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Introduction

Ramsey numbers

Ramsey number R(k, `): minimum n such that n vertex graphs
have a Kk or K`.

Ramsey ’29: R(k, `) <∞.
Erdős-Szekeres ’35: R(k + 1, `+ 1) ≤

(
k+`
k

)
.

Rödl 80’s (unpublished): R(k + 1, `+ 1) ≤ C
logc(k+`)

(
k+`
k

)
, some

c, C > 0.
Thomason ’88: for ` ≤ k,

R(k + 1, `+ 1) ≤ k−`/(2k)+A/
√

log k

(
k + `

k

)
.

Conlon ’09:

R(k + 1, `+ 1) ≤ k−cε log k/ log log k

(
k + `

k

)
,

if `/k ∈ [ε, 1], ` > Cε.
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Introduction

New Ramsey bounds

Theorem (S. ’20+)

For each ε ∈ (0, 1/2) there is cε > 0 such that

R(k + 1, `+ 1) ≤ e−cε(log k)2
(
k + `

k

)
whenever `/k ∈ [ε, 1] and ` ≥ c−1

ε .

Corollary (S. ’20+)
There is an absolute constant c > 0 such that for k ≥ 3,

R(k + 1, k + 1) ≤ e−c(log k)2
(

2k

k

)
.
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Introduction

Discussion

Current Ramsey bounds:

(1 + o(1))
k

e
2

k+1
2 ≤ R(k, k) ≤ e−c(log k)24k.

The best upper bounds come from a framework introduced by
Thomason, extended by Conlon.
Our improvement in the exponent originates in optimal “effective
quasirandomness” results (deriving from global structure of signed
graph densities).
The optimality demonstrates this is a natural barrier.
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Introduction

Thomason framework

Erdős–Szekeres inductive proof:

R(k + 1, `+ 1) ≤ R(k, `+ 1) +R(k + 1, `)

=⇒ R(k + 1, `+ 1) ≤
(
k + `

k

)
.

Thomason inductively demonstrates

R(k + 1, `+ 1) ≤ α(k, `)

(
k + `

k

)
.

Call a graph (k, `)-Ramsey if it has no Kk+1 or K`+1.
Let n = bα(k, `)

(
k+`
k

)
c and α∗(k, `) = n/

(
k+`
k

)
.
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Quasirandomness and induction

Thomason (cont’d)

Let n = bα(k, `)
(
k+`
k

)
c and α∗(k, `) = n/

(
k+`
k

)
.

A (k, `)-Ramsey graph has the following properties:
any Kr extends to a Kr+1 in at most R(k + 1− r, `+ 1)− 1 ways.
any Kr extends to a Kr+1 in at most R(k + 1, `+ 1− r)− 1 ways.

r = 1: any vertex v of a (k, `)-Ramsey graph has

dv ≤ R(k, `+ 1)− 1 < α(k− 1, `)

(
k + `− 1

k − 1

)
=
α(k − 1, `)

α∗(k, `)
· k

k + `
n

n− 1− dv ≤ R(k + 1, `)− 1.

We deduce

dv
n
∈
[
1− α(k, `− 1)

α∗(k, `)

`

k + `
,
α(k − 1, `)

α∗(k, `)

k

k + `

)
.
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Quasirandomness and induction

Thomason finish

We deduce

dv
n
∈
[
1− α(k, `− 1)

α∗(k, `)

`

k + `
,
α(k − 1, `)

α∗(k, `)

k

k + `

)
.

Let p = k/(k + `). Thus our Ramsey graph has degrees near pn.
Thus we control #K3 + #K3 relatively well (Goodman’s formula):

2(#K3) + 2(#K3) +

(
n

3

)
=
∑
v

((
dv
2

)
+

(
n− 1− dv

2

))
.

However:
any K2 extends to a K3 in at most R(k + 1− 2, `+ 1)− 1 ways.
any K2 extends to a K3 in at most R(k + 1, `+ 1− 2)− 1 ways.

This gives an upper bound on the left side.
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Quasirandomness and induction

Extending Thomason

Conlon ’09: use higher values of r.

No analogue of Goodman’s formula, so instead compute the
Kr-density by showing a Ramsey graph is quasirandom.
A similar argument to earlier shows that a Ramsey graph has all
degrees within pn± µn and all codegrees bounded by p2n+ νn

We can take µ, ν ≈ r/k if α(x, y) ≈ exp(−r(y/x) log(x+ y)).
If we can show a contradiction for some r = r(k), then (details)

R(k + 1, k + 1) ≤ exp(−Ω(r(k) log k))

(
2k

k

)
.

Question
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Quasirandomness and induction

Effective quasirandomness

If we can show a contradiction for some r = r(k), then (details)

R(k + 1, k + 1) ≤ exp(−Ω(r(k) log k))

(
2k

k

)
.

Question

Does a Ramsey graph satisfy r!#Kr ≈ p(
r
2)nr, where p = k/(k + `)?

Conlon ’09: yes, for r = O(log k/ log log k).
S. ’20+: yes, for r = O(log k).
This is optimal, replacing Ramsey graphs by graphs with degrees
within pn± µn and with codegrees bounded by p2n+ νn, where
µ, ν ≈ r/k.
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Effective quasirandomness

Graphons

Definition
A graphon is a bounded symmetric measurable function W : Ω2 → C.

For a graph H, it has H-density

tH(W ) = Ex

∏
uv∈E(H)

W (xu, xv) =

∫
x

∏
uv∈E(H)

W (xu, xv) dx,

where x = (xv)v∈V (H) and dx is the product measure on ΩV (H).
Finally, write the codegree

Wx1,...,xr = Ey

r∏
i=1

W (xi, y).
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Effective quasirandomness

Graphons (visual)

Figure 1: tH(W )

Figure 2: Wx1,x2,x3,x4
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Effective quasirandomness

Measuring quasirandomness

Definition
Let WG : Ω2

V (G) → C be given by WG(u, v) = 1uv∈E(G), where ΩV (G)

has set V (G) and uniform measure.

Let fp,G = WG − p. Let

µp,G = max
x∈V (G)

|Eyfp,G(x, y)| = max
x
|(fp,G)x|,

νp,G = max
x6=y∈V (G)

max(0,Ezfp,G(x, z)fp,G(z, y)) = max
x 6=y

max(0, (fp,G)x,y).

The key point is that

tK2,a(fp,G) = Ex,y(fp,G)ax,y = O(νap,G + n−1)

almost immediately follows (sign issue when 2|a).
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Effective quasirandomness

Density convergence from quasirandomness

Choose some H with v(H) = r, say H = Kr.

Write f = fp,G and

p−e(H)tH(G) = Ex

∏
uv∈E(H)

(1+p−1f(xu, xv)) =
∑
J

∗
p−e(J)cJ,HtJ(f),

where
∑∗ is taken over isomorphism classes of graphs without

isolated vertices and cJ,H is the number of subgraphs of H
isomorphic to J .

The sum of cJ,H over J with s vertices is at most
(
r
s

)
2(s2).

So, we really want bounds on tJ(f) of the form 2−Ω(s2) or so for
s = v(J) ≤ r, given µp,G, νp,G ≈ r/k.
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Effective quasirandomness

A local bound

So, we really want bounds on tJ(f) of the form 2−Ω(s2) or so for
s = v(J) ≤ r, given µp,G, νp,G ≈ r/k.

Proposition (Local bound, implicit in Conlon ’09)

If f : Ω2 → C satisfies ‖f‖∞ ≤ 1 and J is a graph containing a vertex
of degree d, then

|tJ(f)| ≤ |tK2,d
(f)|1/2.

This gives a bound of approximately νd/2
p,G for tJ(fp,G), where d is

the maximum degree of J .
Not sufficient for optimal bounds.
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Effective quasirandomness

A global bound

So, we really want bounds on tJ(f) of the form 2−Ω(s2) or so for
s = v(J) ≤ r, given µp,G, νp,G ≈ r/k.

Proposition (Global bound)

If f : Ω2 → C satisfies ‖f‖∞ ≤ 1 and J is a graph with s vertices and
no isolated vertices, then

|tJ(f)| ≤ |tK2,2ds/2e(f)|1/4.

This gives a bound of approximately νs/4
p,G for tJ(fp,G), where

s = v(J).

ν
s/4
p,G ≈ k−s/4 = exp(−Ω(s2)) as long as s = O(log k).
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Effective quasirandomness

Local vs global

Proposition (Local bound, implicit in Conlon ’09)

If f : Ω2 → C satisfies ‖f‖∞ ≤ 1 and J is a graph containing a vertex
of degree d, then

|tJ(f)| ≤ |tK2,d
(f)|1/2.

Proposition (Global bound)

If f : Ω2 → C satisfies ‖f‖∞ ≤ 1 and J is a graph with s vertices and
no isolated vertices, then

|tJ(f)| ≤ |tK2,2ds/2e(f)|1/4.
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Optimality

Optimality

We construct a graph G with µp,G, νp,G = O(1/k) and so that
p−(k2)tKr(WG) is far from 1.

Let p = 1/2 and define W : [0, 1]2 → [0, 1] via

W (x, y) =
1 + 1bkxc=bkyc

2
.

Sample a W -random graph G.
Explicitly, for each i ∈ [n] we sample xi ∼ Unif[0, 1] independently
and then let V (G) = [n], including edge ij independently with
probability W (xi, xj).
Check: µ1/2,G, ν1/2,G = O(1/k) with high probability (if n is large).

Check: 2−(r2)tKr(WG) = 2Ω(r2) (n large) if r = Ω(log k). (Since
global bound essentially optimal for this G.)
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Check: 2−(r2)tKr(WG) = 2Ω(r2) (n large) if r = Ω(log k). (Since
global bound essentially optimal for this G.)
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Optimality

Optimality

Our optimality result shows that the standard tools of extremal
graph theory (graph densities, graphons, graph limits) hit a
natural barrier:

R(k + 1, k + 1) ≤ e−c(log k)2
(

2k

k

)
.

Other ideas may be needed: reminiscent of the jump from dense
graph regularity to sparse regularity
dense regularity:sparse regularity::effective quasirandomness:?
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