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Abstract

We propose System Projections with Instrumental Variables (SP-IV) to es-
timate dynamic structural relationships. SP-IV replaces lag sequences of in-
struments in traditional IV with lead sequences of endogenous variables. SP-IV
permits identification over many time horizons and allows the inclusion of con-
trols, which weakens exogeneity requirements and improves effective instrument
strength. SP-IV also enables the estimation of structural relationships between
impulse responses obtained from local projections or vector autoregressions.
We provide a bias-based test for instrument strength and present inference pro-
cedures under strong and weak identification. SP-IV outperforms competing
estimators of the Phillips Curve parameters in simulations. We estimate the
Phillips Curve implied by the main business cycle shock of Angeletos et al.
(2020), and find evidence for forward-looking behavior. The data is consistent
with weak but also relatively strong cyclical connections between inflation and

unemployment.
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This paper studies the estimation of 5 in structural time series equa-

tions of the form

(1) v = BYi+u,

where y; is the scalar observation of an outcome variable in period t, Y; is
a K x 1 vector of explanatory variables, u; is an error term, and the K x 1
vector [ contains the structural parameters of interest. The explanatory
variables Y; may contain contemporaneous variables, but also lagged vari-
ables or economic agents’ expectations of future variables that may not be
measured well by the econometrician. We are interested in applications in
which E[Y;u,] # 0, such that standard regression techniques yield biased
and inconsistent estimates of 5 due to endogeneity.

Equation (1) nests a very wide range of dynamic relationships of in-
terest in macroeconomics. To illustrate the range of difficulties that can
arise in the estimation of [, consider the specific example of the Hybrid

New Keynesian Phillips Curve (henceforth, the ‘Phillips Curve’),
(2) T = VoTe—1 + VyTyyy + Agaps + uq

where 7, denotes inflation, 77, is the price setters’ period ¢ expectation
of inflation in ¢ + 1, and gap; is an output gap measure (the deviation
of actual economic activity from the natural level in the absence of price
rigidities). Equation (2) maps into the more general problem in (1) with
Yy = T, Yy = (M1, 7, 9ap]” and B = [y, 75, A The estimation of
B = [V, 7f, Al is complicated by a number of well-known problems that
result in E[Y;u] # 0, see for instance Mavroeidis et al. (2014) or McLeay
and Tenreyro (2019) for discussions. A general source of endogeneity is
measurement error. In practice, both the output gap and price setters’
inflation expectations are not observed directly and must be replaced with
proxy measures. A second major source of endogeneity problems is simul-
taneity, since the error term typically includes structural disturbances that
also influence the endogenous variables in Y;. Many theoretical dynamic
relationships include expectations and other endogenous explanatory vari-

ables, and therefore face similar problems.



A common approach in the literature to address such challenges is to
rely on dynamics for identification and use lagged economic variables as
instrumental variables. In the New Keynesian Phillips curve example, it is
typical to use gap;_1, gap;_o, ... and m_o, m_3, ..., or lags of other readily

available macroeconomic variables.!

Instrument exogeneity in this case
requires that the error term u; is independent of any of the determinants
of the instrumenting lagged macroeconomic variables. In other words, the
shocks (and lags thereof) comprising the innovation to 7, must be unre-
lated to the shocks generating lags of gap; and ;. There is no general theo-
retical justification for this assumption; lags of output gaps or inflation, for
example, are not valid instruments for (2) in fully specified medium-scale
macroeconomic models such as the Smets and Wouters (2007) model. For
this reason, Barnichon and Mesters (2020) recently proposed current and
lagged values of direct measures of structural shocks from the literature
as instrumental variables.? Instrument exogeneity in this case requires
measures of economic shocks that are independent of both the contem-
poraneous and lagged macroeconomic influences on the error term u;. In
practice, however, the literature is rarely comfortable with imposing the
strong assumption of (unconditional) lag exogeneity on available empirical
measures of structural shocks, and typically avoids doing so by including a
rich set of lagged macroeconomic controls. Unfortunately, including such
controls in an IV regression with lagged shocks as instruments shrinks the
explanatory power of the instrument set towards that of only the contem-
poraneous value of the instrumenting shocks, since lagged macro variables
typically span the lagged shocks that generate them. The result of adding
lagged control variables in standard IV specifications is therefore weaker
or even under-identification.

In this paper, we propose a novel approach to estimating § that al-
lows the inclusion of lagged macroeconomic variables as controls without
weakening identification. Specifically, we replace the single equation (1)

with an H-dimensional system in forecast errors, conditional on controls,

LGali and Gertler (1999), for example, use four lags of inflation, the labor income share, the
output gap, the long-short interest rate spread, wage inflation, and commodity price inflation.

2Gali and Gambetti (2020) follow an approach that is closely related to Barnichon and Mesters
(2020) to estimate the wage Phillips curve.



for leads of y; and Y;, where H is the number of leads. The forecast errors
can be derived from a variety of forecasting models, and we consider vec-
tor autoregressive models (VARs) and local projections (LPs) because of
their widespread use. We use only the contemporaneous value of the N,
instrumental variables to yield H N, moment conditions, which we solve
in closed form for f3, yielding a restricted two-stage least squares (2SLS)
estimator in the system of reduced form forecast errors. We refer to this
estimator as System Projections with Instrumental Variables, or SP-IV.
The SP-IV approach has several conceptual advantages. First, like
Barnichon and Mesters (2020), it can leverage existing identified shocks,
but with suitable controls it requires only the weaker assumption of con-
temporaneous exogeneity, since it can be applied to forecast errors. Our
approach is therefore better aligned with the identification assumptions
that the literature is willing to make about empirical measures of eco-
nomic shocks. Second, the use of forecast errors instead of raw variables
can improve efficiency in estimating 5. Third, similar efficiency gains in
the first stage increase the effective strength of a given instrument, poten-
tially reducing weak instruments bias. These advantages are due to our
use of lead sequences of the endogenous variables y, and Y}, instead of lag
sequences of the instrumental variables, as in existing approaches.
Barnichon and Mesters (2020) observe that single-equation 2SLS with
lag sequences of shocks as instruments is equivalent to a regression of the
impulse response function (IRF) of 4, on the IRFs of Y3, where the IRFs are
estimated by regressions of the endogenous variables on distributed lags
(DL) of the shocks. We show that since SP-IV is based on similar moments
(applied to forecast errors), it is also equivalent to a regression of the IRF
of y; on the IRFs of Y;. However, an additional advantage of SP-IV is that
these IRFs can be obtained using any valid impulse response estimator and
identification scheme (e.g. internal rather than external instruments). SP-
IV therefore allows the estimation of structural relationships across IRFs
as they are estimated in practice, which is rarely with distributed lag
specifications, but with vector autoregressions or local projections. The
SP-IV inference methods we describe enable formal testing of hypotheses

about structural relationships across IRFs in macroeconomic applications,



while in empirical practice claims about such relationships have typically
relied on more informal arguments (e.g., Angeletos et al. (2020)).

The inference methods presented in this paper make SP-IV of practi-
cal use for a wide range of settings. We describe inference under strong
identification, and develop a first-stage test for instrument strength by ex-
tending the popular bias-based test in Stock and Yogo (2005) to the SP-IV
setting. Such a pre-test provides a convenient way to assess whether stan-
dard inference will be reliable, or to compare the identifying information
contained in different specifications - perhaps across alternative sets of
instruments. As instrumental variables are often weak in practice, we
describe two weak-instrument-robust inference procedures, Anderson and
Rubin’s (1949) AR statistic and Kleibergen’s (2005) KLM statistic.

To demonstrate the advantages of SP-IV, we conduct simulations es-
timating the parameters of the Phillips curve in (2) using data generated
from the Smets and Wouters (2007) model and weak instruments. OLS
in this setting is strongly biased. When the instrument is correlated with
lagged inflation according to the estimated relationship in actual U.S.
data, 2SLS is also prohibitively biased, while SP-IV including controls
exhibits only mild biases due to instrument strength. When the true
shocks are available as an instrument, SP-IV estimators with controls still
exhibits smaller biases than single-equation 2SLS estimators. A VAR im-
plementation of SP-IV has the lowest bias of all estimators we consider,
while LP implementations have lower variances. Standard inference is
badly over-sized for all IV estimators due to weak instruments. Both
proposed robust inference procedures remain well-sized in realistic sample
sizes, exhibiting small size distortions only when H is large relative to
T'. Single-equation 2SLS with lagged instruments shows more substantial
over-rejections when H or N, is large.

As an empirical application, we estimate the Phillips curve in US data
using the Main Business Cycle (MBC) shock of Angeletos et al. (2020) as
an instrument. Based on IRFs to an MBC shock identified in a monthly
VAR, SP-1V finds greater weight on future inflation than lagged inflation.
Robust confidence sets for the slope are consistent with both very weak

and fairly strong cyclical responses of inflation. The IRFs to the MBC



shock do not necessarily support the conclusion in Angeletos et al. (2020)
that inflation dynamics are disconnected from the business cycle.
Henceforth, Iy denotes the N-dimensional identity matrix, ® the Kro-
necker product, Tr(+) the trace operator, vec(-) the vectorization operator,
mineval{-}/maxeval{-} the minimum/maximum eigenvalue, E[X | Y] the
conditional expectation of X given Y, LN convergence in probability, 2

convergence in distribution, and projection matrix Py = U'(UU")~!U.

1 System Projections with Instrumental Variables

We begin by reformulating the dynamic relationship of interest in (1)
in terms of forecast errors. Taking h-horizon leads and subtracting the
expectation conditional on an N,-dimensional vector of predictors X;_;

(including a constant) yields

(3) yt{_kh = ﬁ/Ytih—i_uﬁrh ;

where 47, = Yo — Elyen | Xoal, Yo = Yion — E[Yign | Xi24], and
utﬁrh = wpp — Eluggn | Xi1]. Let z; denote an N, x 1 vector of instru-
mental variables, and define 2+ = 2, — E[z; | X;_1]. As explained in the
introduction, we focus on applications that rely on dynamics for identifi-
cation, exploiting orthogonality conditions between the error term u, and
lags 2, 241, ... of the instruments z;. Instead of the usual approach of

imposing orthogonality between z;_, and wu; for various h > 0, we impose
(4) Eluj\ 2] =0; h=0,...,H—1.

Without conditioning on X;_;, the orthogonality conditions in (4) are
equivalent to imposing orthogonality between z;_; and u; under station-
arity. The key departure approaches including lags of z; as instruments is
that the moments in (4) are not in terms of the unconditional data, but
in terms of forecast errors conditional on predictors X; ;. As we show
below, the use of forecast errors leads to at least three key advantages.
Crucially, the same advantages do not arise from simply including X;_; in

equation (1), and proceeding with 2SLS with z, ..., 2;_ g1 as instruments



and X;_; as included regressors. To arrive at an estimator that will re-
alize the benefits of conditioning on X;_;, we next formulate the GMM

problem associated with the orthogonality conditions in (4).

1.1 The Generalized Method of Moments Problem

The conditions in (4) provide a set of H N, moment conditions that can be
used to identify the K elements of 3. Let y, and ug, denote the H x 1
vectors in which the (h + 1)-th element is y;}, and uj,, respectively. Let
Vi, denote the HK x 1 vector stacking the H x 1 vectors Yllf,f , where Y}*

is the k-th variable in Y;. Using this notation, the moment conditions are
(5) Bluz,(8) ®21=0,

where ug; (b) = yi7,—(V®1g) Y, the truthis b = 8, and E [ug; ,(8)uz,,(8)'] =
Y-

H

The moment conditions in (5) can be augmented to account for the es-
timation of the forecast errors. We consider the class of forecasting models
that are linear in X, 1, but possibly nonlinear in a set of parameters col-
lected in the vector d. This class includes local projections (LP) and
vector autoregressions (VARs), both of which are widely used in applied

macroeconomics.® The moment conditions for this step are

(6) B |[y#,(0). Yiri(€) 5(0)] ® Xia| = 0,

where yg,(d), Y,(d), 2z(d) are functions of parameters d that depend
on the forecasting model chosen, and the true value of d is .

The moments in (5) and (6) can be stacked in a moment function
Fr e, Yire, 20, Xo-150,d) with E[f(ym e, Yire, 2, Xi-158,¢)] = 0. Let W, =

(Wit Yihs 2y X|_1)'. The associated GMM objective function is

T

M Frbd)= (Zf(Wt;b,d)> (b, d) <Zf<wt;b,d>) ,

3For recent assessments of both methods, see Stock and Watson (2018), Montiel Olea and
Plagborg-Mgller (2021), Plagborg-Mgller and Wolf (2021) or Li et al. (2021, April).




where ®(b, d) is a positive definite weighting matrix. The forecasting step
and the structural estimation step are separable for estimation purposes
since b does not enter (6) and the Jacobian of (5) with respect to d is
zero in expectation at (. This means we can henceforth take the forecasts
as given and focus on the structural estimation step. We make an addi-
tional assumption to ensure that estimation error in the forecast errors is

asymptotically negligible for inference on the structural parameters:

Assumption 1. There exists a unique solution, , to the first-stage mo-
ments (6), and the associated GMM estimator satisfies ¢ ¢ and \/T(f—
() LN N(0,Vys) for some feasible weighting matriz.

1.2 The SP-IV Estimator

Let ®4(b, d) denote the block in the weighting matrix ®(b, d) corresponding
to the identifying moments in (5). Our baseline estimator uses ®,(b, d) =
Iy ® Q71 where Q = E|[z}z"], to standardize and orthogonalize z;.*

The resulting solution to (7) for § in population is

1

(8) B = (R(ElY,5 Q7 EYi,z") ® In)R)
x R vee(Elys 5 1Q7 ElYin, %) |

where R = I ® vec(I). Let the H x T matrix y7, the HK x T matrix
Y, and the N, x T matrix Z+ collect the sample of observations of yﬁt,

Vi, and z;" respectively. The natural sample analog of (8) is
(9) B = (R(YiPpuYa ® In)R) ™ R vec(yf Py Yit')

which minimizes (7) with respect to b, using the sample analog weighting
matrix, Iy ® (Z+ZY/T)~'. That minimization problem is equivalent to

minimizing Tr(uz Py1ug), or the sum of squared residuals in the system

(10) vi = (8'®In)Yi +ug

4 Alternatively, the efficient GMM estimator uses the weighting matrix ®,(,¢) = (Z;l ® Q1.
H

This estimator naturally leads to a ‘Generalized Least Squares’ version of SP-IV, see Appendix B.



after projection on the instruments Z+. Thus, B is also the restricted
9SLS estimator in the system of equations (10). We thus refer to 3 as the
System of equations after Projection on Instrumental Variables (SP-IV)
estimator. The only restrictions in (10) are those implied by (1).

The SP-IV estimator has a useful interpretation in terms of the impulse
response functions (IRFs) of y;, and Y; to innovations in the instruments

z;. Consider the following IRF estimates,

(11) Oy

_1 _1
_ YﬁZL, ZLZL/ 2 ; éy _ yﬁzL/ ZLZL, 2 |
T T T T

which are OLS coefficients regressing Y;7 and y3 on standardized inno-
vations to the instruments, (ZLZL’/T)% Z+. Using é)y, construct the
HN, x 1 vector @y stacking the N, vectors of H IRF coefficients of ;.
Construct the HN, x K matrix Oy similarly stacking Oy. Formally,

(12) Oy = (Z°2"/T)" 224 @ In/T)Y5
O, = ((22"/T)2 2" @ In/T)yi .
where y3; = vec (y) is TH x 1 and Y§ = [vec(Yiy), ..., vec(Yi )] is

TH x K. Then the SP-IV estimator 3 in (9) can be expressed as

N

(13) B = (Y5 (Pze ® Im)Y35) "' Y5 (Pe @ L)y .

which shows B is interpreted as the slope in OLS regression of é)y on é‘)y,
or coefficients in regression of IRFs of ¢, and Y; to z; conditional on X;_;.

The expression for B in (13) presents a two-step procedure for im-
plementing SP-IV. The first step consists of estimating impulse response
functions using instruments satisfying the exogeneity conditions. To the-
oretically justify the moment conditions in (4), it will often be natural to
choose instruments leading to impulse responses to interpretable economic
shocks, such as monetary policy shocks, government spending shocks, etc.
For the Phillips curve in (2), for example, the first step estimates IRFs

of inflation 7; and the slack measure gap; to a monetary policy shock (or



other aggregate demand shocks orthogonal to the cost-push term, w;). In
the second step, the SP-IV estimator is obtained regressing the IRF of the
outcome variable y; on the IRFs of the endogenous variables Y;. For the
Phillips curve, the IRF of 7, is regressed on the IRF of gap, as well as the
IRFs of lagged and expected future inflation, m,_; and 77, ;. The latter are
obtained by lagging and leading the IRF of 7; by one horizon. Appendix
A gives practical details on implementation using LPs or VARs.

A large literature studies the identification of economic shocks pre-
senting potential instruments for SP-IV, see Ramey (2016) or Kilian and
Liitkepohl (2017) for surveys. Essentially any valid strategy for identifying
structural IRFs based on LPs or VARs can be used in conjunction with SP-
IV provided the underlying shocks satisfy the exogeneity conditions (5).
SP-IV can estimates the coefficients in structural economic relationships
that best fit the IRFs of the variables in those relationships in response to
shocks chosen by the econometrician. SP-IV actually only requires IRFs
to an identified rotation of economic shocks that satisfy the exogeneity
conditions. In other words, the shocks and their associated IRFs need not
necessarily be separately identified. In practice it is also possible to base
SP-IV on a subset of horizons rather than all h =0, ..., H—1, and SP-IV

can be based on any subset of horizons.

1.3 The Difference Between SP-IV and Regular IV

The standard approach for estimating £ in (1) with z, ...,z g1 as in-

struments exploits the HN, orthogonality conditions
(14) Eluizi—p) =0 ; h=0,...,H—1.

In a 25LS implementation, the first stage consists of regressing the endoge-
nous variables Y; on the lag sequence z;, ..., 2;_pg11, and the second stage
consists of regressing y; on the predicted values. When z; consists of mea-
sures of economic shocks, the first stage estimates the H IRF coefficients
of Y; to the shocks z; using a DL model. Barnichon and Mesters (2020)
observe that, after similarly estimating the IRF of y;, the 2SLS estimates
equal the estimates in OLS regression of the IRF of y; on the IRFs of Y;.

10



The 2SLS estimator with lagged shocks as instruments therefore can —
like SP-IV — be interpretdee| as a regression in impulse response space. In
2SLS the regression uses IRFs estimated by DL models, i.e. regressions
of y; and Y; on z;, ..., z_ g1 without additional controls. In contrast, in
SP-IV the IRFs can be obtained from LP or VAR specifications in which
the h-step ahead forecasts of y; and Y, given z; can be conditioned on a
set of additional predictors, X;_;.

A preliminary advantage of SP-IV is that it estimates structural re-
lationships across IRFs as they are estimated in practice — using LPs or
VARs, not DL models. The 2SLS approach also requires external measures
of economic shocks. Such external measures can be used for identification
in LPs and VARs (Jorda 2005; Stock and Watson 2012; Mertens and Ravn
2013), but IRFs for SP-IV can also exploit internal instruments (recursiv-
ity assumptions) or other short or long-run restrictions on forecast error
variances. Thus, SP-IV greatly expands the econometrician’s options.

SP-IV’s ability to accommodate controls yields three theoretical advan-
tages. To exposit these advantages, we adopt the Slutsky-Frisch paragdigm
to express y; and Y; in terms of current and past realization of ‘shocks’,
€, where Ele] = 0, Elee;] = Igim(e) and Elee,] = 0 for s # t. Assuming
linearity of y; and Y; in ¢, equation (1) implies that the error term can be

expressed as a linear combination of current and past shock realizations:
(15) Uy = /.LIOEt + ,ulletfl + ,u’zet,g + ...

We additionally assume stationarity throughout. Let w; be the error term
in the first stage of 2SLS using 2, 2z;_1, - - ., 2t 41, With variance o2. De-
note the H x 1 vector of errors in the SP-1V first stage regression of Yy,
on z; as Vg ¢, with covariance X

on z;~ (conditional on controls X; 1) as vy, ¥, .

vyr> and, in the first stage regression of Y,

1. Weaker Exogeneity Requirements With suitably chosen predic-
tors, X;_1 SP-IV has weaker exogeneity requirements than 2SLS:

11



Theorem 1. The exogeneity condition for 2SLS with lags of z; requires
(16) wElenaz]=0; 1=0,...,00 ; h=0,...,H—1.

If Xy y spans all €,y : py # 0 in (15), SP-IV including X;_1 as controls

requires only
(17) pElenz] =0 5 h=0,....H -1

Proof. The 2SLS result follows from substituting (15) in (14) and station-
arity. The SP-IV result follows similarly, orthogonalizing (15) to X;_;. O

The 2SLS conditions require that z; is uncorrelated with those past,
contemporaneous, or future shocks entering u;. Following Stock and Wat-
son (2018), we denote conditions in (16) with [ > h as lag exogeneity,
with [ = h as contemporeneous exogeneity, and with [ < h as lead ezxo-
geneity. 2SLS requires all three types of exogeneity conditions to hold.®
In contrast, SP-IV requires only contemporaneous and lead exogeneity,
since conditioning on X;_; eliminates the influence of all past values of
€; on uzp. With a sufficiently rich set of predictors, the exogeneity con-
ditions on z; are thus substantially weaker. Even if X; ; does not fully
span the shocks in practice, it can still reduce the scope of the exogeneity
condition.

Consider the Phillips Curve example in (2). As instruments, Barnichon
and Mesters (2020) consider a DL of Romer and Romer’s (2004) measure
of monetary policy surprises, 2/, which are the residuals in a regres-
sion of the intended funds rate change at FOMC meetings on the current
rate and Greenbook forecasts of output growth and inflation. Assume no
measurement error and that the error term in (2) is just an exogenous
cost-push shock following u; = p,ui—1 + vy, with 0 < p, < 1, and v, is
white noise. Unless p, = 0, u; depends on vy, and all lags v; 1, v o,.. ..
If 2F2 is uncorrelated with vy, its leads up to H — 1, and all of its lags, it

satisfies the exogeneity requirements for 2SLS estimation of the Phillips

°The conditions in (16) are sufficient but not strictly necessary, as exogeneity requires only
Soiso i Eleirn—1z;] = 0. However, there are no theoretical reasons to expect this knife-edge case.

12



curve with 2% .. 2RFR 41 as instruments. Suppose, however, that the re-

R is misspecified by omitting one or more lags of

gression generating 2t
inflation. In that case, z*? generally still depends on lags of v;, and the lag
exogeneity requirement for 2SLS is not satisfied. However, by including
lags of inflation amongst predictors X;_i, the exogeneity requirements for
SP-IV remain satisfied as long as contemporaneous and lead exogeneity
hold. We return to this example later in the simulations of Section 3.
The assumption that a set of variables X;_; spans the history of shocks
¢; determining u; echos the invertibility assumption in VARs and the prac-
tice of including lagged controls in LPs to avoid lag exogeneity require-
ments (Stock and Watson 2018; Ramey 2016). Here though, the assump-
tion is weaker than that needed to estimate dynamic causal effects using
LPs of VARs: X;_; must span the shocks included in the error term w; in
the structural equation of interest, rather than the history of all shocks
driving y, and Y; jointly. ¢ In practice, a richer set of predictors offers
better insurance against violations of the lag exogeneity assumption.
Finally, it is not possible to circumvent the lag exogeneity requirement
of 2SLS by first projecting z; on X;_; and using the residuals, z;", ..., ;- 5,
as the instrumental variables in 2SLS. This is the implicit procedure, for
example, when a shock is first identified in a VAR or LPs with X;_; as
controls, and a DL of that shock is then used as the instruments in 2SLS.
u; must still be orthogonal to all lags of the identified shock, which will not
generally hold. Even if such a weaker form of lag exogeneity is plausible,

this procedure will realize any of the other advantages of SP-IV.”

2. Efficiency Gains The second advantage of SP-IV is that condition-
ing on predictors X;_; can lead to asymptotic efficiency gains relative to
2SLS with lagged instruments. Whether this is the case depends on the
data generating process (DGP) driving u; and the informativeness of the
predictors X; ;. Intuitively, SP-IV is more efficient than 2SLS if the vari-

RR

6In the Phillips curve, z/*# could still be contaminated by other demand shocks after conditioning
on X;_1, and the IRFs identified with 7% in VARs or LPs with X;_; as controls may therefore not
represent the causal effects of monetary policy shocks; nevertheless, as long as X;_; eliminates the

RR

influence of vy_1,vi_9, ..., however, z;*"* remains a valid instrument for SP-IV including on X;_;.
"Another drawback is such a procedure requires modifications to standard IV inference and pre-
test formulas and software, which assume that both the IV stages contain the same set of controls.

13



ances of forecast errors ui, at h = 0,..., H — 1 are small relative to the
variance of the error term wu;. The ranking of estimators depends on the

data generating process. We consider an AR(1) illustrative model,
(18)  u = putis—1 +v1,0 < py < 1, E[vg] = 0, B[v}] = 02, E[vivs] = 0,5 # t.

Theorem 2.

(i) If u; is i.i.d., SP-1V is asymptotically as efficient as 2SLS.

(i1) If us follows the AR(1) process in (18) and X;_1 is empty or otherwise
uninformative for u;, then u}{’t = ugy and B2SLS is asymptotically
more efficient than 3 whenever p, >0 and H > 1.

(iii) B is asymptotically more efficient than Paspg if 02 > maxeval(X, 1 ).
If uy follows the AR(1) process in (18) and X;—1 spans past shocks,

then the condition becomes ~Zo > maxeval (EUﬁ>’ where the h,i

1-p2

. . min{h,i i—2j
entry of X1 is given by ijl{ g o2 phti=2i,

When wu; is i.i.d., the errors in both estimators are identical in pop-
ulation since X;_; does not predict uy,...u;; g1 and forecast errors do
not accumulate over h = 0,..., H — 1; so too are their asymptotic vari-
ances. Otherwise, the ranking depends on the DGP. Under (18), if X,
has no predictive power but u, is persistent, then 2SL.S dominates SP-IV.
However, when X,;_; spans the influence of v;_1,v;_o, ... on errors, SP-IV
is asymptotically more efficient as long as p, is sufficiently large and the
forecast horizon H is not too large. Figure C.1 in the Online Appendix
shows the region where SP-IV is more efficient. The greater the persis-
tence, the more predictive power X;_; contains, but the longer the horizon,
the harder it becomes to predict u;, so improvements due to SP-IV are
more likely when w; is highly persistent — often true in macroeconomic

applications — and the length of the forecast horizon, H, is moderate.

3. Stronger Identification The ability to condition on X;_; in SP-IV
can also improve the effective strength of the instruments. Weak instru-
ments bias 2SLS estimators and make conventional inference methods
invalid. In many time series applications, instruments are weak, while the

endogenous variables can be highly persistent, and thus predictable.

14



Theorem 3. When K =1, for a given set of instruments and horizons,

(i) If Te(X,,)/H < 02, the concentration parameter for SP-IV is larger
than that for 2SLS;

(11) Unless Xy_1 is completely irrelevant, the concentration parameter for
SP-1V conditional on X;_1 is larger than for SP-1V without controls.

We derive the concentration matrix for SP-IV and prove the Theorem
3 in the Online Appendix, where we also show that, as in Stock and Yogo
(2005) and Lewis and Mertens (2022), the worst case weak instruments
bias is decreasing in its minimum eigenvalue. Thus, Theorem 3 shows
that when the controls have explanatory power for the endogenous regres-
sors their inclusion increases the effective strength of the instruments in
SP-1V, relative to SP-IV without controls and 2SLS, and therefore de-
creases bias. When K > 1, the concentration parameter depends on the
entire eigenstructure of the first stage parameters (and that of Zvﬁ), SO
a fully general result is not possible, although intuitively it will hold for
many DGPs. Whether the effective instrument strength increases relative
to 2SLS is application specific, and depends on the persistence and pre-
dictability of the errors as well as H, just as efficiency did in the previous
section. As predictability of the endogenous variables diminishes with the
forecast horizon H, the advantage of conditioning on lagged variables can
be outweighed by the recency of z; for Y; in 2SLS.

In contrast, adding X; ; as additional regressors in both stages of 2SLS
with z;, ..., 2,_g+1 as instruments weakens identification. As an extreme
case, suppose conditioning on X;_ ; eliminates the influence of all past
realizations of the structural shocks ¢ on Y; and z;. Including X; ; as
additional regressors implies only the contemporaneous instruments z; re-
main relevant, since X;_; spans all lags of z;; by construction, all z;_,, for
h > 0 are uncorrelated with Y1, and completely irrelevant instruments.
Identification can no longer exploit information from the dynamic rela-
tionship between z; and Y;. Moreover, when N, < K, dropping these lags
results in under-identification. In less extreme cases, the inclusion of X;_;

will still shrink the explanatory power of 2, ..., 2;_ g1 towards that of z.
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1.4 Consistency of the SP-IV Estimator

We conclude the discussion of the SP-IV estimator by presenting condi-
tions for its consistency for § in (1). We make the following high-level

assumptions on covariances.

Assumption 2. The following probability limits and rank condition hold:

2 Z 7 )T 5 B2tz = Q, where Q is positive definite,
2 Vi ZH )T 5 EYg,%"] = ©yQ?, a real HK x N, matriz,
2.¢) Z g /T 5 Elztuy,] =0,

2.d) R'(©y0O}y ® Iy)R is a fivzed matriz with full rank.

The convergence in probability in 2.a-2.c holds under standard prim-
itive conditions and laws of large numbers. Condition 2.a ensures linear
independence of the instruments and consistency of the weighting matrix.
Condition 2.b states that the covariance between Y7 and Zt is consis-
tently estimated. The population covariance @yQ% is a rotation of Oy,
a matrix containing the impulse response coefficients of Y,* to z;-, after
standardization. Condition 2.c is the exogeneity condition. Finally, the
rank condition 2.d is sufficient for the existence of a unique solution to the
moment conditions (5), and ensures that the denominator of the closed
form solution (8) is full rank; with the definiton of Oy, it implies that the
instruments are relevant. 2.b and 2.d jointly imply that the instruments
are strong, an assumption we relax in Section 2.

The conditions in Assumption 2 resemble the usual (strong) IV as-
sumptions, see for instance Stock and Yogo (2005). However, condition 2.d
does not require there to be at least as many instruments as endogenous re-
gressors, N, > K. Since rank(R'(©y 0}, ®1y)R) = min{ K, H rank(©y 0} )},
the order condition is HN, > K, since there are H N, moment conditions
in (5). Adding leads can thus make up for N, < K just as adding lags does
so in single-equation 2SLS with lag sequences as instruments. Proposition

1 states the consistency result for the SP-IV estimator in (9).

Proposition 1. Under Assumptions 1 and 2, B 5 3.
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Proof. Both terms in (9) converge by the assumptions, and the result

follows from the continuous mapping theorem. n

2 Inference for SP-1V

2.1 Inference under Strong Instruments

When the instruments are strong, under the conditions in Assumption 2,
inference for SP-IV can proceed analogously to standard 2SLS. With a

further high-level assumption, we can derive a limiting distribution of B :
Assumption 3. T=1/2 vec(Z u/) % N (0, (3, ®Q)), where B,1. is full rank.

Proposition 2. Under Assumptions 1-3,
(19) VT(5 = 5) 5 N(0,V5) ,

where Vz = (R'(©y 0}y @ Iy)R) ™" R’ (@y@’Y ® 2uﬁ> R(R(0y0} @ Iy)R)™".

Proof. The result is immediate after rearranging (9) from Proposition 1,

the stated assumptions, and continuous mapping theorem. ]

V3 can be estimated by replacing Euﬁ with a consistent estimate, and
Oy©!, with Y P,.Y;# . Inference can be based on standard Wald tests.®
A natural consistent estimator is f)uﬁ = a5ty /(T — N, — K). A choice
of X;_; including adequate lags obviates the need for an autocorrela-
tion robust estimate by eliminating autocorrelation in both ui and 2.

Any mechanical correlation between u} and ué_h) say, drops out of

+h?
var(uj, @ 2;), since when z;- is serially uncorrelated, so too is uz, ® z;".

This is not the case for 2SLS, which generally requires HAR methods.

2.2 A Test for Weak Instruments

Available instruments may be weak in many applications. Then, Wald in-

ference will be invalid, leading to empirical rejection rates that generally

8Given the model (6) and Assumption 1, estimation error in Yz etc. does not impact the
asymptotic variance of B . This is a Frisch-Waugh result; the expected Jacobian of the moments is
block-diagonal, since derivatives of second-stage moments with respect to first-stage parameters are
products of controls X; 1 and forecast errors yﬁib Yﬁ;’t, i+, which are orthogonal by construction.
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exceed nominal levels. In the Online Appendix, we derive a bias-based
test of instrument strength for SP-IV that is analogous to the popular
Stock and Yogo (2005) bias-based test of weak instruments for standard
25LS, extending the test in Lewis and Mertens (2022). We consider a
Nagar approximation of the bias under weak instrument asymptotics, as
in Montiel-Olea and Pflueger (2013). Like Stock and Yogo (2005) and
Lewis and Mertens (2022), we use a weighted ¢y-norm of the worst-case
bias relative to a benchmark to accommodate cases with more than one
endogenous regressor (K >1). Weak instruments are defined as those for
which the bias in B is 7 percent of the benchmark or larger under weak
instrument asymptotics. The test statistic is similar to that of Cragg and
Donald (1993), and the test rejects the null hypothesis of weak instru-
ments when the statistic exceeds the level-a critical value of a bounding
distribution. The Online Appendix provides a step-by-step description of

the testing procedure, implemented in the accompanying Matlab Code.

2.3 Weak-Instrument Robust Inference for SP-IV

We describe two test statistics for SP-IV, robust to weak instruments.

AR Statistic The ‘S-statistic’ of Stock and Wright (2000) extends the
AR statistic to the GMM setting. For SP-IV, the statistic and its limiting
distribution under the null hypothesis are defined as

—1
20)  AR®) = (T~ dn) T (s 0) P 0) (O 0)) )
d
AR(B) — XIZLINZ )
where My = Ir — Py. is the residualizing matrix , dag = N, + N,
is a degrees of freedom correction. Rather than the moment covariance
matrix, we use the normalizing matrix typically used with the AR statistic,

asymptotically equivalent under the null hypothesis.

KLM Statistic The AR statistic can have poor power when there are
over-identifying restrictions. This is the case when HN, > K: when the

number of IRF coefficients exceeds the number of endogenous regressors.
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As this is likely in practice, we consider the KLM statistic proposed in
Kleibergen (2002), which can improve power (e.g., Andrews et al. (2019)).
Since SP-IV is a GMM estimator, following (Kleibergen 2005),

(21) K(b) = (T — dg) vec (2 (0)Y})' R
(R’(YHYH ® = uh (b)ugf ()E)R)
x R'vec (2~ ’)/
K(8) % X%,

where Yy = Y Pyu — g (b) (g (b)id (b)) ™ uiz(b) Py is the projection

of YX on Z+, = = ug(b)Myiug (b), v = v Mgy, ug(b) = ug(b)Mye,
and dg = N, + N, is a degrees of freedom correction. Intuitively, instead
of the covariance of uz and (Z+Z+)~'/2Z*  the numerator of the KLM
statistic features the covariance of uj; and the projection of a transforma-
tion of Y+ on (Z+Z+)~Y2Z%. Our formulation differs from Kleibergen
(2005) only by the replacement of uz and vy with 3 and v%. This choice
is consistent with the IV statistic in Kleibergen (2002), and asymptotically
equivalent to the form in Kleibergen (2005) under the null.

3 Performance of SP-IV in Model Simulations

We now evaluate the performance of SP-IV in simulations to demonstrate
its practical advantages relative to 2SLS.

The objective in all simulations is to estimate the parameters of the
Phillips Curve in (2) using data generated from the workhorse macroe-
conomic model of Smets and Wouters (2007) (hence SW).? The Phillips
Curve in (2) is one of the equations in the SW model within a system of
fourteen simultaneous equations for the dynamics of key macroeconomic
aggregates. An important feature of the estimated Smets and Wouters
(2007) model is that the shocks underlying the error term w; in the Phillips

curve explain a very large fraction of the variance of inflation. This means

9The data is generated from the SW model using the Dynare replication code kindly provided
by Johannes Pfeifer at https://sites.google.com /site/pfeiferecon/dynare.
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that, in realistic sample sizes, the weak instrument problem is generally
severe. Moreover, the error term u; is persistent, as are most of the macro
aggregates generated by the model. Both features make estimation of the
Phillips curve parameters challenging. Conventional IV methods tend to
perform poorly, and our simulation setup is therefore an ideal laboratory
to evaluate the potential improvements offered by SP-IV.

As mentioned in the introduction, using a sequence of lagged endoge-
nous variables as instruments — as in Gali and Gertler (1999) and subse-
quent literature — is not valid for identification in this setting. In the SW
model, the error term in (2) is the ARMA(1,1) process

(22) U = pylip—1 + € — pper_y , py = 0.99, p, = 0.83

where € is an i.i.d. normally distributed price markup shock.’® Inverting
the autoregressive term in (22) yields w; = € + pu(1 — pp)et_; + pu(pu —
tp)€r o+ P2 (pu—pip)€b s+ .., which shows that the error term u; generally
depends on the entire history of price markup shocks €/ el | € , ...
The period t values of the endogenous model variables are functions of
all current and lagged values of a 7 x 1 shock vector ¢, including €b.
Lagged values of these endogenous variables therefore either violate the lag
exogeneity requirement, but lose relevance if the data is first conditioned
on predetermined variables to avoid the lag exogeneity requirement.
Because lagged endogenous variables are not valid instruments, we
consider a measure of the monetary policy shocks as z;, as in Barnichon
and Mesters (2020). We present two sets of simulations. In the first, we
use a measure of monetary policy shocks that violates the lag exogeneity
requirement in an arguably realistic manner; the SP-IV estimator — unlike
the 2SLS estimator — remains consistent. In the second, we use the true
model monetary policy shock as the instrument to level the playing field
across estimators, and compare the small sample performance of 2SLS and
SP-IV when both are consistent. We conduct further simulations with
multiple model shocks as instruments and discuss the performance of the
generalized (or efficient GMM) version of SP-IV, with these additional

10We assume that the econometrician cannot exploit the ARMA(1,1) error structure in (22).
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results largely relegated to the Online Appendix.

In our simulations, we do not assume that the econometrician possesses
a set of controls spanning the full history of model shocks. Instead, we use
a realistic set of controls, four lags of seven endogenous model variables:
the short term interest rate, inflation, marginal cost, output, consumption,
investment and the real wage. Inflation expectations 77 ; are assumed
to be unobserved, and are replaced in (2) by realized future inflation
i1, as is typical in the literature when expectations appear in structural
equations. Under rational expectations — as assumed in the SW model —
the resulting measurement error depends only on future realizations of the
model shocks, which does not create any additional endogeneity problems

given that all instruments we use satisfy lead exogeneity.

3.1 Simulations with Violations of Lag Exogeneity

Our first set of simulations demonstrates how SP-IV provides can help en-
sure exogeneity by conditioning on lagged macroeconomic variables. We
are motivated by identification of Phillips curve parameters, for example,
with monetary policy shock measures like those constructed by Romer
and Romer (2004), or based on high frequency changes in Fed Funds fu-
tures around FOMC meetings as in Kuttner (2001). A practical concern
with such measures is that, despite careful construction, they may still
contain a meaningful predictable component (Ramey 2016; Coibion 2012;
Barakchian and Crowe 2013; Miranda-Agrippino and Ricco 2021; Bauer
and Swanson 2022). Consequently, researchers identifying IRFs to mon-
etary policy shocks using these measures typically include various lagged
macro variables as controls in their models. However, when the same
measures are used as instruments in structural equations via 2SLS — as in
Barnichon and Mesters (2020) for example — estimation proceeds without
controls.

To illustrate the implications of excluding controls, we simulate “Romer
and Romer (2004) instruments” that consist of the true monetary policy
shocks in the SW model, augmented with a linear function of inflation over
the past four quarters. We estimate the coefficients on lagged inflation by

regressing the actual Romer and Romer (2004) measures on four lags of the
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TABLE 1: RESULTS WITH LAG ENDOGENOUS INSTRUMENT, 7' = 5000

Mean Estimates Empirical Size of Nominal 5% Tests
T A H=8 H=20
True Value  0.15 0.85  0.05 WALD 25LS 48.60  94.30
OLS 0.48 048 0.00 WALD 2SLS-C
AR 2SLS 73.10 71.40
H=28 AR 2SLS-C
2SLS 0.26 0.58 -0.09
991.8.C WALD SP-IVLP 5910  95.90
SP-IV LP 026 0.60 -0.08 WALD SP-IV LP-C 7.80 29.70
SP_IV LP-C 0.16 084 0.05 WALD SP-IV VAR 5.50 13.10
SP-IV VAR 0.12 0.83 0.09
AR SP-IV LP 69.50 57.00
H — 20 AR SP-1V LP-C 490 500
2SS 024 0.76 -0.02 AR SP-IV VAR 4.90 4.80
2SLS-C
SP-IV LP 024 0.75 -0.02 KLM SP-IV LP 82.50 76.40
SP-IVLP-C 023 0.81 0.02 KLM SP-1V LP-C 5.30 4.80
SP-IV VAR 0.17 0.83 0.05 KLM SP-IV VAR 5.00 4.60

Notes: In the left panel, the top row reports the true Smets and Wouters (2007) model
parameters and remaining rows the means estimates across 5000 Monte Carlo samples.
All TV estimators are based on h = 0,..., H — 1 and use the lag endogenous monetary
policy instruments described in the text. SP-IV LP and LP-C denote implementations
based on local projections without and with X;_; (described in the text) as controls,
respectively. SP-IV VAR denotes implementation with a vector autoregression for X,
with four lags. In the right panel, tests for 2SLS use a HAR variance matrix following
Lazarus et al. (2021); inference procedures for SP-IV are described in Section 2.

log change in the GDP deflator, used to estimate the SW model, over the
sample 1969-2004. The resulting instruments have non-zero covariances
with lagged inflation that are calibrated to the U.S. data (with an R? of
0.08), and therefore violate the lag exogeneity requirement for 2SLSor the
SP-IV estimator without controls. However, the simulated instruments
are exogenous conditional are suitable controls. In our simulations we
consider both LP and VAR implementations of SP-IV using four lags of
the previously described conditioning set, X, ;.

The left panel in Table 1 reports mean estimates of 3 = [y, v, A’
across 5000 Monte Carlo samples. We consider specifications with hori-
zons of H = 8 and H = 20 quarters. To focus on the violation of the

exogeneity requirements, Table 1 considers a long sample, 7" = 5000, to
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minimize small-sample features. The true model parameters are shown
in the first row, with OLS estimates in thes second. The remaining rows
report results for 2SLS regression with H lags of the monetary policy
instrument, the SP-IV based on LP without controls (SP-IV LP), and
LP and VAR implementations of SP-IV (SP-IV LP-C and SP-IV VAR)
conditioning on X;_ i, for specifications with H = 8 and H = 20.

Unsurprisingly, OLS estimates are severely biased because of endogene-
ity, pointing incorrectly to a completely flat Phillips curve. Because of the
violation of lag exogeneity, the 2SLS estimates are also strongly biased.
The average estimate of A\ even has the wrong sign for both H = 8 and
H = 20. The next row shows the SP-IV estimator without controls X; 1;
it is also biased because, like 2SLS, it requires lag exogeneity to hold. The
bias is almost identical to that of 2SLS, since they exploit similar mo-
ments for identification. The next two rows show SP-IV estimators that
condition on X;_; using either LPs or a VAR. In contrast, both procedures
produce mean estimates with the correct sign and that are much closer to
the truth. The reason for the smaller bias is the conditioning step, which
helps eliminate the persistent influence of past cost-push shocks that leads
to a violation of the lag exogeneity requirement. While the SP-IV LP-C
and SP-IV VAR estimators have much smaller bias, some bias remains.
This residual bias arises either because X;_; does not fully span the his-
tory of cost-push shocks, because the IRFs are miss-specified, or because
weak instruments bias remains even as 7" = 5000.

The right panel of Table 1 reports empirical rejection rates for a nom-
inal 5% test that [ equals the true value for various SP-IV inference
procedures described in Section 2 and analogous heteroskedasticity and
autocorrelation robust (HAR) procedures for 2SLS. When exogeneity fails,
rejection rates will not match nominal levels. Every test associated with
estimators for which exogeneity is violated (OLS, 2SLS and SP-IV LP)
is badly oversized. Conversely, for the estimators that condition on X;_1,
(SP-IV LP-C and SP-IV VAR), the robust AR and KLM tests, defined in
(20) and (21) respectively, exhibit empirical rejection rates very close to
5%, again demonstrating that the conditioning step adequately protects

against the violation of lag exogeneity. The Wald test for these estima-
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tors remains somewhat oversized, especially when H = 20. These results
indicate that the residual bias is primarily related to the weakness of the
instruments, even in a relatively large sample, since robust inference pro-
cedures effectively control size.

The results in Table 1 illustrate the advantage of weakening the exo-
geneity condition by using SP-IV with lagged controls instead of 2SLS,
as we argued in Section 1.3. The same controls cannot be included in
2SLS specifications, because doing so renders the lagged instruments ir-
relevant. The results in Table 1 also show that weak-instrument problems
are a serious practical concern in our setting, even at 7" = 5000. Next,
we demonstrate the additional advantages of SP-IV in simulations with

smaller samples, and therefore more severe weak-instrument problems.

3.2 Small Sample Performance

Our next set of simulations investigates the relative performance of SP-IV
and 2SLS in more realistic sample sizes. Given the limited role of mone-
tary policy shocks for inflation dynamics in the Smets and Wouters (2007)
model, estimating the parameters of the Phillips curve using monetary
policy shocks as instruments is especially challenging in small samples.
The main goal of these simulations is to show how the conditioning step
in SP-IV can not only weaken exogeneity requirements, but also substan-
tially alleviate weak-instrument problems. To level the playing field across
estimators, we now assume that the econometrician has the true mone-
tary policy shocks as instruments. This assumption is unrealistic, but
permits a fair comparison between the various estimators as the exogene-
ity requirement is now satisfied for all 2SLS and SP-IV estimators. We
consider a sample of T" = 250 quarters, a best-case scenario in most macro
applications, roughly corresponding to the postwar period, but also report
results for T' = 500 and 7" = 5000 to verify the asymptotic properties of

the estimators and inference procedures.

Bias. We first discuss the bias of the estimators. Table 2 reports the
mean estimates of 5 = [V, vy, A’ for the various samples sizes. The first

two rows report the true model parameters and OLS results. As expected,
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TABLE 2: MEAN PARAMETER ESTIMATES

T = 250 T = 500 T = 5000
o o7 A o o7 A T A

True Value  0.15 0.85 0.05 0.15 0.85 0.05 0.15 085 0.05

OLS 0.47 047 0.00 0.48 0.48 0.00 0.48 048 0.00
H=38

25LS 0.27 0.51 0.01 0.23 0.60 0.01 0.17 0.83 0.04
2SLS-C 0.35 0.67 0.00 0.29 0.75 0.00 0.22 087 -0.06

SP-IV LP 0.26 0.50 0.01 0.23 0.60 0.01 0.17 083 0.04
SP-IVLP-C 0.29 0.64 0.04 024 0.74 0.05 0.16 0.84 0.05
SP-IV VAR 0.23 0.81 0.03 0.18 0.84 0.05 0.12 0.83 0.09

H=20
2SLS 0.39 0.53 0.01 0.36 0.61 0.00 0.23 080 0.01
2SLS-C 0.40 0.57 0.00 0.37 0.64 0.00 0.25 0.83 -0.04

SP-IV LP 0.38 0.53 0.01 0.35 0.61 0.00 0.23 080 0.01
SP-IV LP-C 040 0.55 0.02 0.37 0.63 0.01 0.23 081 0.02
SP-IV VAR 0.27 0.80 0.01 0.23 0.84 0.02 0.17 083 0.05

Notes: The top row gives the true parameter values in the Smets and Wouters (2007)
model. The others report the mean estimates across 5000 Monte Carlo samples. All TV
estimators are based on h = 0,..., H — 1 and use the lag endogenous monetary policy
instruments described in the text. 2SLS-C denotes the 2SLS estimator including X; 1
(described in the text) as controls. SP-IV LP and LP-C denote implementations based
on local projections without and with X;_1, respectively. SP-IV VAR denotes implemen-
tation with a vector autoregression for X; with four lags.

OLS is severely biased regardless of T" due to endogeneity. The next five
rows show the results for various 2SLS and SP-IV estimators with H = 8
quarters, and the bottom five rows show results with H = 20 quarters.
We focus first on the performance of the IV estimators for the spec-
ifications with H = 8. As the first row under H = 8 in Table 2 shows,
2SLS produces estimates that on average are closer to the true parameter
values than OLS. Because the instruments are exogenous in this exercise,
the 2SLS estimates also converge to the truth as the sample size grows.
However, despite the use of valid instruments, there remains considerable
bias in realistic sample, T" = 250. The Phillips Curve slope, A, is esti-
mated much flatter on average than in the model: 0.01 compared to 0.05.

The backward and forward looking inflation terms are also heavily mis-
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weighted, with ~; too low on average, and 7, too high. The next row,
labeled 2SLS-C, shows that adding the lagged controls X;_; to 2SLS does
not mitigate the small sample problems; rather, the bias is worse than
for 25LS without controls for two of the three parameters for 7" = 250.
Moreover, the bias for A grows worse as T grows larger, with the mean
estimate having the wrong sign for 7' = 5000. The next row shows that,
without controls, the bias of SP-IV is almost identical to that of 2SLS
for all T'. This is again unsurprising, as both exploit essentially the same
identifying moments.

The next two rows illustrate the possible bias reductions when using
the LP-C or VAR implementations of SP-IV, both of which condition on
X;_1. For the LP-C implementation, the estimates of \ average 0.04 in
samples with 7" = 250, which is much closer to the true value of 0.05 than
for 2SLS. The forward looking coefficient in the Phillips Curve, v¢, is also
considerably closer to the truth, and the bias in the backward looking co-
efficient, 7, is only marginally worse. The VAR implementation of SP-IV
delivers substantial bias improvements in all three coefficients relative to
2SLS, although the improvement for A is slightly smaller than for the LP-
C implementation. Taken together, the reductions in small sample bias by
adopting SP-IV LP-C or SP-IV VAR are substantial. These reductions
are also economically meaningful, as the average differences in parame-
ter estimates have considerable implications for inflation dynamics or the
magnitude of the inflation-output gap trade-off. As discussed in Section
1.3, the improvements relative to 2SLS arise because the conditioning step
amplifies the signal provided by the monetary policy shock instruments,
which is generally very weak in the SW DGP. Similar strengthening of
identification is not possible by conditioning on X, ; in 2SLS. As dis-
cussed, such conditioning on lagged variables tends to magnify rather
than mitigate the weak-instrument problems of 2SLS with lagged shocks
as instruments, as the 2SLS-C results show.

The improvements in small sample performance of SP-IV relative to
2SLS depend on the choice of H. Including additional horizons can add
useful identifying variation. However, the advantage of including controls

in SP-IV diminishes with the forecast horizon H since predibtability based
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TABLE 3: STANDARD DEVIATION OF PARAMETER ESTIMATES

T = 250 T = 500 T = 5000
o0 o7 A o o7 A Vo o7 A
H=28
2SLS 0.26 0.33 0.21 0.24 0.30 0.20 0.13 0.09 0.09

SP-IV LP 0.28 0.34 0.23 0.25 030 0.21 0.13 0.09 0.09
SP-IVLP-C 0.28 0.29 0.27 0.26 0.21 0.24 0.12 0.06 0.08
SP-IV VAR 031 0.37 0.28 0.30 0.25 0.26 0.14 0.06 0.09

H =20

2SLS 0.11 0.12 0.06 0.10 0.11 0.06 0.07 0.05 0.03
SP-IV LP 0.12 0.13 0.07 0.11 0.11 0.06 0.07 0.05 0.03
SP-IVLP-C 0.09 0.11 0.06 0.09 0.10 0.06 0.08 0.05 0.04
SP-IV VAR 0.21 0.25 0.10 0.20 0.19 0.09 0.11 0.06 0.05

Notes: The table shows standard deviations of the estimates across 5000 Monte Carlo
samples from the Smets and Wouters (2007) model. All IV estimators are based on
h =0,..., H—1 and use the lag endogenous monetary policy instruments described in the
text. SP-IV LP and LP-C denote implementations based on local projections without
and with X; 1 (described in the text) as controls, respectively. SP-IV VAR denotes
implementation with a vector autoregression for X; with four lags.

on time ¢ information falls. The final panel in Table 2 shows results for
H = 20 instead of H = 8. The relative performance of the estimators is
qualitatively unchanged. Quantitatively, however, the reductions in bias
under the LP-C or VAR implementations of SP-IV are smaller than they
are for H = 8. In general, the advantages of SP-IV over 2SLS diminish
as the number of lags included as instruments in 2SLS — which is also the

maximum forecast horizon in SP-IV — grows larger.

Variance. We next evaluate the variance of the estimators across Monte
Carlo samples. Table 3 reports standard deviations of the various estima-
tors, with results for H = 8 quarters in the top panel and H = 20 in the
bottom. We omit OLS and 2SLS-C for brevity, given their poor perfor-
mance in terms of bias.

We showed earlier in Section 1.3 that SP-IV can be asymptotically
more efficient than 2SLS after conditioning on controls when H is not too
large and the error term u, is a sufficiently persistent AR(1) process. While

the error term in our simulations is the ARMA(1,1) process in (22), similar
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efficiency gains can arise. Table 3 indeed shows demonstrates efficiency
gains for " = 5000. For H = 8, the standard deviations of the SP-IV LP-C
estimates are uniformly smaller than those of the 2SLS estimates. For the
VAR implementation, the standard deviation is smaller for estimates of
¢, and roughly similar to 2SLS for the other two parameters. Consistent
with the theory, the relative efficiency of SP-IV disappears for larger H,
as can be seen for H = 20 and 7" = 5000 in the bottom panel. Also
consistent with the theory is that the conditioning step is essential to
realize any efficiency gains: the SP-IV estimates that do no condition on
X;_1, in the second row of each panel, have similar or larger variance than
2SLS. In smaller samples, the LP-C implementation of SP-IV has similar
variance to 2SLS, with most standard deviations being somewhat smaller
than 2SLS, and some only slightly larger. The standard deviations of the
VAR implementation of the SP-IV, on the other hand, are systematically
somewhat larger than those of 2SLS with 7" = 250 or T" = 500.

At least for the DGP considered here, the LP-C implementation of
SP-1V consistently generates lower bias than 2SLS, while it has similar or
smaller variance. The VAR implementation yields further reductions in
bias in our setting, but generally also has higher variance. That the VAR
implementation has smaller bias but greater variance may be surprising
given conventional wisdom on the bias-variance trade-off between VARs
and LPs for the estimation of IRFs.!! However, the SP-IV estimators are
not IRFs, but relationships between IRFs. Biases and covariances across
IRFs can have offsetting or reinforcing effects on the bias and variance of
the SP-IV estimators. The relative bias-variance properties of the LP-C
and VAR implementations of SP-IV are likely application-specific.

Finally, the standard deviations for all estimators in Table 3 are de-
creasing in H, indicating that additional horizons generally reduce the
variability of all estimators. Given our bias results, this means there is
also a bias-variance trade-off when choosing the maximum horizon H for

SP-1V, since larger H provides smaller bias improvements relative to 2SLS,

" Typically, imposing VAR dynamics introduces bias in the IRFs but yields efficiency gains relative
to the LP approach, see Plagborg-Mgller and Wolf (2021), Li et al. (2021, April). In the Ounline
Appendix, we show that this trade-off is also present for the IRFs in our simulations.
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while also generating more efficient estimates.

Inference. Lastly, we evaluate various inference procedures. Given the
monetary policy shocks are weak instruments, one key question is how
severe size distortions are using standard Wald inference, which is only
valid under strong identification. The other main question is how well
the weak-instrument-robust procedures control size in practice. It is well
known that these robust procedures may still perform poorly when the
number of instruments is large (Bekker 1994). Barnichon and Mesters
(2020), for example, report severe size distortions for AR inference for
2SLS with long lag sequences of instrumenting shocks. Since SP-IV uses
HN, moments, it potentially faces the same theoretical “many moments”
problem as 2SLS with HN, instruments (Han and Phillips 2006; Newey
and Windmeijer 2009). As before, we consider Wald, AR and KLM tests
for SP-IV and HAR versions for 2SLS.

Table 4 reports empirical rejection rates for nominal 5% tests of the
true values of the full parameter vector, 5 = [y, V7, \'. We again consider
sample sizes of T = 250, 500 and 5000. We also reports results for N, = 3
with H = 20, see Section B.2 for details. Any size distortions will generally
decrease with T', since we keep the first-stage relationships fixed across
specifications, and identification strength therefore improves with 7.

The first row in Table 4 shows that Wald tests for 2SLS exhibit mean-
ingful size distortions for H = 8, with empirical rejection rates substan-
tially above the nominal level, 5%. The size distortions become very
significant for H = 20, with rejection rates as high as 65 percent for
T = 250. These distortions are unsurprising given the weakness of the
monetary policy shocks as instruments, and demonstrates the necessity
of robust inference procedures. For the specifications with H = 8, the
2SLS AR test in the second row is relatively well-sized in small samples.
However, for the specifications with H = 20 the 2SLS AR test becomes
noticeably oversized in small samples, dramatically so for N, = 3, which
is symptomatic of many-weak-instrument problems.

The next three rows in Table 4 consider Wald tests for the three SP-
IV estimators. Just like 2SLS, the Wald size distortions for H = 8 are
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TABLE 4: EMPIRICAL SIZE OF NOMINAL 5% TESTS

H=8,N, =1 H=20,N, =1 H=20,N, =3

T= 250 500 5000 250 500 5000 250 500 5000
WALD 2SLS 13.3 11.1 12.6 65.4 59.7 42.6 99.9 99.7 91.6
AR 2SLS 6.8 6.1 4.1 12.1 8.1 4.3 56.0 26.0 3.9
WALD:
SP-IV LP 15.2 12.7 129 68.5 64.1 43.8 99.9 99.9 91.7
SP-IVLP-C 13.0 11.6 7.8 72.0 63.5 29.7 100.0 99.7 76.6
SP-IV VAR 7.8 7.1 5.5 32.2 274 13.1 86.1 76.5 53.8
AR:
SP-IV LP 57 5.7 4.6 9.7 7.1 4.9 14.6 8.7 4.9
SP-IVLP-C 6.7 5.8 4.9 114 7.7 5.0 17.3 9.9 5.2
SP-IV VAR 46 4.6 4.9 53 5.8 4.8 6.3 5.9 4.7
KLM:
SP-IV LP 5.6 5.5 4.8 8.3 6.2 4.7 8.2 6.3 5.3
SP-1IV LP-C 6.9 6.0 5.3 11.9 7.1 4.8 11.3 7.9 5.1
SP-IV VAR 54 5.1 5.0 8.1 6.4 4.6 10.7 8.6 5.3

Notes: The table shows empirical rejection rates of nominal 5% tests of the true values of
B = [V, V¢» A" in 5000 Monte Carlo samples from the Smets and Wouters (2007) model.
All TV estimators are based on h = 0,..., H — 1 and use the lag endogenous monetary
policy instruments described in the text. SP-IV LP and LP-C denote implementations
based on local projections without and with X;_; (described in the text) as controls,
respectively. SP-IV VAR denotes implementation with a vector autoregression for X,
with four lags. Tests for 2SLS use a HAR variance matrix following Lazarus et al. (2021);
inference procedures for SP-IV are described in Section 2.

substantial, and they are very large for H = 20. The remaining rows
consider the AR and KLM tests for SP-IV. The SP-IV AR tests are well-
sized overall. However, for the LP and LP-C implementations, they do
over-reject in small samples when H = 20, but not to the extent seen for
2SLS. The KLM tests in the final three rows are also generally well-sized.
Just as the SP-IV AR tests, however, the KLM tests exhibit some over-
rejection in small samples when H = 20. The size distortions of the robust
SP-IV tests due to “many moments” problems are milder than those for
robust 2SLS tests, especially those for the VAR implementation.

The simulation results in Table 4 confirm the severity of the weak
instruments problems associated with standard Wald inference. Our pro-
posed robust inference procedures for SP-IV generally control size distor-

tions induced by weak instruments, at least as well as similar ones for
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2SLS. That said, just as with 2SLS, it is important to avoid specifications
with very large HN, when the instruments are weak.

Fortunately, there is no need to use all horizons for identification in
practice. Researchers can, for example, select impulse response horizons
at lower frequencies than that of the time series (e.g. quarterly horizons
in monthly data, annual horizons in quarterly data, etc.), especially since
adjacent horizons do not necessarily contain much independent identifying
information for typical shapes of IRFs. Further refinements are also pos-
sible to address any remaining many-weak-instrument problems, see for
example Mikusheva (2021, February) for suggestions. In the context of
2SLS with DLs of shocks as instruments, Barnichon and Mesters (2020)
propose quadratic approximations to the IRFs to avoid many-weak in-
strument problems, and similar approximations are possible with SP-IV.
Other test statistics could possibly be adapted to SP-IV and offer improve-
ments over the AR and KLM tests, for example, those based on Moreira
(2003) or Andrews (2016). Given the relatively good performance of our

test statistics in the simulations, we leave such extensions for future work.

4 Application to the Phillips Curve with U.S. Data

In this section, we use SP-IV to estimate the parameters of the Phillips
curve in eq2 using U.S. data and compare our results with those from
2SLS. We consider the following specification for quarterly inflation at a

monthly frequency,
(23) m ! = (1= y)m2s +ymie + AU+ w

where 7Ttl 7 is the annualized percent change in the Core CPI from a quar-

ter ago in month ¢, m,”

is the percent change in the Core CPI over the
preceding year in month ¢, and U; is the headline unemployment rate in
month ¢. The variable definitions in terms of quarterly and annual lagged
and future inflation rates and unemployment as the gap measure are iden-
tical to those in Barnichon and Mesters (2020), but we estimate (23) using
monthly data instead of quarterly data. As is common in the literature

(e.g., Mavroeidis et al. (2014)), (23) restricts the coefficient on lagged and
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future inflation to sum to one, v, + v = 1. This restriction implies there
is no long run trade-off between unemployment and inflation.

As an instrument, we use a monthly version of the Angeletos et al.
(2020) Main Business Cycle (MBC) Shock. Specifically, we estimate a
monthly six-variable VAR using the annualized one-month percent change
in the core CPI, the unemployment rate, the 12-month change in log in-
dustrial production, the 12-month percent change in the PPI for all com-
modities, the 3-month Treasury rate, and the 10-year Treasury rate. The
effective sample period is 1979:M1 to 2018:M4 (472 monthly observations),
and we use 6 lags in the VAR. The MBC shock is identified as the shock
that — out of all orthogonal rotations of structural shocks — maximizes
the contribution to the variation in the unemployment rate at horizons of
18 to 96 months in the frequency domain. This same VAR furnishes the
forecast errors, or equivalently, the IRFs, used to implement SP-IV.

In principle, there is a range of economic shock measures that could be
used to identify the parameters of (23), including monetary policy shocks
as in Barnichon and Mesters (2020). However, the most useful instru-
ments have strong predictive power for the endogenous variables, while
still satisfying the exogeneity requirements. High frequency monetary
policy shocks are far too weak predictors of unemployment and inflation
to be useful in practice. The same is often the case for monetary shocks
identified through timing restrictions or the narrative measures of Romer
and Romer (2004). Moreover, contractionary policy shocks identified by
these last two methods robustly generate puzzling expansionary effects in
updated samples, calling into question their interpretation and contem-
poraneous exogeneity.

Angeletos et al. (2020) find that the MBC shock obtained by max-
imizing the contribution to cyclical unemployment fluctuations is inter-
changeable with shocks identified by maximizing the cyclical variance con-
tribution to other major macro aggregates, such as GDP, consumption,
investment, or hours worked. This interchangeability suggests a single

main driver of business cycles with a common propagation mechanism.

12See for instance Barakchian and Crowe (2013), Ramey (2016), or Miranda-Agrippino and Ricco
(2021).
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Figure 1: Impact of the MBC Shock on Inflation and Unemployment

(a) IRF Inflation (b) IRF Unemployment  (c) FEV Contribution
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Notes: Inflation is the annualized Core CPI inflation rate from a quarter ago (m%).
Results in red are obtained from a six-variable monthly VAR with six lags using the
annualized one-month percent change in the core CPI, the unemployment rate, the 12-
month change in log industrial production, the 12-month percent change in the PPI for
all commodities, the 3-month Treasury rate, and the 10-year Treasury rate. The MBC
shock maximizes the contribution to the variance of the unemployment rate at horizons
of 18 to 96 months in the frequency domain, as in Angeletos et al. (2020). The effective
sample period is 1979:M1 to 2018:M4. Blue lines show results from regressions on lag
sequences of the MBC shock, as in 2SLS.

The authors argue this main driver best fits the notion of an aggregate
demand shock, making it potentially a good instrument for estimating the
Phillips curve. Indeed, observing the disconnect between the unemploy-
ment and inflation responses to the MBC shock, Angeletos et al. (2020)
conclude that the Phillips curve must be nearly flat, and suggest that
demand-driven business cycles are perhaps not tied to nominal rigidities
at all. Rather than relying on casual inspections of the IRFs, SP-IV pro-
vides a formal investigation of such claims.

Our monthly version of the MBC shock produces IRFs that are very
similar to those in Angeletos et al. (2020). The red lines in Figures la-
1b plot VAR-based IRFs of quarterly inflation 7rt1 7 and unemployment U,
following a one standard-deviation MBC shock, while Figure 1c shows
the contributions of the MBC shock to the forecast error variance (FEV).
As in Angeletos et al. (2020), the MBC shock looks like an aggregate
demand shock, pushing unemployment higher and inflation lower. At
the same time, the MBC shock explains a relatively small fraction of the

FEV of inflation, nearly zero on impact and only 20% after two years.

33



This illustrates the apparent disconnect between inflation and the shock
explaining most variation in unemployment at business cycle frequencies.
By using the MBC shock as the instrument the 2SLS and SP-IV esti-
mators each produce estimates of the Phillips curve parameters connect-
ing the IRFs associated with an MBC shock. The 2SLS estimator uses
contemporaneous and lagged values the MBC shocks as the instrumental
variables. The SP-IV estimator uses the contemporaneous MBC shock
as a single instrument in a system of forecast errors - in particular, the
forecast errors implied by the underlying VAR.!® Each first stage leads to
different estimators of the IRFs associated with the MBC shock. Figure
la-1b shows the different IRFs that implicitly underlie the estimates of
the parameters v, and X in each case. The 2SLS estimator is built from
the IRF coefficients obtained from regressions of 7 (and m,"; and 7, ,,)
and U; on a DL of the shock (blue lines). SP-IV, in contrast, allows the
direct use of the VAR-based IRFs (red lines). To make efficient use of
the identifying information contained in the IRF dynamics, we use the
coefficients in the first month of the first 12 quarters of the response hori-
zons — that is at h = 0,3,6,...,33 — to construct each estimator. Figures
la-1b show the first twelve IRF coefficients that are used in practice in
the estimation, and also show the next eight quarters of the VAR and DL
IRF coefficients to visualize the full dynamics following an MBC shock.
Figure 2 displays the estimates of vy and A, together with 68%, 90%
and 95% confidence sets. The point estimates of v, the weight on future
inflation, are 0.57 for both 2SLS and SP-IV. SP-IV estimates a steeper
slope of the Phillips curve (A = —0.13 to —0.11). However, the inference
results are far less similar. For 2SLS, the confidence sets shown in Figures
2a are the AR sets used in Barnichon and Mesters (2020). They do not
reject weights on future inflation as low as zero or as high as one at any
level, nor are they able to rule out a wide range of possible Phillips curve
slopes. The 90% set includes values of A as high as 0.2 and as low —0.3,
and the 95% set includes an even wider range for A. As is well known,

and evident in our simulations earlier, robust inference for 2SLS can be

3The forecast errors of m 4,7, and 7713112 are straightforward to obtain from the VAR based on

the forecast errors of monthly inflation ;™.
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Figure 2: 2SLS and SP-IV Confidence Sets for Estimates of Phillips Curve Parameters

(a) 25LS (b) SP-IV

I

@ SP-IV VAR Point Estimate 7, =0.57 A =-0.13] |
®  OLS Point Estimate 7 =0.49 A =-0.09 |
12f |
|

|

0.8

Coefficient on Expected Inflation,
°
&

. . . . . . . .
04 03 02 01 o 01 02 07 06 05 -04 -03 02 01 0 01 02
Coefficient on Unemployment Rate, A Coefficient on Unemployment Rate, A

0.7 -0.6 05

Notes: Figures show point estimates and 68%, 90% and 95% confidence sets based on
the KLM statistic described in Section 2.3.

unreliable in the face of many weak instruments problems.

Turning to inference for SP-IV, we first apply the first stage test in
Section 2.2 to assess instrument strength. The test statistic is 7.76, while
the 5% critical value associated with the null hypothesis that the bias
does not exceed 10% percent of the worst-case bias is 21.88. Hence, we
cannot reject that the MBC shock is a weak instrument, and therefore
conduct robust inference. Figure 2b shows robust confidence sets for the
SP-IV estimator based on the KLM statistic. The simulation evidence in
Section 3 established favourable performance of SP-IV VAR with KLM
inference in small and large samples in both absolute terms and compared
with the other approaches, particularly when N, = 1 and H is not too
large, as is the case here. We therefore view the KLM sets in Figure 2b,
where N, =1 and H = 12, as the most reliable for inference. Compared
with the 2SLS approaches, inference for SP-IV is much sharper for the
weight on future inflation, with the confidence set ruling out values of
that are meaningfully below 0.4 or above 1. At the same time, the KLM
sets also do not rule a wide range of possible Phillips curve slopes, with
values of A\ ranging from -0.5 to slightly greater than zero within the 90%

set. The more informative confidence sets likely result from the greater
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effective strength of the instruments discussed in Section 1.3.

In the above application to the Phillips curve, single-equation 2SLS
and SP-1V yield similar point estimates. However, only for SP-IV was ro-
bust inference well-sized in simulations across all specifications. In other
applications the 2SLS and SP-IV estimates may differ more substantially,
as in practice IRFs from VARs or LPs do not always agree so closely
with those from DL specifications without controls. Moreover, the weaker
exogeneity requirements of SP-IV can also be important, since the IRFs
estimated by the DL 2SLS model may not always be identified. A key
advantage of SP-IV is that it enabled us to fit structural equations di-
rectly to the IRFs obtained from VARs (or LPs), a method preferred by
researchers in practice. The SP-IV methodology provides a way to for-
mally test claims about structural relationships encoded in these empirical
impulse responses. On the basis of the estimated inflation dynamics to
the MBC shock of Angeletos et al. (2020), our SP-IV inference suggests a
greater weight on future inflation than on lagged inflation, and the confi-
dence sets are consistent with a wide range of possible cyclical responses
of inflation, both weak and relatively strong. The evidence therefore does
not necessarily support the conclusion that inflation dynamics are discon-
nected from the business cycle, as spurred by MBC shocks, or that the

Phillips curve is of little use to model these dynamics.

5 Concluding Remarks and Future Research

We conclude by discussing several other potentially interesting applica-
tions and avenues for future research. SP-IV should be useful for estimat-
ing a wide variety of structural relationships in macroeconomics, such as
Euler equations for consumption or investment, the wage Phillips curve,
monetary or fiscal policy rules, and aggregate production functions. SP-
IV can be used more broadly to conduct inference on ratios (or other
relationships) of impulse response coefficients, such as Okun coefficients,
sacrifice ratios, multipliers, etc., conditional on economic shocks.

In this paper, we have taken the selection of horizons as given. Fu-

ture work can develop methods to optimally select the horizons. If h =
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0, ..., H—1 indexes cross-sectional groups rather than time horizons, then
this paper also describes instrumental variables in the cross-section with
heterogeneity in the first stage. Our methodology could be extended to
panel data settings, and be potentially useful in applications that com-
monly rely on lagged variables as instruments, such as the estimation of
production functions in industrial organization, see Wooldridge (2009).

We plan to pursue these and other avenues in future research.

References

Angeletos, G.-M., Collard, F., & Dellas, H. (2020). Business-cycle anatomy.
American Economic Review, 110(10), 3030-70.

Mavroeidis, S., Plagborg-Mgller, M., & Stock, J. H. (2014). Empirical
evidence on inflation expectations in the new keynesian phillips curve.
Journal of Economic Literature, 52(1), 124-88.

McLeay, M., & Tenreyro, S. (2019). Optimal inflation and the identifica-
tion of the phillips curve. NBER Macroeconomics Annual, 34.

Gali, J., & Gertler, M. (1999). Inflation dynamics: A structural economet-
ric analysis. Journal of Monetary Economics, 44(2), 195-222.

Smets, F., & Wouters, R. (2007). Shocks and frictions in us business cycles:
A bayesian dsge approach. American Economic Review, 97(3), 586—606.

Barnichon, R., & Mesters, G. (2020). Identifying Modern Macro Equations
with Old Shocks. The Quarterly Journal of Economics, 135(4), 2255
2298.

Gali, J., & Gambetti, L. Has the u.s. wage phillips curve flattened? a
semi-structural exploration (G. Castex, J. Gali, & D. Saravia, Eds.). In:
ed. by Castex, G., Gali, J., & Saravia, D. Vol. 27. Changing Inflation
Dynamics, Evolving Monetary Policy. Central Bank of Chile, 2020.

Stock, J., & Yogo, M. (2005). Testing for weak instruments in linear iv
regression. In D. W. Andrews (Ed.), Identification and inference for
econometric models (pp. 80-108). Cambridge University Press.

Anderson, T. W., & Rubin, H. (1949). Estimation of the Parameters of
a Single Equation in a Complete System of Stochastic Equations. The
Annals of Mathematical Statistics, 20(1), 46 —63.

37



Kleibergen, F. (2005). Testing parameters in gmm without assuming that
they are identified. Econometrica, 73(4), 1103-1123.

Stock, J. H., & Watson, M. W. (2018). Identification and estimation of
dynamic causal effects in macroeconomics using external instruments.
The Economic Journal, 128(610), 917-948.

Montiel Olea, J. L., & Plagborg-Mgller, M. (2021). Local projection infer-
ence is simpler and more robust than you think. Econometrica, 89(4),
1789-1823.

Plagborg-Mgller, M., & Wolf, C. K. (2021). Local projections and vars
estimate the same impulse responses. Fconometrica, 89(2), 955-980.
Li, D., Plagborg-Moller, M., & Wolf, C. K. (2021, April). Local Projections
vs. VARs: Lessons From Thousands of DGPs (Papers No. 2104.00655).

arXiv.org.

Ramey, V. Chapter 2 - macroeconomic shocks and their propagation (J. B.
Taylor & H. Uhlig, Eds.). In: ed. by Taylor, J. B., & Uhlig, H. Vol. 2.
Handbook of Macroeconomics. Elsevier, 2016, pp. 71-162.

Kilian, L., & Liitkepohl, H. (2017). Structural vector autoregressive anal-
ysis. Cambridge University Press.

Jorda, (2005). Estimation and inference of impulse responses by local pro-
jections. American Economic Review, 95(1), 161-182.

Stock, J. H., & Watson, M. W. (2012). Disentangling the channels of the
2007-2009 recession. Brookings Papers on FEconomic Activity, Spring
2012, 81-135.

Mertens, K., & Ravn, M. O. (2013). The dynamic effects of personal and
corporate income tax changes in the united states. American Economic
Review, 103(4), 1212-47.

Romer, C. D., & Romer, D. H. (2004). A new measure of monetary shocks:
Derivation and implications. American Economic Review, 94 (4), 1055—
1084.

Lewis, D. J., & Mertens, K. (2022). A Robust Test for Weak Instruments
with Multiple Endogenous Regressors (Staff Reports No. 1020). Federal
Reserve Bank of New York.

Montiel-Olea, J. L., & Pflueger, C. (2013). A robust test for weak instru-
ments. Journal of Business & Economic Statistics, 31(3), 358-369.

38



Cragg, J. G., & Donald, S. G. (1993). Testing identifiability and specifica-
tion in instrumental variable models. Econometric Theory, 9(2), 222—
240.

Stock, J. H., & Wright, J. H. (2000). Gmm with weak identification.
Econometrica, 68(5), 1055-1096.

Kleibergen, F. (2002). Pivotal statistics for testing structural parameters
in instrumental variables regression. Econometrica, 70(5), 1781-1803.
Andrews, I., Stock, J. H., & Sun, L. (2019). Weak instruments in in-
strumental variables regression: Theory and practice. Annual Review of

Economics, 11(1), 727-753.

Kuttner, K. N. (2001). Monetary policy surprises and interest rates: Ev-
idence from the fed funds futures market. Journal of Monetary Eco-
nomics, 47(3), 523-544.

Coibion, O. (2012). Are the effects of monetary policy shocks big or small?
American Economic Journal: Macroeconomics, 4(2), 1-32.

Barakchian, S. M., & Crowe, C. (2013). Monetary policy matters: Evi-
dence from new shocks data. Journal of Monetary Economics, 60(8),
950-966.

Miranda-Agrippino, S., & Ricco, G. (2021). The transmission of monetary
policy shocks. American Economic Journal: Macroeconomics, 13(3),
74-107.

Bauer, M. D., & Swanson, E. T. (2022). A reassessment of monetary policy
surprises and high-frequency identification (Working Paper No. 29939).
National Bureau of Economic Research.

Lazarus, E., Lewis, D. J., & Stock, J. H. (2021). The size-power tradeoff
in har inference. Econometrica, 89(5), 2497-2516.

Bekker, P. A. (1994). Alternative approximations to the distributions of
instrumental variable estimators. Econometrica, 62(3), 657-681.

Han, C., & Phillips, P. C. B. (2006). Gmm with many moment conditions.
Econometrica, 74 (1), 147-192.

Newey, W. K., & Windmeijer, F. (2009). Generalized method of moments
with many weak moment conditions. Econometrica, 77(3), 687-719.

Mikusheva, A. (2021, February). Many weak instruments in time series

econometrics (World Congress of Econometric Society). MIT.

39



Moreira, M. J. (2003). A conditional likelihood ratio test for structural
models. Econometrica, 71(4), 1027-1048.

Andrews, I. (2016). Conditional linear combination tests for weakly iden-
tified models. Econometrica, 84(6), 2155-2182.

Wooldridge, J. M. (2009). On estimating firm-level production functions
using proxy variables to control for unobservables. Economics Letters,
104(3), 112-114.

Stock, J. H. Lecture 7: Recent developments in structural var modeling.
In: Presented at the National Bureau of Economic Research Summer
Institute Minicourse: What’s New in Econometrics: Time Series, Cam-
bridge, MA, July 15, 2008.

Rothenberg, T. J., & Leenders, C. T. (1964). Efficient estimation of si-

multaneous equation systems. Econometrica, 32(1/2), 57-76.
Appendix

A Practical Implementation of SPIV with LPs or VARs

This section describes the implementations of SP-IV with Jorda (2005)
local projections or vector autoregressive models (VARs).

Let yy denote the H x T matrix of leads of the outcome variable, i.e.
with vy, in the h + 1-th row and ¢-th column. Let Yy be the HK x T
matrix vertically stacking the H x T matrices Y} for k = 1,..., K, each
of which has V¥, in the h + 1-th row and ¢-th column, and Y;* the k-th
variable in the vector Y;. Let X; be the period ¢ observation of an N, x 1
collection of predetermined control variables (including a constant). X,
can include not only current values, but also lags of v, Y;, Z;, or any other

time series.

Local Projections. Define the N, x T matrix X with controls X;_;
in the ¢-th column, and the projection matrix Py = X'(XX')7'X and
residualizing matrix My = I — Px. Using a direct forecasting approach,

the forecast errors after projection on X, ; are given by
(A1) vy =yaMyx , Yig =YuMyx |, Z+=ZMyx ,

40



which can be used in (9) to obtain the SP-IV estimator 3. By the Frisch-
Waugh-Lovell Theorem, this direct forecasting approach is equivalent to
estimating Jorda (2005) local projections of y;,p and Yy, on 2z, and X,
for h =0,..., H—1, using the estimated coefficients on z; to construct the
rows of @y and Oy, and subsequently constructing the SP-IV estimator
using the alternative expression for ﬁ in (13). When Z+ are measures of
economic shocks, the LP estimates are IRF coefficients representing the
dynamic causal effects of the shocks. Some studies estimate IRFs by local
projections of an endogenous outcome variable at t + h on an endogenous
explanatory variable ); and controls X;_; using z; as instruments, a proce-
dure often referred to as ‘LP-IV’. Such IRFs can be used for identification
in the SP-IV estimator exactly as described above, i.e. using the reduced

form projections of the outcome variables on z; and X;_;.

Vector Autoregressions. Suppose that 3;, and the elements of Y; and
Zy, are — possibly together with other variables — all contained in X;, which
for the present development only we assume does not include a constant,

and that X; evolves according to a VAR,
(A2) Xt = AXt,1 + [

The representation in terms of a VAR of order one is without loss of
generality, as any VAR of order p can be rewritten as a VAR of order
one. As before, let X denote the N, x T matrix with X;_; in the ¢-th
column, and let X7 denote the N, x T matrix with X; in the ¢-th column.
The standard estimator of A is A = X/ X’(XX’)~!, leading to the h-step

ahead forecast errors (in “companion form”)
h
1 Z ih—3j s 5 A
(A3) Xt+h = A ]€t+j , € = Xt — AXt—l .
Jj=0

The appropriate selection of elements in Xtih leads to y3, Y and Z1,
which can be used to obtain the SP-IV estimator £ in (9). ‘Structural’
VARs are VARs in which researchers make assumptions to identify columns

of B in e; = Be¢, allowing the estimation of IRFs that are interpretable
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as dynamic causal effects of the associated economic shocks in €. If éV=
are the N, identified shocks in the structural VAR, it is possible to use
2+ = el'N* to form Z1, and use these shock estimates for identification in
the SP-IV estimator. This procedure also nests identification with ‘exter-
nal instruments’, which can be directly included in the VAR and combined
with zero restrictions in B, or used indirectly as instruments to identify
columns in B as in the ‘proxy SVAR’ or ‘SVAR-IV’ approach (Stock and
Watson 2018; Stock and Watson 2012; Mertens and Ravn 2013; Stock
2008). Note that (11), or equivalently (12), are consistent estimators of
the IRFs associated with ¢1*V=. In finite samples, however, these IRF es-
timates will not be numerically identical to the structural VAR impulse
responses obtained from @}/(f}lR = AhBYNz =0, ..., H—1, where B}Nz
denotes the first N, columns of B. The reason is that the restrictions
implied by the VAR dynamics are imposed on the reduced form forecast
errors, but (11) or (12) do not impose the same VAR dynamics on the
IRFs. Our preferred implementation of SP-IV with structural VARs is
instead to select the elements corresponding to y; and Y; in (:)}/(:‘}LR to form
é)y and Oy, and then obtain the SP-IV estimator from the regression of
impulse responses as in (13). This alternative implementation imposes
the VAR dynamics on both the reduced form forecast errors as well as on
the impulse responses. In general, imposing the VAR dynamics is easily
done in all formulas above by replacing y5 P, YF by C;)‘y/ AR@¥AR’ and
Y Py Y by @¥A3é¥AR’, where é)gAR is the HK x N, matrix stacking
the K blocks of the VAR IRF coefficients of Y;, and @ZAR contains the
H x N, VAR IRF coefficients of 1;.'* When comfortable imposing VAR
dynamics, it makes sense to impose these restrictions consistently, and we
therefore recommend this second implementation in practical applications

of SP-1V with VAR-based IRFs.

14To impose the VAR dynamics in the Generalized SP-IV formula (B.1), replace yj P, by
(:)XAR(ZMXZ’/T)’%ZMX and to construct Yy in the KLM statistic in (21), replace Y7 P41 by
OVAR(ZMx Z'|T)" = ZMx.
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B Generalized SP-IV

Using the weighting matrix ®,(3,¢) = (X! ® Q') leads to the effi-
UH
cient GMM estimator of 5. This estimator is also the ‘Generalized Least
Squares’ version of SP-IV minimizing Tr ((uﬁPZLu#)E_j) Given X1,
Un

the closed form generalized SP-IV estimator is
(B.1)

e = (R’ (YﬁPZl Y ® 2;;) R)fl R (YF}PZL ® 2;;) vec(yf PyL) -
For inference, we replace Assumption 2.d by
Assumption 2.d". R'(6y0} ® E;;)R is a fived matriz with full rank.

Under Assumptions 2.a-2.c, Assumption 2.d" and Assumption 3,
. -1
(B.2) VT(Bs—B) % NO,Vs,) , Vi, = (R’ (@Y@; ® z;;) R) .

The Generalized SP-IV estimator is feasible replacing Zuﬁ with a con-
sistent estimator like the one in Section 2.1, using a two-step or iterated
procedure. Alternatively, the CUE estimator minimizes the AR statistic
in (20) with respect to b. The KLM statistic in (21) is zero at the CUE
estimator, so both AR and KLM confidence sets contain the CUE.

C Proof of Theorem 2

Proof. The asymptotic variance of the SP-IV estimator in (9) is
(C1)  aVar(B) = (040y) 'O} (Iy, ® var(uz;,)) Oy (04 Oy) ",
The asymptotic variance of the 2SLS estimator is

(C.2) aVar(Basns) = (©4,0y) ' var(y,) .
We consider Bj asymptotically more efficient than f; if aVar(3;)—aVar( B])
is positive semi-definite (Rothenberg and Leenders 1964).

If w is i.i.d., then it is unpredictable and Euf] = Efuf,,] Vh and

Elusupen] = 0,8 # h, so Var(uﬁt) = var(uy) Iy, and part ) follows.
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Suppose that X;_; is empty, or uninformative; then uﬁvt = UK. aVaT(B)—
aVar(fBagrs) will be positive definite as long as var(u;) = 02/(1 — p2) <
maxeval (var(ug,)). var(ug,) is a matrix with h, i entry plif 162/(1— p2).
When p, > 0, by the Perron-Frobenius theorem this matrix has a unique
positive dominant eigenvalue that is bounded from below by the mini-
mum row sum. The minimum row sum is (31 o PMa?/(1 — p2) which
is strictly larger than var(u;) when p, > 0 and H > 1. Therefore,
maxeval var(ug ) > var(u;) when p, > 0, H > 1, completing part 7).

Finally, aVar(Bas1s) —aVar(B) is positive definite if var(u,) = 02/(1—
pZ) > maxeval (var(ug,)), giving the first part of (ii) . If X;_; spans the
full history of v; up to t — 1, uHh = Z] Opfuvt% —j, and the condition
specializes to 02/(1 — p2) > maxeval var(uz;,), where the h,i entry of

var(ug,) is me{h g2l tv=2] a5 stated in the theorem. O

D Proof of Theorem 3

Proof. The concentration parameter for a given SP-IV speciﬁcation is de-
rived in the Online Appendix, equation (A.11), A = (HN,)™! ((SC’C’ S)® IH> Rk m,
where S = ((Ry.; (W2 @ Iy)Riir/H) "2, Ry = Ix ® Vec(IH), C is the
location parameter in the weak instruments asymptotic embedding for ©y

in Assumption 4, and W is the covariance of z; ® vﬁt. For 2SLS, Zss1s
contains lags 0,..., H — 1 of Z, so, under stationarity, Cysrs = vec(C);

the same formula then applies, setting H = 1. It follows that A2 =
CosrsChsrg/ (HN,0%) = Tr(CC')/ (HN,02). For SP-IV conditional on
Xi1, § = (Te(S,0)/H) 3, so A+ = Tr(CC")/ <NZ Tr(zvﬁ)) and the
condition in (i) follows. Finally, without controls, A’ = Tr(CC")/ (N, Tr(Z,,,)),
which is smaller than A+ unless Tr(3,,,) = Tr(X,1), which occurs if and
only if X; ;1 is completely irrelevant, yielding (i7). O
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