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Abstract

Many investments involve both a long time-horizon and risky returns.
Making investment decisions thus requires assumptions about time and
risk preferences. In the public sector in particular, such assumptions are
frequently contested and there is no immediate prospect of universal agree-
ment. Motivated by these observations, we develop a theory and method
of finding ‘spaces for agreement’. These are combinations of classes of dis-
count and utility function, for which one investment dominates another
(or ‘almost’ does so), so that all decision-makers whose preferences can
be represented by such combinations would agree on the option to be
chosen. The theory is built on combining the insights of stochastic domi-
nance on the one hand, and time dominance on the other, thus offering a
non-parametric approach to inter-temporal, risky choice.
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1 Introduction
When making investment decisions one is frequently confronted with long time-
horizons and risky returns. Therefore assumptions about time and risk prefer-
ences are important. Making such assumptions is always tricky. In the area of
public project appraisal they are especially contested, because, on top of the
usual challenges of estimating individual preferences, there are positions to be
taken on how to aggregate individual preferences in order to construct social
preferences. Some of these positions are positive in nature, some are normative.

Perhaps the best recent illustration of how assumptions about time and risk
preferences are contested in project appraisal is the debate about the findings
of the British Government’s Stern Review on the Economics of Climate Change
(Stern, 2007). A prominent part of this review was a cost-benefit analysis of
targets for global greenhouse gas emissions. Once emitted to the atmosphere,
carbon dioxide, the principal greenhouse gas, resides there for centuries. More-
over the dynamics of the climate system are such that there is a lag of many
decades between abating carbon dioxide emissions and the peak pay-off from
doing so. Together these features make deciding on whether to cut emissions
today one of the ultimate examples of an investment with a long pay-back. At
the same time, the impacts of emissions reductions are highly uncertain (rang-
ing from ineffectual to essential for the survival of humanity – e.g. Weitzman
2009), so it is also a risky investment par excellence.

Assumptions about time and risk preferences were therefore going to be im-
portant, and Stern’s were distinctive – within a standard, discounted utilitarian
framework, the rate of pure time preference was a very low 0.1%, while he
opted for a logarithmic utility function (together resulting in an unusually low
social discount rate). Consequently he recommended immediate and deep cuts
in global emissions, but his approach was quickly the subject of intense debate,
with a number of prominent scholars arguing for different formulations of dis-
counting and utility, in particular greater impatience and/or a greater elasticity
of marginal utility of consumption.1 Indeed, the more frequent conclusion of
economic evaluation of climate-change policy has been slow and rather shallow
emissions reductions (e.g. Nordhaus and Boyer 2000; Nordhaus 2008).

However, the Stern Review is merely one of the latest and most promi-
nent manifestations of disagreement about risk and time in project appraisal
(landmarks include Lind et al. 1982, and Portney and Weyant 1999). Other
examples of public projects that have both long time-horizons and risky returns
are radioactive waste disposal and the protection of wilderness and biological
diversity.

Our starting point for this paper is that such a debate legitimately exists
1So many opinions have been voiced on the (de-)merits of the Stern Review that sum-

marising them comprehensively would be a research project in itself. Hepburn and Beckerman
(2007), Nordhaus (2007) and Weitzman (2007) are notable critiques of Stern’s approach to
pure time preference, while Dasgupta (2007), Gollier (2006) and Weitzman (2007), among
others, took issue with his approach to risk aversion. Dietz et al. (2007b,a) and Dietz and
Stern (2008) offered a response.
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and will continue for the foreseeable future. While there is potentially a long
and difficult philosophical discussion to embark upon here, we simply observe
that the ingredients for the debate include normative differences and positive
uncertainties, neither of which seem easy to resolve. The normative differences
at hand are often rationalised in terms of the opposition between believers in
a ‘descriptive’ approach to parameterising utility and social welfare, which re-
lies on appropriate data from markets or other samples of representative con-
sumer/individual behaviour, and adherents to a ‘prescriptive’ approach, where
choosing functional form and setting parameter values is an exercise in philo-
sophical introspection on the part of the researcher. The dichotomy is due to
Arrow et al. (1996) and, since it was suggested, many justifications of both
approach have been offered. The debate endures. Positive uncertainties result
from the wealth of relevant but often conflicting data to inform parameterisation
of utility and social welfare, including market transactions, responses to ques-
tionnaire surveys and behaviour in laboratory experiments, at different times,
in different places and with respect to different goods. It may be rather easier
to envisage – in principle – how these positive uncertainties could be resolved by
the collection of more data, but in practice they are also likely to be long-lasting.

Consequently we are in the search for partial rather than complete orderings
of choices. We want to establish a theory and method of identifying whether
there exist ‘spaces for agreement’, that is combinations of classes of discount
and utility function, for which one investment dominates another (or ‘almost’
does so), so that all decision-makers whose preferences can be represented by
such combinations would agree on the option to be chosen.

Why might this be useful? Given disagreement about appropriate specifica-
tion of time and risk preferences, our approach does not require decision-makers
to make a priori choices of functional form or parameter values. Rather we
attempt to rank alternatives based on incomplete or partial information. While
this non-parametric approach could be used to inform investment choice in ei-
ther the public or private sectors, our hope is that one of its main uses might
be to bring renewed clarity to certain critical and hotly contested choices in
public policy, such as mitigation of climate change. In these areas, it has ar-
guably become forgotten in the debate about the formalisation of time and risk
preferences, which can appear intractable, that in fact choices might be able
to be made, without unanimity on parameterisation – i.e. the structure of the
investment problem could be such that commentators of many shades can unite
on the desirability of one course of action over another, without having that
much in common. Even if this does not turn out to be true, we learn something
in the process of testing for it.

The intellectual antecedents of this paper lie in the theory of Stochastic Dom-
inance (Fishburn, 1964; Hanoch and Levy, 1969; Hadar and Russell, 1969; Roth-
schild and Stiglitz, 1970) and its offshoots, in particular Almost Stochastic Dom-
inance (Leshno and Levy, 2002), Time Dominance (Bøhren and Hansen, 1980;
Ekern, 1981) and extensions of dominance analysis to multivariate problems
(Levy and Paroush, 1974b; Atkinson and Bourguignon, 1982; Karcher et al.,
1995).
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Stochastic Dominance (SD) is an integral part of the theory of decision-
making under uncertainty. It is undoubtedly useful for the sort of problems we
have just set out, precisely because it offers a non-parametric approach to risky
choice, whereby one tests for SD relations for whole preference classes. Yet SD
sometimes faces practical limitations, nicely illustrated by a stylised example
from Levy (2009) – try to use SD criteria to rank two prospects, one of which
pays out $0.5 with a probability of 0.01 and $1 million with a probability of 0.99,
and the other of which pays out $1 for sure. While it would seem that virtually
any investor would prefer the former, SD cannot be established.2 Arguably
this paradox betrays the disadvantage of SD’s generality – within the classes of
utility function considered, there are some ‘extreme’ (Leshno and Levy, 2002)
or even ‘pathological’ (Levy, 2009) utility functions, according to which the
latter prospect is preferred.3 For this reason Leshno and Levy (2002) derived
Almost Stochastic Dominance (ASD), according to which one compares the area
between the cumulative distributions in which SD is violated with the total area
between the distributions. Crucially, the ratio of the former to the latter can be
given an interpretation in terms of restrictions on the class of utility functions,
and if it is very small (to be defined precisely later), an ASD relation can be
argued to exist.

The basic theory of SD is a-temporal. In effect, decisions are made and
pay-offs obtained in the same time period. While extensions have been made to
the multiperiod case (Levy, 1973; Levy and Paroush, 1974a), the decision-maker
is not permitted to have temporal preferences, that is to prefer flows of utility
in some periods of time more than in others.4 This is a serious drawback, as
it is clear that most decision-makers are impatient, preferring utility now to
utility later on. Time preference is, by contrast, the core focus of the theory of
Time Dominance (Bøhren and Hansen, 1980; Ekern, 1981), which takes the SD
machinery and applies it to cashflows, i.e. instead of working with cumulative
distributions over the consequence space of a decision, one works with cumula-
tive distributions over time. Proponents of the approach make arguments in its
favour that are analogous to those made for SD – one tests for a Time Dominance
(TD) relation for whole preference classes, rather than having to pre-specify and
parameterise a discount function. The drawback of TD, however, is the obverse
of SD, namely that the basic theory has been developed for certain, rather than
uncertain, cashflows, and can only be extended to the latter under restrictive
assumptions. This would be done by analysing TD between expected cashflows,
having made a risk adjustment to the set of discount functions under considera-
tion. However, since all cashflows would then be discounted using the same set

2Where F 1 and G1 are respectively the cumulative distributions of the former and latter
prospects over realisations x, this is because the first nonzero values of G1(x) − F 1(x) are
negative as x increases from its lower bound, yet EF (x) > EG(x). nth-order SD requires that
Gn(x)− Fn(x) ≥ 0, ∀x, EF (x) ≥ EG(x) and there is at least one strict inequality.

3In the example used, one would be u(x) =

{
x for x ≤ 1

1 for x > 1
.

4One exception we are aware of is Scarsini (1986), who looked at a special case of utility
discounting. We will clarify the relationship between his paper and ours later.
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of risk-adjusted rates, it would be necessary to assume that all cashflows belong
to the same risk class, for example under the capital asset pricing model they
would have to share the same covariance with the market portfolio. It would
also be necessary to assume that any investments being compared are small
(i.e. marginal), since TD assumes common consumption discount rates, which
depend on a common growth rate.

This sets the conceptual task for the present paper, which is to unify the
theories of SD and TD so that we have at our disposal a way to choose be-
tween risky, inter-temporal prospects, which admits the possibility of pure-time
discounting and makes weak assumptions about the risk characteristics of the
prospects. As a problem in two dimensions (risk and time), our theory is related
to other problems of bivariate dominance, such as bi-dimensional inequality in
Atkinson and Bourguignon (1982) (income and life expectancy) and most no-
tably changes in the distribution of income over time in Karcher et al. (1995).

The remainder of the paper is set out as follows. In the next short section
we deal with some analytical preliminaries, in particular we set out the classes
of utility and discount function that will be of primary focus. Combinations of
these classes constitute possible spaces for agreement. In Section 3 we establish
the theory of (standard) Time-Stochastic Dominance, while in Section 4 we
do the same for Almost Time-Stochastic Dominance. We offer several worked
examples in Section 5, noting that we have applied the theory to a much more
complex example of climate-change mitigation in a companion paper (Dietz and
Matei, 2013). These examples are stylised, for expositional purposes, but they
are intended to be a realistic reflection of practice in one important respect –
they deal with discrete data. Hence applying our dominance criteria to the
example data requires us also to adapt our theorems to distribution quantiles.
Section 6 concludes.

2 Spaces for agreement
Let us take the task at hand as being to rank two prospects X and Y , both of
which yield random cashflows over time. The underlying purpose is to compare
the expected discounted utilities of the prospects at t = 0, i.e. for prospect X
we compute

NPVv,u(X) =

∫ T

0

v(t)EFu(x, t)dt =

∫ T

0

v(t)

∫ b

a

u(x)f(x, t)dxdt,

where x is a realisation of the cashflow of prospect X, v is a discount func-
tion and u is a utility function. Both functions v and u are assumed to be
continuous and continuously differentiable at least once. We make the assump-
tions, characteristic in the dominance literature, that the random cashflows of
X and Y are both supported on the finite interval [a, b], −∞ < a < b < +∞
and that each prospect pays out over a finite, continuous time-horizon [0, T ].
Therefore we can characterise a probability density function for prospect X at
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time t ∈ [0, T ], f(x, t), and a counterpart cumulative distribution function with
respect to realisation x ∈ [a, b], F 1(x, t) =

∫ x
a
f(s, t)ds.

Before characterising Time-Stochastic Dominance (TSD), we need to define
classes of utility and discount functions. Starting with utility functions u :
[a, b]→ R, we will focus on two specific classes:

U1 = {u : u′(x) ≥ 0} ,
U2 = {u : u ∈ U1 and u′′(x) ≤ 0} .

As usual then, U1 is the class of utility functions, whereby utility is non-
decreasing as a function of consumption, representing nothing more than (weak)
non-satiation. It is hard to imagine relevant circumstances in which the appro-
priate utility function would not be in U1. U2 is the class of non-decreasing,
weakly concave utility functions, which rules out risk-seeking. Whether the ap-
propriate utility function is in U2 is a little less clear, but it is almost certainly a
good description of individual behaviour, for instance. In the literature on SD, it
is common to proceed further to a third class U3 in which u ∈ U2 and u′′′(x) ≥ 0,
which is a necessary (but insufficient) condition for a particular kind of risk aver-
sion, decreasing absolute risk aversion. However, we will not work explicitly with
U3 in this paper, since we would have to contend with too many combinations
of utility and discount functions. Nevertheless the theory is perfectly capable of
handling it, and we will eventually establish a theorem for TSD of an arbitrarily
high order with respect to both time and risk.

Let us define a corresponding set of discount functions on the time domain,
v : [0, T ]→ R. The broadest class of discount functions requires simply that at
any point in time more is preferred to less, V0 = {v : v(t) > 0}. However, V0 is
typically of little interest, since some positive degree of time preference is always
required (even by Stern, 2007, on the grounds that there is at least a positive
risk of human extinction). Therefore, without compromising the generality of
our theory, let us focus our attention on the first- and second-order restrictions
on V0:

V1 = {v : v ∈ V0, and v′(t) < 0}
V2 = {v : v ∈ V1, and v′′(t) > 0} .

V1 is the class of strictly decreasing discount functions, exhibiting positive
time preference, while V2 is the class of strictly decreasing, convex discount func-
tions, according to which impatience decreases over time. Note that V1 admits
both exponential and hyperbolic discounting as special cases. Exponential dis-
counting has long been the conventional approach to pure time preference, with
debate focusing on the discount rate rather than the functional specification.
However, arguments have been advanced for hyperbolic discounting, including
that it is a more appropriate description of real individual behaviour (Laibson,
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1997) and that it can result from the aggregation of heterogeneous individual
preferences.5

Combinations of utility and discount functions constitute possible spaces for
agreement. V1 × U1 is the largest possible space for agreement that we con-
sider, encapsulating any decision-maker whose preferences can be represented
by, respectively, a strictly decreasing discount function and a non-decreasing
utility function, in other words any impatient decision-maker with any attitude
to risk from seeking to averse. Presumably virtually all decision-makers belong
to this combination of classes. By contrast V2 × U2, for instance, encapsulates
decision-makers whose impatience decreases over time and who are risk averse
or neutral. Whether there is an actual space for agreement depends of course
on whether any dominance relations can be established between projects, for
the combination in question. Note that in Section 4 we narrow the space for
agreement further by placing additional restrictions on {u} and {v} with a view
to excluding ‘extreme’ preferences.

3 Time-Stochastic Dominance
A further piece of notational apparatus will enable us to work in a compact,
bi-dimensional form. Denote the integral over time of the pdf by F1(x, t) =∫ t
0
f(x,w)dw, while the integral over time of the cdf is

F 1
1 (x, t) =

∫ x
a
F1(s, t)ds =

∫ t
0
F 1(x,w)dw =

∫ t
0

∫ x
a
f(s, w)dsdw

Defining d(z, t) = g(y, t)− f(x, t), we set

Dj
i (z, t) = Gji (y, t)− F

j
i (x, t)

for all x, y, z ∈ [a, b] and all t ∈ [0, T ]. Given information on the first n and
m derivatives of the discount and utility functions respectively, we recursively
define:

Dn(z, t) =
∫ t
0
Dn−1(z, w)dw

Dm(z, t) =
∫ z
a
Dm−1(s, t)ds

Dm
n (z, t) =

∫ t
0
Dm
n−1(z, w)dw =

∫ z
a
Dm−1
n (s, t)ds =

∫ t
0

∫ z
a
Dm−1
n−1 (s, w)dsdw,

where i ∈ {1, 2, . . . , n} is the order of TD (i.e. the number of integrations
with respect to time) and j ∈ {1, 2, . . . ,m} is the order of SD (i.e. the number
of integrations with respect to the probability distribution). Note that our
concept of TD relates to pure time discounting, whereas standard TD relates to
discounting of consumption.

With all of our notation now set out, let us characterise TSD for various
combinations of classes of Uj and Vi.

5Even though those individual preferences are represented by exponential discounting (see
Gollier and Zeckhauser, 2005).

7



Definition 1 (Time-Stochastic Dominance of order i, j). For any two
risky, inter-temporal prospects X and Y

X >iT jS Y if and only if ∆ ≡ NPVv,u(X)−NPVv,u(Y ) ≥ 0,

for all (v, u) ∈ Vi × Uj .

In this definition, the ordering >iT jS denotes pure TD of the ith order,
combined with SD of the jth order. For example, >1T1S , which we can shorten
to >1TS , denotes pure time and stochastic dominance of the first order.

Proposition 1 (First-order Time-Stochastic Dominance). X >1TS Y if
and only if

D1
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).

Proof. See the Appendix.

Proposition 1 tells us that any impatient planner with monotonic non-
decreasing preferences will prefer prospectX to prospect Y provided the integral
over time of the cdf of Y is at least as large as the integral over time of the cdf
of X, for all wealth levels and all time-periods, and is strictly larger somewhere.
It maps out a space for agreement, as we can say that all decision-makers with
preferences that can be represented by V1 × U1 will rank X higher than Y , no
matter what precisely is their discount function or utility function within these
classes.6

Having established first-order TSD, we can proceed from here by placing an
additional restriction on the discount function and/or on the utility function.
A particularly compelling case is the assumption of impatience combined with
risk aversion/neutrality – (v, u) ∈ V1 × U2 – since few would be uncomfortable
with the notion of excluding risk-seeking behaviour a priori, especially in the
public sector.

Proposition 2 (First-order Time and Second-order Stochastic Domi-
nance). X >1T2S Y if and only if

D2
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).

Proof. See the Appendix.

It is evident from Proposition 2 and its proof that, in line with the classical
approach to SD, restricting the utility function by one degree corresponds to
integrating the bi-dimensional probability distribution D1

1(z, t) once more with
respect to the consequence space.

6Proposition 1 is similar to Theorem 3 in Scarsini (1986). However Scarsini did not consider
any other cases, i.e. any other combinations of time and risk preference.
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If we want to pursue the further case of (v, u) ∈ V2 × U2, representing a
risk-averse or risk-neutral planner with impatience decreasing over time, then
integrate D2

1(z, t) once more with respect to time.

Proposition 3 (Second-order Time-Stochastic Dominance). X >2TS Y
if and only if

i)D2
1(z, T ) ≥ 0, ∀z ∈ [a, b],

ii)D2
2(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is at least one strict inequality.

Proof. See the Appendix.

The second part of the dominance condition tells us that, in order for X
to be preferred to Y by any decision-maker with preferences consistent with
(v, u) ∈ V2 × U2, the cdf of X, integrated twice over time and once more over
the consequence space, must be nowhere larger than its counterpart for Y .
Additionally, first-order pure time and second-order stochastic dominance must
hold with respect to the difference between the distributions in the terminal
period T .

The previous cases provide us with the machinery we require to offer a
theorem for TSD that is generalised to the nth order with respect to time and
the mth order with respect to risk.

Proposition 4 (nth-order Time and mth-order Stochastic Dominance).
X nth-order time and mth-order stochastic dominates Y if and only if

i)Dj+1
i+1 (b, T ) ≥ 0,

ii)Dj+1
n (b, t) ≥ 0, ∀t ∈ [0, T ],

iii)Dm
i+1(z, T ) ≥ 0,∀z ∈ [a, b],

iv)Dm
n (z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

with (iv) holding as a strong inequality over some sub interval and where i =
{0, . . . , n− 1} and j = {0, . . . ,m− 1}.

The proof is constructed as a simple extension of the previous analysis.
Integrating by parts repeatedly, we obtain:

NPVEF ,v −NPVEG,v =
n−1∑
i=1

(−1)j+1uj(b)

[
m−1∑
j=0

(−1)jvj(T )Dj+1
i+1 (b, T )

]

+
n−1∑
i=1

(−1)j+1(−1)nuj(b)
∫ T
0
vn(t)Dj+1

n (b, t)dt+

+
m−1∑
j=0

(−1)i(−1)m−1vi(T )
∫ b
a
um(z)Dm

i+1(z, T )dz +

+(−1)m+n+1
∫ b
a

∫ T
0
vn(t)um(z)Dm

n (z, t)dtdz.
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4 Almost Time-Stochastic Dominance
In practice, the usefulness of (standard) dominance analysis can be limited,
since even a very small violation of the conditions for dominance is sufficient to
render the rules unable to order investments. As the example in the Introduction
showed, if a violation exists in particular at the lower bound of the domain
of the cumulative distribution functions, then no amount of restrictions will
make it vanish. Put another way, the downside of a flexible, non-parametric
approach is that the broad classes of preference on which the dominance criteria
are based include a small subset of ‘extreme’ or ‘pathological’ functions, whose
implications for choice would be regarded by many as perverse. Leshno and Levy
(2002) recognised this problem in the context of SD and developed a theory
of Almost Stochastic Dominance (ASD), according to which restrictions are
placed on the derivatives of the utility function, so that extreme preferences are
excluded.7 Dominance relations between risky prospects are then characterised
for ‘almost’ all decision-makers.

What is ‘extreme’ is clearly subjective, an obvious difficulty faced by the
ASD approach. However, Levy et al. (2010) offer an illustration of how to
define it using laboratory data on participant choices when faced with binary
lotteries. Extreme risk preferences are marked out by establishing gambles that
all participants are prepared to take. By making the conservative assumption
that no participant has extreme risk preferences, the least and most risk-averse
participants mark out the limits, and preferences outside these limits can be
considered extreme.

It is obvious that standard TSD faces the same practical constraints as stan-
dard SD. In this section we therefore extend our theory to ‘Almost TSD’, charac-
terising Almost First-order TSD and Almost First-order Time and Second-order
Stochastic Dominance.

Let us start with the former. Define the set of realisations z ∈ [a, b] for all t
where there is a violation of First-order TSD as S1

1 :

S1
1(D1

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D1

1(z, t) < 0
}
.

Similarly define the set of realisations z ∈ [a, b] at time T where there is a
violation as

S1,T (D1
1) =

{
z ∈ [a, b] : D1

1(z) < 0
}
.

Definition 2 (Almost First-order Time-Stochastic Dominance). X dom-
inates Y by Almost First-order Time-Stochastic Dominance, denoted X >1ATS

Y, if and only if

i)
∫ T
0

∫
S1
1
−D1

1(z, t)dzdt ≤ γ1
∫ T
0

∫ b
a

∣∣D1
1(z, t)

∣∣ dzdt and
ii)
∫
S1,T −D1

1(z, T )dz ≤ ε1T
∫ b
a

∣∣D1
1(z, T )

∣∣ dz.
7Tzeng et al. (2012) showed that Leshno and Levy’s theorem for Almost Second-order

Stochastic Dominance is incorrect and re-define the concept. They also extend the results to
higher orders.
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Proposition 5 (A1TSD). X >A1TS Y if, for all (v, u) ∈ V1(γ1)×U1(γ1) and
u ∈ U1(ε1T ),

NPVv,u(X) ≥ NPVv,u(Y ).

Proof. See the Appendix.

The definition of Almost First-order TSD contains two measures of the vi-
olation of strict First-order TSD. γ1 measures the cumulative violation of the
non-negativity condition on D1

1 over all t, relative to the total volume enclosed
between the distributions over all t, while ε1T measures the violation of the
same condition at time T only, relative to the total area enclosed between the
distributions at that time. The latter violation measure has the same interpre-
tation in terms of utility as the corresponding violation measure in Leshno and
Levy (2002). Adapting their theorem to our context, for every 0 < ε1T < 0.5,
define the following subset of U1:

U1(ε1T ) =

{
u ∈ U1 : u′(z) ≤ inf[u′(z)]

[
1

ε1T
− 1

]}
.

U1(ε1T ) is the set of non-decreasing utility functions with the added restric-
tion that the ratio between maximum and minimum marginal utility is bounded
by 1

ε1T
− 1, i.e. extreme concavity/convexity is ruled out. It is easiest to see

what this restriction entails in the case of u ∈ U1(ε1T ), where u′′(z) is mono-
tonic. Then we are restricting how much (little) marginal utility members of the
class of functions give to low wealth levels at the same time as restricting how
little (much) marginal utility they give to high wealth levels. Further narrowing
the scope to the very common case of utility functions with constant elasticity
of marginal utility, the restriction is on the absolute value of the elasticity –
|u

′′(z)z
u′(z) | – such that it cannot be large negative or large positive, and the larger

is ε1T the smaller |u
′′(z)z
u′(z) | must be. In the limit as ε1T approaches 0.5, the

only function in U1(ε1T ) is linear utility, where u′′(z) = 0. Conversely as ε1T
approaches zero, U1(ε1T ) coincides with U1. Note that the bounds on u′(z) are
established with respect to the set of realisations when t = T .

γ1 is defined in terms of the product of the marginals of the discount and
utility functions as follows:

V1(γ1)× U1(γ1) =
{v ∈ V1, u ∈ U1 : sup[−v′(t)u′(z)] ≤

inf[−v′(t)u′(z)]
[

1
γ1
− 1
]
,∀z ∈ [a, b], ∀t ∈ [0, T ]}

V1(γ1) × U1(γ1) is the set of all combinations of decreasing pure time dis-
count function and non-decreasing utility function, with the added restriction
that the ratio between the maximum and minimum products of [−v′(t)u′(z)] is
bounded by 1

γ1
− 1. The supremum (infimum) of [−v′(t)u′(z)] is attained when

v′(t) < 0 is the infimum (supremum) of its set and u′(z) ≥ 0 is the supremum
(infimum) of its. Bounding the ratio between maximum and minimum v′(t)
amounts to excluding preferences exhibiting a very large change in impatience
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over time. Therefore the combinations of preferences that we are excluding here
comprise extreme concavity or convexity of the utility and discount functions
somewhere on their respective domains. Note that the bounds on [−v′(t)u′(z)]
are established with respect to all realisations and all time-periods.

Moving now to Almost First-order Time and Second-order Stochastic Dom-
inance, parcel out for all t the subset of realisations S2

1 where D2
1 < 0, i.e.

where the condition for strict First-order Time and Second-Order Stochastic
Dominance is violated:

S2
1(D2

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D2

1(z, t) < 0
}
.

Similarly define the set of realisations z ∈ [a, b] at time T where there is a
violation as

S2,T (D2
1) =

{
z ∈ [a, b] : D2

1(z) < 0
}
.

And in this case we also need to define the set of realisations whereD2
1(b, t) <

0, for any t where z = b:

S1,b(D
2
1) =

{
z = b, t ∈ [0, T ] : D2

1(t) < 0
}
.

Definition 3 (Almost First-order Time and Second-order Stochastic
Dominance). X Almost First-order Time and Second-order Stochastic Domi-
nates Y, denoted X >A1T2S Y if and only if

i)
∫ T
0

∫
S2
1
−D2

1(z, t)dzdt ≤ γ2
∫ T
0

∫ b
a

∣∣D2
1(z, t)

∣∣ dzdt,
ii)
∫
S2,T −D2

1(z, T )dz ≤ ε2T
∫ b
a

∣∣D2
1(z, T )

∣∣ dz,
iii)

∫
S1,b

D2
1(b, t)dt ≤ γ1b

∫ T
0

∣∣D2
1(b, t)

∣∣ dt, and
iv)D2

1(b, T ) ≥ 0

Proposition 6 (A1T2SD). X >A1T2S Y if, for all (v, u) ∈ V1(γ2)× U2(γ2),
u ∈ U1(ε1T ) and (v, u) ∈ V1(γ1b)× U1(γ1b),

NPVv,u(X) ≥ NPVv,u(Y ).

Proof. See the Appendix.

The definition of Almost First-order Time and Second-order Stochastic Dom-
inance contains three measures of the violation of strict dominance, as well as
the requirement that D2

1(b, T ) ≥ 0. First, γ2 measures the relative violation of
the non-negativity condition on D2

1 over all t. It is equivalent to the following
restriction on combined time and risk preferences:

V1(γ2)× U2(γ2) =
{v ∈ V1, u ∈ U2 : sup[v′(t)u′′(z)] ≤

inf[v′(t)u′′(z)]
[

1
γ2
− 1
]
, ∀z ∈ [a, b], ∀t ∈ [0, T ]} .

The set V1(γ2)×U2(γ2) represents all combinations of decreasing pure time
discount functions and non-decreasing, weakly concave utility functions, with
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the added restriction that the ratio between the maximum and minimum of
[v′(t)u′′(z)] is bounded by 1

γ2
− 1. The supremum (infimum) of [v′(t)u′′(z)]

is attained when v′(t) < 0 and u′′(z) ≤ 0 are the suprema (infima) of their
respective sets, and these sets are defined with respect to all realisations and
time-periods.

Second, ε2T measures the relative violation of the non-negativity condition
on D2

1 at time T only. As per Leshno and Levy (2002), for every 0 < ε2T < 0.5,

U2(ε2T ) =

{
u ∈ U2 : −u′′(z) ≤ inf[−u′′(z)]

[
1

ε2T
− 1

]}
.

U2(ε2T ) is the set of non-decreasing, weakly concave utility functions with
the added restriction that the ratio between maximum and minimum u′′(z) is
bounded by 1

ε2T
− 1. Therefore large changes in u′′′(z) with respect to z are

excluded, where only realisations at time T are considered.
Third, we need to measure a violation of the non-negativity condition on

the integral with respect to time of D2
1(b, t). We denote this γ1b, because the

restriction is on the product [−v′(t)u′(b)] (see proof), therefore it has the same
interpretation as γ1, except that in this case the bounds on u′ are with respect
to realisation b specifically.

Propositions 5 and 6 characterise sufficient conditions for Almost TSD,
rather than necessary and sufficient conditions. To see why this is so, let us
dip into the proofs. First express the difference in NPV ∆ between prospects
X and Y in terms of the difference in their respective cdfs:

∆ = NPVv,u(X)−NPVv,u(Y )

=
∫ T
0
v(t)

∫ b
a
D1(z, t)u′(z)dzdt ≥ 0.

Integrating with respect to time we obtain an expression in terms of D1
1, i.e.

in terms of First-order TSD:

∆ =
∫ b
a
D1

1(z, T )v(T )dz −
∫ b
a

∫ T
0
D1

1(z, t)v′(t)u′(z)dtdz

= v(T )
∫ b
a
u′(z)D1

1(z, T )dz +
∫ b
a

∫ T
0

(−)D1
1(z, t)v′(t)u′(z)dtdz ≥ 0. (1)

And integrating once more with respect to the consequence space we obtain
an expression in terms of D2

1, i.e. in terms of First-order Time and Second-order
Stochastic Dominance:

∆ = v(T )u′(b)D2
1(b, T ) +

∫ T
0
− v′(t)u′(b)D2

1(b, t)dt−

−v(T )
∫ b
a
u′′(z)D2

1(z, T )dz +
∫ T
0

∫ b
a

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt ≥ 0. (2)

The proofs are built around the notion that it is sufficient for TSD that each
element on the right-hand side of Equations (4) and (5) is non-negative. We
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can then define the maximum violation of strict dominance for each element
of the equation, which is consistent with this. The great advantage of this
approach is that the violation measures have meaningful interpretations in terms
of discount and utility functions. However since the various elements are additive
and moreover since the various restrictions are defined on different domains of
{v(t)} and {u(x)}, there is no reason why any particular element must be non-
negative.

On the other hand, we can point to some informative limiting cases. In
particular, in the case where

v(T )
∫ b
a
u′(z)D1

1(z, T )dz∫ b
a

∫ T
0
v′(t)u′(z)(−)D1

1(z, t)dtdz
→ 0,

it is a necessary condition for Almost First-order TSD that∫ T
0

∫
S1
1
−D1

1(z, t)dzdt ≤ γ1
∫ T
0

∫ b
a

∣∣D1
1(z, t)

∣∣ dzdt.
We might find real examples that approach this limiting case, for which

the time horizon for the longest cashflow is very long (e.g. many decades if
not centuries) and/or for which the differences in prospects’ cashflows in the
terminal period are very small. More generally, the measure of violation of
strict First-order TSD over all time, γ1, is evidently an important variable that
would be of primary interest in most applications.

The definition of Almost First-order Time and Second-order Stochastic Dom-
inance has four parts. The limiting case we are considering at present will make
two elements of Equation (5) vanish, but in addition we would need the dif-
ference in prospects’ cashflows to be vanishingly small at the maximum wealth
level.

5 Worked examples: Time-Stochastic Dominance
with quantiles

In this section we present some simple, stylised examples of the TSD criteria
at work. The examples are based on quantiles of discrete cashflow distributions
in discrete time. This is in part for ease of exposition, but it is also because in
practical applications the data to be analysed will very often be in this form,
for instance it would be the typical output of a Monte Carlo simulation of
a structural model. Since we have so far set out our theory with respect to
continuous cumulative distributions, it is therefore an opportunity for us to re-
express it in terms of quantile distributions and show that it applies just as well
to discrete data.

On the time dimension, integration is simply replaced with summation. For
each additional restriction placed on the curvature of the discount function, a
new round of summation of the cashflows is performed,Xn(t) =

∑t
w=0Xn−1(w).
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On the stochastic dimension, we extend the quantile approach of Levy and
Hanoch (1970) and Levy and Kroll (1979). Take X to be an integrable random
variable with, for each t ∈ [0, T ], a cdf F 1(x, t) and an r-quantile function
F−1,r(p, t), the latter of which is recursively defined as

F−1,1(p, t) : = inf{x : F 1(x, t) ≥ p(t)},∀t ∈ [0, T ] (3)
F−1,r(p, t) : =

∫ p
0
F−1,1(y, t)dy, ∀p ∈ [0, 1] , ∀t and r ≥ 2.

Proposition 7 (1TSD for quantile distributions). X >1TS Y if and only
if

H−1,11 (p, t) = F−1,11 (p, t)−G−1,11 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).

Proof. See the Appendix.

Proposition 7 characterises First-order Time-Stochastic Dominance for quan-
tile distributions. Notice that since the quantile distribution function is just the
inverse of the cumulative distribution function, 1TSD requires F−1,11 (p, t) −
G−1,11 (p, t) ≥ 0, i.e. the inverse of the requirement for 1TSD in terms of cumu-
lative distributions.

Proposition 7 also applies to discrete data. To show this briefly, we choose
an arbitrary quantile p∗(t) ∈ [0, 1] for any t and denote G−11 (p∗, t) = z2(t) and
F−11 (p∗, t) = z1(t). We need to show that z1(t) ≥ z2(t) for each t. Assume
that z1(t) < z2(t). By definition, x2(t) represents the smallest value for which
equation 3 holds and for this reason z1(t) and z2(t) cannot be located on the
same step of the G1

1(z, t) for any t. Therefore G1
1(z1, t) < G1

1(z2, t). We have
that G1

1(z1, t) < G1
1(z2, t) = p∗(t) = F 1

1 (z1, t) < F 1
1 (z2, t). Thus G1

1(z1, t) <
F 1
1 (z1, t), which contradicts the initial assumption. This proves sufficiency, and

necessity can be demonstrated in a very similar way.

Example 1. Consider prospects X and Y , each of which comprises a cash-
flow over five periods of time and in four states of nature with equal probability
(i.e. uniform discrete distributed):

Time period
Prospect Probability 0 1 2 3 4

1/4 -2 -3 2 2 1
X 1/4 -1 -2 -2 3 1

1/4 0 -2 -2 5 6
1/4 0 0 -2 4 2
1/4 -5 -3 2 3 7

Y 1/4 -4 -3 2 3 1
1/4 -4 -1 -1 0 1
1/4 -4 0 1 1 6
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F−1,11 (p, t) and G−1,11 (p, t) are obtained by first cumulating the cashflows
across time, and then reordering from lowest to highest in each time period.
Taking the difference between them gives us H−1,11 (p, t):

Time period
p 0 1 2 3 4

0.25 3 3 1 4 4
0.5 3 4 2 2 1
0.75 4 3 2 3 0
1 4 4 1 4 3

Therefore by Propositions 1 and 7 X >1TS Y .

Example 2. Now consider two different prospects X and Y :

Time period
Prospect Probability 0 1 2 3 4

1/4 -4 -1 2 3 9
X 1/4 -1 -3 2 2 7

1/4 -1 -1 2 0 4
1/4 0 0 2 2 2
1/4 -5 -1 2 2 2

Y 1/4 -2 -3 -1 3 6
1/4 -2 0 0 2 5
1/4 0 0 2 1 8

In this example H−1,11 (p, t) is:

Time period
p 0 1 2 3 4

0.25 1 1 3 3 4
0.5 1 1 2 2 3
0.75 1 0 2 0 2
1 0 0 0 1 -2

While in the first four time periods H−1,11 (p, t) ≥ 0, the opposite is true when
p = 1 in the terminal period. Therefore first-order TSD cannot be established
between these two prospects. However, cumulating once more with respect to
the consequence space gives H−1,21 (p, t), which here is:

Time period
p 0 1 2 3 4

0.25 1 1 3 3 4
0.5 2 2 5 5 7
0.75 3 2 7 5 9
1 3 2 7 6 7
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Thus from Proposition 2 and by extension of Proposition 7 we can say that
X >1T2S Y . What this example illustrates is that, when the violation of first-
order TSD is restricted to the upper quantiles of F−1,11 and G−1,11 , the additional
restriction that u ∈ U2 , which excludes risk-seeking behaviour, makes it disap-
pear, because relatively greater weight is placed on outcomes with low wealth.

Proposition 8 (2TSD for quantile distributions). X >2TS Y if and only
if

H−1,22 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).

The proof is constructed as a simple extension of the previous analysis.

Example 3. Now consider another two different prospects:

Time period
Prospect Probability 0 1 2 3 4

1/4 -5 -2 2 1 8
X 1/4 -3 -3 2 4 10

1/4 -1 -1 -2 0 0
1/4 0 -2 -1 2 4
1/4 -5 -2 -2 5 0

Y 1/4 -4 -3 -2 5 2
1/4 -2 -3 2 0 7
1/4 0 0 2 3 9

The reader can verify that in this example the condition for first-order TSD
of either X or Y is not met. Further, H−1,21 is:

Time period
p 0 1 2 3 4

0.25 0 0 4 0 0
0.5 1 1 9 0 5
0.75 2 4 8 2 5
1 2 2 3 -3 1

Therefore in this case neither is the condition for First-order Time and
Second-order Stochastic Dominance met. The next step is to inspect H−1,22 :8

8H−1,2
2 (p, t) = [F−1,2

2 (p, t)−G−1,2
2 (p, t)] =

p∑
w=0

[F−1,1
2 (w, t)−G−1,1

2 (w, t)]
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Time period
p 0 1 2 3 4

0.25 0 0 4 4 12
0.5 1 2 11 15 23
0.75 2 6 14 17 29
1 2 4 7 4 5

Thus since H−1,22 ≥ 0, ∀z, t with mostly strict inequalities, and from above
H−1,21 ≥ 0, ∀p, X >2TS Y .

Example 4. Finally consider the following two prospects:

Time period
Prospect Probability 0 1 2 3 4

1/4 -5 -3 0 4 7
X 1/4 0 -3 1 2 10

1/4 0 -2 1 3 9
1/4 0 0 0 1 1
1/4 -5 -1 0 3 9

Y 1/4 -4 -2 -1 0 1
1/4 -2 -3 1 1 5
1/4 -2 -1 -1 2 1

In this example H−1,11 is:

Time period
p 0 1 2 3 4

0.25 0 -2 -1 3 8
0.5 4 3 4 3 4
0.75 2 3 3 4 8
1 2 3 4 4 5

First-order TSD cannot be established between these two prospects. More-
over it can easily be shown that the occurrence of the violation in the lowest
quantile of H−1,11 , in early time periods, means that the violation will persist de-
spite infinitely repeated cumulation with respect to time and/or the consequence
space. However, it is quite evident from the tables that X performs better than
Y most of the time, so let us inspect this example within the framework of
Almost TSD:

A1TSD A1T2SD
γ1 ε1T γ2 ε2T γ1b
0.04 0 0.02 0 0
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The small violations reflect what is intuitively obvious from H−1,11 (p, t),
namely that only a small restriction on the combination of classes of discount
and utility functions is required in order for dominance to be established, since
F < G most of the time in most quantiles.

6 Conclusions
In this paper we have proposed a theory of Time-Stochastic Dominance for
ordering risky, intertemporal prospects. Our theory is built by unifying the
insights of Stochastic Dominance (SD) on the one hand with those of Time
Dominance (TD) on the other hand. Like these earlier theories, the approach is
non-parametric and allows orderings to be constructed only on the basis of par-
tial information about preferences. But our approach generalises the application
of simple SD to intertemporal prospects, by permitting pure temporal prefer-
ences, just as it generalises the application of simple TD to risky prospects, by
avoiding the need to make strong assumptions about the characteristics of the
prospects (prospects may belong to different risk classes and cashflows may be
large/non-marginal).

Like other dominance criteria, a possible practical disadvantage of (standard)
Time-Stochastic Dominance is that it may not exist in the data, despite one
prospect paying out more than another most of the time, in most states of
nature. Various approaches can be taken to dealing with this. Our choice has
been to extend the notion of Almost SD pioneered by Levy and others, giving
rise to Almost TSD.

The theory can in principle be applied to any investment problem involving
multiple time-periods and uncertainty about payoffs, however, given the involv-
ing nature of the analysis, we suggest that it might prove most useful in the case
of some highly contentious public-investment decisions, where there is disagree-
ment about appropriate rates of discount and risk aversion. An example might
be the mitigation of climate change, and this is considered in the companion
paper Dietz and Matei (2013).
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A Appendix

A.1 Proof of Proposition 1
Sufficiency:

We want to prove that

D1
1(z, t) ≥ 0 =⇒ NPVv,u(X) ≥ NPVv,u(Y )

for all t and z for all u ∈ U1, v ∈ V1.

Assume that z is bounded from below and above, a ≤ z ≤ b. This implies
that for z < a, F 1(x, t) = G1(y, t) = D1(z, t) = 0 for all t ∈ [0, T ], while
similarly for z > b, D1(z, t) = G1(y, t)− F 1(x, t) = 1− 1 = 0 for all t ∈ [0, T ].

Denote by

∆ ≡ NPVv,u(X)−NPVv,u(Y ) =
∫ T
0
v(t)EFu(x)dt−

∫ T
0
v(t)EGu(y)dt

=
∫ T
0
v(t)

∫ b
a
f(x, t)u(x)dxdt−

∫ T
0
v(t)

∫ b
a
g(y, t)u(y)dydt

=
∫ T
0
v(t)

∫ b
a
− d(z, t)u(z)dzdt.

Integrating by parts with respect to z we obtain:

∆ =
∫ T
0
v(t)

[
u(z)(−)D1(z, t)|ba −

∫ b
a

(−)D1(z, t)u′(z)dz
]
dt.

The first term in the square brackets is equal to zero (recall that for z = b,
we have D1(b, t) = 1− 1 = 0 for all t and for z = a we have D1(a, t) = 0 for all
t). Therefore, we are left with

∆ =
∫ T
0
v(t)

[
−
∫ b
a

(−)D1(z, t)u′(z)dz
]
dt

=
∫ T
0

∫ b
a
v(t)D1(z, t)u′(z)dzdt. (1.2)

Integrating by parts with respect to t we have:

∆ =
∫ b
a

[
D1

1(z, t)v(t)|T0 −
∫ T
0
D1

1(z, t)v′(t)dt
]
u′(z)dz

=
∫ b
a

[
D1

1(z, T )v(T )−
∫ T
0
D1

1(z, t)v′(t)dt
]
u′(z)dz,

as D1
1(z, 0) = G1

1(y, 0)− F 1
1 (x, 0) = 0 for all z ∈ [a, b].

From our initial assumption about the bounding of z, we know thatD1
1(z, t) ≥

0 and v(T ) ≥ 0. Hence for all u ∈ U1 and v ∈ V1, NPVv,u(X) ≥ NPVv,u(Y ).
Necessity:
We have to prove that

NPVv,u(X) ≥ NPVv,u(Y ) =⇒ D1
1(z, t) ≥ 0

for all u ∈ U1, v ∈ V1 for all t and z.

Starting from Eq. 1.2, let (z̃, t̃) be the smallest (in the lexicographic sense)
pair (z, t) such that D1

1(z̃, t̃) < 0. We will show that there is a utility function
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ũ ∈ U1 and a discount function ṽ ∈ V1 for which our supposition implies that
NPVv,u(X) < NPVv,u(Y ), thus contradicting the original assumption.

Supposing that a violation D1
1(z̃, t̃) < 0 does exist, since D1

1 is continuous it
will also exist in the range z̃ ≤ z ≤ z̃ + ε. Define the following utility function:

ũ(z) =

 z̃ z < z̃
x z̃ ≤ z ≤ z̃ + ε

z̃ + ε z > z̃ + ε

noting that ũ(z) /∈ U1, strictly speaking, but that it can be approximated ar-
bitrarily closely by a function that does belong to U1 (see Fishburn and Vickson
1978, p. 75).

Similarly define the following discount function:

ṽ(t) =

{
1 + pe−pt if 0 ≤ t ≤ t̃
0 + pe−pt t̃ < t ≤ T,

which again is discontinuous but can be approximated arbitrarily closely by
some ṽ ∈ V1.

Substituting these functions into Equation 1.2 we obtain

∆ =
∫ z̃+ε
z̃

[∫ t̃
0
D1(x, t)dt+ p

∫ T
0
e−ptD1(x, t)dt

]
dz

=
∫ z̃+ε
z̃

[
D1

1(z, t)|t̃0 + p
∫ T
0
e−ptD1(z, t)dt

]
dz

=
∫ z̃+ε
z̃

[
D1

1(z, t̃) + p
∫ T
0
e−ptD1(z, t)dt

]
dz.

In the limit as p→ 0, p
∫ T
0
e−ptD1(z, t)dt = 0, therefore for a sufficiently small

p, D1
1(z̃, t̃) < 0 implies that NPVv,u(X) < NPVv,u(Y ), contradicting the initial

assumption and showing it is necessary that D1
1(z̃, t̃) ≥ 0 for all z ∈ [a, b] and

t ∈ [0, T ].

A.2 Proof of Proposition 2 and Proposition 3
Sufficiency:

Starting with the expression derived in the previous proof

∆ =
∫ T
0
v(t)

∫ b
a
u′(z)D1(z, t)dzdt,

we continue by integrating again with respect to z:

∆ =
∫ T
0
v(t)

[
u′(z)D2(z, t)|ba −

∫ b
a
u′′(z)D2(z, t)dz

]
dt

=
∫ T
0
v(t)u′(b)D2(b, t)dt−

∫ T
0
v(t)

∫ b
a
u′′(z)D2(z, t)dzdt.

Now integrating by parts with respect to time t,
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∆ = u′(b)v(t)D2
1(b, t)|T0 − u′(b)

∫ T
0
v′(t)D2

1(b, t)dt−

−
∫ b
a
u′′(z)v(t)D2

1(z, t)|T0 +
∫ b
a
u′′(z)

∫ T
0
v′(t)D2

1(z, t)dtdz.

∆ = u′(b)v(T )D2
1(b, T )− u′(b)

∫ T
0
v′(t)D2

1(b, t)dt−

−
∫ b
a
u′′(z)v(T )D2

1(z, T )dz +
∫ b
a
u′′(z)

∫ T
0
v′(t)D2

1(z, t)dtdz.

From this last expression we can extract the conditions for dominance with
respect to V1 × U2 presented in Proposition 2. That is, D2

1(z, t) ≥ 0 for all
z ∈ [a, b] and all t ∈ [0, T ] is a sufficient condition for NPVv,u(X) ≥ NPVv,u(Y )
for all {v, u} ∈ V1 × U2.

Integrating by parts once more with respect to time, we get the dominance
conditions for second-order TSD for all {v, u} ∈ V2 × U2:

∆ = u′(b)v(T )D2
1(b, T )−

∫ b
a
u′′(z)v(T )D2

1(z, T )dz − u′(b)v′(t)D2
2(b, t)|T0 +

+u′(b)
∫ T
0
v′′(t)D2

2(b, t)dt+
∫ b
a
u′′(z)v′(t)D2

2(z, t)dz|T0 −

−
∫ b
a
u′′(z)

∫ T
0
v′′(t)D2

2(z, t)dtdz.

∆ = u′(b)v(T )D2
1(b, T )−

∫ b
a
u′′(z)v(T )D2

1(z, T )dz − u′(b)v′(T )D2
2(b, T ) +

+u′(b)
∫ T
0
v′′(t)D2

2(b, t)dt+
∫ b
a
u′′(z)v′(T )D2

2(z, T )dz −

−
∫ b
a
u′′(z)

∫ T
0
v′′(t)D2

2(z, t)dtdz.

From here it is easy to note that the following assumptions

i) D2
1(z, T ) ≥ 0 for all z ∈ [a, b]

ii) D2
2(z, t) ≥ 0 for all z ∈ [a, b] and all t ∈ [0, T ]

imply that

NPVEF ,v ≥ NPVEG,v for all (v, u) ∈ V2 × U2.

This completes the sufficiency part of Proposition 3.
Necessity :
Consider the increasing and concave utility function defined by

ũ(z) :=

{
z − z̃ for a ≤ z < z̃
0 for z̃ ≤ z ≤ b

and let Ũ ∈ U2 be a suitable approximation of ũ. The proofs of necessity are
similar to the proofs of necessity of the previous proposition and are therefore
omitted.
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A.3 Proof of Proposition 5
We want to prove that

X >A1TS Y

⇒ NPVv,u(X) ≥ NPVv,u(Y )

∀ (v, u) ∈ V1(γ1)× U1(γ1) and ∀u ∈ U1(ε1T )

Going back to

∆ =
∫ b
a
D1

1(z, T )v(T )dz −
∫ b
a

∫ T
0
D1

1v
′(t)u′(z)dtdz

= v(T )
∫ b
a
u′(z)D1

1(z, T )dz +
∫ b
a

∫ T
0

(−)D1
1v
′(t)u′(z)dtdz

= Λ + Γ.

Separate the range [a, b] at time T between the part S1,T , where D1
1(z, T ) <

0, and the complementary part S1,T , where D1
1(z, T ) ≥ 0:

Λ = v(T )
∫ b
a
u′(z)

[
D1

1(z, T )
]
dz

= v(T )
∫
S1,T u

′(z)D1
1(z, T )dz + v(T )

∫
S1,T u

′(z)D1
1(z, T )dz ≥ 0.

Note that the integral over the range S1,T is negative and the integral over
S1,T is positive. In order for Λ ≥ 0, the area where D1

1(z, T ) < 0 must be
ε1T smaller than the total area enclosed between the two distributions. This
restriction can be obtained from the proof of Almost First-order Stochastic
Dominance by Leshno and Levy (2002), simply by requiring that the utility
function belong to the subset U1(ε1T ), where the subscript indicates that the
bounds on maximum and minimum marginal utility are established with respect
to period T specifically.

Turning to Γ, separate [a, b] for all t into S1
1 , defined over ranges where

D1
1(z, t) < 0, and S1

1 , the range over which D1
1(z, t) ≥ 0, so that we obtain

Γ =
∫ T
0

∫
S1
1

[
D1

1(z, t)
]

(−v′(t)u′(z)) dzdt+∫ T
0

∫
S1
1

[
D1

1(z, t)
]

(−v′(t)u′(z)) dzdt ≥ 0.

The first element of Γ is negative and is minimised when the product of the
marginals of the discount and utility functions [−v′(t)u′(z)] is maximised, while
the second element is positive and minimised when [−v′(t)u′(z)] is minimised.
Hence denoting infz∈[a,b]∀t {−v′(t)u′(z)} =θ and supz∈[a,b]∀t {−v′(t)u′(z)} = θ,
the minimum value of Γ is

Γ∗ = θ
∫ T
0

∫
S1
1

[
D1

1(z, t)
]
dzdt+ θ

∫ T
0

∫
S1
1

[
D1

1(z, t)
]
dzdt ≥ 0.

It follows that, for a given combination of discount and utility functions,
Γ ≥ 0 if Γ∗ ≥ 0, which can be rewritten as

26



sup[−v′(t)u′(z)] ≤ inf[−v′(t)u′(z))]

∫ T
0

∫
S1
1
D1

1(z, t)dzdt∫ T
0

∫
S1
1
D1

1(z, t)dzdt

Let (v, u) ∈ V1(γ1)×U1(γ1), then by definition of V1(γ1)×U1(γ1), we know
that

sup[−v′(t)u′(z)] ≤ inf[−v′(t)u′(z)]
[

1

γ1
− 1

]
,

which implies Γ∗ ≥ 0 and therefore NPVv,u(X) ≥ NPVv,u(Y ).

A.4 Proof of Proposition 6
We want to prove that

X >A1T2S Y

⇒ NPVv,u(X) ≥ NPVv,u(Y )

∀ (v, u) ∈ V1(γ2)× U2(γ2), ∀u ∈ U1(ε1T ) and ∀ (v, u) ∈ V1(γ1b)× U1(γ1b))

Integrate the previous expression for ∆ once more with respect to z, obtain-
ing

∆ = v(T )
[
u′(z)D2

1(z, T )|ba −
∫ b
a
u′′(z)D2

1(z, T )dz
]

+

+
∫ T
0
− v′(t)

[
u′(z)D2

1(z, t)
]
|badt−

∫ T
0
− v′(t)

∫ b
a
u′′(z)D2

1(z, t)dzdt ≥ 0

v(T )u′(b)D2
1(b, T ) +

∫ T
0
− v′(t)u′(b)D2

1(b, t)dt−

−v(T )
∫ b
a
u′′(z)D2

1(z, T )dz +
∫ T
0

∫ b
a

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt ≥ 0

v(T )u′(b)D2
1(b, T ) + Γ + Λ + Ω ≥ 0.

Hence in the case of Almost First-order Time and Second-order Stochastic
Dominance four elements must be non-negative. v(T )u′(b)D2

1(b, T ) must simply
be non-negative. The remaining three elements must be non-negative overall,
but can be partitioned into a region of violation and a region of non-violation,
with three respective restrictions on the relative violation.

Define the set of realisations where D2
1(b, t) < 0, for any t where z = b as

S1,b and its complement as S1,b, so that

Γ =
∫
S1,b

(−v′(t)u′(b))D2
1(b, t)dt+

∫
S1,b

(−v′(t)u′(b))D2
1(b, t)dt.

The integral over S1,b is negative while the integral over its complement S1,b

is positive. Therefore, following the proof of Proposition 5, in order for Γ ≥ 0 the
area whereD2

1(b, t) < 0 must be γ1b smaller than the total area enclosed between
the two distributions, where the restriction is obtained by requiring that any
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pair of discount and utility functions (v, u) belong to V1(γ1b)× U1(γ1b), where
the bounds on the product of the marginals of the discount and utility functions
are established with respect to z = b specifically.

Λ is similar to Λ in the previous proof. By restricting the utility function to
belong to the subset U2(ε2T ), we obtain the requirement that in period T the
area where D2

1(z, T ) < 0 cannot be larger that ε2T multiplied by the total area
between the two distributions.

Moving to Ω, define an interval of violation and its complement in the usual
way:

Ω =
∫ T
0

∫
S2
1

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt+

∫ T
0

∫
S2
1

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt.

Again following the proof of Proposition 5 define infz∈[a,b]∀t {v′(t)u′′(z)} =ϑ

and supz∈[a,b]∀t {v′(t)u′′(z)} = ϑ, so that the minimum Ω is

Ω∗ = ϑ
∫ T
0

∫
S2
1
D2

1(z, t)dzdt+ ϑ
∫ T
0

∫
S2
1
D2

1(z, t)dzdt.

Both elements of Ω are relatively larger than the corresponding elements of
Ω∗ .

We are looking for a set of preferences V1(γ2) × U2(γ2) for which Ω∗ ≥ 0,
which are

sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z)]

∫ T
0

∫
S2
1

[
D2

1(z, t)
]
dzdt∫ T

0

∫
S2
1

[F 2
1 (z, t)−G2

1(z, t)] dzdt

sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z))]

∫ T
0

∫
S2
2

[
G2

1(z, t)− F 2
1 (z, t)

]
dzdt∫ T

0

∫
S2
2

[F 2
1 (z, t)−G2

1(z, t)] dzdt

By letting (v, u) ∈ V1(γ2) × U2(γ2), then, by definition of V1(γ2) × U2(γ2),
we know that

sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z)]

[
1

γ2
− 1

]
,

which implies that Ω∗ ≥ 0 holds and therefore, NPVv,u(X) ≥ NPVv,u(Y ).

A.5 Proof of Proposition 7
We need to prove that the following holds:

H−11 (p, t) = F−11 (p, t)−G−11 (p, t) ≥ 0, ⇐⇒ D1
1(z, t) = G1

1(z, t)− F 1
1 (z, t) ≥ 0

∀p ∈ [0, 1] and t ∈ [0, T ] ∀z ∈ [a, b] and ∀t ∈ [0, T ]

Given that F 1
1 (z, t) ≤ G1

1(z, t) is an optimal decision rule for all (v, u) ∈
V1 × U1, if the above expression holds, so will F−11 (p, t) ≥ G−11 (p, t).
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Assume first that F 1
1 (z, t) ≤ G1

1(z, t) for all z ∈ [a, b] and all t ∈ [0, T ]. This
means that for an arbitrary x∗(t) we have F 1

1 (x∗, t) = p∗1(t) ≤ G1
1(x∗, t) = p∗2(t).

In this way, for given t x∗ will represent both the p∗th1 quantile of distribution
F and the p∗th2 quantile of distribution G.

Since, by assumption, F and G are monotonic increasing functions of z, the
quantile functions are monotonic increasing functions of p ∈ [0, 1]. Therefore,
knowing that p∗1(t) ≤ p∗2(t) and due to the monotonicity of the quantile function,
G−11 (p∗1, t) ≤ G−11 (p∗2, t). Remembering that x∗(t) = G−11 (p∗2, t) = F−11 (p∗1, t), it
follows that G−11 (p∗1, t) ≤ F−11 (p∗1, t).

We conclude that, for every t ∈ [0, T ] , the condition F 1
1 (z, t) ≤ G1

1(z, t), ∀z ∈
[a, b] implies F−11 (p, t) ≥ G−11 (p, t) ∀p.. The analogous logic can be applied to
show the reverse condition also holds, that is for a given t, F−11 (p, t) ≥ G−11 (p, t)
will imply F 1

1 (z, t) ≤ G1
1(z, t).
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