Diagonal Ramsey via effective quasirandomness

Ashwin Sah

Massachusetts Institute of Technology

 $June\ 4,\ 2020$

Table of contents

- Introduction
- 2 Quasirandomness and induction
- 3 Effective quasirandomness
- Optimality

• Ramsey number $R(k, \ell)$: minimum n such that n vertex graphs have a K_k or \overline{K}_{ℓ} .

- Ramsey number $R(k, \ell)$: minimum n such that n vertex graphs have a K_k or \overline{K}_{ℓ} .
- Ramsey '29: $R(k, \ell) < \infty$.

- Ramsey number $R(k, \ell)$: minimum n such that n vertex graphs have a K_k or \overline{K}_{ℓ} .
- Ramsey '29: $R(k, \ell) < \infty$.
- Erdős-Szekeres '35: $R(k+1, \ell+1) \leq {k+\ell \choose k}$.

- Ramsey number $R(k, \ell)$: minimum n such that n vertex graphs have a K_k or \overline{K}_{ℓ} .
- Ramsey '29: $R(k, \ell) < \infty$.
- Erdős-Szekeres '35: $R(k+1, \ell+1) \leq {k+\ell \choose k}$.
- Rödl 80's (unpublished): $R(k+1,\ell+1) \leq \frac{C}{\log^c(k+\ell)} {k+\ell \choose k}$, some c,C>0.

- Ramsey number $R(k, \ell)$: minimum n such that n vertex graphs have a K_k or \overline{K}_{ℓ} .
- Ramsey '29: $R(k, \ell) < \infty$.
- Erdős-Szekeres '35: $R(k+1, \ell+1) \leq {k+\ell \choose k}$.
- Rödl 80's (unpublished): $R(k+1,\ell+1) \leq \frac{C}{\log^c(k+\ell)} {k+\ell \choose k}$, some c,C>0.
- Thomason '88: for $\ell \leq k$,

$$R(k+1,\ell+1) \le k^{-\ell/(2k)+A/\sqrt{\log k}} \binom{k+\ell}{k}.$$

- Ramsey number $R(k, \ell)$: minimum n such that n vertex graphs have a K_k or \overline{K}_{ℓ} .
- Ramsey '29: $R(k, \ell) < \infty$.
- Erdős-Szekeres '35: $R(k+1, \ell+1) \leq {k+\ell \choose k}$.
- Rödl 80's (unpublished): $R(k+1,\ell+1) \leq \frac{C}{\log^c(k+\ell)} {k+\ell \choose k}$, some c,C>0.
- Thomason '88: for $\ell \leq k$,

$$R(k+1,\ell+1) \le k^{-\ell/(2k) + A/\sqrt{\log k}} \binom{k+\ell}{k}.$$

Conlon '09:

$$R(k+1, \ell+1) \le k^{-c_{\varepsilon} \log k / \log \log k} \binom{k+\ell}{k},$$

if $\ell/k \in [\varepsilon, 1], \ell > C_{\varepsilon}$.

New Ramsey bounds

Theorem (S. $^{\prime}20+$)

For each $\varepsilon \in (0, 1/2)$ there is $c_{\varepsilon} > 0$ such that

$$R(k+1, \ell+1) \le e^{-c_{\varepsilon}(\log k)^2} \binom{k+\ell}{k}$$

whenever $\ell/k \in [\varepsilon, 1]$ and $\ell \ge c_{\varepsilon}^{-1}$.

New Ramsey bounds

Theorem (S. $^{\prime}20+$)

For each $\varepsilon \in (0, 1/2)$ there is $c_{\varepsilon} > 0$ such that

$$R(k+1,\ell+1) \le e^{-c_{\varepsilon}(\log k)^2} {k+\ell \choose k}$$

whenever $\ell/k \in [\varepsilon, 1]$ and $\ell \ge c_{\varepsilon}^{-1}$.

Corollary (S. '20+)

There is an absolute constant c > 0 such that for $k \geq 3$,

$$R(k+1, k+1) \le e^{-c(\log k)^2} \binom{2k}{k}.$$

• Current Ramsey bounds:

$$(1 + o(1))\frac{k}{e}2^{\frac{k+1}{2}} \le R(k,k) \le e^{-c(\log k)^2}4^k.$$

• Current Ramsey bounds:

$$(1 + o(1))\frac{k}{e}2^{\frac{k+1}{2}} \le R(k,k) \le e^{-c(\log k)^2}4^k.$$

• The best upper bounds come from a framework introduced by Thomason, extended by Conlon.

• Current Ramsey bounds:

$$(1 + o(1))\frac{k}{e}2^{\frac{k+1}{2}} \le R(k,k) \le e^{-c(\log k)^2}4^k.$$

- The best upper bounds come from a framework introduced by Thomason, extended by Conlon.
- Our improvement in the exponent originates in **optimal** "effective quasirandomness" results (deriving from global structure of signed graph densities).

• Current Ramsey bounds:

$$(1+o(1))\frac{k}{e}2^{\frac{k+1}{2}} \le R(k,k) \le e^{-c(\log k)^2}4^k.$$

- The best upper bounds come from a framework introduced by Thomason, extended by Conlon.
- Our improvement in the exponent originates in **optimal** "effective quasirandomness" results (deriving from global structure of signed graph densities).
- The optimality demonstrates this is a natural barrier.

• Erdős–Szekeres inductive proof:

$$R(k+1,\ell+1) \le R(k,\ell+1) + R(k+1,\ell)$$

$$\implies R(k+1,\ell+1) \le \binom{k+\ell}{k}.$$

• Erdős–Szekeres inductive proof:

$$R(k+1,\ell+1) \le R(k,\ell+1) + R(k+1,\ell)$$

$$\implies R(k+1,\ell+1) \le \binom{k+\ell}{k}.$$

• Thomason inductively demonstrates

$$R(k+1,\ell+1) \le \alpha(k,\ell) \binom{k+\ell}{k}.$$

• Erdős–Szekeres inductive proof:

$$R(k+1,\ell+1) \le R(k,\ell+1) + R(k+1,\ell)$$

$$\implies R(k+1,\ell+1) \le \binom{k+\ell}{k}.$$

• Thomason inductively demonstrates

$$R(k+1,\ell+1) \le \alpha(k,\ell) \binom{k+\ell}{k}.$$

• Call a graph (k,ℓ) -Ramsey if it has no K_{k+1} or $\overline{K}_{\ell+1}$.

Erdős–Szekeres inductive proof:

$$R(k+1,\ell+1) \le R(k,\ell+1) + R(k+1,\ell)$$

$$\implies R(k+1,\ell+1) \le {k+\ell \choose k}.$$

• Thomason inductively demonstrates

$$R(k+1,\ell+1) \le \alpha(k,\ell) \binom{k+\ell}{k}.$$

- Call a graph (k, ℓ) -Ramsey if it has no K_{k+1} or $\overline{K}_{\ell+1}$.
- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.

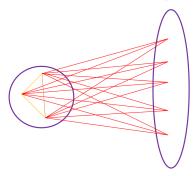
• Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.

- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.
- A (k, ℓ) -Ramsey graph has the following properties:

- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.
- A (k, ℓ) -Ramsey graph has the following properties:
 - any K_r extends to a K_{r+1} in at most $R(k+1-r,\ell+1)-1$ ways.

- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.
- A (k, ℓ) -Ramsey graph has the following properties:
 - any K_r extends to a K_{r+1} in at most $R(k+1-r,\ell+1)-1$ ways.
 - any \overline{K}_r extends to a \overline{K}_{r+1} in at most $R(k+1,\ell+1-r)-1$ ways.

- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.
- A (k, ℓ) -Ramsey graph has the following properties:
 - any K_r extends to a K_{r+1} in at most $R(k+1-r,\ell+1)-1$ ways.
 - any \overline{K}_r extends to a \overline{K}_{r+1} in at most $R(k+1,\ell+1-r)-1$ ways.



- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.
- A (k, ℓ) -Ramsey graph has the following properties:
 - any K_r extends to a K_{r+1} in at most $R(k+1-r,\ell+1)-1$ ways.
 - any \overline{K}_r extends to a \overline{K}_{r+1} in at most $R(k+1,\ell+1-r)-1$ ways.
- r = 1: any vertex v of a (k, ℓ) -Ramsey graph has

$$d_v \le R(k, \ell+1) - 1 < \alpha(k-1, \ell) {k+\ell-1 \choose k-1} = \frac{\alpha(k-1, \ell)}{\alpha^*(k, \ell)} \cdot \frac{k}{k+\ell} n$$

- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.
- A (k, ℓ) -Ramsey graph has the following properties:
 - any K_r extends to a K_{r+1} in at most $R(k+1-r,\ell+1)-1$ ways.
 - any \overline{K}_r extends to a \overline{K}_{r+1} in at most $R(k+1,\ell+1-r)-1$ ways.
- r = 1: any vertex v of a (k, ℓ) -Ramsey graph has

$$d_v \le R(k,\ell+1) - 1 < \alpha(k-1,\ell) {k+\ell-1 \choose k-1} = \frac{\alpha(k-1,\ell)}{\alpha^*(k,\ell)} \cdot \frac{k}{k+\ell} n$$

$$n-1-d_v \le R(k+1,\ell)-1.$$

- Let $n = \lfloor \alpha(k,\ell) {k+\ell \choose k} \rfloor$ and $\alpha^*(k,\ell) = n/{k+\ell \choose k}$.
- A (k, ℓ) -Ramsey graph has the following properties:
 - any K_r extends to a K_{r+1} in at most $R(k+1-r,\ell+1)-1$ ways.
 - any \overline{K}_r extends to a \overline{K}_{r+1} in at most $R(k+1,\ell+1-r)-1$ ways.
- r = 1: any vertex v of a (k, ℓ) -Ramsey graph has

$$d_v \le R(k,\ell+1) - 1 < \alpha(k-1,\ell) \binom{k+\ell-1}{k-1} = \frac{\alpha(k-1,\ell)}{\alpha^*(k,\ell)} \cdot \frac{k}{k+\ell} n$$

$$n-1-d_v \le R(k+1,\ell)-1.$$

$$\frac{d_v}{n} \in \left[1 - \frac{\alpha(k, \ell - 1)}{\alpha^*(k, \ell)} \frac{\ell}{k + \ell}, \frac{\alpha(k - 1, \ell)}{\alpha^*(k, \ell)} \frac{k}{k + \ell}\right).$$

$$\frac{d_v}{n} \in \left[1 - \frac{\alpha(k, \ell - 1)}{\alpha^*(k, \ell)} \frac{\ell}{k + \ell}, \frac{\alpha(k - 1, \ell)}{\alpha^*(k, \ell)} \frac{k}{k + \ell}\right).$$

• We deduce

$$\frac{d_v}{n} \in \left[1 - \frac{\alpha(k, \ell - 1)}{\alpha^*(k, \ell)} \frac{\ell}{k + \ell}, \frac{\alpha(k - 1, \ell)}{\alpha^*(k, \ell)} \frac{k}{k + \ell}\right).$$

• Let $p = k/(k + \ell)$. Thus our Ramsey graph has degrees near pn.

$$\frac{d_v}{n} \in \left[1 - \frac{\alpha(k, \ell - 1)}{\alpha^*(k, \ell)} \frac{\ell}{k + \ell}, \frac{\alpha(k - 1, \ell)}{\alpha^*(k, \ell)} \frac{k}{k + \ell}\right).$$

- Let $p = k/(k + \ell)$. Thus our Ramsey graph has degrees near pn.
- Thus we control $\#K_3 + \#\overline{K}_3$ relatively well (Goodman's formula):

$$2(\#K_3) + 2(\#\overline{K}_3) + \binom{n}{3} = \sum_{v} \left(\binom{d_v}{2} + \binom{n-1-d_v}{2} \right).$$

$$\frac{d_v}{n} \in \left[1 - \frac{\alpha(k, \ell - 1)}{\alpha^*(k, \ell)} \frac{\ell}{k + \ell}, \frac{\alpha(k - 1, \ell)}{\alpha^*(k, \ell)} \frac{k}{k + \ell}\right).$$

- Let $p = k/(k + \ell)$. Thus our Ramsey graph has degrees near pn.
- Thus we control $\#K_3 + \#\overline{K}_3$ relatively well (Goodman's formula):

$$2(\#K_3) + 2(\#\overline{K}_3) + \binom{n}{3} = \sum_{v} \left(\binom{d_v}{2} + \binom{n-1-d_v}{2} \right).$$

- However:
 - any K_2 extends to a K_3 in at most $R(k+1-2,\ell+1)-1$ ways.

$$\frac{d_v}{n} \in \left[1 - \frac{\alpha(k, \ell - 1)}{\alpha^*(k, \ell)} \frac{\ell}{k + \ell}, \frac{\alpha(k - 1, \ell)}{\alpha^*(k, \ell)} \frac{k}{k + \ell}\right).$$

- Let $p = k/(k + \ell)$. Thus our Ramsey graph has degrees near pn.
- Thus we control $\#K_3 + \#\overline{K}_3$ relatively well (Goodman's formula):

$$2(\#K_3) + 2(\#\overline{K}_3) + \binom{n}{3} = \sum_{v} \left(\binom{d_v}{2} + \binom{n-1-d_v}{2} \right).$$

- However:
 - any K_2 extends to a K_3 in at most $R(k+1-2,\ell+1)-1$ ways.
 - any \overline{K}_2 extends to a \overline{K}_3 in at most $R(k+1, \ell+1-2)-1$ ways.

$$\frac{d_v}{n} \in \left[1 - \frac{\alpha(k, \ell - 1)}{\alpha^*(k, \ell)} \frac{\ell}{k + \ell}, \frac{\alpha(k - 1, \ell)}{\alpha^*(k, \ell)} \frac{k}{k + \ell}\right).$$

- Let $p = k/(k + \ell)$. Thus our Ramsey graph has degrees near pn.
- Thus we control $\#K_3 + \#\overline{K}_3$ relatively well (Goodman's formula):

$$2(\#K_3) + 2(\#\overline{K}_3) + \binom{n}{3} = \sum_{v} \left(\binom{d_v}{2} + \binom{n-1-d_v}{2} \right).$$

- However:
 - any K_2 extends to a K_3 in at most $R(k+1-2,\ell+1)-1$ ways.
 - any \overline{K}_2 extends to a \overline{K}_3 in at most $R(k+1, \ell+1-2)-1$ ways.
- This gives an upper bound on the left side.

• Conlon '09: use higher values of r.

- Conlon '09: use higher values of r.
- No analogue of Goodman's formula, so instead compute the K_r -density by showing a Ramsey graph is quasirandom.

- Conlon '09: use higher values of r.
- No analogue of Goodman's formula, so instead compute the K_r -density by showing a Ramsey graph is quasirandom.
- A similar argument to earlier shows that a Ramsey graph has all degrees within $pn \pm \mu n$ and all codegrees bounded by $p^2n + \nu n$

- Conlon '09: use higher values of r.
- No analogue of Goodman's formula, so instead compute the K_r -density by showing a Ramsey graph is quasirandom.
- A similar argument to earlier shows that a Ramsey graph has all degrees within $pn \pm \mu n$ and all codegrees bounded by $p^2n + \nu n$
- We can take $\mu, \nu \approx r/k$ if $\alpha(x, y) \approx \exp(-r(y/x)\log(x+y))$.

Extending Thomason

- Conlon '09: use higher values of r.
- No analogue of Goodman's formula, so instead compute the K_r -density by showing a Ramsey graph is quasirandom.
- A similar argument to earlier shows that a Ramsey graph has all degrees within $pn \pm \mu n$ and all codegrees bounded by $p^2n + \nu n$
- We can take $\mu, \nu \approx r/k$ if $\alpha(x, y) \approx \exp(-r(y/x)\log(x+y))$.
- If we can show a contradiction for some r = r(k), then (details)

$$R(k+1,k+1) \leq \exp(-\Omega(r(k)\log k)) \binom{2k}{k}.$$

Extending Thomason

- Conlon '09: use higher values of r.
- No analogue of Goodman's formula, so instead compute the K_r -density by showing a Ramsey graph is quasirandom.
- A similar argument to earlier shows that a Ramsey graph has all degrees within $pn \pm \mu n$ and all codegrees bounded by $p^2n + \nu n$
- We can take $\mu, \nu \approx r/k$ if $\alpha(x, y) \approx \exp(-r(y/x)\log(x+y))$.
- If we can show a contradiction for some r = r(k), then (details)

$$R(k+1, k+1) \le \exp(-\Omega(r(k)\log k)) \binom{2k}{k}.$$

Question

Does a Ramsey graph satisfy $r! \# K_r \approx p^{\binom{r}{2}} n^r$, where $p = k/(k+\ell)$?

• If we can show a contradiction for some r = r(k), then (details)

$$R(k+1, k+1) \le \exp(-\Omega(r(k)\log k)) {2k \choose k}.$$

Question

Does a Ramsey graph satisfy $r! \# K_r \approx p^{\binom{r}{2}} n^r$, where $p = k/(k+\ell)$?

• If we can show a contradiction for some r = r(k), then (details)

$$R(k+1, k+1) \le \exp(-\Omega(r(k)\log k)) {2k \choose k}.$$

Question

Does a Ramsey graph satisfy $r! \# K_r \approx p^{\binom{r}{2}} n^r$, where $p = k/(k+\ell)$?

• Conlon '09: yes, for $r = O(\log k / \log \log k)$.

• If we can show a contradiction for some r = r(k), then (details)

$$R(k+1, k+1) \le \exp(-\Omega(r(k)\log k)) \binom{2k}{k}.$$

Question

Does a Ramsey graph satisfy $r! \# K_r \approx p^{\binom{r}{2}} n^r$, where $p = k/(k+\ell)$?

- Conlon '09: yes, for $r = O(\log k / \log \log k)$.
- S. '20+: yes, for $r = O(\log k)$.

• If we can show a contradiction for some r = r(k), then (details)

$$R(k+1, k+1) \le \exp(-\Omega(r(k)\log k)) \binom{2k}{k}.$$

Question

Does a Ramsey graph satisfy $r! \# K_r \approx p^{\binom{r}{2}} n^r$, where $p = k/(k+\ell)$?

- Conlon '09: yes, for $r = O(\log k / \log \log k)$.
- S. '20+: yes, for $r = O(\log k)$.
- This is **optimal**, replacing Ramsey graphs by graphs with degrees within $pn \pm \mu n$ and with codegrees bounded by $p^2n + \nu n$, where $\mu, \nu \approx r/k$.

Graphons

Definition

A graphon is a bounded symmetric measurable function $W: \Omega^2 \to \mathbb{C}$.

Graphons

Definition

A graphon is a bounded symmetric measurable function $W: \Omega^2 \to \mathbb{C}$. For a graph H, it has H-density

$$t_H(W) = \mathbb{E}_{\mathbf{x}} \prod_{uv \in E(H)} W(x_u, x_v) = \int_{\mathbf{x}} \prod_{uv \in E(H)} W(x_u, x_v) d\mathbf{x},$$

where $\mathbf{x} = (x_v)_{v \in V(H)}$ and $d\mathbf{x}$ is the product measure on $\Omega^{V(H)}$.

Graphons

Definition

A graphon is a bounded symmetric measurable function $W: \Omega^2 \to \mathbb{C}$. For a graph H, it has H-density

$$t_H(W) = \mathbb{E}_{\mathbf{x}} \prod_{uv \in E(H)} W(x_u, x_v) = \int_{\mathbf{x}} \prod_{uv \in E(H)} W(x_u, x_v) d\mathbf{x},$$

where $\mathbf{x} = (x_v)_{v \in V(H)}$ and $d\mathbf{x}$ is the product measure on $\Omega^{V(H)}$. Finally, write the *codegree*

$$W_{x_1,\dots,x_r} = \mathbb{E}_y \prod_{i=1}^r W(x_i,y).$$

Graphons (visual)

Figure 1: $t_H(W)$

Graphons (visual)

Figure 1: $t_H(W)$

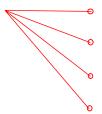


Figure 2: W_{x_1,x_2,x_3,x_4}

Definition

Let $W_G: \Omega^2_{V(G)} \to \mathbb{C}$ be given by $W_G(u, v) = \mathbb{1}_{uv \in E(G)}$, where $\Omega_{V(G)}$ has set V(G) and uniform measure.

Definition

Let $W_G: \Omega^2_{V(G)} \to \mathbb{C}$ be given by $W_G(u, v) = \mathbb{1}_{uv \in E(G)}$, where $\Omega_{V(G)}$ has set V(G) and uniform measure. Let $f_{p,G} = W_G - p$.

Definition

Let $W_G: \Omega^2_{V(G)} \to \mathbb{C}$ be given by $W_G(u, v) = \mathbb{1}_{uv \in E(G)}$, where $\Omega_{V(G)}$ has set V(G) and uniform measure. Let $f_{p,G} = W_G - p$. Let

$$\mu_{p,G} = \max_{x \in V(G)} |\mathbb{E}_y f_{p,G}(x,y)| = \max_x |(f_{p,G})_x|,$$

$$\nu_{p,G} = \max_x \max(0, \mathbb{E}_z f_{p,G}(x,z) f_{p,G}(z,y)) = \max_x \max(0, (f_{p,G})_{x,y})$$

$$\nu_{p,G} = \max_{x \neq y \in V(G)} \max(0, \mathbb{E}_z f_{p,G}(x,z) f_{p,G}(z,y)) = \max_{x \neq y} \max(0, (f_{p,G})_{x,y}).$$

Definition

Let $W_G: \Omega^2_{V(G)} \to \mathbb{C}$ be given by $W_G(u, v) = \mathbb{1}_{uv \in E(G)}$, where $\Omega_{V(G)}$ has set V(G) and uniform measure. Let $f_{v,G} = W_G - p$. Let

$$\begin{split} \mu_{p,G} &= \max_{x \in V(G)} |\mathbb{E}_y f_{p,G}(x,y)| = \max_x |(f_{p,G})_x|, \\ \nu_{p,G} &= \max_{x \neq y \in V(G)} \max(0, \mathbb{E}_z f_{p,G}(x,z) f_{p,G}(z,y)) = \max_{x \neq y} \max(0, (f_{p,G})_{x,y}). \end{split}$$

• The key point is that

$$t_{K_{2,a}}(f_{p,G}) = \mathbb{E}_{x,y}(f_{p,G})_{x,y}^a = O(\nu_{p,G}^a + n^{-1})$$

almost immediately follows (sign issue when 2|a).

• Choose some H with v(H) = r, say $H = K_r$.

- Choose some H with v(H) = r, say $H = K_r$.
- Write $f = f_{p,G}$ and

$$p^{-e(H)}t_H(G) = \mathbb{E}_{\mathbf{x}} \prod_{uv \in E(H)} (1 + p^{-1}f(x_u, x_v)) = \sum_{J}^* p^{-e(J)}c_{J,H}t_J(f),$$

where \sum^* is taken over isomorphism classes of graphs without isolated vertices and $c_{J,H}$ is the number of subgraphs of H isomorphic to J.

- Choose some H with v(H) = r, say $H = K_r$.
- Write $f = f_{p,G}$ and

$$p^{-e(H)}t_H(G) = \mathbb{E}_{\mathbf{x}} \prod_{uv \in E(H)} (1 + p^{-1}f(x_u, x_v)) = \sum_{J}^* p^{-e(J)}c_{J,H}t_J(f),$$

where \sum^* is taken over isomorphism classes of graphs without isolated vertices and $c_{J,H}$ is the number of subgraphs of H isomorphic to J.

• The sum of $c_{J,H}$ over J with s vertices is at most $\binom{r}{s}2^{\binom{s}{2}}$.

- Choose some H with v(H) = r, say $H = K_r$.
- Write $f = f_{p,G}$ and

$$p^{-e(H)}t_H(G) = \mathbb{E}_{\mathbf{x}} \prod_{uv \in E(H)} (1 + p^{-1}f(x_u, x_v)) = \sum_{J}^* p^{-e(J)}c_{J,H}t_J(f),$$

where \sum^* is taken over isomorphism classes of graphs without isolated vertices and $c_{J,H}$ is the number of subgraphs of H isomorphic to J.

- The sum of $c_{J,H}$ over J with s vertices is at most $\binom{r}{s}2^{\binom{s}{2}}$.
- So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

Proposition (Local bound, implicit in Conlon '09)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph containing a vertex of degree d, then

$$|t_J(f)| \le |t_{K_{2,d}}(f)|^{1/2}.$$

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

Proposition (Local bound, implicit in Conlon '09)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph containing a vertex of degree d, then

$$|t_J(f)| \le |t_{K_{2,d}}(f)|^{1/2}$$
.

• This gives a bound of approximately $\nu_{p,G}^{d/2}$ for $t_J(f_{p,G})$, where d is the maximum degree of J.

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

Proposition (Local bound, implicit in Conlon '09)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph containing a vertex of degree d, then

$$|t_J(f)| \le |t_{K_{2,d}}(f)|^{1/2}$$
.

- This gives a bound of approximately $\nu_{p,G}^{d/2}$ for $t_J(f_{p,G})$, where d is the maximum degree of J.
- Not sufficient for optimal bounds.

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

Proposition (Global bound)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph with s vertices and no isolated vertices, then

$$|t_J(f)| \le |t_{K_{2,2\lceil s/2\rceil}}(f)|^{1/4}.$$

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

Proposition (Global bound)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph with s vertices and no isolated vertices, then

$$|t_J(f)| \le |t_{K_{2,2\lceil s/2\rceil}}(f)|^{1/4}.$$

• This gives a bound of approximately $\nu_{p,G}^{s/4}$ for $t_J(f_{p,G})$, where s = v(J).

• So, we really want bounds on $t_J(f)$ of the form $2^{-\Omega(s^2)}$ or so for $s = v(J) \le r$, given $\mu_{p,G}, \nu_{p,G} \approx r/k$.

Proposition (Global bound)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph with s vertices and no isolated vertices, then

$$|t_J(f)| \le |t_{K_{2,2\lceil s/2\rceil}}(f)|^{1/4}.$$

- This gives a bound of approximately $\nu_{p,G}^{s/4}$ for $t_J(f_{p,G})$, where s = v(J).
- $\nu_{n,G}^{s/4} \approx k^{-s/4} = \exp(-\Omega(s^2))$ as long as $s = O(\log k)$.

Local vs global

Proposition (Local bound, implicit in Conlon '09)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph containing a vertex of degree d, then

$$|t_J(f)| \le |t_{K_{2,d}}(f)|^{1/2}$$
.

Local vs global

Proposition (Local bound, implicit in Conlon '09)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \le 1$ and J is a graph containing a vertex of degree d, then

$$|t_J(f)| \le |t_{K_{2,d}}(f)|^{1/2}.$$

Proposition (Global bound)

If $f: \Omega^2 \to \mathbb{C}$ satisfies $||f||_{\infty} \leq 1$ and J is a graph with s vertices and no isolated vertices, then

$$|t_J(f)| \le |t_{K_{2,2\lceil s/2\rceil}}(f)|^{1/4}.$$

• We construct a graph G with $\mu_{p,G}, \nu_{p,G} = O(1/k)$ and so that $p^{-\binom{k}{2}} t_{K_r}(W_G)$ is far from 1.

- We construct a graph G with $\mu_{p,G}, \nu_{p,G} = O(1/k)$ and so that $p^{-\binom{k}{2}} t_{K_r}(W_G)$ is far from 1.
- Let p = 1/2 and define $W: [0,1]^2 \to [0,1]$ via

$$W(x,y) = \frac{1 + \mathbb{1}_{\lfloor kx \rfloor = \lfloor ky \rfloor}}{2}.$$

- We construct a graph G with $\mu_{p,G}, \nu_{p,G} = O(1/k)$ and so that $p^{-\binom{k}{2}} t_{K_r}(W_G)$ is far from 1.
- Let p = 1/2 and define $W: [0,1]^2 \to [0,1]$ via

$$W(x,y) = \frac{1 + \mathbb{1}_{\lfloor kx \rfloor = \lfloor ky \rfloor}}{2}.$$

• Sample a W-random graph G.

- We construct a graph G with $\mu_{p,G}, \nu_{p,G} = O(1/k)$ and so that $p^{-\binom{k}{2}} t_{K_r}(W_G)$ is far from 1.
- Let p = 1/2 and define $W: [0,1]^2 \to [0,1]$ via

$$W(x,y) = \frac{1 + \mathbb{1}_{\lfloor kx \rfloor = \lfloor ky \rfloor}}{2}.$$

- Sample a W-random graph G.
- Explicitly, for each $i \in [n]$ we sample $x_i \sim \text{Unif}[0,1]$ independently and then let V(G) = [n], including edge ij independently with probability $W(x_i, x_j)$.

- We construct a graph G with $\mu_{p,G}, \nu_{p,G} = O(1/k)$ and so that $p^{-\binom{k}{2}} t_{K_r}(W_G)$ is far from 1.
- Let p = 1/2 and define $W: [0,1]^2 \to [0,1]$ via

$$W(x,y) = \frac{1 + \mathbb{1}_{\lfloor kx \rfloor = \lfloor ky \rfloor}}{2}.$$

- Sample a W-random graph G.
- Explicitly, for each $i \in [n]$ we sample $x_i \sim \text{Unif}[0,1]$ independently and then let V(G) = [n], including edge ij independently with probability $W(x_i, x_j)$.
- Check: $\mu_{1/2,G}, \nu_{1/2,G} = O(1/k)$ with high probability (if n is large).

- We construct a graph G with $\mu_{p,G}, \nu_{p,G} = O(1/k)$ and so that $p^{-\binom{k}{2}} t_{K_r}(W_G)$ is far from 1.
- Let p = 1/2 and define $W: [0,1]^2 \to [0,1]$ via

$$W(x,y) = \frac{1 + \mathbb{1}_{\lfloor kx \rfloor = \lfloor ky \rfloor}}{2}.$$

- Sample a W-random graph G.
- Explicitly, for each $i \in [n]$ we sample $x_i \sim \text{Unif}[0,1]$ independently and then let V(G) = [n], including edge ij independently with probability $W(x_i, x_j)$.
- Check: $\mu_{1/2,G}, \nu_{1/2,G} = O(1/k)$ with high probability (if n is large).
- Check: $2^{-\binom{r}{2}}t_{K_r}(W_G) = 2^{\Omega(r^2)}$ (*n* large) if $r = \Omega(\log k)$. (Since global bound essentially optimal for this G.)

• Our optimality result shows that the standard tools of extremal graph theory (graph densities, graphons, graph limits) hit a natural barrier:

• Our optimality result shows that the standard tools of extremal graph theory (graph densities, graphons, graph limits) hit a natural barrier:

$$R(k+1, k+1) \le e^{-c(\log k)^2} \binom{2k}{k}.$$

• Our optimality result shows that the standard tools of extremal graph theory (graph densities, graphons, graph limits) hit a natural barrier:

$$R(k+1, k+1) \le e^{-c(\log k)^2} \binom{2k}{k}.$$

• Other ideas may be needed: reminiscent of the jump from dense graph regularity to sparse regularity

• Our optimality result shows that the standard tools of extremal graph theory (graph densities, graphons, graph limits) hit a natural barrier:

$$R(k+1, k+1) \le e^{-c(\log k)^2} \binom{2k}{k}.$$

- Other ideas may be needed: reminiscent of the jump from dense graph regularity to sparse regularity
- dense regularity:sparse regularity::effective quasirandomness:?