
Determinacy without the Taylor Principle*

George-Marios Angeletos† Chen Lian‡

October 19, 2021

Abstract

Our understanding of how monetary policy works is complicated by an equilibrium-selection

conundrum: because the same path for the nominal interest rate can be associated with mul-

tiple equilibrium paths for inflation and output, there is a long-lasting debate about what the

right equilibrium selection is. We offer a potential resolution by showing that a small friction

in memory and intertemporal coordination can remove the indeterminacy. The unique sur-

viving equilibrium is the same as that conventionally selected by the Taylor principle, but it

no more relies on it. By the same token, no space is left for the Fiscal Theory of the Price Level,

as currently formulated.
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1 Introduction

Can monetary policy regulate inflation and aggregate demand? Does the ZLB trigger a defla-

tionary spiral? Does Ricardian equivalence hold when taxation is non-distortionary, markets are

complete, and consumers have rational expectations and long horizons? One may be inclined

to answer “yes” to all these questions. But the right answer, at least within the New Keynesian

model, is that it depends on how equilibrium is selected.

The basic problem goes back to Sargent and Wallace (1975): the same path for the nominal

interest rate can be consistent with multiple equilibrium paths for inflation and, in the presence

of nominal rigidity, for output too. In the face of this problem, the standard practice is to select

a specific equilibrium by assuming that monetary policy satisfies the Taylor principle (Taylor,

1993), or that it is “active” (Leeper, 1991). This amounts to a commitment by the monetary au-

thority to “punish” the private sector with an explosion in inflation and the output gap, unless a

particular equilibrium is selected.1 The model’s three “famous” equations then admit a unique

solution, which is the one customarily used to interpret the data and guide policy.

But an alternative approach to equilibrium selection, known as the Fiscal Theory of the Price

Level (FTPL), leads to a very different perspective on how the economy works. According to it,

equilibrium is pinned down by a “non-Ricardian” fiscal policy. This amounts to a commitment

to violate the government’s solvency constraint unless a particular equilibrium is selected.2 It

causes Ricardian Equivalence to fail, not because of finite horizons, incomplete markets, etc., but

rather by force of equilibrium selection. And it lets debt and deficits drive inflation and output

gaps even when these objects do not enter the model’s three famous equations.

There has been a long debate about which approach and corresponding conclusions are more

sensible. This is hard to settle because, within the standard paradigm, both approaches reduce

to assumptions about off-equilibrium strategies of the monetary and fiscal authorities, which

are basically untestable. This explains why, as Kocherlakota and Phelan (1999, p.22) put it more

provocatively, the debate has been “fundamentally a religious, not scientific, issue.”

We offer a way out of this conundrum. We highlight how the relevant indeterminacy hinges on

strong assumptions about memory and intertemporal coordination. Once we perturb these as-

sumptions appropriately, the model’s conventional solution, known as the fundamental or min-

imum state variable (MSV) solution (McCallum, 1983, 2009), emerges as the unique rational ex-

1To be precise, the Taylor principle is used to guarantee determinacy of bounded equilibria, which is our focus
here. Unbounded equilibria, such as self-fulfilling hyper-inflations (Obstfeld and Rogoff, 1983, 2021; Cochrane, 2011)
and self-fulfilling liquidity traps (Benhabib et al., 2002), are implicitly or explicitly ruled out by appropriate “exit
clauses.” See Atkeson et al. (2010), and especially their section on “hybrid” rules, for a careful treatment of this issue.

2See Kocherlakota and Phelan (1999). As discussed later, Bassetto (2002) and Cochrane (2005) object to this inter-
pretation; but our own results are valid regardless of one’s preferred interpretation of the non-Ricardian assumption.
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pectations equilibrium regardless of monetary policy. This leaves little space for the FTPL as

currently formulated. And it reinforces the logical foundations upon which one can answer “yes”

to the questions raised in the beginning or, more broadly, interpret the data and guide policy.

Preview of results. A New Keynesian economy can be understood as a dynamic game among

the consumers. One’s optimal spending depends on others’ spending via three GE channels:

the feedback for aggregate spending to income (the Keynesian cross); the feedback for aggregate

spending to inflation (the Phillips curve); and the response of monetary policy (the Taylor rule).

The first two channels contribute to strategic complementarity, and in particular to a dynamic

feedback strong enough to support multiple equilibria; the third pulls in the opposite direction.3

In Sections 2 and 3, we formalize this prism as simply and transparently as possible, and use

it to translate the Taylor principle to the following requirement: let the third channel be strong

enough so as to guarantee a unique equilibrium when consumers can perfectly coordinate their

behavior over time.4 In the rest of the paper, we instead accommodate a friction in such coordi-

nation and to show how it can guarantee a unique equilibrium regardless of monetary policy.

For our main result, developed in Section 4, we model the friction as follows. In each period,

a consumer learns perfectly the concurrent fundamentals and sunspots; with probability λ ∈
[0,1), she knows nothing else; and with the remaining probability, she inherits the information

of another, randomly selected, player from the previous period. This lets λ parameterize the

speed at which social memory “fades” with time: for any t , the fraction of the population who

“remembers” and can condition their actions on the shocks realized at any τ≤ t is (1−λ)t−τ.

The standard, representative-agent, case is nested with λ= 0; it translates to common knowl-

edge of the economy’s history (which defines what “perfect” coordination means for us); and it

admits a continuum of sunspot and backward-looking equilibria whenever the Taylor principle

is violated. Proposition 2 shows that, as soon as λ> 0, all these equilibria unravel. Only the fun-

damental/MSV solution survives, regardless of whether the monetary policy is active or passive.

Strictly speaking, this result precludes direct observation of the actions of others, or of en-

dogenous outcomes such as inflation and output. But because such outcomes are functions of

the underlying shocks, in the limit as λ→ 0 nearly all consumers are nearly perfectly informed

about nearly infinite histories of both shocks and outcomes. From this perspective, our result

3The second channel is shut off with rigid prices and the third one is shut off with interest rate pegs. But the first
channel is always there—whether hidden behind the Euler condition of the representative consumer in the textbook
New Keynesian model, or salient in the “intertemporal Keynesian cross” of HANK models (Auclert et al., 2018).

4The Taylor principle is sometimes described as follows: in response to self-fulfilling inflationary pressures, raise
the interest rate enough to reduce aggregate demand and bring the economy back on track. But this confounds the
stabilization and equilibrium selection functions of feedback policies. Once these functions are separated (King,
2000; Atkeson et al., 2010), it becomes clear that the Taylor principle regards exclusively the former. This is fully
consistent with our game-theoretic translation.
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illustrates the fragility of the model’s non-fundamental solutions to the introduction of small,

idiosyncratic noise in the knowledge of the economy’s history.

We corroborate this message in Section 7 with two additional results, both of which are mo-

tivated by recursive representations of full-information equilibria. In such representations, finite

memory of appropriately chosen endogenous variables helps replicate infinite memory of past

shocks. For instance, pure sunspot equilibria are replicated by having agents keep track merely

of today’s sunspot and yesterday’s inflation or output. Proposition 5 shows that this replication

is itself fragile: it breaks as soon as we let the agents’ observation of past inflation or output be

contaminated with arbitrarily small idiosyncratic noise. Proposition 6 adds that a similar fragility

can be present even when past outcomes are perfectly observed, provided that, for any period t ,

there is a small shock to fundamentals that is known at t but is “forgotten” at t +1.

The common thread between our results can be summarized as follows. All equilibria other

than the MSV solution are sustained by the following infinite chain: in any period, agents are

responding to a payoff-irrelevant variable (e.g., the current sunspot or the past rate of inflation)

because they expect to be “rewarded” appropriately by future agents, who in turn are expected

to act on the basis of a similar expectation about behavior further into the future, and so on.

Because such purely self-fulfilling dynamic chains have no anchor on fundamentals, they can be

exceedingly sensitive to perturbations of “social memory,” or of common knowledge across time.

Interpreting our contribution. The logic behind our results echoes the literature on global

games (Morris and Shin, 2002, 2003) and is subject to a related qualification: indeterminacy may

strike back if markets generate enough common knowledge (Angeletos and Werning, 2006; Atke-

son, 2000). But there is an important twist: in our context, the most relevant coordination is that

of behavior over long periods of time. This explains both why the relevant perturbations relate,

one way or another, to social memory and why the requisite type of common knowledge may be

harder to reach in practice than in the case of, say, a self-fulfilling bank run.

All in all, we view our results as (i) a lens for understanding better the New Keynesian model’s

indeterminacy problem and (ii) as a reinforcement of the logical foundations of its conventional

solution. To paraphrase Kocherlakota and Phelan (1999), there is no more space for a “religious”

debate on what is the most sensible equilibrium selection. Under our perturbations, equilibrium

is pinned down by the model’s famous three equations regardless of whether monetary policy is

active or passive; and fiscal policy has to be Ricardian, or else an equilibrium just fails to exist.

This of course does not mean that Ricardian equivalence has to hold in practice, nor does

it contradict Sargent and Wallace (1981)’s “unpleasant arithmetic.” But it refines the channels

via which fiscal policy can drive inflation and output; it helps liberate the study of the fiscal-
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monetary interaction from the thorny equilibrium selection issue; and it invites new ways of

thinking about the question of which authority is “dominant” and what exactly this means.

Finally, note that equilibrium uniqueness allows room for sunspot-like volatility due to noisy

public news (Morris and Shin, 2002) or shocks to higher-order beliefs (Angeletos and La’O, 2013).

From this perspective, our contribution is not to rule out “animal spirits” but rather to help recast

policies that lean against them as a form of stabilization instead of equilibrium selection.

Related literature. Although Cochrane (2011, 2017, 2018) has been the most vocal advocate

of the FTPL recently, this theory and the question of whether equilibrium is determined by an

“active” monetary policy or a “non-Ricardian” fiscal policy go back to Leeper (1991), Sims (1994)

and Woodford (1995). Canzoneri, Cumby, and Diba (2010) review the debate and discuss how it

fits in the broader context of the study of the fiscal-monetary interaction.

Early criticisms of the FTPL by Kocherlakota and Phelan (1999), Buiter (2002), and Niepelt

(2004) boil down to this idea: the non-Ricardian assumption is an off-equilibrium threat to “blow

up” the economy, in the sense of violating the government’s solvency constraint. Bassetto (2002)

and Cochrane (2005) object to this interpretation and articulate ways around it. Going on the of-

fense, Cochrane (2011) argues that the Taylor principle itself is a blow-up threat, now in the sense

of a threat to trigger an explosion in inflation and non-existence of continuation equilibrium.

But Atkeson et al. (2010) show how to avoid this criticism with more “sophisticated” monetary

policies than a plain-vanilla Taylor rule.

The bottom line is that, although the debate has morphed in different forms over time, it

has never ended. This is because the underlying core issue has always been the same one: the

indeterminacy implied by interest-rate pegs (Sargent and Wallace, 1975). What distinguishes our

contribution is the attempt to resolve this indeterminacy—and to escape the endless “agree to

disagree”—by introducing a friction in intertemporal coordination.

Our main approach (Propositions 2 and 4) brings to mind Morris and Shin (1998, 2003) and

Abreu and Brunnermeier (2003). Although the application and the formal argument are differ-

ent, there is a close resemblance in terms of the discontinuity of equilibria to perturbations of

common knowledge and the role of higher-order beliefs. Our second approach (Proposition 6),

on the other hand, is more closely connected to Bhaskar (1998) and Bhaskar, Mailath, and Morris

(2012). These papers show that Markov Perfect Equilibria—the analogue of the MSV concept in

our context—are the only equilibria that survive in a class of dynamic games when a purification

in payoffs is combined with certain restrictions in social memory. The deep connections between

such seemingly disparate approaches deserve further exploration.

A large literature has already incorporated information/coordination frictions in the New
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Keynesian model (Mankiw and Reis, 2002; Woodford, 2003; Maćkowiak and Wiederholt, 2009;

Angeletos and Lian, 2018). But it has not addressed the determinacy issue. Instead, it has fo-

cused on how information shapes the model’s MSV solution and has assumed away all other

solutions by invoking, implicitly or explicitly, the Taylor principle. We do the exact opposite: our

perturbations remove all other solutions without necessarily affecting the MSV solution itself.

A different literature has attempted to refine the model’s solutions by requiring that they are

E-stable (McCallum, 2007; Christiano et al., 2018). This approach relies on specific assumptions

about what it means for an equilibrium to be “learnable” and has had mixed success.5 Still, we

view this approach and ours as complements in that they both contribute towards reinforcing

the logical foundations of the conventional, or “monetarist,” approach.

Although we commit to Rational Expectations Equilibrium (REE) throughout, both the inde-

terminacy problem and our resolution of it extend to a larger class of solution concepts, including

cognitive discounting (Gabaix, 2020), diagnostic expectations (Bordalo et al., 2018), and Bayesian

equilibrium with mis-specified priors about one another’s knowledge or rationality (Angeletos

and Sastry, 2021). Relative to REE, these concepts relax the perfect coincidence of subjective be-

liefs and objective distributions and, in so doing, can modify the details of the Taylor principle

(i.e., the critical threshold for the slope of the Taylor rule). But they do not change the essence

of the problem, because they preserve a fixed-point relation between beliefs and behavior. By

contrast, Level-K Thinking (García-Schmidt and Woodford, 2019; Farhi and Werning, 2019) pro-

duces a unique solution precisely because it shuts down the feedback from objective reality to

subjective beliefs, which seems a strong assumption for stationary environments.6

Finally, let us emphasize that work with the linearized New Keynesian model and focus on

bounded equilibria around a given steady state. The essence here is that we take for granted that

expectations are “anchored” around the given steady state. In the literature, this has been justi-

fied by appropriate exit clauses, namely an off-equilibrium commitment to abandon the Taylor

rule and start fixing the supply of money, or follow some other appropriate course of action,

should inflation were to go out of bounds.7 But whereas such exit strategies are insufficient for

pinning down a unique equilibrium in the standard paradigm (there they have to be combined

with the Taylor principle), they become sufficient under our approach.

5For example, sunspot equilibria can be E-stable if the interest rate rule is written as a function of expected in-
flation (Honkapohja and Mitra, 2004). And there is a debate on how the E-stability of backward-looking solutions
depends on the observability of shocks (Cochrane, 2011; Evans and McGough, 2018).

6Furthermore, whenever the environment admits multiple REE, the Level-K solution becomes infinitely sensitive
to the assumed Level-0 behavior as the depth of reasoning gets larger. In this sense, this concept translates one free
variable (the sunspot or the equilibrium selection) to another free variable (the analyst’s choice of Level-0 behavior).
See Appendix B for a detailed explanation.

7See Atkeson et al. (2010)’s section on “hybrid” rules for a careful treatment of this issue.
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2 A Simplified New Keynesian Model

In this section, we introduce our version of the New Keynesian model. This contains two unusual

assumptions: a specific OLG structure for the consumers and an ad hoc Phillips curve. These as-

sumptions ease the exposition, especially once we perturb common knowledge of the economy’s

history; but as discussed in Section 5, they do not drive the results.

An intertemporal Keynesian cross (aka a Dynamic IS equation)

Time is discrete and is indexed by t . There are overlapping generations of consumers, each living

two periods. A consumer born at t has preferences given by

u(C 1
i ,t )+βu(C 2

i ,t+1)e−%t ,

where C 1
i ,t and C 2

i ,t+1 are consumption when young and old, respectively, u(C ) ≡ 1
1−1/σC 1−1/σ,

β ∈ (0,1) is a fixed scalar, %t is an intertemporal preference shock (the usual proxy for aggregate

demand shocks), and Ei ,t is the consumer’s expectation. Young and old consumers earn the same

income. Young consumers can borrow or save using the single asset traded in the economy, a

one-period nominal bond; old consumers pay out any outstanding debt, or eat their savings,

before they die. The budget constraint of a consumer born at t are therefore given by C 1
i ,t +Bi ,t =

Yt and C 2
i ,t+1 = Yt+1 + It

Πt+1
Bi ,t , where Bi ,t is her saving/borrowing in the first period, It is the

(gross) nominal interest rate between t and t +1, andΠt+1 is the corresponding inflation rate.

Old consumers are “robots:” they face no optimizing margin, their consumption mechani-

cally adjusts to meet their end-of-life budget. Young consumers, instead, are “strategic:” they

optimally choose consumption and saving/borrowing, given their available information. After

the usual log-linearization,8 this translates to the following consumption function:

c1
i ,t = Ei ,t

[
1

1+β yt + β
1+β yt+1 − β

1+βσ(it −πt+1 −%t )
]

. (1)

This is basically the Permanent Income Hypothesis. The only subtlety is that we have allowed

young consumers to be imperfectly informed about, or inattentive to, current income and cur-

rent interest rates—which explains why yt and it appear inside the expectation operator.

Pick any t . Because the average saving/borrowing of the young has to be zero,
∫

c1
i ,t di = yt ;

and because the average net wealth of old has to be zero as well,
∫

c2
i ,t di = yt . Combining, we

infer that the two groups consume the same—or equivalently that aggregate consumption, ct ,

coincides with the average consumption of the young. Computing the latter from (1), and impos-

ing yt = ct , we infer that, for any process of interest rate and inflation, the process for aggregate

8Throughout, we log-linearize around the steady state in which %t = 0,Πt = 1, and It =β−1; and we use lower-case
variables to denote log-deviations from steady state.
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spending must satisfy the following equation:

ct = Ēt

[
1

1+βct + β
1+βct+1 − β

1+βσ(it −πt+1 −%t )
]

, (2)

where Ēt [·] = ∫
Ei ,t [·]di is the average expectations of the young.

As evident from its derivation, this equation combines consumer optimality with market

clearing; and it encapsulates the positive feedback between aggregate spending and income,

holding constant the real interest rate. This equation can thus be read as a special case of the

“intertemporal Keynesian cross” (Auclert et al., 2018), or as a Dynamic IS equation.

Connection to standard New Keynesian model

Although equation (2), our version of the Dynamic IS equation, looks different from the familiar

textbook counterpart, it actually nests it when there is full information. Indeed, in this bench-

mark Ēt can be replaced by Et , which henceforth denotes the full-information rational expec-

tation; and because full information implies knowledge of concurrent outcomes in any rational

expectations equilibrium, equation (2) reduces in this case to

ct = 1
1+βct + β

1+βEt [ct+1]− β
1+βσ(it −Et [πt+1]−%t ),

or equivalently

ct = Et [ct+1]−σ(it −Et [πt+1]−%t ).

Clearly, this is the same as the Euler condition of a representative, infinitely-lived consumer.

This clarifies the dual role of the adopted micro-foundations. With full information, they

let our model translate to the standard, representative-agent, New Keynesian model. And away

from this benchmark, they ease the exposition by letting the intertemporal Keynesian cross take a

particularly simple form and by equating the players in our upcoming game representation to the

young consumers. These simplifications are relaxed in Section 5, without changing the essence.

A Phillips curve and a Taylor rule

For the main analysis, we abstract from optimal price-setting behavior (firms are “robots”) and

impose the following, ad hoc Phillips curve:

πt = κ(yt +ξt ), (3)

where κ≥ 0 is a fixed scalar and ξt is a “supply” or “cost-push” shock. As discussed in Section 5,

our results are robust to replacing (3) with the fully micro-founded, forward-looking, New Keyne-

sian Phillips curve; these same is true if we employ a Neoclassical Phillips curve a la Lucas (1972).
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In all cases, the essence (for our purposes) is that there is a positive GE feedback from aggregate

output to inflation. Equation (3) merely stylizes this feedback in a convenient form.

We finally assume that monetary policy follows a Taylor rule:

it = zt +φπt , (4)

where zt is a random variable, possibly correlated with %t and ξt , and φ≥ 0 is a fixed scalar that

parameterizes how aggressively the monetary authority raises the interest rate in response to

inflationary pressures. As is well known and will be reviewed shortly, φ > 1 is necessary and

sufficient for the uniqueness of bounded equilibrium in the standard paradigm—but not under

our perturbations. Our results will indeed apply even if φ= 0, which nests interest rate pegs.9

The model in one equation—and the economy as a game

From (3) and (4), we can readily solve for πt and it as simple functions of yt , which itself equals

ct . Replacing into (2), we conclude that the model reduces to the following equation:

ct = Ēt [(1−δ0)θt +δ0ct +δ1ct+1] (5)

where δ0,δ1 are fixed scalars and θt is a random variable, defined by

δ0 ≡ 1−βσφκ
1+β < 1, δ1 ≡ β+βσκ

1+β > 0, θt ≡− 1

1+φκσ
(
σzt −σ%t +σφκξt −σκEt [ξt+1]

)
.

By construction, equation (5) summarizes private sector behavior and market clearing, for

any information structure and any monetary policy. Different information structures change the

properties of Ēt but do not change the equation itself. Similarly, different monetary policies map

to different values for δ0 or different stochastic processes for θt , via the choice of, respectively, a

value for φ or a stochastic process for zt . But for any given monetary policy, we can understand

equilibrium in the private sector by studying equation (5) alone.

Equation (5) and the micro-foundations behind it also facilitate the interpretation of the econ-

omy as a certain infinite-horizon game. In this game, the only players acting at t are the young

consumers of that period (old consumers, firms, and the monetary authority are “robots,” in the

sense already explained) and their best responses are obtained by combining their optimal con-

sumption functions with first-order knowledge of market clearing, the Phillips curve, and the

Taylor rule. This gives the individual best response at t as

ci ,t = Ei ,t [(1−δ0)θt +δ0ct +δ1ct+1] , (6)

9Note that an interest rate peg can be state-contingent, via zt ; and that the latter can be correlated, possibly in
an optimal way, with %t and ξt . Similarly to King (2000) and Atkeson et al. (2010), this allows disentangling the
stabilization and equilibrium selection functions of Taylor rules: the former is served by the design of zt , the latter
by the restriction φ> 1.
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and recasts (5) as the period-t average best response function. Under this prism, δ0 and δ1 pa-

rameterize, respectively, the intra-temporal and the inter-temporal degree of strategic comple-

mentarity, while θt identifies the game’s fundamental (i.e., the only payoff-relevant exogenous

random variable). Finally, by regulating the strength of the underlying GE feedbacks, different

values for β, κ, and φ map to different degrees of strategic complementarity.

This game-theoretic prism is not strictly needed for proving our results, which work directly

with (5). But it allows a one-to-one mapping between the Rational Expectations Equilibria of our

economy and the Perfect Bayesian Equilibria of the game described above; it helps build insight-

ful connections to the literatures on global games and beauty contests; and, once we add fiscal

policy to the model (Section 6), it helps clear some of the confusion that the existing literature

on the FTPL has created about how the non-Ricardian assumption works and what constitutes a

“fundamental” in the New Keynesian model.

Fundamentals, sunspots, and the equilibrium concept

Aggregate uncertainty is of two sources: fundamentals and sunspots. As already mentioned, the

former are herein conveniently summarized in θt .10 We assume that this variable is a stationary,

zero-mean, Gaussian process, admitting a finite-state representation.

Assumption 1 (Fundamentals). The fundamental θt admits the following representation:

θt = q ′xt with xt = Rxt−1 +εx
t , (7)

where q ∈Rn is a vector, R is an n ×n matrix of which all the eigenvalues are within the unit circle

(to guarantee stationarity), εx
t ∼N (0,Σε) , and Σε is a positive definite matrix.

This directly nests the case in which (%t ,ξt , zt ) follows a VARMA of any finite length. It also al-

lows xt to contain “news shocks,” or forward guidance about future monetary policy. We hence-

forth refer to xt as the fundamental state.

We next introduce a sunspot variable:

Assumption 2 (Sunspots). The only source of aggregate uncertainty other than that behind xt is

a sunspot. This is given by a random variable ηt ∼ N (0,1), which is independent of past, current

and future fundamentals and is distributed independently and identically over time.11

10The fact that θt contains an expectation term does interfere with our results. For instance, it suffices to assume
that the fundamental state xt , introduced below, is a sufficient statistic (zt ,%t ,ξt , Ēt [ξt+1]) and therefore also for θt .

11Although we are restricting ηt to be uncorrelated over time, we are not ruling out persistent sunspot fluctuations:
such fluctuations are still possible insofar as agents condition their behavior on past sunspots. Furthermore, as
discussed at the end of Section 4, our results are robust to letting ηt itself be persistent, except for a degenerate case.
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Let ht capture the history of all shocks, fundamental or not, up to and including period t . To

simplify the exposition, we assume that histories are infinite and, accordingly, focus on stationary

equilibria. More precisely, we let ht ≡ {xt−k ,ηt−k }∞k=0 and we define an equilibrium as follows:

Definition 1 (Equilibrium). An equilibrium is any solution to equation (5) along which: expecta-

tions are rational, although potentially based on imperfect and heterogeneous information about

ht ; the outcome is a stationary, linear function of the underlying shocks, or

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

γ′k xt−k (8)

where ak ∈R and γk ∈Rn are known coefficients for all k; and the outcome is bounded in the sense

that V ar (ct ) is finite.12

Recall that consumer optimality, firm behavior, and market clearing have already been em-

bedded in equation (5). It follows that the above definition is the standard definition of a Ra-

tional Expectations Equilibrium (REE), except for the addition of three “auxiliary” restrictions:

stationarity, linearity, and boundedness. The stationarity restriction, which comes hand-in-hand

with the assumption of infinite history, can readily be relaxed. The linearity restriction is strictly

needed for tractability, but we do not have any reason to believe that it drives our results, plus it

is commonplace in the literature.

The last requirement is our version of “local determinacy” or “bounded equilibria.” This is

herein treated as a primitive; but as usual, it can be justified by an “exit” strategy along the lines

of Taylor (1993), Christiano and Rostagno (2001) and Atkeson et al. (2010), namely a commitment

to switch from the Taylor rule to a money-growth-targeting regime, or to whatever it takes for

keeping inflation (and the output gap) within some bounds.13

Finally, and circling back to our game-theoretic prism, note that the following is true: be-

cause every agent is infinitesimal, one’s deviations are of no consequence for others, and there

is hence no need to specify off-equilibrium beliefs. It follows that the economy’s Rational Ex-

pectations Equilibria (REE) basically coincide with the corresponding game’s Perfect Bayesian

Equilibria (PBE).14

12Note that V ar (ct ) can be finite only if there exists a scalar M > 0 such that |ak | ≤ M and ‖γk‖1 ≤ M for all k, where
‖ ·‖1 is the L1-norm. Our upcoming result actually uses only this weaker form of boundedness.

13The credibility of such exit strategies, their precise formulation, and the subtlety of whether they amount to a
threat of “equilibrium non-existence” (Cochrane, 2007) or a more “sophisticated” implementation (Atkeson et al.,
2010), are important topics beyond the scope of our paper. The relevant observation for our purposes is, instead,
the following: whereas the boundedness requirement must be combined with the Taylor principle in order to deliver
global determinacy in the standard paradigm, it will alone do the job under our perturbations.

14Of course, the stationarity, linearity, and bounded restrictions embedded in our REE definition must be extended
to its PBE counterpart for this equivalence to be exact.
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3 The Standard Paradigm and the Taylor Principle

In this section, we consider the full-information version of our model, which is, in essence, the

standard New Keynesian model. We first identify the model’s fundamental/MSV solution; we

next show how its determinacy hinges, under full information, on the Taylor principle; and we

finally contextualize our departures from this benchmark.

Full information

Suppose that all consumers know the entire ht , at all t . As shown earlier, it is then as if there

is a representative, fully informed and infinitely lived, consumer—just as in the textbook case.

Accordingly, equation (5), which summarizes equilibrium, reduces to the following:

ct = θt +δEt [ct+1], (9)

where Et [·] ≡ E[·|ht ] is the rational expectation conditional on full information and

δ≡ δ1

1−δ0
= 1+κσ

1+φκσ > 0.

Although δ is necessarily positive, it can be on either side of 1, depending on φ. We will see

momentarily how this relates to equilibrium determinacy. Also note that the above is a single,

first-order, difference equation in ct alone. By contrast, the textbook New Keynesian model maps

to a system of two such equations in the vector (ct ,πt ). What affords the present reduction in

dimensionality is the omission of a forward-looking term in the Phillips curve. But as it will be-

come clear in Section 5, this simplification is inessential. All we have done thus far is to reduce

the standard model’s determinacy question from a two-dimensional eigenvalue problem to the

simpler question of whether δ, or equivalently the sum δ0 +δ1, is higher or lower than 1.

The fundamental/MSV Solution

Because equation (9) is purely forward looking and xt is a sufficient statistic for both the concur-

rent θt and its expected future values, it is natural to look for a solution in which ct is a function

of xt alone. Thus guess ct = γ′xt for some γ ∈ Rn ; use this to compute Et [ct+1] = γ′Rxt ; and sub-

stitute into (9) to get ct = θt +δγ′Rxt = [q ′+δγ′R]xt . Clearly, the guess is verified if and only if γ′

solves γ′ = q ′+δγ′R, which in turn is possible if and only if I −δR is invertible (where I is the n×n

identity matrix) and γ′ = q ′(I −δR)−1.

This is known as the model’s “fundamental” or “minimum state variable (MSV)” solution (Mc-

Callum, 1983). To guarantee its existence, we henceforth impose the following assumption:

Assumption 3. The matrix I −δR is invertible.
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And we write this solution as ct = cF
t , where

cF
t ≡ q ′ (I −δR)−1 xt . (10)

As shown momentarily, other solutions are possible when, and only when, δ ≥ 1. But let us

first note the following property of the MSV solution. Provided that the infinite sum
∑∞

k=0δ
k Rk

exists, we can rewrite this solution as

cF
t =

∞∑
k=0

δkEt [θt+k ].

This illustrates that cF
t can depend on the economy’s history only insofar as this pins down the

current θt or helps forecast its future values. And it verifies that cF
t maps to what Blanchard (1979)

calls the “forward-looking solution,” namely the solution of iterating (9) forward.15

Determinacy under full information and the Taylor Principle

We now turn attention to the question of whether there exist equilibria other than the MSV one.

Let us first fix the language:

Definition 2 (Taylor principle). The Taylor principle is defined by the restriction φ> 1.16

Note thatφ> 1 translates to δ0+δ1 < 1 and, equivalently, δ< 1. The former can be read as “the

overall degree of strategic complementarity is small to guarantee a unique equilibrium,” the latter

as “the dynamics are forward-stable.” And conversely,φ< 1 translates to “the complementarity is

large enough to support multiple equilibria” (δ0+δ1 > 1) and the “dynamics are backward-stable”

(δ > 1). This underscores the tight connection between our way of thinking about determinacy

(the size of the strategic complementarity) and the standard way (the size of the eigenvalue). The

next proposition verifies this point and also characterizes the type of equilibria that emerge in

addition to the MSV solution once the Taylor principle is violated.

Proposition 1 (Full-information benchmark). Suppose that ht is known to every i for all t , which

means in effect that there is a representative, fully informed, agent. Then:

(i) There always exist an equilibrium, given by the fundamental/MSV solution cF
t , as in (10).

15What if
∑∞

k=0δ
k Rk does not exist (i.e., the sum fails to converge)? In this case, cF

t remains an REE but is no
more solvable by forward induction; and its correlation with θt can switch sign. This relates to whether the MSV
solution can feature “neo-Fisherian” effects (Cochrane, 2017; García-Schmidt and Woodford, 2019), a question that
is interesting but separate from that considered here. For our purposes, the relevant quality of the MSV solution is
this: in this solution, history matters only insofar as it is part of xt , the fundamental state variable. This contrasts
with the model’s other solutions, along which payoff-irrelevant histories serve as correlation devices.

16Recall that we have restricted φ≥ 0 and therefore also δ> 0. Had we allowed δ< 0, which is possible if φ itself is
sufficiently negative, the proposition and the discussion after it continue to hold, provided that we recast the Taylor
principle as δ ∈ (−1,1).
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(ii) When the Taylor principle is satisfied (φ> 1), the above equilibrium is the unique one.

(iii) When this principle is violated (φ< 1), there exist a continuum of equilibria, given by

ct = (1−b)cF
t +bcB

t +acηt , (11)

where a,b ∈R are arbitrary scalars and cB
t ,cηt are given by

cB
t ≡−

∞∑
k=1

δ−kθt−k and cηt ≡
∞∑

k=0
δ−kηt−k . (12)

To understand the type of non-fundamental equilibria documented in part (iii) above, take

equation (9), backshift it by one period, and rewrite it as follows:

Et−1[ct ] = δ−1(ct−1 −θt−1). (13)

Since ηt is unpredictable at t −1, the above is clearly satisfied with

ct = δ−1(ct−1 −θt−1)+aηt , (14)

for any a ∈R. As long as δ> 1, we can iterate backwards to obtain

ct =−
∞∑

k=1
δ−kθt−k +a

∞∑
k=0

δ−kηt−k = cB
t +acηt . (15)

This is both bounded, thanks to δ> 1, and a rational-expectations solution to (13), by construc-

tion. This verifies that cB
t +acηt constitutes an equilibrium, for any a ∈R. Part (iii) of the Proposi-

tion adds that the same is true if we replace cB
t with any mixture of it and the MSV solution.

When there are no fundamental shocks, cF
t = cB

t = 0. The solution obtained above reduces

to a pure sunspot equilibrium, of arbitrary aptitude a. In this equilibrium, agents respond to the

sunspot because and only because they expect future agents to keep reacting to it, in perpetuity.17

In the presence of fundamental shocks, the indeterminacy takes an additional, perhaps more

disturbing, form: the same path for interest rates and other fundamentals can result to different

paths for aggregate spending and inflation, even if we switch off the sunspots. Consider, for ex-

ample, the solution given by ct = cB
t . Along it, the outcome is pinned down by past fundamentals

and is invariant to both the current value of θt and any news about its future path—which is the

exact opposite of what happens along cF
t , the MSV solution.

The logic behind cB
t is basically the same as that behind sunspot equilibria: agents respond

to past shocks that are payoff-irrelevant looking forward, because and only because they expect

future agents to keep doing the same, in perpetuity. This statement extends to any equilibrium

of the form (11) for b 6= 0, and explains why all such equilibria can be thought of as both non-

fundamental and backward-looking.18

17This is the same as a traditional, rational-expectations bubble, except that it is not explosive, thanks to δ> 1.
18Blanchard (1979) refers to the analogue of cB

t in his analysis as a “backward-looking fundamental equilibrium;”
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Beyond the full-information benchmark: a challenge and the way forward

Consider conditions (14) and (15). Clearly, these are equivalent representations of the same equi-

librium: the first is recursive, the second is sequential. This equivalence means that all the equi-

libria that can be supported by perfect knowledge of ht = {xt−k ,ηt−k }∞k=0 coincide with those that

can be supported by perfect knowledge of (xt ,ηt ; xt−1,ct−1), or (xt ,ηt ;θt−1,ct−1).19 But what if

agents lack such perfect knowledge, as it is bound to the case in reality?

Regardless of what agents know or don’t, one can always represent any equilibrium in a se-

quential form, or as in equation (8). This is simply because ct has to be measurable in the history

of exogenous aggregate shocks, fundamental or otherwise. But it is far from clear if and when

there is an equivalent recursive representation. In fact, a finite-state recursive representation

is generally impossible when agents observe noisy signals of endogenous outcomes, due to the

infinite-regress problem first highlighted by Townsend (1983).20

This poses a challenge for what we want to do in this paper. On the one hand, we seek to

highlight how fragile all non-fundamental solutions can be to perturbations of the aforemen-

tioned kinds of common knowledge, or to small frictions in coordination. On the other hand, we

need to make sure that these perturbations do not render the analysis intractable.

To accomplish this dual goal, in the rest of the paper we follow two strategies. Our main one,

in Sections 4 and 5, takes off from (15), or the sequential representation. Our second strategy, in

Section 7, circles back to (14), the recursive representation. Both strategies illustrate the fragility

of non-fundamental equilibria, each one from a different angle.

4 Uniqueness with Fading Social Memory

This section contains our main result. We introduce a friction in social memory and show how it

yields a unique equilibrium no matter φ, or the size of the strategic complementarity.

Main assumption

For the purposes of this and the next section, we replace the assumption of a representative,

fully-informed agent with the following, incomplete-information variant:

but this is not really fundamental, in the sense we just explained.
19Note that θt−1 is measurable in xt−1 and that, from (15), only θt−1 and not the whole xt−1 is needed for recursive

replication.
20See Huo and Takayama (2021) for a detailed study of the issue.
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Assumption 4 (Social memory). In every period t , a consumer’s information set is given by

Ii ,t = {(xt ,ηt ), · · · , (xt−s ,ηt−s)},

where s ∈ {0,1, · · · } is drawn from a geometric distribution with parameter λ, for some λ ∈ (0,1].

To understand this assumption, note that herein s indexes the length of the history of shocks

that the consumer knows. Next, recall that the geometric distribution means that s = 0 with

probability λ, s = 1 with probability (1−λ)λ, and more generally s = k with probability (1−λ)kλ,

for any k ≥ 0. By the same token, the fraction of agents who know at least the past k realizations

of shocks is given by µk ≡ (1−λ)k .

One can visualize this as follows under the preceding micro-foundations. At every t , the typi-

cal player (young consumer) learns the concurrent shocks; with probability λ, she learns nothing

more; and with the remaining probability, she inherits the information of another, randomly se-

lected player from the previous period (a currently old consumer). In this sense, λ parameterizes

the speed at which social memory (or common-p belief of past shocks) fades over time.

Main result

The full-information benchmark can be nested with λ = 0, which translates to Ii ,t = ht (perfect

knowledge of the infinite history) for all i and t . But the question of interest is what happens for

λ > 0, and in particular as λ→ 0+. In this limit, the friction becomes vanishingly small, in the

sense that almost every agent knows the history of shocks up to an arbitrarily distant point in

the past. But the following is also true: no matter how small λ is, as long as it is not exactly zero,

we have that limk→∞µk = 0, which means that shocks are expected to be “forgotten” in the very

distant future. As shown next, this causes all non-fundamental equilibria to unravel.

Proposition 2 (Determinacy without the Taylor principle). Suppose that social memory is im-

perfect in the sense of Assumption 4, for any λ> 0. Regardless of φ, or of δ0 and δ1, the equilibrium

is unique and is given by the fundamental/MSV solution.21

A detailed proof is provided in Appendix A. Here, we illustrate the main idea for the special

case in which there are no fundamental disturbances, so the task reduces to checking for the

21Note that the fundamental/MSV solution remains the same as we move away from λ= 0 thanks to the assump-
tion that Ii ,t contains xt always. As mentioned in the Introduction, this helps isolate our contribution from the
existing literature on informational frictions, which focuses on how the MSV solution is influenced by imperfect in-
formation about xt but does not address the determinacy issue. Here, we do the exact opposite, but one could have it
both ways: modify Assumption 4 so as to remove perfect information about xt and reshape the MSV solution, while
also preserving our argument for uniqueness.
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existence of pure sunspot equilibria. That is, we specialize our equilibrium condition to

ct = δ0Ēt [ct ]+δ1Ēt [ct+1]; (16)

we search for solutions of the form ct =∑∞
k=0 akηt−k ; and we verify that ak = 0 for all k.

By Assumption 4, we have that, for all k ≥ 0,

Ēt [ηt−k ] =µkηt−k

where µk ≡ (1−λ)k measures the fraction of the population at any given date that know, or re-

member, a sunspot realized k periods earlier. Future sunspots, on the other hand, are known to

nobody. It follows that, along any candidate solution, average expectations satisfy

Ēt [ct ] = Ēt

[ ∞∑
k=0

akηt−k

]
=

+∞∑
k=0

akµkηt−k

and similarly

Ēt [ct+1] = Ēt

[
a0ηt+1 +

∞∑
k=1

akηt+1−k

]
= 0+

+∞∑
k=0

ak+1µkηt−k .

By the same token, condition (16) rewrites as

+∞∑
k=0

akηt−k︸ ︷︷ ︸
ct

= δ0

+∞∑
k=0

akµkηt−k︸ ︷︷ ︸
Ēt [ct ]

+δ1

+∞∑
k=0

ak+1µkηt−k︸ ︷︷ ︸
Ēt [ct+1]

.

For this to be true for all sunspot realizations, it is necessary and sufficient that, for all k ≥ 0,

ak =µk (δ0ak +δ1ak+1). (17)

Since δ0 < 1, δ1 > 0, and µk ∈ (0,1), the above is equivalent to

ak+1 =
1−δ0µk

δ1µk
ak ; (18)

and because µk → 0 and hence 1−δ0µk
δ1µk

→∞ as k →∞, we have that |ak | explodes to infinity as

k →∞ (and hence so does the variance of ct ), unless a0 = 0. But a0 = 0 implies ak = 0 for all k.

We conclude that the unique bounded equilibrium is ak = 0 for all k, which herein corresponds

to the MSV solution, since we have switched off the fundamental shocks. The proof in Appendix

A extends the argument to the presence of such shocks.

Comparison to full information and the boundedness restriction

We expand on the intuition behind the above argument momentarily. But first, it is useful to

repeat it for the knife-edge case withλ= 0. In this case,µk = 1 for all k and condition (18) becomes

ak+1 = δ−1ak ,
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where, recall, δ ≡ δ1
1−δ0

= 1+κσ
1+φκσ . When δ < 1 (equivalently φ > 1), this still explodes as k → ∞

unless a0 = 0, which means that the unique bounded solution is once again ak = 0 for all k. But

when δ > 1, the above remains bounded, and indeed converges to zero as k →∞, for arbitrary

a0 = a ∈R. This recovers the standard model’s sunspot equilibria.

Note how both the standard argument with λ = 0 and our variant with λ > 0 use the bound-

edness assumption, namely that ak does not explode. But whereas this assumption must be

complemented with the Taylor principle in order to rule out sunspot equilibria in the standard

case, it alone does the job under our perturbation. The Taylor principle has become redundant.22

Intuition and additional remarks

Although the adopted micro-foundations pin down the values for δ0 and δ1 as specific functions

of the underlying preference, technology, and policy parameters, our argument did not rely at all

on these restrictions. With this in mind, let us momentarily ignore these restrictions, set δ0 = 0

and δ1 = δ for arbitrary δ (possibly even negative), and simplify condition (17) to

ak = δµk ak+1. (19)

Focus now on the effects of the first-period sunspot and let { ∂ct
∂η0

}∞t=0 stand for the corresponding

impulse response function (IRF). We can then rewrite condition (19) as

∂ct

∂η0
= δµt

∂ct+1

∂η0
.

This is the same condition as that characterizing the IRF of ct to η0 in a “twin” representative-

agent economy, in which condition (5) is modified as follows:

ct = δ̃tEt [ct+1], with δ̃t ≡ δµt .

Under this prism, it is as if we are back to the standard New Keynesian model but the relevant

eigenvalue, or the overall strategic complementarity, has become time-varying and has been re-

duced from δ to δ̃t . Furthermore, because µt → 0 as t →∞, we have that there is T large enough

but finite so that 0 < δ̃t < 1 for all t ≥ T, regardless of δ. In other words, the twin economy’s dy-

namic feedback becomes weak enough that ct cannot depend on η0 after T. By induction then,

22Recall the standard justification of the boundedness assumption: the monetary authority commits to follow a
Taylor rule as long as πt , or ct , stays within some bounds, and to switch from such an interest-rate-setting regime to
a money-supply-setting regime, or to some other appropriately specified exit strategy, if inflation goes outside these
bounds. As shown most clearly in Atkeson et al. (2010), in the standard paradigm such “hybrid” rules avoid the ad
hoc boundedness assumption but continue to require the Taylor principle to guarantee determinacy. Our result,
instead, suggests that such hybrid rules can do the job without the Taylor principle: it suffices to have a consensus
that the monetary authority will “do whatever it takes” to keep inflation, or the output gap, within some bounds.
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ct cannot depend on η0 before T either.23

This interpretation of our result must be clarified as follows. In the above argument, we stud-

ied the response of ct to η0. This means that our “twin” economy is defined from the perspective

of period 0, and that δ̃t = µtδ measures the feedback from t +1 to t in a very specific sense: as

perceived from agents in period 0, when they contemplate whether to react to η0. To put it differ-

ently, in this argument t indexes not the calendar time but rather the belief order, or how far into

the future agents reason about the effects of an innovation today.

Let us explain. Because η0 is payoff irrelevant in every single period, period-0 agents have an

incentive to respond to it if and only if they are confident that period-1 agents will also respond

to it, which can be true only if they are also confident that period-1 will themselves be confident

that period-2 agents will do the same, and so on, ad infinitum. It is this kind of “infinite chain”

that supports sunspot equilibria when λ = 0. And conversely, the friction we have introduced

here amounts to the typical period-0 agent reasoning as follows:

“I can see η0. And I understand that it would make sense to react to it if I were con-

fident that all future agents will keep conditioning their behavior on it in perpetuity.

But I worry that future agents will fail to do so, either because they will be unaware of

it, or because they may themselves worry that agents further into the future will not

react to it. By induction, I am convinced that it makes sense not to react to η0 myself.”

Three remarks complete the picture. First, the reasoning articulated above, and the proof

given earlier, can be understood as a chain of contagion effects from “remote types” (uninformed

agents in the far future) to “nearby types” (informed agents in the near future) and thereby to

present behavior. This underscores the high-level connection between our approach and the

global games literature (Morris and Shin, 1998, 2003). Second, the aforementioned worries don’t

have to be “real” (objectively true). That is, we can reinterpret Assumption 4 as follows: agents

don’t necessarily forget themselves but believe that others will forget.24 Finally, consider how

such worries influence the response to a persistent innovation in the fundamental. Even if all

future agents fail to react to it, current agents have an incentive to react to it, because it has a di-

rect effect on their own payoffs. This highlights the following point: although all full-information

equilibria, including the MSV solution, embed perfect coordination, the MSV solution is not as

fragile as all other equilibria to the friction under consideration.

23Although this argument assumed δ0 = 0, it readily extends to δ0 6= 0. In this case, the twin economy has both δ0

and δ1 replaced by, respectively, µtδ0 and µtδ1. That is, both types of strategic complementarity are attenuated.
24Strictly speaking, this requires a modification of the solution concept: from REE to PBE with misspecified priors

about one another’s knowledge, along the lines of Angeletos and Sastry (2021). But the essence is the same.
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Alternative monetary policies and observation of current interest rates

Proposition 4 directly extends if we add a forward-looking term to the Taylor rule, for instance if

we let it = zt+φEt [πt+1]. This merely changes the exact values ofδ0 andδ1, which were never used

in our argument. What we cannot readily nest is a policy of the form it = zt +φππt−1, because (5)

does not allow for backward-looking terms. See, however, Appendix B for an illustration of why

this does not upset our result, insofar as, of course, Assumption 4 is maintained.

In principle, this assumption requires that the consumer be uncertain about, or inattentive

to, the current interest rate it . An important exception to this statement is when φ = 0 : in this

case, knowledge of zt translates to knowledge of it . That is, for the special case of interest rate

pegs, our uniqueness result is consistent with perfect knowledge of the policy instrument. As for

the more general case in which φ 6= 0, any uncertainty about the current interest rate becomes

vanishingly small in the limit as λ→ 0. This is a direct implication of Proposition 3 below.

As similar point applies to the uncertainty consumers face about current income, or current

prices: this uncertainty, too, vanishes as λ→ 0. What is more, we can reconcile our uniqueness

result with perfect knowledge of current outcomes if we do one of the following: (i) we abstract

from the possibility that consumers may try to extract information from concurrent outcomes

about the past sunspots, as explained in Appendix B; or (ii) we allow for such signal extraction

but invoke a different perturbation argument, that developed in Section 4.

Persistent sunspots and endogenous state variables

Let us now revisit the assumption that the sunspot ηt is uncorrelated over time. Proposition 2

readily extends to an arbitrary ARMA process for the sunspot, except for one knife-edge case:

when ηt follows an AR(1) process with autocorrelation exactly equal to δ−1. In this case, ct =
cF

t +aηt is an equilibrium for any a and is supported by knowledge of (xt ,ηt ) alone.

Of course, such a situation seems exceedingly unlikely if the sunspot is an exogenous random

variable. But could it be that an endogenous variable, such as ct−1 or πt−1, can serve the same

function? We will return to this question in Section 7, but we offer a preliminary answer here:

Proposition 3 (Nearly perfect information about endogenous outcomes). Under Assumption 4,

almost all agents become arbitrarily well informed about arbitrarily long histories of ct as λ→ 0:

for any mapping from ht to ct as in Definition 1, any K <∞ arbitrarily large but finite, and any

ε,ε′ > 0 arbitrarily small but positive, there exists λ̂ > 0 such that, whenever λ ∈ (0, λ̂), we have

V ar
(
E i

t [ct−k ]− ct−k
)≤ ε for all k ∈ {0,1, · · · ,K }, for at least a mass 1−ε′ of agents and for every t .

In this sense, Proposition 2 is compatible with nearly perfect knowledge of both current and
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past outcomes: it is as if agents have received arbitrarily precise signals about {ct ,ct−1, ...,ct−K },

and by extension about {πt ,πt−1, ...,πt−K } and {it , it−1, ..., it−K }, too, for arbitrarily large K .

5 A Generalization

In this section we extend Proposition 2 to a more flexible class of games, featuring rich forward-

looking behavior; we next explain how this helps nest more standard New Keynesian economies,

where consumers are long-lived and firms set prices optimally; and we finally expand on the

interpretation of Assumption 4 in a market context.

An abstract generalization

At this point, it should be clear that the micro-foundations of equation (5) played no essential role

in our argument. This suggests the following generalization. Maintain our assumptions about

stochasticity and information but replace equation (5) with the following:

ct = Ēt

[
θt +

+∞∑
k=0

δk ct+k

]
(20)

for some scalars {δk }∞k=0, with δ0 < 1 and∆≡ δ0+∑∞
k=1 |δk | <∞. And interpret this equation as the

average best response of a dynamic game in which: (i) a continuum of players acts in each period;

(ii) a player’s optimal strategy is given by ci ,t = Ei ,t
[
θt +∑+∞

k=0δk ct+k
]

for any t , any realization

of her information set Ii ,t , and any strategy played by other players; and (iii) the coefficient δk

identifies the slope of an agent’s best response with respect to the average action k periods later.

This generalization allows outcomes to depend on expectations of outcomes in the entire

infinite future, not just the next period; and this dependence could be of arbitrary size and sign.25

The analogue of the sum δ0 + δ1 from our main analysis, a measure of the overall strength of

strategic interdependence, is now given by ∆. With ∆ > 1, multiple self-fulfilling equilibria can

be supported under full information, in a similar fashion as in Section 3. But they unravel once

λ> 0, because this again breaks the “infinite chain” behind them.

We verify this claim below. The proof is more convoluted than that of Proposition 4, and is

delegated to Appendix A. But the basic logic is the same.

Proposition 4 (Generalized result). Consider the generalization above, impose Assumption 4, and

let λ> 0. Whenever an equilibrium exists, it is unique and is given by the MSV solution.26

25We are only restricting δ0 < 1. This is necessarily true in the (extended) New Keynesian model we describe
next as long as φ ≥ 0 and it means that multiplicity can originate only from the dynamic feedback between ct and
{Ēt [ct+1]}∞k=1, as opposed to the static feedback between ct and Ēt [ct ].

26The MSV solution is now given by cF
t = γ′xt , where γ solves γ′ = q ′+δ0γ

′+ ∑∞
k=1δk Rkγ′. Clearly, this solution
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Nesting a larger class of New Keynesian economies

We now sketch how the above generalization helps accommodate a larger class of New Keynesian

economies than the specific one employed in our main analysis. In particular, let us make the

following “minimal” assumption about aggregate consumption: that it can be expressed as a

linear function of the average expectations of income and interest rates, namely

ct =C
({

Ēt [yt+k ]
}∞

k=0 ,
{
Ēt [rt+k ]

}∞
k=0

)
, (21)

where rt ≡ it −πt+1 and C is a linear function. This generalizes equation (1) from our baseline

model, allowing aggregate consumption to depend on expectations about interest rates and in-

come at all future periods, not just the next period. Below we will show how to obtain (21) from

a fully micro-founded New Keynesian economy, in which consumers have infinite horizons. For

now, take equation (21) as given and think of it as a linear but otherwise flexible specification of

the intertemporal Keynesian cross (Auclert et al., 2018).

Consider next the supply side. We now replace our baseline model’s ad hoc, static Phillips

with the standard, micro-founded, and forward-looking New Keynesian Phillips curve:

πt = κyt +βEt [πt+1]+κξt , (22)

where κ ≥ 0 and β ∈ (0,1) are fixed scalars and ξt is, again, a cost-push shock. The micro-

foundations of (21) are omitted because they are entirely standard: whenever given the opportu-

nity by the “Calvo fairy,” firms optimally reset their prices under rational expectations and with

full information.27 Finally, we let the Taylor rule be

it = zt +φy yt +φππt , (23)

for some fixed scalars φc ,φπ ≥ 0 and some random variable zt .

The “famous” three equations are now given by (21), (22) and (23), along with yt = ct (by mar-

ket clearing). Solving (22) and (23) for inflation and the interest rate, and replacing these solutions

into (21), we obtain ct as a linear function of
{
Ēt [yt+k ]

}∞
k=0, or equivalently of

{
Ēt [ct+k ]

}∞
k=0 . That

is, the economy is reduced to a special case of equation (20). Similar to equation (5) in our base-

line model, this equation conveniently summarizes all the underlying GE feedbacks and helps

translate the economy to a game among the consumers.28 And via Proposition 4, our uniqueness

exists if and only if (1−δ0)I −∑∞
k=1δk Rk exists and is invertible, which is the present analogue of Assumption 3.

27The assumption that firms, unlike consumers, have full information simplifies the exposition and maximizes
proximity to the standard New Keynesian model, without affecting the essence. For, as long as the informational
friction is present in the consumer side, it is not necessary to “double” it in the production side.

28Accordingly, the coefficients {δk }∞k=0 can be expressed as functions of the following “deeper” parameters, which

regulate these feedbacks: the MPCs out of current and future income, { ∂C
∂yk

}∞k=0; the sensitivities of consumption to

current and future real interest rates, { ∂C
∂yk

}∞k=0; the slope, κ, and the forward-lookingness, β, of the NKPC; and the
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result directly extends to the larger class of New Keynesian economies considered here, provided

of course that Assumption 4 or an appropriate variant thereof holds.

Micro-foundations, markets, and information

We now expand on the micro-foundations behind (21), our intertemporal Keynesian cross as-

sumed above. We only sketch the main ideas here; the proof of Corollary 1 contains all details.

Consider a “perpetual youth,” overlapping generations economy along the lines of Blanchard

(1985). Preferences are standard, given by expected lifetime utility, and the survival rate is invari-

ant to age, given by ω ∈ (0,1]. When a consumer dies, she gets replaced by a newborn consumer,

who has zero wealth. As in Blanchard (1985), consumers can trade actuarily fair annuities, whose

return conditional on survival is given in equilibrium by the risk-free rate plus ω. Furthermore,

consumers have perfect recall over their lifetime. But unlike Blanchard (1985), information is not

necessarily transferred from dying consumers to newborn consumers. This allows us to think

of the decay in social memory, namely Assumption 4, as a byproduct of natural death. But this

interpretation is, of course, not strictly needed.29

On top of the aggregate shocks, there are various kinds of idiosyncratic shocks. This allows

not only for more realism but also for a natural reason for why individual outcomes, even if ob-

served perfectly, may not reveal the underlying aggregate shock (which for purposes translates

to guaranteeing lack of common knowledge of the payoff irrelevant histories). At the same time,

this opens the door to the possibility that consumers confuse aggregate shocks for idiosyncratic

ones (Lucas, 1972), and more specifically that they confuse a sunspot for an idiosyncratic income

or rate-of-return shock (Benhabib et al., 2015). This possibility is not only costly to deal with but

also orthogonal to the issues of concern here.30 We thus assume it away.

policy coefficients, φπ and φc . For instance, in the micro-founded OLG economy that we describe momentarily,
equation (22) specializes to equation (24), implying the following formula for δk :

δk ≡ (
1−βω−βωσφy

)(
βω

)k +ωσκ
(
−βφπ+

(
1−βωφπ

) 1−ωk

1−ω

)
βk ;

Note then that δ0 < 1 and ∆<∞, which means that the only restrictions imposed on (20) are readily satisfied.
29Strictly speaking, the above interpretation restricts λ= 1−ω, where 1−ω is the probability of death. But we could

have λ < 1−ω if newborn consumers inherit some of the information of the dying consumers. And conversely, we
could justify λ> 1−ω by letting consumers be altruistic towards future generations. For instance, if consumers are
“dynasties” as in Barro (1974), they choose consumption as if they are infinitely lived (ω= 0), but we can still justify
λ> 0 as the product of physical death. Last but not least, we can think of λ> 0 as the by-product of bounded recall
within the lifecycle of an individual. This would add a behavioral flavor to our approach, which we welcome but do
not strictly require.

30For instance, when agents are rationally confused between aggregate and idiosyncratic shocks, multiple equilib-
ria may emerge in the feedback between others’ behavior and one’s optimal signal extraction problem; see Benhabib
et al. (2015) and Gaballo (2017) for examples. But this kind of multiplicity is clearly orthogonal to the one we are
concerned with in this paper.
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By aggregating the individual consumption functions, and using the above assumption, we

can arrive at the following aggregate consumption function:

ct =
(
1−βω){+∞∑

k=0

(
βω

)k Ēt
[

yt+k
]}−βωσ

{+∞∑
k=0

(
βω

)k Ēt [it+k −πt+k+1]

}
, (24)

where σ> 0 is the elasticity of intertemporal substitution and β ∈ (0,1) is the subjective discount

factor. This equation has a simple interpretation: the first term captures permanent income;

the second term captures intertemporal substitution.31Clearly, this equation is directly nested in

(21). The following is then an immediate implication of the earlier results in this section.

Corollary 1. Consider the micro-founded OLG economy described above. The equilibrium is unique

and is given by the MSV solution regardless of monetary policy, provided (i) that consumers do not

misperceive aggregate for idiosyncratic shocks and (ii) that we impose Assumption 4 with regard to

what agents know about the aggregate shocks.

We think that these assumptions are the right ones for our purposes: the one rules out misper-

ceptions of sunspots for idiosyncratic fundamentals, the other formalizes the friction of interest.

But they also create a tension: in a realistic market context, the available information may nat-

urally confound different shocks (Lucas, 1972; Benhabib et al., 2015), plus one’s information is

endogenous to others’ choices, and our approach cannot accommodate these possibilities.

In our view, this tension is moderated by the fact that we have concentrated on the limit as

λ→ 0+, which, as explained at the end of the previous section, translates to nearly perfect, pri-

vate knowledge of arbitrarily long histories of aggregate outcomes, or the average actions of oth-

ers. But let us be clear: so far we have established equilibrium uniqueness for a sequence of

exogenous-information economies that converges to the standard, full-information benchmark

as λ→ 0, and it is not clear how exactly this maps to endogenous-information economies.

This consideration, along with our earlier discussion about recursive equilibria, motivates

the analysis of Section 7. There, we show how our message goes through if replace Assumption 4

with two other assumptions, which allow for direct and even perfect signals of the aggregate out-

comes (and hence also for endogenous coordination devices). But before exhausting the readers’

patience with these robustness exercises, we discuss what our results mean for applied purposes.

31The only subtlety behind this equation is that we have used the aforementioned assumption—that consumers do
not confuse aggregate shocks for idiosyncratic shocks—to replace the average expectations of individual conditions,
which is what matters at the micro level, with the average expectations of the corresponding aggregate variables. See
the proof of Corollary 1 for the formal statement of this assumption and for a detailed derivation of equation (24).
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6 Discussion: FTPL, stabilization, and flexible prices

In this section, we extend the analysis to allow for fiscal policy and explain in detail what our

result means vis-a-vis the FTPL. We also offer a refined take on the equilibrium selection and

stabilization functions of monetary policy,

On the Fiscal Theory of the Price Level

Let us momentarily go back to the basics: the textbook, three-equation, New Keynesian model.

Add now a fourth equation, the government’s intertemporal budget constraint, written com-

pactly (and in levels) as follows:
Bt−1

Pt
= PV St , (25)

where Bt−1 denotes the outstanding nominal debt, Pt denotes the nominal price level, and PV St

denotes the present discounted value of primary surpluses. Does the incorporation of this equa-

tion make a difference for the model’s predictions about inflation and output?

The conventional approach says no by assuming that fiscal policy is Ricardian, in the sense

that it adjusts to make sure that (25) holds along the MSV solution of the model’s other three

equations. The FTPL argues the opposite by letting (25) be satisfied for a different solution, and

by letting that solution identify the model’s overall equilibrium.

To illustrate, consider a negative shock to tax revenue. Because such a shock does not enter

the New Keynesian model’s three famous equations, it does not change its MSV solution. But it of

course reduces PV St , other things equal. Thus suppose that the following is true after the shock:

Bt−1

P MSV
t

> PV St ,

where P MSV
t denotes the price level predicted by the MSV solution. How is equilibrium restored?

One possibility (the Ricardian regime) is that government raises taxes and/or cuts spending so as

to make sure that (25) is satisfied in the MSV solution. But another possibility (the non-Ricardian

regime) is that the government fails to do so, and yet the government remains solvent, because a

different solution obtains and along it the price level adjusts to

Pt = P F T PL
t ≡ Bt−1

PV St
> P MSV

t .

In a nutshell, the FTPL selects a particular sunspot equilibrium and uses it to clear the govern-

ment’s intertemporal budget.

As mentioned in the Introduction, Kocherlakota and Phelan (1999), Buiter (2002), and others

have argued that a non-Ricardian policy amounts to an off-equilibrium threat by the government

to “blow up” its budget. But Cochrane (2005) firmly objects to this interpretation. He proposes
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that (25) must be read as a market valuation equation, instead of an actual constraint on fiscal

policy. This recasts (25) as an equilibrium condition, that is, as an equation that by definition

must only hold in equilibrium and not off equilibrium. Under this prism, the blow-up criticism

of the FTPL becomes inapplicable; and one is pressed to think that, perhaps, the FTPL solution

is the only full equilibrium.

Our analysis helps resolve this confusion. From the preceding analysis, we know that, as long

as our informational assumptions are satisfied, the MSV solution of the model’s famous three

equations is the unique REE of the economy when there is no government. What may not be

immediately obvious is how this result and the micro-foundations behind it extend once we add

fiscal policy and incorporate the model’s fourth equation. The details are worked out in Appendix

A , but the basic ideas are summarized here.

We make the following modifications to the micro-foundations spelled out in the previous

section. Finally, we let consumers have infinite horizons (ω = 1), or be “dynasties” as in Barro

(1974). Second, we add government spending as an exogenous random variable, include it in

the economy’s fundamentals, and specify the fiscal authority’s policy rule for taxes and new debt

issuances as follows:

(τt ,bt ) = F
(
{ct−k , g t−k ,τt−k , pt−k ,bt−k−1}∞k=0;ht ) ,

where τt denotes taxes, g t denotes government spending, bt denotes the quantity of nominal

bonds issued at t , and F is arbitrary.

Finally, we impose the government budget (25). Following the previous discussion, we remain

agnostic on whether (25) is a “true” constraint on fiscal policy or a valuation equation. Instead, we

make the following key observation. As long as consumers understand that (25) must hold and

do not misperceive an aggregate change in fiscal policy as an idiosyncratic shock, aggregation of

their optimal consumption functions yields the following log-linearized condition for ct :

ct =
(
1−β){+∞∑

k=0
βk Ēt

[
yt+k − g t+k

]}−βσ
{+∞∑

k=0
βk Ēt [it+k −πt+k+1]

}
. (26)

This is the same as equation (24) in the previous section, except for two small twists: ω = 1, and

yt+k is replaced with yt+k − g t+k , because consumers understand that the government absorbs

part of the aggregate output.32 Crucially, neither the level of government debt nor the expected

path of taxes shows up in this condition; and this is true despite the fact that no assumption has

been made thus far about how consumers form expectations regarding one another’s behavior

or any aggregate variable. In other words, to reach condition (26) we have not used the full bite

of REE; we have only assumed that consumers have first-order knowledge of condition (25) and

32See the proof of Corollary 2 in Appendix A for a detailed derivation.
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do not confuse aggregate changes in the timing of taxes for idiosyncratic shocks.

In any REE, the following two properties hold in addition to (26): first, consumers understand

that the goods markets must clear; and second, consumers understand that inflation obeys the

NKPC (22) and that monetary policy follows the Taylor rule (23). The first property allows us to

replace the expectations of {yt+k − g t+k } in condition (26) with those of {ct+k }; the second allows

us to do the same for expectations of {πt+k } and {it+k }.33

Putting everything together, we arrive at the same fixed-point relation between ct and the av-

erage expectations of {ct+k }, or the same “game” among the consumers, as when fiscal policy is

absent. That is, the equilibrium process for ct must still solve equation (20);34 under our informa-

tional assumptions, the MSV solution of this equation continues to identify the unique possible

equilibrium process for ct ; conditional on the latter, the processes for πt and it are uniquely

pinned down by the NKPC curve and the Taylor rule; and the fiscal authority’s policy rule, F, does

not enter the determination of any of these objects.

Corollary 2. Whenever an equilibrium exists, it corresponds to the MSV solution of equation (20)

and has the following property: for a given Taylor rule, inflation and output are invariant to both

the outstanding level of debt and to the fiscal rule F , which describes how deficits adjust to eco-

nomic conditions. Finally, this is true regardless of whether monetary policy is active (φ > 1) or

passive (φ< 1).

The corollary starts with the qualification “whenever an equilibrium exists” to account for the

following: even though equation (20) is well defined for every fiscal rule F and is invariant to it,

the government may of course be insolvent for some fiscal rules. This translates as follows:

Corollary 3. Fiscal policy has to be “Ricardian,” or else it leads to equilibrium non-existence.

Table 1 helps position this lesson in the literature. The left panel, which is basically repro-

duced from Leeper (1991), summarizes the state of the art. According to it, the non-Ricardian

assumption is consistent with equilibrium existence, and uniquely pins down inflation and out-

put when monetary policy is passive. The right panel summarizes our own take on the issue: the

non-Ricardian assumption is equated to equilibrium non-existence regardless of whether mon-

etary policy is active or passive. This explains the sense in which our approach transforms the

rejection of the FTPL from a “religious choice” to a logical necessity—provided, of course, that

one accommodates the type of informational/coordination friction we have formalized here.

33To be precise, although the expectations of {g t+k } drop out in the first step, they reemerge in the second step as
long asκ> 0, because government spending enters the NKPC as a cost push shock. But this amounts to a redefinition
of ξt , or θt , and is of no consequence for our purposes.

34Minor qualification: g t must now be included in the definition of θt , but this makes not difference for the argu-
ment made here.
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Standard Result

Fiscal Policy is
Ricardian Non-Ricardian

Taylor Principle holds Determinacy No equilibrium
does not hold Multiplicity Determinacy

Our Result

Fiscal Policy is
Ricardian Non-Ricardian

Taylor Principle holds Determinacy No equilibrium
does not hold Determinacy No equilibrium

Table 1: Standard Paradigm vs Our Approach

In closing, let us iterate that the entire argument presented here is valid whether condition

(25) represents a “true” constraint on fiscal policy, which is the conventional take, or a valuation

equation, which is Cochrane (2005)’s preferred interpretation. Furthermore, because we work

directly with the optimal consumption functions (which embed not only the consumers’ Euler

conditions but also their transversality conditions and their budget constraints), we avoid the

criticism that the New Keynesian model’s DIS equation is an incomplete description of consumer

behavior. We hope that these points help resolve some of the confusion surrounding the FTPL.35

Having said that, let us also emphasize that our results leave ample room for fiscal consider-

ations, such as seigniorage or the real debt burden, to enter the monetary authority’s choice of

{zt } and thereby the unique equilibrium. For instance, even if markets are complete and Ricar-

dian equivalence holds, higher deficits could trigger an inflationary boom today insofar as they

are (rationally) interpreted as news about lax monetary policy in the future. In other words, the

model’s conventional/fundamental equilibrium itself is logically consistent with the “unpleas-

ant arithmetic” of Sargent and Wallace (1981), the Ramsey literature on how monetary policy can

substitute for fiscal policy and/or ease tax distortions (e.g., Chari et al., 1994; Benigno and Wood-

ford, 2003), and some topical discussions. Perhaps this is what the FTPL is meant to be about,

once freed up from the equilibrium selection conundrum.

Feedback rules, and equilibrium selection vs stabilization

We now shift attention to another issue: the conventional separation of the equilibrium selection

and stabilization functions of monetary policy, and our fresh take on it.

Go back to the textbook, full-information, case and let {i o
t ,πo

t ,co
t } denote the optimal path for

interest rates, inflation, and output, as a function of the underlying demand and supply shocks.36

35In the same vein, consider the following narrative from Cochrane (2005) about how one can think about the
off-equilibrium adjustment from Pt 6= P F T PL

t , say Pt < P F T PL
t , to Pt = P F T PL

t . Cochrane (2005) proposes that, when
Pt < P F T PL

t , or equivalently Bt−1/Pt > PV St , the consumers perceive an increase in their wealth and demand more
goods, which in turns causes “inflationary pressures” and pushes Pt towards P F T PL

t . Under the prism of our analysis,
this narrative requires either a departure from rationality, in the sense that consumers must not understand the
validity of equation (25), or a confusion in the tradition of Lucas (1972).

36We do not need to specify the objective under which this path is optimal because the arguments made here hold
no matter this objective.
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If the monetary authority observes these shocks, the optimal path can be implemented as the

economy’s unique equilibrium by having the monetary authority obey the following feedback

rule, for any φ> 1:

it = i o
t +φ(πt −πo

t ),

which in turn is nested in (4) with zt = i o
t −φπo

t . Note then that the precise value of φ is indeter-

minate, subject only to the restriction that φ > 1, and it does not affect the properties of the op-

timum. That is, the feedback from πt to it serves only the role of equilibrium selection; macroe-

conomic stabilization is instead achieved via the optimal design of zt , and in particular via its

correlation with the underlying demand and supply shocks.37

What if the monetary authority does not observe these shocks? Feedback rules may then be

useful for the purpose of replicating the optimal contingency of interest rates on shocks, or for

optimal stabilization. And, in general, this function could be at odds with that of equilibrium

selection. See Galí (2008, p.101) for an illustration with cost-push shocks, and Loisel (2021) for

a general formulation. Seen from this perspective, our results help ease the potential conflict

between equilibrium selection and stabilization: because feedback rules are no more needed for

equilibrium selection, they are “free” to be used for stabilization.

At the same time, our results pave the way for recasting the spirit of the Taylor principle as a

form of stabilization instead of a form of equilibrium selection. By this, we mean the following.

When the equilibrium is unique (whether thanks to our perturbations or otherwise), sunspot-

like volatility may still obtain from overreaction to noisy public news (Morris and Shin, 2002) or

shocks to higher-order beliefs (Angeletos and La’O, 2013). In particular, suppose that we relax As-

sumption 4 in our main analysis so as to remove common knowledge of the fundamental state,

xt , and accommodate independent shocks to higher-order beliefs of future monetary policy or

other fundamentals. Then, we can maintain the MSV solution as the economy’s unique equilib-

rium but also let this solution fluctuate in response to these shocks. In the eyes of an outside

observer, the economy may appear to be ridden with “animal spirits.” And a policy that “leans

against the wind” may well help contain the effects of such animal spirits basically in the same as

it does with other, less exotic, demand and supply shocks.

Sticky vs flexible prices

Our analysis has allowed the Phillips curve to have an arbitrary slope κ ∈ [0,∞). In this sense, our

results do not depend on the degree of nominal rigidity, and they allow in particular the limit with

37While some textbook treatments stop here, the most careful ones combine the Taylor principle with escape
clauses that take care of unbounded equilibria. See, e.g., Atkeson, Chari, and Kehoe (2010).
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nearly flexible prices (κ→∞). But what about the knife-edge case in which prices are perfectly

flexible (“κ=∞”)?

To ease the exposition, let us address this question in our baseline model. Maintain our as-

sumptions about consumers and monetary policy, but modify the production side so that prices

are truly flexible and output is given by a fixed endowment (so that ct = yt = 0 in log-deviations).

Clearly, our characterization of the individual optimal consumption function in (1) is still valid,

and so does the intertemporal Keynesian cross obtained in condition (2), which we repeat below:

ct = Ēt

[
1

1+βct + β
1+βct+1 − β

1+βσ(it −πt+1 −%t )
]

But now the assumption of a fixed endowment together with market clearing implies that ct = 0,

which in turns means that the above condition reduces to

Ēt
[
it −πt+1 −%t

]= 0.

This is no other than the Fisher equation, only adapted to heterogeneous information.

For simplicity, switch off the discount rate shock, so that %t = 0, and let monetary policy peg

the nominal interest rate at its steady-state value, so that φ = 0 and it = zt = 0. Recall that these

restrictions are consistent with our main result, which guaranteed uniqueness for an arbitrary

degree of nominal rigidity. But now that prices are perfectly flexible, these restrictions imply that

the Fisher equation reduces to

Ēt [πt+1] = 0.

Two properties are then evident. First, there is no feedback from expectations of future outcomes

to current outcomes, or no intertemporal coordination of the type that has been at the core of our

analysis thus far. And second, equilibrium pins down only the average expectation of inflation

and not its precise realizations. In particular, πt = aηt , where ηt is the sunspot and a ∈ R is an

arbitrary scalar, is an REE under our main assumption for every λ > 0 and, more generally, for

every information structure such that Ii ,t merely contains ηt . In a nutshell, our uniqueness result

does not apply and we are basically back to Sargent and Wallace (1981).

Although this clarifies the applicability of our result, we suspect that it ultimately speaks to

an inherent “bug” of the baseline RBC model, or equivalently of the flexible-price core of the

New Keynesian model. By design, this otherwise important conceptual benchmark is not well

suited for understanding how nominal prices are determined: the nominal price level is both

payoff-irrelevant and set by an “invisible hand.” By contrast, the New Keynesian model ties the

adjustment in nominal prices to the optimizing behavior of specific players, the firms, and allows

one to recast the whole economy as a game between the firms and the consumers.38 The pres-

38This point might have been blurred by our choice to solve out firm behavior and reduce the economy to a game
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ence of some nominal rigidity was essential for obtaining such a game in the first place. But once

we got to this point, that is, once we properly accounted for both real output and nominal prices

as the average actions of specific players, our analysis could proceed without any restriction on

how large or small the nominal rigidity might be.

What about models that assume away nominal rigidities but let nominal prices be otherwise

relevant, such as models with money in the utility function or Samuelson’s classic about money

as a bubble? Proposition 5 has already hinted at what it takes for our uniqueness result to apply:

the multiplicity has to be sustained by an infinite chain of intertemporal coordination. But the

translation of this insight to the aforementioned or other applications is an open question.

7 Robustness: Observing Past Outcomes

In the end of Section 4, we highlighted that, although our key assumption excluded direct ob-

servation of the past endogenous outcomes, such as output and inflation, it allowed agents to

face arbitrarily little uncertainty about them, in the sense of Proposition 3. We now push this

argument further, by showing how uniqueness can obtain if we let agents have direct, and pos-

sibly even perfect, knowledge of the past outcomes. This also circles back to our discussion of

sequential and recursive representations of full-information equilibria.

Recursive sunspot equilibria: an example of fragility

Consider our baseline model, where consumption choices must solve

ci ,t = Ei ,t [(1−δ0)θt +δ0ct +δ1ct+1]. (27)

In the full-information case, this boils down to

ct = θt +δEt [ct+1],

where δ= δ1
1−δ0

. Let us momentarily shut down the fundamentals, assume δ> 1, and focus on the

following, pure sunspot equilibrium:

ct = cηt ≡
∞∑

k=0
δkηt−k . (28)

As noted earlier, this can be represented in recursive form as

ct = ηt +δ−1ct−1. (29)

among the consumers alone. But recall that this game embeded the best-responses of the firms, via the NKPC, which
translates as follows: what we really did in this paper was to study the game played by both consumers and firms, for
any given monetary policy rule.
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It follows that perfect knowledge of yesterday’s outcome can readily substitute for perfect knowl-

edge of the infinite history of past sunspots. Intuitively, ct−1 serves as a sufficient statistic of the

infinite history of sunspots.

Taken at face value, this challenges our message that multiplicity hinges on “infinite” mem-

ory: it suffices that agents have very short memories, provided that they keep track of the past

average action, here ct−1 (or πt−1). But as shown next, this logic itself is fragile.

Abstract from shocks to the fundamentals, let sunspots be Gaussian, and let information sets

be given by

Ii ,t = {ηt , si ,t }, with si ,t = ct−1 +εi ,t .

Here, si ,t is a private signal of the past aggregate outcome, εi ,t ∼ N (0,σ2) is idiosyncratic noise,

and σ≥ 0 is a fixed parameter. When σ= 0, we nest the case studied above. When instead σ> 0

but arbitrarily small, agents’ knowledge of the past outcome is only slightly blurred by idiosyn-

cratic noise. As shown next, this causes sunspot equilibria to unravel.39

Proposition 5. Consider the economy described above. For any σ> 0, not matter how small, and

regardless of δ0 and δ1, there is a unique equilibrium and it corresponds to the MSV solution.

The proof is actually quite simple. Since information sets are given by Ii ,t = {ηt , si ,t }, any

(stationary) strategy can be expressed as

ci ,t = aηt +bsi ,t ,

for some coefficients a and b. Then, ct+1 = aηt+1 + bct ; and since agents have no information

about the future sunspot, Ei ,t [ct+1] = bEi ,t [ct ]. Next, note that Ei ,t [ct ] = aηt +bχsi t , where

χ≡ V ar (ct−1)

V ar (ct−1)+σ2
∈ (0,1].

Combining these facts, we infer that condition (27), the individual best response, reduces to

ci ,t = Ei ,t [δ0ct +δ1ct+1] = (δ0 +δ1b)Ei ,t [ct ] = (δ0 +δ1b)
{

aηt +bχsi ,t
}

.

It follows that a strategy is a best response to itself if and only if

a = (δ0 +δ1b)a and b = (δ0 +δ1b)bχ. (30)

Clearly, a = b = 0 is always an equilibrium, and it corresponds to the MSV solution. To have a

sunspot equilibrium, on the other had, it must be that a 6= 0 (and also that |b| < 1, for it to be

bounded). From the first part of condition (30), we see that this a 6= 0 if and only if δ0 +δ1b = 1,

39The noise is herein assumed to be entirely idiosyncratic, but Proposition 5 continues to hold if the noise has
both aggregate and idiosyncratic components. It is only in the knife-edge case where the noise is perfectly correlated
across agents that multiplicity comes back.
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which is equivalent to b = δ−1. But then the second part of this condition reduces to 1 =χ, which

in turn is possible if and only if σ= 0 (since V ar (ct−1) > 0 whenever a 6= 0).

Let us connect this result to our earlier discussion of sequential and recursive equilibria. In

the main analysis, we took off from the sequential form (28), represented information in terms

of direct signals of the infinite history of shocks, and showed how a small perturbation in this

domain results in a unique equilibrium. Here, we took off from the recursive form (29), repre-

sented information in terms of the relevant endogenous state variable, and showed how a small

perturbation in this domain results, once again, in a unique equilibrium.

At this point one may raise the following question: could it be that multiple equilibria are

supported by noisy idiosyncratic observations of longer histories of aggregate consumption or

inflation? Or perhaps of some other, more “intelligently” chosen, endogenous state variable? We

cannot address this question in full generality, because of the complexities we alluded to earlier

(signal-extraction and infinite regress). But we offer a complementary approach next, which lets

past outcomes be observed perfectly and nevertheless obtains uniqueness.

Breaking the infinite chain even when past outcomes are perfectly observed

In the above exercise we focused on pure sunspot equilibria. Let us now bring back the funda-

mental shocks and consider any of the equilibria of the form cB
t + acηt , which, recall, were ob-

tained by “solving the model backwards.” These can replicated by letting Ii ,t ⊇ {ηt ,ct−1,θt−1} and

by having each consumer play the following recursive strategy:

ci ,t = δ−1(ct−1 −θt−1)+aηt . (31)

Contrary to the strategy that supported the pure sunspot equilibrium, the above strategy requires

that the agents at t know not only ct−1 but also θt−1. Why is knowledge of θt−1 necessary? Because

this is what it takes for agents at t to know how to undo the direct, intrinsic effect of θt−1 on the

incentives of the agents at t−1, or to “reward” them for not responding to their intrinsic impulses.

This suggests that the “infinite chain” that supports all backward-looking equilibria—and all

sunspot equilibria, as well— breaks if the agents at t do not know what exactly it takes to reward

the agents at t −1. To make this point crisply, we proceed as follows.

First, we introduce a new fundamental disturbance, denoted by ζt ; we modify equation (5) to

ci ,t = Ei ,t [(1−δ0)(θt +ζt )+δ0ct +δ1ct+1]; (32)

and we let ζt be drawn independently over time, as well as independently of any other shock in

the economy, from a uniform distribution with support [−ε,+ε], where ε is positive but arbitrarily

small. This let us parameterize the payoff perturbation by ε, or the size of the support of ζt .
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Second, we abstract from informational heterogeneity within periods, that is, we let Ii ,t = It

for all i and all t . This guarantees that ci t = ct for all i and t , and therefore that we can think of the

economy as a sequence of representative agents, or a sequence of players, one for each period.

Under the additional, simplifying assumption that It contains both θt and ζt , we can then write

the best response of the period-t representative agent as

ct = θt +ζt +δE [ct+1|It ]. (33)

where δ ≡ δ1
1−δ0

, as always, and E [·|It ] is the rational expectation conditional on It . This is simi-

lar to the standard, full-information benchmark, except that we have allowed for the possibility

that today’s representative agent does not inherit all the information of yesterday’s representative

agent: It does not necessarily nest It−1.

Finally, we let It contain perfect knowledge of arbitrary long histories of the endogenous out-

come, the sunspots, and the “main” fundamental; but we preclude knowledge of the past values

of the payoff perturbation introduced above. Formally:

Assumption 5. For each t , there is a representative agent whose information is given by

It = {ζt }∪ {xt , · · · , xt−Kθ
}∪ {ηt , · · · ,ηt−Kη}∪ {ct−1, · · · ,ct−Kc }

for finite but possibly arbitrarily large Kη, Kc , and Kθ.

When ε= 0 (the ζt shock is absent), Assumption 5 allows replication of all sunspot and backward-

looking equilibria with extremely short memory, namely with Kη = 0 and Kθ = Kc = 1. This is pre-

cisely the recursive representation of these equilibria in the standard paradigm. But there is again

a discontinuity: once ε > 0, all the non-fundamental equilibria unravel, no matter how long the

memory may be.

Proposition 6. Suppose that Assumption 5 holds and ε> 0. Regardless of δ, there is unique equi-

librium and is given by ct = cF
t +ζt , where cF

t is the same MSV solution as before.

To further illustrate the logic behind this result, abstract from the θt shock (but of course keep

the ζt shock) and let It = {ζt ,ηt ,ct−1}. In this case, “solving the model backwards,” which literally

means having the agents at t +1 create indifference for the agents t , requires that

E [ct+1|It ] = δ−1(−ζt + ct ).

Since the only “news” contained in It+1 relative to It are ηt+1 and ζt+1, the above is true if and

only if ct+1 satisfies

ct+1 = aηt+1 +dζt+1 +δ−1(−ζt + ct )
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for some a,d ∈ R. As noted before, the agents at t + 1 may extract information about ζt from

their knowledge of ct . But since ζt is not directly known and ct+1 has to be measurable in It+1 =
{ζt+1,ηt+1,ct }, the above condition can hold only if ct itself is measurable in ζt and not in any

other shock, such as the sunspots realized at t or earlier. In short, because the agents at t +1 does

not know a (small) component of the “preferences” of the agents at t , it is impossible to support

the aforementioned chain of indifference. The proof in Appendix A shows that an extension of

this logic rules out all equilibria but the MSV solution.40

High-level connections between our results, and between them and the literature

Our last result, Proposition 5, is closely connected to Bhaskar (1998) and Bhaskar, Mailath, and

Morris (2012). These works have shown that only Markov Perfect Equilibria (which in our context

translate to the MSV solution) survive in a certain class of games when a purification in payoffs

is combined with “finite” social memory (the latter being defined in a manner analogous to As-

sumption 5 here). Even though our environment is different, Proposition 5 is a close cousin of

these earlier results. But this is not the case for our first result, Proposition 2 or 4. There, the key

assumption was of different kind (contrast Assumption 4 to Assumption 5), and so was the formal

argument: there was a contagion from “remote” type (agents in the far future) to “nearby” types

(agent in the near future), akin to those found in the global games literature.

A broad lesson of this literature is that determinacy ultimately hinges on whether informa-

tion is private versus public (where “public” means not merely publicly available but common

knowledge, or at least high common-p belief). The results of Mailath and Morris (2002) and Pęski

(2012), which like the aforementioned works by Bhaskar (1998) and Bhaskar, Mailath, and Morris

(2012) shift the focus to Markov Perfect equilibria in dynamic games, seem consistent with this

logic: Mailath and Morris (2002) relies on “almost public monitoring” to support multiple, non-

Markovian equilibria, and Pęski (2012) goes in the opposite direction to rule them out. But the

precise relation between these literatures remains unclear, at least to us.

One particular difference is that we work with a continuum of players per period, which seems

to shut down some complications with individual-level mixed strategies that instead take a cen-

tral place in the aforementioned works. Furthermore, our Proposition 5 offered an example that

looked like almost public monitoring (everybody observed the past aggregate action with only

40Note that ct = cF
t + ζt is MSV solution of the perturbed model. This differs from cF

t , the original MSV solution,
because the relevant fundamentals now include ζt . But as ε→ 0, the new solution converges to the old one. Also
note that the argument given above goes through even if the ζt shock occurs only every, say, 10 periods rather than
every single period, because once there is a chance that the chain will break at some future date the whole thing
unravels. Finally, the argument goes through even that the agents at t +1 know ζt perfectly, provided that agents at
t are (incorrectly) worried that this may not be the case.
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tiny idiosyncratic noise) and nevertheless obtained uniqueness. This is all to say that there are

not only deep connections but also subtle differences, all of which deserve further study.

Going to an even higher level of abstraction, the results of Weinstein and Yildiz (2007) suggest

that, although multiple equilibria may be “degenerate” in an appropriate topology, this state-

ment by itself can be vacuous: with enough freedom in choosing priors and information struc-

tures, one can recast equilibrium indeterminacy as strategic uncertainty in a unique equilibrium.

Under this prism, a key task for theory is to understand how a model’s determinacy and its predic-

tions more generally depend on strong common knowledge assumptions, and what are plausible

relaxations thereof. We hope that our paper has made some progress in this direction.

8 Conclusion

In this paper, we revisited the indeterminacy issue of the New Keynesian model. We highlighted

how all sunspot and backward-looking equilibria hinge on an infinite coordination chain be-

tween current and future behavior. And we showed how “easy” it can be to break this chain by

relaxing the model’s assumptions about memory and intertemporal coordination.

We thus provided a rationale for why equilibrium can be determinate in the New Keynesian

model even with interest rate pegs—or why monetary policy may be able to regulate aggregate

demand without a strict reliance on the kind of off-equilibrium threats embedded in the Taylor

principle and related approaches. What was needed was only a consensus that inflation and

output gaps are “bounded,” which itself can be justified by the kind of exit strategies articulated

in, inter alia, Christiano and Rostagno (2001) and Atkeson et al. (2010).

By the same token, our results left no space for the FTPL within the New Keynesian model.

They equated the “non-Ricardian” assumption to equilibrium non-existence regardless of whether

monetary policy is “active” or “passive. And they lend support to the conventional practice of us-

ing the model’s MSV solution as the “right” lens for interpreting the data and guiding policy.

Throughout, we concentrated on the New Keynesian framework. The degree of nominal rigid-

ity was allowed to be very small, but not exactly zero: some nominal rigidity was needed for un-

derstanding nominal prices as the choices of agents inside the economy, as opposed to the choice

of an invisible hand outside the economy. Whether some version of our results can be obtained

for models where nominal prices are perfectly flexible but otherwise payoff relevant, such as in

Samuelson’s classic or models where money offers liquidity services, is an open question.

At the same time, it should be clear that our formal arguments did not rely on the specific

application. In particular, the analysis of Section 5 can be readily extended to settings in which ct

is a vector and, accordingly, the coefficients {δk } are matrices. This suggests that an extension of
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Proposition 4 may offer a rationale for selecting the MSV solution in a general class of linear REE

models (as in the classics by Blanchard, 1979, and Blanchard and Kahn, 1980), or equivalently

for selecting the Markov Perfect Equilibrium in a general class of dynamic, continuum-player

games with linear best responses (“dynamic beauty contests”). We leave this idea, and any further

exploration of the possible links between our contribution and other attempts in game theory to

justify Markov Perfect Equilibria, for future work.

Let us close with another possible return from our contribution. Consider the question of

whether the Fed should internalize the fiscal ramifications of its actions, or which authority is

“dominant.” Such questions seem to call for modeling interaction between the monetary and

the fiscal authority as a game, for example as a game of attrition. But this requires in the first

place the existence of a unique mapping from those player’s actions—interest rates and govern-

ment deficits, respectively—to their payoffs. Such a unique mapping is missing in the standard

paradigm, because the same paths for interest rates and government deficits can be associated

with multiple equilibria within the private sector. By providing a possible fix to this “bug,” our

paper paves the way for a fresh approach to the aforementioned kind of questions.
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Appendix A: Proofs

As discussed after Definition 1, our proofs use a weaker boundedness criterion than the require-

ment of a finite V ar (ct ). The next lemma verifies that that the latter implies the former. The rest

of the Appendix provides the proofs for all the results.

Lemma 1. Consider any candidate equilibrium, defined as in Definition 1. There exist a finite

scalar M > 0 such that |ak | ≤ M and ‖γk‖1 ≤ M for all k, where ‖ ·‖1 is the L1-norm.

Substituting (7) into (8), we have that any candidate equilibrium can be rewritten as

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

Γ′kε
x
t−k , (34)

where, for all k ≥ 0,

Γ′k ≡
k∑

l=0
γ′k−l R l . (35)

Since ηt and εx
t are independent of each other as well as independent over time, we have

V ar (ct ) =
∞∑

k=0

(
a2

k +Γ′kΣεΓk
)

.

This can be finite only if limk→+∞ |ak | = 0 and limk→+∞ ‖Γk‖1 = 0.41 From (35), γ′k = Γ′k −Γ′k−1R

for all k ≥ 1. It follows that limk→+∞ ‖γk‖1 = 0 as well. We conclude that there exist a scalar M > 0,

large enough but finite, such that |ak | ≤ M and ‖γk‖1 ≤ M for all k.

Proof of Proposition 1

Part (i) follows directly from the fact that cF
t ≡ q ′ (I −δR)−1 xt satisfies (9).

Consider part (ii). Let {ct } be any equilibrium and define ĉt = ct − cF
t . From (9),

ĉt = δEt [ĉt+1]. (36)

From Definition 1,

ĉt =
∞∑

k=0
âkηt−k +

∞∑
k=0

γ̂′k xt−k ,

with |âk | ≤ M̂ and ‖γ̂′k‖1 ≤ M̂ for all k, for some finite M̂ > 0. From Assumptions 1–2, we have

Et [ĉt+1] =
+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂′k+1xt−k + γ̂′0Rxt .

41To prove the latter statement, note that, because Σε is positive definite, there exists an invertible L such that
Σε = L′L by Cholesky decomposition. The finiteness of V ar (ct ) then implies limk→+∞ ‖LΓk‖1 = 0, which implies
limk→+∞ ‖Γk‖1 = 0.
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The equilibrium condition (36) can thus be rewritten as

∞∑
k=0

âkηt−k +
∞∑

k=0
γ̂′k xt−k = δ

(+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂′k+1xt−k + γ̂′0Rxt

)
.

For this to be true for all t and all states of nature, the following restrictions on coefficients are

necessary and sufficient:

âk = δâk+1 ∀k ≥ 0, γ̂′0 = δγ̂′1 +δγ̂′0R and γ̂′k = δγ̂′k+1 ∀k ≥ 1.

When the Taylor principle is satisfied (|δ| < 1), âk and γ̂k explodes unless â0 = 0 and γ̂′1 = 0. Since

I −δR is invertible from Assumption 3, γ̂′0 = 0 too. We know that the only bounded solution of

(36) is ĉt = 0. As a result, cF
t is the unique equilibrium.

Finally, consider part (iii). cB
t ≡ −∑∞

k=1δ
−kθt−k and cηt ≡ ∑∞

k=0δ
−kηt−k are bounded (the in-

finite sums converge) when the Taylor principle is violated (|δ| > 1). cB
t satisfies (9). So does

ct = (1−b)cF
t +bcB

t +acηt for arbitrary b, a ∈R.

Proof of Proposition 2

Since the sunspots {ηt−k }∞k=0 are orthogonal to the fundamental states {xt−k }∞k=0, the argument in

the main text proves that ak = 0 for all k. We can thus focus on solutions of the following form:

ct =
∞∑

k=0
γ′k xt−k . (37)

And the remaining task is to show that γ′0 = q ′(I −δR)−1 and γ′k = 0 for all k ≥ 1, which is to say

that only the MSV solution survives.

To start with, note that, since xt is a stationary Gaussian vector given by (7), the following

projections apply for all k ≥ s ≥ 0 :

E
[
xt−k |I s

t

]=Wk,s xt−s ,

where I s
t ≡ {xt , ..., xt−s} is the period-t information set of an agent with memory length s and

Wk,s = E
[
xt−k x ′

t−s

]
E
[
xt x ′

t

]−1 = E[
xt x ′

t

](
R ′)k−s

E
[
xt x ′

t

]−1

is an n ×n matrix capturing the relevant projection coefficients.

Next, note that

‖Wk,s‖1 ≤ ‖E[
xt x ′

t

]‖1‖
(
R ′)k−s ‖1‖E

[
xt x ′

t

]−1 ‖1, (38)

where ‖ · ‖1 is the 1-norm. Since all the eigenvalues of R are within the unit circle, we know the

spectral radius ρ (R) = ρ (
R ′)< 1. From Gelfand’s formula, we know that there exists Λ̄ ∈ (0,1) and

M1 > 0 such that

‖(
R ′)k−s ‖1 ≤ M1Λ̄

k−s ,
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for all k ≥ s ≥ 0. Together with the fact that E
[
xt x ′

t

]
is invertible (because Σε is positive definite

and ρ (R) < 1), we know that there exists M2 > 0 such that

‖Wk,s‖1 ≤ M2Λ̄
k−s . (39)

Now, from Assumption 4, we know

Ēt [xt−k ] = (1−λ)k xt−k +
k−1∑
s=0

λ (1−λ)s E
[
xt−k |I s

t

]≡ k∑
s=0

Vk,s xt−s , (40)

where, for all k ≥ s ≥ 0,

Vk,k = (1−λ)k In×n and Vk,s =λ (1−λ)s Wk,s .

Together with (39), we know that there exits M3 > 0 andΛ= max
{
1−λ,Λ̄

} ∈ (0,1) such that for all

k ≥ s ≥ 0,

‖Vk,s‖1 ≤ M3Λ
k . (41)

Now consider an equilibrium in the form of (37). From equilibrium condition (5), we know

+∞∑
k=0

γ′k xt−k = (1−δ0)θt +δ0Ēt

[+∞∑
k=0

γ′k xt−k

]
+δ1Ēt

[+∞∑
k=0

γ′k xt+1−k

]

= (
(1−δ0) q ′+δ0 +δ1γ

′
0R +δ1γ

′
1

)
xt + Ēt

[+∞∑
k=1

(
δ0γ

′
k +δ1γ

′
k+1

)
xt−k

]

= (
(1−δ0) q ′+δ0 +δ1γ

′
0R +δ1γ

′
1

)
xt +

+∞∑
k=1

(
δ0γ

′
k +δ1γ

′
k+1

)( k∑
s=0

Vk,s xt−s

)
,

where we use the fact that all agents at t know the values of the fundamental state xt .

For this to be true for all states of nature, we can compare coefficients on each xt−k , we have

γ′0 = (1−δ0) q ′+δ0γ
′
0 +δ1γ

′
0R +δ1γ

′
1

γ′k =
+∞∑
l=k

(
δ0γ

′
l +δ1γ

′
l+1

)
Vl ,k ∀k ≥ 1. (42)

From Definition 1, we know that there is a scalar M > 0 such that ‖γ′k‖1 ≤ M for all k ≥ 0, where

‖ ·‖1 is the 1-norm. From (41) and (42), we know that, for all k ≥ 1,

‖γ′k‖1 ≤ (|δ0|+ |δ1|)
+∞∑
l=k

‖Vl ,k‖1M ≤ (|δ0|+ |δ1|) M3
Λk

1−ΛM . (43)

Because limk→∞Λk = 0, there necessarily exists an k̂ finite but large enough (|δ0|+ |δ1|) M3
Λk̂

1−Λ <
1. So we know that, for all k ≥ k̂,

‖γ′k‖1 ≤ (|δ0|+ |δ1|) M3
Λk̂

1−ΛM .
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Now, we can use the above formula and (42) to provide a tighter bound of ‖γ′k‖1: for all k ≥ k̂,

‖γ′k‖1 ≤
(

(|δ0|+ |δ1|) M3
Λk̂

1−Λ

)2

M .

We can keep iterating. For for all k ≥ k̂ and l ≥ 0,

‖γ′k‖1 ≤
(

(|δ0|+ |δ1|) M3
Λk̂

1−Λ

)l

M .

Since (|δ0|+ |δ1|) M3
Λk̂

1−Λ < 1, we then have γ
′
k = 0 for all k ≥ k̂. Using (42) and doing backward

induction, we then know γ′k = 0 for all k ≥ 1 and

γ′0 = (1−δ0) q ′+δ0γ
′
0 +δ1γ

′
0R,

which means γ′0 = q ′
(
I − δ1

1−δ0
R

)−1 = q ′ (I −δR)−1 , where I use δ0 < 1. Together, this means that

the equilibrium is unique and is given by ct = cF
t , where cF

t is defined in (10).

Proof of Proposition 3

Consider a candidate equilibrium ct in Definition 1. We first notice that, for the period-t agent

with memory length s, her information set I s
t in Assumption 4 can be written equivalently as

I s
t =

{
ηt−s , ...,ηt , xt−s ,εx

t−s+1, · · · ,εx
t

}
,

where εx
t is the innovation in xt in Assumption 1. From (34) in the proof of Lemma 1, we know

that ct can be written as

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

Γ′kε
x
t−k ,

where Γ′k is given by (35). From the law of total variances, we have

V ar
(
Et

[
ct |I s

t

]− ct
)≤V ar

( ∞∑
k=s+1

akηt−k +
∞∑

k=s
Γ′kε

x
t−k

)
.

Since ηt and εx
t are independent of each other as well as independent over time, the finiteness of

V ar (ct ) implies that

lim
s→+∞V ar

( ∞∑
k=s+1

akηt−k +
∞∑

k=s
Γ′kε

x
t−k

)
= 0.

As a result, for any ε> 0 arbitrarily small but positive, there exists ŝ0, such that

V ar
(
Et

[
ct |I s

t

]− ct
)≤ ε

for all s ≥ ŝ0 and every t . Similarly, for each k ≤ K , there exists ŝk , such that

V ar
(
Et

[
ct−k |I s

t

]− ct−k
)≤ ε
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for all s ≥ ŝk and every t . Now, for any ε′ > 0 arbitrarily small but positive, we can find λ̂ > 0

such that
(
1− λ̂)ŝk ≥ 1 − ε′ for all k ∈ {0, · · · ,K } . Together, this means that whenever λ ∈ (0, λ̂),

V ar
(
E i

t [ct−k ]− ct−k
)≤ ε for all k ≤ K , for at least a fraction 1−ε′ of agents, and for every period t .

Proof of Proposition 4

We first find the MSV solution cF
t = γ′xt for some γ ∈Rn . From (5), we have

γ′ = q ′+γ′
(+∞∑

k=0
δk Rk

)
.

Since I −∑+∞
k=0δk Rk is invertible, the unique solution is γ′ = q ′(I −∑+∞

k=0δk Rk )−1. We henceforth

denote this solution as

cF
t ≡ q ′(I −δ

+∞∑
k=0

Rk )−1xt . (44)

Consider an equilibrium taking the form of (8). We use (5):

+∞∑
l=0

alηt−l +
∞∑

l=0
γ′l xt−l = q ′xt + Ēt

[+∞∑
k=0

δk

(+∞∑
l=0

alηt+k−l +
∞∑

l=0
γ′l xt+k−l

)]
. (45)

We know

Ēt [ηt−l ] =

µlηt−l if l ≥ 0

0 otherwise

where µl = (1−λ)l is the measure of agents who remember a sunspot realized l periods earlier as

in the proof of Proposition 2. Comparing coefficient in front of ηt−l and using the facts that each

sunspot is orthogonal to all fundamentals:

al =µl

+∞∑
k=0

δk ak+l ∀l ≥ 0. (46)

Because liml→∞µl = 0, there necessarily exists an l̂ finite but large enough µl̂

∑∞
k=0 |δk | < 1.42

Since we are focusing bounded equilibria as in Definition 1, there exists a scalar M > 0, arbi-

trarily large but finite, such that |al | ≤ M for all l . From (46), we then know that, for all l ≥ l̂ ,

|al | ≤µl̂ M
+∞∑
k=0

|δk | , (47)

where we also use the fact that the sequence {µl }∞l=0 is decreasing. Now, we can use (46) and (47)

to provide a tigehter bound of |al |. That is, for all l ≥ l̂ ,

|al | ≤
(
µl̂

∞∑
k=0

|δk |
)2

M .

42∑∞
k=0 |δk | <∞ because ∆<∞.
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We can keep iterating. Sinceµl̂

∑∞
k=0 |δk | < 1, we then have al = 0 for all l ≥ l̂ . Using (46) and doing

backward induction, we then know al = 0 for all l .

Now, (45) can be simplified as

∞∑
l=0

γ′l xt−l = q ′xt + Ēt

[+∞∑
k=0

δk

∞∑
l=0

γ′l xt+k−l

]
. (48)

= q ′xt +
+∞∑
k=0

δk

k∑
l=0

γ′l Rk−l xt + Ēt

[+∞∑
l=1

(+∞∑
k=0

δkγ
′
k+l

)
xt−l

]
.

For this to be true for all states of nature, we can compare coefficients on each xt−l :

γ′0 = q ′+
+∞∑
k=0

δk

k∑
l=0

γ′l Rk−l (49)

γ′l =
+∞∑
s=l

(+∞∑
k=0

δkγ
′
k+s

)
Vs,l ∀l ≥ 1, (50)

where Vs,l is defined in (40). The above two equations can be re-written as:

γ′0 =
(

q ′+
+∞∑
k=1

δk

k∑
l=1

γ′l Rk−l

)(
I −

+∞∑
k=0

δk Rk

)−1

(51)

γ′l =
( +∞∑

k=l+1

k∑
s=l

δk−sγ
′
kVs,l

)(
I −δ0Vl ,l

)−1 ∀l ≥ 1, (52)

where, from (40), we know that I −δ0Vl ,l =
[

1−δ0 (1−λ)l
]

I is invertible.

From Definition 1, we know that there is a scalar M > 0 such that ‖γ′l‖1 ≤ M for all l ≥ 0, where

‖ ·‖1 is the 1-norm. From (50), we know, for all l ≥ 1

‖γ′l‖1 ≤
(+∞∑

k=0

|δk |
)(+∞∑

s=l
‖Vs,l‖1

)
M ≤

(+∞∑
k=0

|δk |
)

M3
Λl

1−ΛM , (53)

where M3 andΛ are defined in (40) Because liml→∞Λl = 0, there necessarily exists an l̂ finite but

large enough such that
(∑+∞

k=0 |δk |
)

M3
Λl̂

1−Λ < 1. So we know that, for all l ≥ l̂ ,

‖γ′l‖1 ≤
(+∞∑

k=0

|δk |
)

M3
Λl̂

1−ΛM .

Now, we can use the above formula and (50) to provide a tighter bound of ‖γ′l‖1: for all l ≥ l̂ ,

‖γ′l‖1 ≤
((+∞∑

k=0

|δk |
)

M3
Λl̂

1−Λ

)2

M .

We can keep iterating. Since
(∑+∞

k=0 |δk |
)

M3
Λl̂

1−Λ < 1, we then have γ′l = 0 for all l ≥ l̂ . Using (52)

and doing backward induction, we then know γ′l = 0 for all l ≥ 1 and, from (49),

γ′0 = q ′+γ′0
(+∞∑

k=0
δk Rk

)
,
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which means γ′0 = q ′ (I −δ∑+∞
k=0δk Rk

)−1
. Together, this means that the equilibrium is unique and

is given by ct = cF
t , where cF

t is defined in (44). This proves the Proposition.

Proof of Corollary 1 (and some additional discussion)

As mentioned in the main text, we let consumers be subject to idiosyncratic shocks in their in-

come, wealth, nominal interest rate, and nominal prices. And we let them choose consump-

tion on the basis of imperfect information about, or with inattention to, these variables and the

underlying shocks. Regardless of what their available information might be, we can express an

individual’s optimal consumption function, in log-linearized form, as follows:

ci ,t = Ei ,t

[
(1−βω)wi ,t −βωσ

+∞∑
k=0

(
βω

)k (
ii ,t+k −πi ,t+k+1

)+ (
1−βω)+∞∑

k=0

(
βω

)k yi ,t+k

]
, (54)

where wi ,t , yi ,t , ii ,t , πi ,t are the individual’s wealth, income, interest rate, and inflation rate. The

above generalizes (1), the consumption function in our baseline model. The first term inside

the expectation operator captures wealth, the second term captures intertemporal substitution,

and the last term captures permanent income. βω is the effective discount factor (inclusive of

mortality risk) and 1−βω is the MPC (out of financial wealth and permanent income alike).

We now wish to aggregate (54) and, from there, to arrive us to (24), the aggregate consumption

function stated in the main text. This task is complicated by the fact that aggregation of (54)

yields the average expectations of individual income and other variables, while (21) contains the

average expectations of the corresponding aggregate variables. To merge this gap, we impose the

following assumption:

Assumption 6 (No average misperception).
∫

Ei ,t [xi ,t −xt ]di is invariant to ht , where xi .t stands

for an individual’s income, wealth, interest rate, or inflation, and xt for the corresponding aggre-

gate.

This is the formal statement of the no-misperceptions assumption mentioned in the main

text. To interpret it, note that Ei t [xi t − xt ] captures i ′s belief about her relative position in the

population. A consumer’s actual position is only a function of idiosyncratic shocks, and every

consumer knows this fact. But to the extent a consumer confuses an aggregate shock for an id-

iosyncratic shock, she may rationally mis-perceive a change in her relative position. Assumption

6 rules out precisely this possibility, at least for the average consumer. And it leaves the con-

sumers’ information otherwise unrestricted.

We are now in business. By the above assumption, we have that
∫

Ei ,t [xi ,t ]di = Ēt [xt ] for every

x ∈ {y, i ,π, w}.43 Aggregating (54) across i , using the property
∫

Ei ,t [xi ,t ]di = Ēt [xt ] from above,

43To be precise, the assumption directly implies that
∫

Ei ,t [xi ,t ]di = Ēt [xt ] up to a constant. But this constant has
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and noting that aggregate wealth is zero (because there is no capital), we arrive at equation (24),

which we repeat here for convenience:

ct =
(
1−βω){+∞∑

k=0

(
βω

)k Ēt
[

yt+k
]}−βωσ

{+∞∑
k=0

(
βω

)k Ēt [it+k −πt+k+1]

}
.

Using market clearing to replace yt+k = ct+k , and using also (22) and (23) to substitute the

average expectations of {it+k } and {πt+k } as functions of the average expectations of {ct+k }, we

conclude that equilibrium is summarized by the following equation:

ct = (1−δ0)θt +
∞∑

k=0
δk Ēt [ct+k ], (55)

where, for all k ≥ 0,

δk ≡ (
1−βω−βωσφy

)(
βω

)k +ωσκ
(
−βφπ+

(
1−βωφπ

) 1−ωk

1−ω
)
βk .

Note then that δ0 < 1 and ∆ < ∞, which means that the only restrictions imposed on (20) are

readily satisfied. The proof of the corollary is completed by invoking Assumption 4 and applying

Proposition 4.

For this last step, we interpret Assumption 4 as a restriction solely on what consumers know

about the aggregate shocks (i.e., leaving unrestricted what they know about idiosyncratic shocks).

More formally, we do not require that the entire Ii ,t satisfies Assumption 4, which would literally

mean that agents know nothing about idiosyncratic shocks. We only require that the average

expectations of the past sunspots satisfy the property Ēt [ηt−k ] = (1−λ)kηt−k , and similarly for

the past fundamentals.

We conclude with the following remark, which echoes a similar point made in the end of Sec-

tion 4. So far, we have allowed consumers to be inattentive to, or face uncertainty about, their

concurrent wealth, income, and interest rates—this why these variables appear inside the expec-

tation operator in (54), along with future income and future returns. This assumption plays no

role along the MSV solution: because we preserve perfect knowledge of xt , the aggregate out-

comes along this solution are the same as with full information. This assumption is used only

away from the MSV solution and only for one and only one purpose: to bypass the complication

that consumers may be able extract information about the economy’s payoff-irrelevant history

from their observations of current outcomes.

This in turn suggests the following path for deriving a close cousin to condition (55) and for

arriving at our uniqueness result. Suppose, contrary to what we have assumed so far, that each

consumer observes perfectly wi ,t , ii ,t and yi ,t at t . Suppose further that idiosyncratic shocks are

to be zero, or otherwise the unconditional expectation of xi ,t would not coincide with the unconditional expectation
of xt , violating rationality.
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purely transitory, so that Ei ,t [xi ,t+k ] = Ei ,t [xt+k ] for all k ≥ 1 and any variable x ∈ {c, y,π, i }. Then,

the individual consumption function (54) rewrites as follows:

ci ,t =(1−βω)wi ,t +βωyi ,t −βωσ(ii ,t −Ei ,t [πt+1])+

+Ei ,t

[
−βωσ

+∞∑
k=1

(
βω

)k
(it+k −πt+k+1)+ (

1−βω)+∞∑
k=1

(
βω

)k yt+k

]
.

If we aggregate this condition, impose market clearing in all periods, use the NKPC and the Tay-

lor rule to substitute {πt+k }∞k=0 and {it+k }∞k=0 as functions of {ct+k }∞k=0, we arrive at the following

equation:

ct = (1−δ0)θt +δ0ct +
∞∑

k=1
δk Ēt [ct+k ], (56)

where the coefficients {δk } are defined as before. That is, we have arrived at exactly the same

equation as equation (55) above, except that now Ēt [ct ] is replaced by ct itself.

In effect, what we have done so far is is to shut down the coordination friction within time but

preserve it across time: the consumers act, on average, as if they knows what other consumers

are doing today, but they still need to form expectations about how future consumption will be

determined and, more specifically, how it may depend on payoff-irrelevant histories. By the same

token, if we solve (56) for ct , we can recast the equilibrium in the following game form:

ct = θt +
∞∑

k=1

δk

1−δ0
Ēt [ct+k ],

which is again nested in (20). It follows that Proposition 4 continues to apply, provided of course

that the average expectations of past sunspots and past fundamentals satisfied our usual “fading”

restrictions.

Last but not least, note that in the above derivations we have no more used Assumption ??.

But we have effectively abstracted from the possibility that consumers extract information about

payoff-irrelevant histories from their own wealth, income and interest rates, in order to make

sure that we can invoke Assumption 4 vis-a-vis such histories. This further clarifies that the key

to our result is the “fading” in the average expectation of past sunspots and past fundamentals. As

discussed in the main text (see the concluding points of Sections 4 and 5), any remaining tension

between our assumptions and realism seems to be minimized by taking the limit as λ→ 0, or by

considering the variant perturbation of Section 7.

Proof of Corollary 2

Let us revisit our characterization of optimal consumption. Relative to what we did in the previ-

ous section, there are exactly four changes: first, we letω= 0 so that consumers are infinitely lived
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and fiscal policy does not redistribute wealth across generations (a possibility that is empirically

plausible but orthogonal to the FTPL); second, aggregate disposable income is Yi ,t −Tt instead

of Yt , where Yt are the taxes; third, the consumers’ aggregate financial wealth is Wt ≡
∫

Wi ,t di =
Bt−1/Pt instead of 0, where Bt−1/Pt is the real value of the outstanding nominal debt; and finally,

we shut down idiosyncratic shocks in interest rates and inflation for simplicity. Accordingly, the

consumer’s budget constraint is given by

+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

Ci ,t+k

}
= Wi ,t +

+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
](

Yi ,t+k −Tt+k
)}

.

The government’s budget in (25) can be written as

Bt−1/Pt =
+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

(Tt+k −Gt+k )

}
. (57)

In an REE, since a consumer understand (57) holds, she understands that her budget can be

written as
+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

Ci ,t+k

}
= Wi ,t −Wt +

+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
](

Yi ,t+k −Gt+k
)}

.

The consumer’s optimal consumption function, in log-linearized form, as follows:

ci ,t = Ei ,t

[(
1−β)

µb
(
wi ,t −wt

)−σβ+∞∑
k=0

βk Ei ,t [it+k −πt+k+1]+ (
1−β)+∞∑

k=0
βk Ei ,t

[
yi ,t+k − g t+k

]]
,

(58)

where lowercase variables represent log-variables from the steady state (Gt = 0, Yt =Ct = Y ∗, and

T ∗ = (
1−β)

B∗ > 0) and µb = (1−β)b∗
c∗ .44

This is basically the same equation as (54) before, now adjusted for taxes and government

debt. Aggregating and using Assumption 6, we arrive at (26). The rest of the proof follows from

the argument in the main text.

Proof of Proposition 6

Given Assumption 5, an possible equilibrium takes the form of

ct =
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γ′k xt−k +χζt .

44The following exception applies: g t represents Gt /Y ∗. This is a standard trick in the literature on fiscal multipli-
ers (e.g., Woodford, 2011) and it simply takes care of the issue that the log-deviation of the government spending is
not well defined when its steady-state value is 0.
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From (33), we have that

Kη∑
k=0

akηt−k +
Kβ∑

k=1
βk ct−k +

Kθ∑
k=0

γ′k xt−k +χζt = θt +ζt +δE[
Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=0

βk+1ct−k +
Kθ−1∑
k=0

γ′k+1xt−k |It ]

= q ′xt +ζt +δ
[

Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=1

βk+1ct−k +
Kθ−1∑
k=0

γ′k+1xt−k +γ′0Rxt

]

+δβ1

[
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γ′k xt−k +χζt

]
where we use Assumptions 1–2 and the fact that ζt is drawn independently over time. For this to

be true for all states of nature, we can compare coefficients:

ak = δak+1 +δβ1ak ∀k ∈ {
0, · · · ,Kη−1

}
and aKη = δβ1aKη (59)

βk = δβk+1 +δβ1βk ∀k ∈ {
1, · · · ,Kβ−1

}
and βKβ

= δβ1βKβ
(60)

γ′k = δγ′k+1 +δβ1γ
′
k ∀k ∈ {1, · · · ,Kθ−1} and γ′Kθ

= δβ1γ
′
Kθ

(61)

γ′0 = q ′+δγ′1 +δβ1γ
′
0 +γ′0R and χ= 1+δβ1χ. (62)

First, from the second equation in (62), we know δβ1 6= 1. Then, from the second parts of (59)–

(61), we know aKη = 0, βKβ
= 0, and γ′Kθ

= 0. From backward induction on (59)–(62), we know that

all a,b,γ are zero except for the following:

γ′0 = q ′+γ′0R,

which means γ′0 = q ′ (I −R)−1 . We also know that χ= 1. We conclude that the unique solution is

ct = cF
t +ζt ,

where cF
t is given by (10).

Appendix B: Additional Discussion

In this section, we illustrate the robustness of our main result to different policy rules for the

monetary authority and observability of current outcomes. We also expand on the connection

of our paper to two literatures: the one on discounted Euler conditions; and the one on Level-k

Thinking.
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Alternative monetary policies

In the main analysis, we specify the monetary policy (4) where the nominal interest rate responds

to current inflation. In the literature (e.g. Bullard and Mitra, 2002), variants of such rules have

been proposed. One may wonder whether the alternative specifications change our lessons on

determinacy. The answer is no.

For example, one specification is that the the nominal interest rate responds to forecasts of

future inflation:

it = zt +φĒt [πt+1] , (63)

where φ ≥ 0. A system consisting of (2), (3), and (63) can be nested by the general environment

(20), and the determinacy result in Proposition 4 directly applies.

Another specification is that the nominal interest rate responds to lagged values of inflation:

it = zt +φπt−1, (64)

where φ ≥ 0. Even though this case is not directly nested in Proposition 4, the result about how

frictions in intertemporal coordination results in determinacy remains to hold. Specifically, con-

sider the systems consisting of (2), (3), and (64). Finally, shut down fundamentals shocks %t =
ξt = zt = 0, so the MSV solution is ct = 0. Proposition 2 can be recast as the follows:

Proposition 7 (Alternative monetary policies). Suppose Assumption 4 holds, there are no shocks

to fundamentals, and monetary policy takes the form of (64). The equilibrium is unique and is

given by ct = 0.

Proof : From (2), (3), and (64), we have that any equilibrium must satisfy

ct = Ēt

[
1

1+βct − β
1+βσφκct−1 + β

1+β (1+σκ)ct+1

]
; (65)

and since there are no shocks to fundamentals, we search for solutions of the form ct =∑∞
k=0 akηt−k .

The goal is to verify that ak = 0 for all k.

By Assumption 4, we have that, for all k ≥ 0,

Ēt [ηt−k ] =µkηt−k

where µk ≡ (1−λ)k measures the fraction of the population at any given date that know, or re-

member, a sunspot realized k periods earlier. Future sunspots, on the other hand, are known to

nobody. It follows that, along any candidate solution, average expectations satisfy

Ēt [ct ] =
+∞∑
k=0

akµkηt−k
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and similarly

Ēt [ct−1] =
+∞∑
k=1

ak−1µkηt−k .

Ēt [ct+1] =
+∞∑
k=0

ak+1µkηt−k

For condition (31) to be true for all sunspot realizations, it is necessary and sufficient that,

a0 = (1+σκ) a1,

and, for k ≥ 1,

ak =µk

(
1

1+βak − β
1+βσφκak−1 + β

1+β (1+σκ) ak+1

)
.

We hence have, for k ≥ 1,

ak+1 =
1
µk

− 1
1+β

β
1+β (1+σκ)

ak +
σφκ

1+σκak−1. (66)

Since 1
µk

− 1
1+β > 0, we know that, all {ak }+∞k=0 have the same sign if a0 6= 0. But because µk → 0, we

have that |ak | explodes to infinity as k →∞ from 66 unless a0 = 0. But a0 = 0 implies ak = 0 for all

k. We conclude that the unique bounded equilibrium is ak = 0 for all k, which herein corresponds

to the MSV solution.

Variant specification with perfect knowledge of current outcomes but no signal extraction

We now spell out a variant of our baseline model that allows perfect observation of the concurrent

interest rate, income and prices, but abstracts from any signal-extraction thereof.

Revisit the consumption function (1) and let consumers know their income and interest rates.

Then, aggregate consumption can be expressed as

ct = 1
1+β yt − β

1+βσ(it −%t )+ Ēt

[
β

1+β yt+1 + β
1+βσπt+1

]
.

Combining this with market clearing (yt = ct and yt+1 = ct+1), and solving out for ct we get

ct =−σ(
it − Ēt [πt+1]−%t

)+ Ēt [ct+1] .

That is, the DIS curve is now the same as in the representative-agent benchmark, modulo the re-

placement of that agents’ full-information expectation with the average, incomplete-information

expectation in the population. By the same token, once we substitute out the interest rate and

inflation, our game representation becomes

ct = θt +δĒt [ct+1].
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The argument presented in the main text then goes through, and Proposition 4 continues to hold,

provided that the consumers’ average expectations of the past sunspots satisfy the restriction

Ēt [ηt−k ] =µkηt−k with limk→∞µk = 0 (and similarly for the past fundamentals).

Strictly speaking, this variant specification—which is actually the one adopted in an earlier

draft—combines our assumption of “fading social memory” with a mild form of bounded ratio-

nality: agents are not allowed to extract information about the economy’s payoff-irrelevant his-

tory from their observation of current outcomes. Such signal extraction is allowed in our second

perturbation, that developed in Section 7.

Discounted Euler equations

Suppose we replace our IS equation (2) with the following variant:

ct =−mi it +mπĒt [πt+1]+mc Ēt [ct+1]+%t , (67)

for some positive scalars mi ,mπ,mc . When mc < 1, this nests the “discounted” Euler equations

generated by liquidity constraints in McKay et al. (2017) and by cognitive discounting in Gabaix

(2020). The opposite case, mc > 1, is consistent with the broader HANK literature (Werning, 2015;

Bilbiie, 2020), as well as with over-extrapolation or “cognitive hyperopia”. Finally, mi 6= mπ could

capture differential attention to (or salience of) nominal interest rates and inflation.

With these modifications, the entire analysis goes through modulo the following adjustment

in the definition of δ :

δ= mπσκ+mc

1+miσφκ

The Taylor principle is still the same in the δ space, but of course changes in the φ space: we now

have that |δ| < 1 if and only if φ ∈ (−∞,φ)∪ (φ,+∞), where

φ≡−mπ

mi
− 1+mc

σκmi
and φ≡ mπ

mi
+ mc −1

σκmi

Depending on the m′s, these thresholds can be either smaller or larger than the ones in the main

analysis. In this sense, the model’s region of indeterminacy may either shrink or expand by the

above modifications. For instance, Gabaix (2020) assumes mi = mπ and mc < 1, obtains φ < 1,

and uses this to argue that cognitive discounting relaxes the Taylor principle and, thereby, eases

the potential conflict between the stabilization and equilibrium selection functions of monetary

policy. From this perspective, that paper and ours are complements. But none of these enrich-

ments changes the fact that indeterminacy remains for sufficiently “passive” monetary policy,

and this is where our approach offers a potential way out.
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Alternative Solution Concepts

Throughout, we have preserved Rational Expectations Equilibrium (REE), relaxing only the as-

sumption of perfect information about the past. REE is defined by the requirement that the

agents’ subjective model of the economy exactly coincides with the true model generated by

their behavior. One can capture bounded rationality by allowing a discrepancy between the for-

mer and the latter. But as long as one allows for a two-way feedback between them, the kind of

indeterminacy we have studied here remains possible, and so does our resolution to it.

This circles back our earlier discussion of Gabaix (2020): the solution concept in that paper

allows the objective model to feed into the subjective model, albeit with a distortion relative to

REE. The same is true for Diagnostic Expectations (Bordalo et al., 2018); for Perfect Bayesian Equi-

librium with mis-specified priors (Angeletos and Sastry, 2021); and for Woodford (2019)’s model

of “finite planning horizons,” at least once learning is allowed (Xie, 2019). All these concepts are

close cousins of REE in the sense that they preserve the two-way feedback between beliefs and

outcomes, thus also preserving the indeterminacy problem we have addressed in this paper.

Contrast this class of concepts with Level-K Thinking (García-Schmidt and Woodford, 2019;

Farhi and Werning, 2019). The latter pins down a unique solution by shutting down the feedback

from objective truth to subjective beliefs. But this begs the question of how agents adjust their

behavior over time, in the light of repeated, systematic discrepancies between what they expect

to happen and what actually happens. Accordingly, we believe that Level-K Thinking is more

appropriate for unprecedented experiences (e.g., the recent ZLB experience) than for the kind of

stationary environments we are concerned with in this paper.

Furthermore, one may argue that Level-K Thinking does not “really” resolve the indetermi-

nacy problem and, instead, only translates it to a different dimension: whenever |δ| > 1, the

level-k outcome becomes infinitely sensitive to the arbitrary level-0 outcome as k →∞. To see

this, consider what Level-K Thinking means in our setting. First, level-0 behavior is exogenously

specified, by a random process {c0
t }. Level-1 behavior is then defined as the best response to the

belief that others play according to level-0 behavior, that is, c1
t ≡ θt +δEt [c0

t+1],where Et is the full-

information expectation operator. This amounts to using the “wrong” beliefs about what other

players do but the “correct” beliefs about the random variables θt and c0
t+1. Iterating K times, for

any finite K , gives the level-K outcome as cK
t ≡ ∑K

k=0δ
kEt [θt+k ]+δKEt [c0

t+K ]. The solution con-

cept says that actual behavior is given by ct = cK
t for all periods and states of nature, where both K

and {c0
t } are free variables for the modeler to choose. Clearly, {cK

t } is uniquely determined for any

given K and any given {c0
t }. But because {c0

t } is a free variable, the original indeterminacy issue is

effectively transformed to the modeler’s (or the reader’s) uncertainty about {c0
t }. Furthermore, the
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bite of this uncertainty is most severe precisely when the indeterminacy issue is present: when-

ever |δ| > 1, the sensitivity of {cK
t } to {c0

t } explodes to infinity as K →∞.

This explains the sense in which Level-K Thinking replaces one free variable in beliefs (the

sunspot) with another free variable (the analyst’s specification of the level-0 behavior). By con-

trast, our approach leaves neither kind of freedom in specifying beliefs.

This is not to say that our approach is “better.” One may question the realism of both our

main informational assumption and our approach’s heavy reliance on REE. Furthermore, the two

approaches are ultimately complementary in two regards: highlighting the role of higher-order

beliefs; and solidifying the logical foundations of the MSV solution. Thus, while the above dis-

cussion clarifies the differences in the two approaches, perhaps their common ground is what

matters the most for applied purposes.
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