Complete the squares in the expressions: $x^2 + 6x + 11$ and $2x^2 4x + 7$.
- (10.2) Complete the square in $ax^2 + bx + c$. Use this to derive the quadratic formula to solve $ax^2 + bx + c = 0$ for x.