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Abstract

Does misallocation affect business cycles? This paper argues that when firm-level

shocks influence aggregate outcomes, distortions to the firm-size distribution have

direct implications for business cycle volatility. In particular, when distortions are

positively correlated with productivity, they dampen aggregate fluctuations. Viewed

through this lens, size-dependent policies, such as SME subsidies, function as auto-

matic stabilizers when they favor small firms, and as amplifiers when they favor large

ones. I develop a portable method to quantify these effects and calibrate it to the U.S.

economy. The results suggest that distortions can play a substantial stabilizing role.

Moreover, observed dispersion in marginal products may reflect an efficient allocation

that internalizes firm-level risk. The analysis highlights a trade-off between production

efficiency and macroeconomic stability, with optimal allocations tilting away from the

most productive firms to reduce volatility arising from granular shocks.
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1 Introduction

How does misallocation affect business cycles? Recent advances in business cycle the-
ory propose that business cycles can originate from micro-level shocks that are translated
into the macroeconomy and not only from aggregate shocks, such as monetary shocks or
disasters, affecting all micro units similarly. Crucially, this granular view of the business
cycle (Gabaix, 2011) hinges on the presence of a skewed firm-size distribution. This pa-
per argues that any policy or element of the economic environment that affects the firm’s
optimal choice of size alters the firm-size distribution and, therefore, affects business cycle
volatility. Thus, misallocation in the form of correlated distortions, affecting more produc-
tive firms differently in a systematic way, can modulate business cycle fluctuations. This
simple observation has profound implications, as it introduces a welfare-relevant trade-off
between maximizing output and stabilizing economic activity and suggests a novel macro-
stabilization role for existing size-dependent policy tools.

I begin by proposing a theory of business cycle volatility arising endogenously from
firms’ optimal choice of size. The theory combines the canonical firm dynamics model
à la Hopenhayn (1992), set in a repeated static setting whereby firms are exposed to pro-
portional idiosyncratic shocks that are independent of their size (e.g., Gibrat’s law holds).
Business cycle fluctuations are governed by the severity of firm-specific shocks and the
degree of concentration in the economy, as in the seminal work of Gabaix (2011). In the
model, higher concentration implies a higher loading from a shock to a large firm to the
economy as a whole. I then allow for the possibility that firm input choices are distorted,
which ultimately distorts the size distribution, by introducing implicit taxes or wedges as
is commonly done in the misallocation literature. These wedges result in deviations from
the equalization of marginal products in equilibrium as conceptualized in Restuccia and
Rogerson (2008) and Hsieh and Klenow (2009), allowing me to study the interaction be-
tween misallocation and granular business cycles.

The main theoretical result states that the correlation between distortions and firm pro-
ductivity determines the effect of misallocation on business cycle volatility. Namely, pos-
itively correlated distortions reduce the relative size of the most productive firms, thus
lowering concentration and the share of aggregate output determined by large firms, i.e.,
they act as stabilizers. Conversely, negatively correlated distortions increase concentration
and raise volatility as a result. Note that the notion of stabilization relevant here is ex-ante
stabilization, whereby positively correlated distortions reduce unconditional business cycle
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volatility.
Using this theory, I formally demonstrate how size-dependent policies act as automatic

stabilizers. Such policies include employment protection, small and medium enterprise
(SME) subsidies, and other institutions that disproportionately favor small firms or penalize
large firms. The proof hinges on a simple intuition: these policies reduce concentration,
making the firm-size distribution less skewed. These policies do not constitute a free lunch,
of course, since they depress economic activity. Thus, they are only valuable if business
cycle risk is relevant for aggregate welfare.

Next, I quantify the business cycle effect of misallocation using estimates from the liter-
ature. Quantifying these effects is challenging, as one cannot simply compute expectations
and appeal to the law of large numbers when modeling a discrete number of firms. To
overcome this, I propose and validate a flexible approximation strategy for computing the
effects of correlated distortions on business cycle volatility, allowing for a computation-
ally efficient evaluation even with a realistically large number of firms. Importantly, the
method’s data requirements are minimal, and it is sufficiently portable, such that it can be
easily applied to conventional existing models, even without explicitly modeling a discrete
number of firms. I validate the method by replicating existing results from the works of
Gabaix (2011), and Carvalho and Grassi (2019), finding that it performs well.

The baseline model suggests a significant stabilizing role for positively correlated dis-
tortions. Using my baseline U.S. calibration, firm-specific shocks can explain a total factor
productivity (TFP) volatility of 0.38% compared to an empirical counterpart of about 1%,
consistent with the literature. Counterfactually removing positively correlated distortions
increases TFP volatility from the baseline of 0.38%, reported above, to 0.65%. Alter-
natively, existing positively correlated distortions dampen business cycle volatility due to
firm-level shocks by 42% of its total potential level. This result is robust to a range of
parameter values. In appendix B, I also discuss the robustness of the results to various
assumptions regarding deviations from Gibrat’s law (i.e., introducing a size-volatility rela-
tionship) and the potential role of ex-post factor mobility. My analysis finds a consistent
stabilizing role for positively correlated distortions across all scenarios explored with eco-
nomically meaningful effect sizes.

Last, I consider the welfare implications arising from granular shocks in a stochastic
environment. I demonstrate how concentration affects welfare in the model economy and
show that a risk-averse planner has an incentive not to equalize the marginal products of
labor across firms. In an illustrative quantitative example, such a planner optimally induces
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a positively correlated distortion to reduce consumption risk. In the process, the planner
trades off the expected level of output to reduce its volatility and, as a result, lowers con-
sumption risk in the environment.

Ultimately, this work motivates concerns about the presence of large firms in the econ-
omy and high concentration for macro stabilization reasons that are independent of tradi-
tional ones, such as monopoly power or adverse political incentives. If markets are effi-
cient, this granular risk should be internalized by the firms, leading to an equilibrium in
which measured marginal products of labor appear to exhibit positively correlated distor-
tions. However, in the presence of inefficiencies that prevent the markets from fully pricing
granular risk, there is room for policy intervention by adopting size-dependent policies.

Related literature. The present work is primarily connected to the literature on granular
business cycles, e.g., Gabaix (2011); Carvalho and Gabaix (2013); di Giovanni et al. (2014,
2018); Carvalho and Grassi (2019). The most closely related papers are Gabaix (2011),
who was the first to propose the granular hypothesis, and Carvalho and Grassi (2019), who
demonstrated that this mechanism is quantitatively meaningful within the context of the
canonical heterogeneous firms model. This paper builds on the insights of these two works
and contributes by demonstrating how misallocation, and particularly systematic dispersion
in marginal products (correlated distortions), affects business cycle volatility. Recent work
demonstrated how misallocation is affected cyclically by granular forces such as market
power in the case of Burstein et al. (2025) or investment irreversibility as in Senga and
Varotto (2024). In contrast, this work examines the opposite direction: how non-cyclical
misallocation affects business cycles in a granular environment? Such factors were found
to be quantitatively important as indicated by the findings of David and Venkateswaran
(2019). Additionally, this paper contributes a tractable framework and portable approxi-
mation techniques, allowing for analytical characterizations and a reduced computational
burden involved with working on granular business cycles.

This paper also contributes to the misallocation literature. The modern literature on
misallocation is vast, starting from the works of Restuccia and Rogerson (2008) and Hsieh
and Klenow (2009). Within it, the most closely related works are those concerned with
the interaction between firm or establishment size distribution and systematic dispersion
in marginal products or correlated distortions as in the work of Bartelsman et al. (2013);
Hsieh and Klenow (2014); Bento and Restuccia (2017); Buera and Fattal Jaef (2018), and
Poschke (2018).1 I contribute to this literature by demonstrating that commonly studied

1For a comprehensive review of this literature see the excellent review in Hopenhayn (2014).
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counterfactuals have significant business cycle implications. Namely, I show that firm-
level shocks are transmitted to the aggregates differently in an economy with and without
correlated distortions. When distortions are positively correlated with productivity, as indi-
cated by the empirical literature, these distortions act as stabilizers, reducing business cycle
volatility.

The analysis indicates that a risk-averse planner’s optimal allocation features positively
correlated distortions or markup dispersion as a result of internalizing that firm-level shocks
induce aggregate consumption risk. While in many macro models markup dispersion is as-
sociated with inefficiency, this is not necessarily the case and factors such as adjustment
costs (Asker et al., 2014), consumer search frictions (Menzio, 2024), and non-linear pricing
(Bornstein and Peter, 2024) can lead to environments where dispersion in marginal products
efficiently arises. The most related work in this strand is the paper by David et al. (2022)
demonstrating that exposure to aggregate risk at the firm-level generates systematic devia-
tions in marginal products of capital due to higher risk premiums. This paper argues that
since large firms are a source of aggregate risk, idiosyncratic firm-level risk correlates with
aggregate consumption risk. In such an environment, an optimal factor allocation is one
where expected risk-weighted marginal products are equalized and not expected marginal
products due to the planner internalizing the mapping from firm-level shocks to aggregate
consumption. In related work Boar et al. (2022); Boar and Midrigan (2024); Di Tella et al.
(2025) also explore the aggregate and normative implications of firm-level risk, creating
systematic distortions but without discussing its business cycle implications.

Finally, this paper is conceptually and methodologically related to the literature con-
cerning Hulten’s theorem (Hulten, 1978) and the transmission of shocks through produc-
tion networks Acemoglu et al. (2012); Grassi (2018); Baqaee and Farhi (2019) and Baqaee
and Farhi (2020). While the present paper abstracts from the presence of production net-
works, the analysis conducted here can be extended by Hulten’s original theorem to be the
first-order effect in any arbitrary production structure. My baseline is a model in which
Hulten’s theorem holds exactly. Doing so allows me to draw sharp predictions from a
model involving a discrete number of firms without alluding to the law of large numbers,
which would nullify the granular mechanism. However, in appendix B.2 I employ the in-
sights gleaned by Baqaee and Farhi (2019) to demonstrate how and to what extent potential
deviations from Hulten’s theorem affect the results.

This paper is organized as follows. Section 2 presents the benchmark model. Section 3
presents the main theoretical result of the paper on the effect of misallocation on granular
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business cycles and shows the stabilization role of size-dependent policies. Section 4 pro-
poses and validates an approximation strategy to assess the role of correlated distortion on
business cycle volatility and reports counterfactual effects. Section 5 discusses the welfare
implications of commonly conducted misallocation counterfactuals and argues that mea-
sured dispersion in the marginal product of labor across firms can be the optimal result of
an efficient allocation. The final section concludes. Extensions and additional derivations
are relegated to the appendix.

2 Benchmark Environment - Efficient Production

2.1 Statement of the Benchmark Environment

Technology. There are N firms in the economy, each using a decreasing returns to scale
production technology to produce a single homogeneous final consumption numeraire good
yi. Each firm i produces its output using labor2 li using the production function

yi = z̃iliγ , log(z̃i) = log(ai)+ x̃i, (1)

where 0 < γ < 1 denotes the degree of decreasing returns in the economy, and z̃i is the pro-
ductive ability of firm i. z̃i is composed of a firm’s deterministic ability ai and a stochastic
idiosyncratic component ex̃i with E

[
ex̃i
]
= 1, such that its log is a random variable with

mean E [x̃i] = x and variance σ2
x , common to all N firms. Realizations of x̃i are assumed to

be iid. The vector x̃ ∈ RN denotes the aggregate state of the economy listing all realized
values of x̃i. Throughout this paper, I adopt the convention that a tilde denotes stochastic
variables, boldface letters denote column vectors, and aggregates are denoted in capital
letters.

Under these assumptions, the model economy experiences no aggregate shocks in the
conventional sense; instead, all business cycle fluctuations arise solely from firm-level
shocks manifesting in the aggregate. The model is of a repeated static economy, and thus,
volatility arises from differences in the cross-sectional distribution of firm-level shocks.
Business cycle volatility will be defined and discussed with respect to the stochastic aggre-
gates.

The form log(z̃i) = log(ai)+ x̃i is particularly convenient since it allows one to consider

2Labor represents a mobile factor; replacing labor with a bundle of other factors does not affect the result.
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aggregate fluctuations around a stable ergodic firm productivity distribution, or the constant
dispersion of ai. Under most conventional firm heterogeneity models, the distribution of
ai would generate, in equilibrium, the ergodic firm-size distribution and the measures of
concentration in the economy. Thus, the shocks x̃i can be viewed as fluctuations around that
ergodic firm-size distribution. Suppose one contemplates the business cycle as fluctuations
around a balanced growth path. In that case, one can still interpret the values of ai as the
de-trended productivity distribution and the shocks x̃i as the deviations from trend growth
in each firm. Therefore, the model is well-suited to study short-run fluctuations but not
long-run dynamics or industry-specific trends.

Decision problem of the firm. The firm chooses how much labor to hire to maximize
expected profits. The firm’s problem is as follows

max
li

E [z̃iliγ ]−w× li. (2)

Expectations are taken with respect to x̃i since the firm is assumed to hire labor without
knowledge of the idiosyncratic state, making the production choice ex-ante efficient. Note
that the assumptions on the process governing x̃i imply that labor is chosen based on the
deterministic component ai. Each firm takes the wage rate, w, as given. Labor is supplied
inelastically in quantity L by the household, and the wage rate is such that the labor market
clears according to

N

∑
i=1

li = L. (3)

Thus stated, production is ex-ante efficient with the expected marginal revenue product of
labor equalized ex ante across all production units. The resulting equilibrium would yield
the maximum expected output in the economy. I will refer to this case as that of efficient
production in the output-maximizing sense. This problem is standard, and the resulting
production economy exhibits the following aggregate properties.

Lemma 1. Aggregate properties of the efficient production economy:

1. The production economy with N firms and a given labor supply L allocates labor

according to the allocation rule

l j =
a j

1
1−γ

∑
N
i=1 ai

1
1−γ

L. (4)
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2. This labor allocation lends itself to an aggregate production function representation

where aggregate output Yx̃ in aggregate state x̃ is given by

Yx̃ =
N

∑
i=1

yi =
∑

N
i=1 ai

1
1−γ ex̃i[

∑
N
i=1 ai

1
1−γ

]γ Lγ = Zx̃︸︷︷︸
TFP

×Lγ , Zx̃ =
∑

N
i=1 ai

1
1−γ ex̃i[

∑
N
i=1 ai

1
1−γ

]γ . (5)

3. Hulten’s theorem: the effect of a one-percent shock to the productivity of the jth firm

z̃ j on Zx̃, denoted by η j, is given by

η j =
∂ logZx̃

∂ log z̃ j
=

a j
1

1−γ ex̃ j

∑
N
i=1 ai

1
1−γ ex̃i

, (6)

which incidentally is also the sales share of firm j or y j/Yx̃.

4. Business cycle volatility: The standard deviation of log TFP is given by

σZ ≈ σx︸︷︷︸
micro volatility

× Ψ︸︷︷︸
amplification term (HHI)

,Ψ =

√
N

∑
i=1

η
2
i , (7)

where η i =
∂ log [Zx̃]

∂ x̃i

∣∣∣
x̃=x

. Given that η i is the sales share of i, then Ψ is also the

square root of the Hirschman Herfindahl index (HHI) of sales in the economy when

all shocks are at their expected level.

For formal proof and step-by-step derivation, see Appendix A.1.

2.2 Discussion of the Benchmark Environment

Lemma 1 establishes several properties of the static stochastic heterogeneous firms model.
It is worthwhile to emphasize that the model of this section and the following extensions
are set to follow as closely as possible the canonical firm dynamics model à la Hopenhayn
(1992), which is commonly employed in the misallocation literature.3

Several features of the resulting economy are noteworthy. First, the allocation rule for
labor is scale invariant. I.e., scaling up or down the productivity of each firm by a constant
factor (1+g), where g is a common growth rate, leaves the allocation of labor identical,

3For further discussion see the review in Hopenhayn (2014).
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and relative productive ability is all that matters. Second, as is standard in the literature,
the model generates a non-degenerate firm-size distribution since li > 0,∀i. Third, expected

aggregate total factor productivity (TFP)4 is given by E[Zx̃] =
[
∑

N
i=1 ai

1
1−γ

]1−γ

which is not
the same as the realized TFP, given by Zx̃. Finally, the resulting economy aggregates into a
single-factor real business cycle (RBC) economy with an inelastic labor supply. Since all
the positive results of this paper are related to TFP and not output, focusing on the inelastic
case is not a limitation, as the labor allocation rule will remain scale invariant.

Business cycle volatility. Lemma 1 (3) verifies that Hulten’s theorem (Hulten, 1978),
which states that the effect of a shock to a sector or a firm on aggregate output is the
firm’s Domar weight or the ratio of its sales to GDP. Note that while conventionally stated
in terms of the effect on output, given equation (5), the effect on TFP and output coincide
throughout this paper.5 Unlike Hulten’s theorem, the above derivation involves no envelope
condition. It is the exact solution to the aggregate representation of the model economy and
thus sidesteps the critique of Baqaee and Farhi (2019). Furthermore, results obtained in this
environment generalize via Hulten’s theorem argument into a more complex setting as the
first-order representation of TFP volatility in an economy with any arbitrary production
network.

I interpret the shocks described throughout this paper as the usual churn of economic
activity “garden-variety fluctuations”, if you will, and emphatically not as those induced by
catastrophic events like the 2007-2008 financial crisis or the COVID-19 recession, which
are arguably “true” aggregate shocks.

Observe that the derivation of the elasticities η j holds regardless of the distributional
assumptions on ai and x̃i. However, these assumptions affect the resulting amplification
term Ψ, given in equation (7), which is a concentration indicator in the resulting economy,
namely the square root of the HHI when x̃ = x.6 Ψ governs business cycle volatility in the
economy and maps the realizations of micro-level shocks into business cycle volatility, thus
providing a possible micro-foundations for the “granular hypothesis”. By pinning down the
value of Ψ, the distribution of η j, which is given by the distribution of deterministic abil-
ity ai, in the economy determines its aggregate volatility. This key insight originates from

4Lemma 1 implies that expected TFP is increasing in the number of firms reflecting scale effects in the
economy. I relate to this expression as TFP rather than use Zx̃/N as is sometimes done in the literature. My
reasons are twofold: first, Zx̃ is the correct theoretical counterpart in my environment to the classical Solow
residual, and second I do not discuss entry and exit so the two are proportional, and no insight would be
gained from this distinction.

5I refer to Hulten’s theorem in TFP terms instead of output throughout for the quantification in section 4.
6Equation (7) is similar in flavor to equations (4) and (5) in Gabaix (2011).
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Figure 1: The Amplification Term Ψ as a Function of η in a Two-Firm Economy

the seminal work of Gabaix (2011), which illustrates that if sales shares are distributed ac-
cording to a fat-tailed distribution, granular shocks of a reasonable magnitude can generate
business cycles of a quantitatively plausible scale, even in the presence of a large number
of firms.

Note that all of these elasticities sum up to unity, ∑
N
i=1 ηi = 1, implying that reducing

the productive ability of all firms by 1% is equivalent to a 1% aggregate TFP shock. How-
ever, the concentration of these elasticities governs the excess sensitivity of the resulting
economy to shocks to one particular firm. To demonstrate this idea, let us briefly consider
a two-firm economy.

A Two-Firm Example. Suppose that there were only two firms in the economy N = 2.

Aggregate volatility in this economy is given by Ψ =

√
η1

2 +(1−η1)
2. Figure 1 reports

the value of the amplification term for different levels of the market share of the first firm
η1. Intuitively, aggregate volatility is lowest if both firms are of the same size and highest
if one firm controls the entire market. This intuition generalizes to the N firm case. The
more concentrated the firm-size distribution is, the more volatile the economy will be, all
else being equal.

Observation. The firms’ choice of relative size, i.e., the share of labor they can utilize in
equilibrium, generates business cycle volatility through the resulting HHI, as demonstrated
in Lemma 1. In so doing, the firm-size distribution maps micro-level shocks to macro-level

shock. Any friction or element of the economic environment that distorts the firms’ choice

of size also changes the volatility of TFP. This effect is true in addition to the friction’s
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effect on the level of TFP, which is the conventional channel in the misallocation literature.
This observation motivates the analysis in the next sections.

To build intuition for the next sections, one can ask how business cycle volatility in the
economy with inefficient production would differ from the efficient benchmark. Through
the lens of Figure 1, the question amounts to what would be the influence of production
inefficiency on the share of the larger firm? An increase in the share of the larger firm
results in higher volatility. Conversely, if the largest firm’s market share decreases as a
result of the distortions, then volatility would decrease. This intuition will be formalized in
the next section.

3 Misallocation and Business Cycle Volatility

In this section, I introduce misallocation into the benchmark model and study its impli-
cations for business cycles in the resulting economy. I demonstrate that the correlation
between distortions and productive ability pinpoints the direction of influence: positively
correlated distortions dampen business cycles, while negatively correlated distortions am-
plify them. The literature favors the former scenario as the more likely case.

3.1 The Distorted Economy: Introducing Misallocation

Compared to the efficient benchmark, the production technology remains unchanged; there
are still N firms producing with the same decreasing returns to scale technology. However,
the firm now faces an implicit output tax τi, which introduces a wedge between marginal
revenue and marginal cost. The firm solves the following decision problem:

max
li

E[yi(1− τi)]−wli. (8)

Production is still carried out according to equation (1) such that yi = z̃il
γ

i and the wedge
(1− τi) only affecting input choices. Thus, the wedge alters the firm’s input choice and,
consequently, its size, compared to the efficient production case, leading to misallocation as
in Restuccia and Rogerson (2008), Hsieh and Klenow (2009), and subsequent work. This
modeling tool has proven particularly useful as it lends itself to straightforward empirical
interpretation whereby observing a higher average revenue product of labor for a firm, sec-
tor, or establishment implies a higher τi. The aggregate properties of the distorted economy
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can be summarized as follows.

Lemma 2. Aggregate properties of the distorted production economy

1. The production economy with N firms and a given labor quantity L allocates labor

according to the allocation rule

l j = L

(
a j
(
1− τ j

)) 1
1−γ

∑
N
i=1 (ai(1− τi))

1
1−γ

, (9)

2. This labor allocation lends itself to an aggregate production function representation

where aggregate output Yx̃ is produced according to

Y d
x̃ =

N

∑
i=1

yi = Zd
x̃ ×Lγ , Zd

x̃ =
∑

N
i=1 ai

1
1−γ (1− τi)

γ

1−γ ex̃i[
∑

N
i=1 (ai(1− τi))

1
1−γ

]γ . (10)

3. Hulten’s theorem: the effect of a one-percent shock to the productivity of the jth firm

z̃ j on Zd
x̃ , denoted by δ j, is given by

δ j =
∂ log

(
Zx̃

d)
∂ log z̃ j

=
a j

1
1−γ

(
1− τ j

) γ

1−γ ex̃ j

∑
N
i=1 ai

1
1−γ (1− τi)

γ

1−γ ex̃i

, (11)

which incidentally is also the sales share of firm j or yd
j/Y d

x̃ .

4. Business cycle volatility: The volatility of log TFP is given by

σ
d
Z ≈ σx ×Ψ

d, Ψ
d =

√
N

∑
i=1

δ
2
i , (12)

where δ i =
∂ log[Zd

x̃ ]
∂ x̃i

∣∣∣∣
x̃=x

and Ψd is the square root of the sales HHI in the distorted

economy.

For proof, see Appendix A.2.
To distinguish the two economies, I denote all sizes pertaining to the distorted econ-

omy with superscript d and let the distorted counterpart of the elasticity ηi by δi. Note that
Lemma 1 is a special case of Lemma 2 in which τi = τ j for every i and j. The aggregate
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production function is such that wedges affect TFP by inducing a different allocation of
labor. In so doing, they affect the firm-size distribution and market concentration, induc-
ing a different sales HHI, and thus result in different strengths of business cycle volatility
σd

Z even while holding constant the abilities of the N firms. This environment facilitates
analytical characterization since factors are allocated ex ante, thus creating an environment
with misallocation in which Hulten’s theorem still holds, as is demonstrated in Lemma 2
(3).7

3.2 Comparing TFP Volatility in a Distorted Economy with the Effi-
cient Benchmark

To compare business cycle volatility in the efficient production economy to the distorted
one really amounts to understanding the difference between the amplification term Ψ or the
HHI in both economies. Changing the HHI implies that the wedges distort the firms’ size
choices unevenly. If misallocation involves drawing more factors into less productive firms,
i.e., firms with low η j, and away from high-productivity firms with high η j, then misal-
location dampens business cycle volatility. The converse is true when misallocation draws
factors into more productive firms, thus making them inefficiently large; it also exacerbates
business cycles.

To formalize this intuition, I define a relative distortions vector d ∈ RN . A relative
distortion d j faced by firm j maps the elasticity η j, which is also its sales share in the
efficient production case, into its counterpart in the distorted case δ j, as follows

δ j =
a j

1
1−γ

(
1− τ j

) γ

1−γ

∑
N
i=1 ai

1
1−γ (1− τi)

γ

1−γ

=
a j

1
1−γ

∑
N
i=1 ai

1
1−γ

(
1− τ j

) γ

1−γ

(1− τ̂)
γ

1−γ

≡ η j
√

1−d j, (13)

where the value of τ̂ is defined as the following weighted average (1− τ̂)
γ

1−γ =∑
N
i=1 η i(1− τi)

γ

1−γ .
Given the assumptions on a j and τ j, leading η j and δ j to be strictly positive we can con-
clude that

√
1−d j > 0.

We can now compare the business cycle volatility in the distorted and efficient produc-

7Deviations from this assumption are discussed in appendix B.2.
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tion economies by substituting equation (13) into the definition of Ψd in equation (12)

Ψ
d =

√
N

∑
i=1

δ i
2
=

√
N

∑
i=1

η i
2(1−di) . (14)

By examining the squares of the above equation and using the definition of Ψ in equation
(7) we can obtain the following:

Ψ
2 −Ψ

d2︸ ︷︷ ︸
∆HHI

=
N

∑
i=1

η i
2di = ∥d∥×∥η

2∥× cos(θ) . (15)

where ∥·∥ denotes the Euclidian norm, vector powers denoted elementwise operations,
and since ∑

N
i=1 η i

2di is the dot product of two vectors we can express the difference in
terms of the cosine similarity where θ is the angle between the two vector as follows
cos(θ) = ∑

N
i=1 η i

2di

∥d∥|×∥η
2∥ .8 Cosine similarity measures how aligned two vectors are in direction,

irrespective of their magnitude. When both vectors are mean-centered, cosine similarity
coincides with the Pearson correlation coefficient. In equation (15), it serves as a measure
of how relative distortions are correlated with (squared) relative sizes. In what follows, I
will relate to the cosine similarity between η

2
j to relative distortions d j as the correlation

between relative distortions and productivity.9 Thus, misallocation affects business cycle
volatility as follows:

Proposition 1. Misallocation dampens (amplifies) business cycle volatility arising from

firm-level shocks if relative distortions are positively (negatively) correlated with firms’

productive ability. The strength of this dampening (amplification) effect increases with:

1. the magnitude of the correlation, as measured by the absolute value of the cosine

similarity |cos(θ)|;

2. the dispersion in (squared) sales shares, given by ∥η
2∥;

3. the dispersion of relative distortions, measured by ∥d∥.

The proof follows immediately from equation (15).

8Generally, for any two vectors v,u ∈RN we can state their dot product in terms of their cosine similarity,
or the cosine of the angle α between them, as ∑

N
i viui = ∥u∥×∥v∥× cos(α).

9This statement holds since η j and its square are both strictly positive and increasing functions of firm-
level productive ability a j.
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Note that the change in concentration ∆HHI = Ψ2 −Ψd2 is proportional to the change
in business cycle variance given by σ2

Z −(σd
Z )

2 = σ2
x ×
(

Ψ2 −Ψd2
)

. Additionally, observe
that when distortions are uncorrelated, or when distortions are all identical, the wedges do
not introduce changes to the economy’s business cycle behavior.

Positive or negative correlation? In the misallocation literature broadly, the term distor-
tion is usually applied to the wedge 1− τ j, and the concept of positively correlated distor-
tions implies that misallocation disproportionally harms the high-ability firms by more than
it does the low-ability firms, i.e., high a j predicts a high τ j, and a high measured marginal
product of labor. Negatively correlated distortions imply the converse. My newly-defined
relative distortion d j is similar but defined in terms of the elasticities or relative firm size
instead of absolute firm size in the economy where x̃ = x.

Through equation (13), having d j > 0 implies that in the distorted case, firm j is smaller
in relative terms than it would have been in the efficient production case where d j < 0 im-
plies the opposite. Observing a positive correlation between relative size and relative dis-
tortion requires that a high d j firm also has a high η j. Given that η j is a strictly increasing
function of firm j’s productive ability a j. Therefore, correlated relative distortions in my
setting are conceptually equivalent, up to the exact correlation measure used, to the corre-
lated distortions employed by the misallocation literature, which relates to the correlation
between τ j and a j.10

The bulk of the misallocation literature, starting from Restuccia and Rogerson (2008)
argues that the positive correlation of distortions and ability is an important feature. Hsieh
and Klenow (2014) use plant life-cycle data from India, Mexico, and the United States
and find a positive correlation between distortions and ability. They also report model-
implied positive elasticities for the United States. Similar positive elasticities are used to
match establishment sizes and firm sizes in various countries, e.g., Bartelsman et al. (2013),
Buera and Fattal Jaef (2018); Bento and Restuccia (2017); Poschke (2018), and David and
Venkateswaran (2019).

An alternative approach to modeling misallocation is to consider its sources directly and
micro-found the wedges. Two compelling cases are market power and financial frictions.
Consider, for example, the endogenous-markup model of Atkeson and Burstein (2008). In
this type of model, more productive firms within a sector can charge higher markups and
are underproducing compared to an efficient production benchmark. This would manifest

10In section 4.3, I will also demonstrate how the two notions coincide using a parametric form used widely
in the misallocation literature.
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as a higher τi for the high-ability firms or as a positively correlated distortions.11 For the
case of financial frictions á la Kiyotaki and Moore (1997), as applied in Buera and Shin
(2013), and Moll (2014), financial frictions limit the amount of inputs a producer can use
as a function of their wealth. The higher their production ability, the more capital they wish
to employ, and thus, the higher the implicit tax imposed on them by the financial friction.
Alternatively stated, high-ability individuals are harmed more by the existence of the same
constraint on their input structure, giving rise to positively correlated distortions. To think
more clearly about the matter, let us now consider two concrete policy examples that can
map cleanly into the benchmark environment of Section 2.

3.3 The Stabilizing or Destabilizing Role of Policies: A Concrete Pol-
icy Example

Consider now an economy whereby all firms are uniformly subject to a revenue tax at a
rate of t0 and either (i) the government decided to subsidize small businesses or (ii) large
firms get tax credit or subsidies to maintain large local manufacturers and prevent them
from moving abroad. The former case will be referred to as ‘SME subsidies’12 and the
latter as large-business subsidies. Note that SME subsidies are an instance of positively
correlated distortion, and large business subsidies of negatively correlated ones. Unlike the
general statement in Proposition 1, these taxes and subsidies are now made explicit. Both
of these examples are stylized representations of size-dependent policies more broadly. I
now restrict attention to examples with a constant subsidy elasticity as follows

s(l j) =

(
l j

C0

)−ν

−1, (16)

where s j(l j) is the size-dependent subsidy rate. Stated in logs log(1+ s j) = α0 −ν log(l j),
with C0 denoting a normalizing constant such that 1+s j(l j)⩾ 1 for every j. Importantly, ν

is the elasticity of the subsidy with respect to size. I use size as measured by employment
here for tractability. When ν > 0, we are considering SME subsidies, and when ν < 0, we
have large-business subsidies. The flat tax rate t0 is chosen such that it results in the entire
tax system generating zero equilibrium revenues, making it revenue-neutral and purely

11For more on this logic, see Edmond et al. (2015).
12Subsidies geared towards small and medium enterprises (SMEs) are common in the development context

and are in place in many countries.
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redistributive. This structure streamlines the presentation considerably and implies that the
firms are now solving the following modified problem

max
l j

E
[
(1− t0)

(
1+ s(l j)

)
y j
]
−w× l j, (17)

where, as previously, yi = z̃iliγ . The first-order conditions now require that the firm’s be-
havior follows a modified demand for labor, internalizing the subsidy structure. Note that
while the tax rate t0 affects all firms uniformly and thus will not affect their relative sizes
in equilibrium, it is not the case for subsidies that do alter relative sizes. The implied
allocation rule for labor is now

l j =
a j

1
1−(γ−ν)

∑
N
i=1 a j

1
1−(γ−ν)

L, (18)

that is, the subsidy elasticity is isomorphic to a reduction of the span of control parameter
γ .13 These subsidies affect business cycle volatility as follows.

Lemma 3. SME subsidies dampen business cycle volatility, whereas large-business subsi-

dies amplify it.

For proof, see Appendix A.3. The result is intuitive; volatility in the granular economy
is governed by the degree of concentration as given by the HHI or Ψ2. SME subsidies
reduce concentration and, therefore, reduce Ψ. Conversely, large-business subsidies or
favorable tax treatment for big businesses increase concentration, thereby increasing the
volatility arising from firm-level shocks. Viewed thus, SME subsidies are ex-ante automatic
stabilizers in the sense of McKay and Reis (2021).

4 Quantitative Analysis

After formally demonstrating how misallocation in the form of correlated distortions alters
business cycle volatility, I now proceed to quantify its effect. This quantification is chal-
lenging since one needs to compute Ψ without perfectly observing a and to hold this vector
constant to compute the counterfactual economies to guarantee that the baseline and the
counterfactual differ only in the severity of distortions and not in firm-level productivity.

13To derive this allocation rule, I need to impose that 0 < γ −ν < 1 or that γ −1 < ν < γ such that the firm
problem is well behaved. For a step-by-step derivation of this result, see Appendix A.3.
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In this section, I propose a portable method with minimal data requirements. Employ-
ing it requires only a statistical or model-generated description of the firm-size distribution.
I proceed to validate this method against existing estimates of the volatility attributable to
firm-level shocks. Applying the method to study the stabilization role of correlated distor-
tions suggests that positively correlated distortions in the U.S. have a powerful stabilization
effect against firm-level shocks.

4.1 Approximation Strategy

I have defined Ψ in Lemma 1 to be Ψ =
√

∑
N
i=1 η

2
i . Therefore, Ψ is a function of the

firm-level deterministic ability a and not of the stochastic shocks x̃. Suppose that ai are
a random sample of size N drawn in an iid fashion from an ability distribution with CDF
G(a) : R++ → [0,1].14 For a given G and N, one might end up with various values for
Ψ, depending on the N realizations of ai. However, we can consider the expectations with
respect to a vector a and the resulting amplification term Ψ.

Define the quantile function Q as the inverse of G such that Q : [0,1] → R++. For a
random sample a we can define the appropriate vector q ∈ [0,1]N such that ai = Q(qi) or
G(ai) = qi. Without loss of generality, we can order the vectors such that a1 ⩾ a2, . . . ,⩾ aN .
Since qi are quantiles of a random sample of N iid draws, they are uniformly distributed,
and their ordering implies that they also correspond to order statistics. The expected order
statistics qi in a random sample are distributed as qi ∼ Beta(N +1− i, i) with expectations
given by qi = E [qi] =

N+1−i
N+1 .15 With some abuse of notation, letting Ψ̂(q) denote the value

of Ψ as a function of q, we can derive the following first-order Taylor series expansion of
Ψ around q as

Ψ̂(q)≈ Ψ̂(q)+
N

∑
i=1

∂ Ψ̂(q)
∂qi

(qi −qi). (19)

Thus, taking expectations of the above, and letting Ψ = E
[
Ψ̂(q)

]
we obtain an approxima-

tion for the amplification term Ψ.

Lemma 4. Given an ability distribution G, the amplification term Ψ can be approximated

14Note also that firm-size, both in absolute terms and in relative terms is governed by G through the

following li,η i ∝ a
1

1−γ

i .
15This is a well known result on the distribution of order statistics in finite random samples. For a formal

treatment of this, see Gentle (2009). The textbook orders the sample from smallest to largest, which is the
opposite of the order presented above.
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as

Ψ ≈ E
[
Ψ̂(q)

]
=

√
N

∑
i=1

[Q(qi)]
2

1−γ ×

[
N

∑
i=1

[Q(qi)]
1

1−γ

]−1

. (20)

The proof is immediate and follows from noting that E
[
(q j −q j)

]
= 0, along with the

fact that as x̃ = x we have that η j = a
1

1−γ

j ×
(

∑
N
i=1 a

1
1−γ

i

)−1

.16

This approximation has some desirable features. Primarily, it accommodates fat-tailed
distributions or distributions without finite moments. That is, even if G itself is ill-behaved,
statistically speaking, the quantiles vector q still represents order statistics of a uniform dis-
tribution, thus allowing us to take expectations around a function of potentially pathological
distributions through their inverse. Moreover, the approximation has an unbounded support
for G. To demonstrate, generally, q = ( 1

N+1 , . . . ,
N

N+1), where the last term monotonically
increases with the sample size.

Pareto distributions. Since many works on granular business cycles restrict attention
to the empirically-likely case where the firm-size distribution exhibits a Pareto tail, spe-
cializing the above approximation to Pareto distributions offers useful insights. Suppose
now that the ability distribution in the economy takes Pareto form with a tail parameter
ζa > 0 and scale parameter that is normalized to unity17, i.e. the CDF for ai is given by
G(a) = Prob(ai ⩽ a) = 1−a−ζa . The immediate implication of this assumption is as fol-
lows

Lemma 5. The firm-size distribution as given by employment li or by relative sizes η i is a

Pareto distribution with tail parameter ζemp = ζa (1− γ).

This result is well known; for a formal proof, see Appendix A.4. Note that since
1 − γ < 1, the tail parameter of the ability distribution is higher than that of the firm-
size distribution. Alternatively, the distribution of ability is more equal than the resulting
firm-size distribution.

The tail parameter in Lemma 5 is ζemp = ζa (1− γ), which corresponds to the empiri-
cally observed tail of the firm-size distribution when size is measured by employment. E.g.,
for the U.S. Axtell (2001) estimates ζemp = 1.059, and more recently Carvalho and Grassi

16Higher order approximations are conceptually possible since the second derivatives and covariances of
order statistics are also straightforward to obtain, see Gentle (2009) for exact formulas. However, these are
computationally infeasible because the variance-covariance matrix required has N2 entries.

17This assumption is without loss of generality because business cycle volatility is governed by the distri-
bution of relative, and not absolute, sizes.
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(2019) estimate ζemp = 1.097. Given the multiplicative structure, the two parameters ζa

and γ cannot be separately identified from the firm-size distribution alone. Incidentally, in
the model without distortions ζemp = ζsales, where ζsales is the empirically observed tail of
the firm-size distribution when size is measured by sales or revenue (or yi). However, when
including distortions ζemp ̸= ζsales. I use ζ to streamline notations when the two measures
coincide.

Ψ for a Pareto distribution. Combining the result from equation (20) with the fact that
the quantile function of a Pareto distribution is given by G−1 (a) or Q(q) = (1−q)−

1
ζa , we

can obtain the following approximation for the expected amplification term in an economy
populated with N firms:

Lemma 6. If ai is Pareto distributed, the amplification term Ψ can be approximated as.

Ψ =

√
N

∑
i=1

i−
2
ζ ×

[
N

∑
i=1

i−
1
ζ

]−1

. (21)

For proof, see Appendix A.5. Appendix A.5 also proves the following corollary relating
the asymptotic properties of this approximation to Proposition 2 in Gabaix (2011), which
serves as an important conceptual validation

Corollary 1. If ai is Pareto distributed, then as N grows, business cycle volatility decays

as follows

(a) σZ ∼ constant for ζ < 1.

(b) σZ ∼ log(N) for ζ = 1.

(c) σZ ∼ N1− 1
ζ for 1 < ζ < 2.

(d) σZ ∼
√

N for ζ ⩾ 2.

This asymptotic behavior of TFP volatility in cases (2) through (4) replicates the asymp-
totic decay properties for TFP volatility given in Proposition 2 of Gabaix (2011), whereas
case (1) is new to the best of my knowledge. That is, if the tail of the firm-size distribution
is ζ < 1, volatility due to micro-level shocks does not vanish even if the number of firms
goes to infinity. Now with this approximation and insights at hand, I turn to validating the
approximation against estimates in the existing literature on granular business cycles.
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Figure 2: Business Cycle Volatility Due to Granular Shocks
Note: Each panel reports the implied values of business cycle volatility σZ = Ψ×σx as a function of the
parameters on the axes holding the title parameter fixed.

4.2 Quantification and Validation: Business Cycle Volatility from Gran-
ular Shocks?

The above approximation strategy allows one to ask, how much TFP volatility can we
expect to arise from micro-level shocks? Equation (7) states that business cycle volatility
is a function of: the micro-level volatility σx, the number of firms N, and the distribution of
relative firm-sizes governed by the tail of the firm-size distribution ζ . Figure 2 demonstrates
how business cycle volatility σZ changes for given values of σx, N, and ζ . Panel (a) shows
that business cycle volatility increases when the firm-size distribution is more fat-tailed,
i.e., when ζ is lower, and when the micro-level shocks are stronger. Panel (b) reports that
holding the tail parameter constant at ζ = 1.1, volatility due to firm-level shocks increases
in σx and decays as the number of firms grows. Panel (c) fixes σx and demonstrates that, as
indicated by Corollary 1, volatility does not decay when the tail parameter is small enough.

Validation. To validate the approximation strategy, I utilize estimates from two existing
works that employ different approaches to quantify the magnitude of granular business
cycles: Gabaix (2011) and Carvalho and Grassi (2019). Results from this exercise are
summarized in Table 1.

In his seminal paper, Gabaix cites estimates of the square root of the economy-level
HHI (Ψ) in the U.S. as 5.3% and cites firm-level volatility of σx = 12%. His estimate
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Table 1: Validation of Approximation Strategy Against Existing Results

Paper
Cited estimate

σZ

Computed
σZ

σx ζ Ψ

(1) Gabaix (2011) 0.630% 0.636%
12%
input

1.061
inferred

0.053
input

(2) Carvalho and Grassi (2019) 0.250% 0.329%
8%

input
1.097
input

0.041
inferred

Note: This table recomputes the estimated business cycle volatility from Gabaix (2011)
and Carvalho and Grassi (2019) using the approximation strategy in equation (21) with
γ = 0.8 and N = 4.5×106.

implies that volatility due to such shocks can account for 0.63%. Using Gabaix’s HHI as
an input, I use equation (21) to infer that ζ = 1.06, which is precisely the estimate of Axtell
(2001). Thus, given an HHI, the approximation is consistent with the firm-size distribution.

Next, the work of Carvalho and Grassi (2019) discusses the business cycle properties of
a granular economy, somewhat similar to the one described in the present paper, however,
relying on different approximation techniques. The authors leverage properties of multino-
mial distributions and simulate an economy with N = 4.5×106 firms along a productivity
grid consisting of 36 distinct bins. The authors provide a survey of estimates for σx, the
firm-level Solow residual18 in the literature citing values between 0.09 and 0.2, using a
lower bound estimate of 0.08 as their benchmark. Combined with a tail parameter esti-
mate of ζ = 1.097, they estimate a TFP volatility of 0.25% due to firm-level shocks alone,
compared with the total U.S. TFP volatility of 1%.

Using the parameterization of Carvalho and Grassi (2019) and my method, I compute
an implied TFP volatility of 0.33%. The two estimates are quite close, and the discrepancy
between them is likely due to the bin-based approximation strategy of Carvalho and Grassi
(2019), which necessitates truncation of the support, thereby making the large firms slightly
too small and suppressing the variance within the very top of the firm-size distribution. My
strategy avoids this truncation and yields a slightly higher estimate. To conclude, the two
approaches yield very consistent estimates. My approach, however, involves a significantly
lower computational burden, requiring only a fraction of a second to compute on a desktop
machine, and is more compatible with the case of correlated distortions discussed next. We
now turn to quantifying the effects of correlated distortions on business cycle volatility.

18In my model, firm-level output is given by y j = ex̃ j a jl
γ

j , thus the firm-level Solow residual or the residual
term from regressing output changes on input changes (in logs) in the model is x̃ j.
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4.3 How Strong is the Dampening Effect of Positively Correlated Dis-
tortions on Volatility from Granular Shocks?

To evaluate quantitatively the effects of correlated distortions on business cycle volatility.
I follow Bento and Restuccia (2017), Poschke (2018), and Buera and Fattal Jaef (2018) in
specifying that distortions are positively correlated with productivity, taking the following
single parameter specification

(1− τi) = ai
−φ , (22)

where φ ∈ [0,1] corresponds to the elasticity of the distortions with respect to ability. An
increase in ai implies a higher value of τi. Observe that using this parametric form, firm-

level employment in the model is proportional to a
1

1−γ

j
(
1− τ j

) 1
1−γ that is, given equation

(22), firm-size is proportional to a
1−φ

1−γ

j when the idiosyncratic shocks are at their expected
level. Using the logic of Lemma 5, we have that the firm-size distribution has the following
observed tail ζemp = ζa

1−γ

1−φ
which is larger than in the efficient benchmark if φ is larger

than zero implying a less skewed firm size distribution.
This parametric example provides additional intuition to Proposition 1. Positively cor-

related distortions reduce concentration and business cycle volatility. Alternatively, re-
ducing φ from a positive level to zero or alleviating misallocation increases concentration
and volatility due to firm-level shocks. In what follows, I use literature-based estimates to
quantify this effect.

Misallocation counterfactuals have sizeable stability implications. To quantify the ef-
fect of improving production efficiency or counterfactually removing all positively cor-
related distortions, I compute the TFP volatility due to firm-level shocks in both cases
with and without positively correlated distortions. To do so, I follow Carvalho and Grassi
(2019) and calibrate the model to have N = 4.5× 106 firms, with an observed Pareto tail
of ζemp = 1.097 and set the volatility fo the firm-level Solow residual to σx = 8%. I also
follow Carvalho and Grassi (2019) and set the span of control parameter to γ = 0.8, which
is well within the range accepted in the literature. Additionally, using the estimates from
Hsieh and Klenow (2014), I calibrate the distortion elasticity in the U.S. to φ = 0.09, which
is an estimate obtained for U.S. establishments. This calibration is summarized in Table 2.

The calibrated model exhibits a TFP volatility of σZ = 0.38%, more than the econ-
omy calibrated without distortions, discussed in the validation exercise and reported in the
second row of Table 1. To understand why, note that while both cases have the same tail
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Table 2: Calibration of the Baseline Economy with Positively-Correlated Distortions

Parameter Value Source

N Number of firms, 4.5×106 Carvalho and Grassi (2019)
ζemp Observed Pareto tail 1.097 Carvalho and Grassi (2019)
γ Span of control 0.80 Carvalho and Grassi (2019)
σx Std. of idiosyncratic shock 8% Carvalho and Grassi (2019)
φ Distortion elasticity 0.09 Hsieh and Klenow (2014)

parameter for employment ζemp, introducing distortions means that ζsales ̸= ζemp and given
by

ζsales = ζa
1− γ

1− γφ
, =⇒ ζsales = ζemp

1−φ

1− γφ
,

the two would only be identical at the limit of γ → 1 or without any correlated distortions.
With a positive φ and 0 < γ < 1, one obtains that ζsales < ζemp or that sales HHI, which
governs volatility due to firm-level shocks, is higher.19

Counterfactually removing the distortions increases TFP volatility from the 0.38% re-
ported above to 0.65%, representing a 71% increase in volatility. Alternatively, the pres-
ence of positively correlated distortions in the U.S. dampens business cycle volatility due
to firm-level shocks by 42% of its potential level.20 Indicating a large stabilizing role for
positively correlated distortions, even with the relatively mild distortion present in the U.S.
economy.

To assess the robustness of this sizable stabilization effect, Figure 3 also reports how
business cycle volatility changes in response to removing the positively correlated distor-
tions for various values of φ and γ . The parameter ranges are chosen to be consistent with
the existing literature. Estimates for φ in the literature are naturally bounded between zero
and unity, Hsieh and Klenow (2014) report values of 0.5 for India and 0.66 for Mexico.
Bento and Restuccia (2017) report estimates for various countries with the U.S. value of
φ = 0.09 as the lower bar, and most other countries ranging between φ = 0.3 and φ = 0.7.
I thus consider values ranging between φ = 0 and φ = 0.2 for my U.S.-based calibration.
For all parameter values considered in Figure 3, counterfactually reducing φ = 0 (red) in-
creases volatility compared to the baseline (blue), with the effect increasing monotonically

19Anecdotally, Axtell (2001) reports that for the U.S. ζsales = 0.994 as measured by invoices, and ζemp =
1.059, consistent with a positive value of φ , however, the estimates are too noisy to be used in any formal
comparisons.

20For completeness, appendix C.2 demonstrates how to adjust the approximation in (21) for Ψd .
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Figure 3: The Effect of Correlated Distortions on Business Cycle Volatility Due to Granular
Shocks

Note: Business cycle volatility due to micro-level shocks with positively correlated distortions (benchmark)
and when these distortions are counterfactually removed using different assumptions on γ and φ .

in φ .
The value γ = 0.8 is a convention in the literature. The admissible range for γ ranges

between 0.6 and 0.9. γ = 0.6 corresponds to the U.S. labor share and serves as a natural
lower bound. A natural upper bound for the span of control parameter is one, at the constant
returns to scale limit. However, given that corporate pre-tax profits are in the order of
magnitude of 10%, γ = 0.9 serves as a better upper bound since with decreasing returns
to scale, the profit share is 1− γ . Figure 3 illustrates that the higher γ is, the stronger
the stabilizing effect of correlated distortions. Still, even under the lowest value of γ =

0.6, a distortion elasticity of φ = 0.09 implies a sizable effect from removing correlated
distortions with the volatility due to firm-level shock rising from the benchmark of 0.44%
to a counterfactual level of 0.65%.

Appendix B demonstrates that these results are robust to changing two critical assump-
tions. First, the results are robust when allowing for deviations from Gibrat’s law, whereby
large firms are less volatile than small ones. Second, the results also hold when allowing
firms to re-allocate labor immediately after the shock’s realization; however, this case is
less amenable to analytical characterization and is handled numerically. I now turn to the
normative implications of these results.
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5 Welfare Implications

Having established that big businesses are a source of aggregate fluctuations and that empir-
ically observed dispersion in marginal products affects this risk, the final point of this paper
is that to mitigate this business cycle risk, a risk-averse social planner or an efficient market
mechanism will try to reduce the size of large businesses to some extent. Note that this is
so without assuming anything about these large firms’ market power or political influence.
Instead, the planner is concerned about the presence of large firms in the economy solely
because of their size. To formally argue this point, I now derive a formula for the welfare
effect of misallocation counterfactuals, including the role of firm-level shocks, highlighting
the role of business cycle volatility. I then proceed to solve the optimal factor allocation
problem in an economy with a finite number of firms, showing how the planner’s choices
naturally give rise to an allocation of labor that appears as if there are positively correlated
distortions in the economy. However, this is not evidence of misallocation but rather of the
planner fully internalizing the effect of large firms on the economy and optimizing factor
allocations accordingly. Before proceeding, I want to note that my focus in this section
is to make a qualitative statement. The model presented exhibits a small welfare cost of
business cycles, a property known since the work of Lucas (1987), and uses similar tools.
The channel generalizes to more sophisticated frameworks in which concentration maps to
business cycle risk.

Consider the welfare of a representative household with flow utility from consumption
u(Cx̃) that is monotonically increasing and concave, with output evolving as in the previous
sections. Due to goods market clearing Yx̃ =Cx̃ thus output volatility also implies consump-
tion volatility. Let household preferences exhibit CRRA with χ =−Cx̃u′′(Cx̃)

/
u′(Cx̃) , and

suppose we normalize L = 1. Therefore, Yx̃ = Zx̃ and thus welfare is solely a function of
TFP with u(Cx̃) = u(Zx̃). Using standard second-order approximations one can obtain that
welfare in the economy with distortions can be approximated by

E
[

u
(

Zd
x̃

)]
= u

(
Zd
)
+

σx
2

2
Zd u′

(
Zd
)
−χ

1
2

(
Ψ

d
σx

)2
Zd u′

(
Zd
)
, (23)

where Zd = Zd
x̃

∣∣
x̃=x. Note that the efficient production case is analogous but with Zx̃ and Ψ

substituted instead of Zd
x̃ and Ψd . 21 The log utility case, in which χ = 1 and Zd u′

(
Zd
)
= 1,

is particularly insightful since when we subtract the case with misallocation from the one

21For a detailed derivation see appendix C.1.
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with efficient production we have that the welfare gain or loss from alleviating misalloca-
tion is given by

E [u(Zx̃) ]−E
[

u
(

Zd
x̃

)]
︸ ︷︷ ︸

Counterfactual welfare gain

= u
(
Z
)
−u
(

Zd
)

︸ ︷︷ ︸
Production efficiency

Gain

− σx
2

2

[
Ψ

2 −
(

Ψ
d
)2
]

︸ ︷︷ ︸
Stability effect

∆HHI

. (24)

The above equations demonstrate that stabilizing business cycle fluctuations due to firm-
level shocks is valuable to a risk-averse social planner. Furthermore, it also maps the sig-
nificant stability effects discussed in section 4 into a welfare-relevant wedge, namely the
change in the amplification term or the sales HHI in the economy. Works in the misallo-
cation literature often ignore the second term of equation (24) when evaluating counterfac-
tuals. Proposition 1 implies that this ignored stability effect is signed by the correlation
between distortions and productivity. When distortions are positively correlated, we obtain
overstated welfare gains. Conversely, the welfare gains are understated when the distortions
are negatively correlated.

However, this economy is naïve in the sense that the household does not allocate labor
to maximize expected utility but rather expected output, as in the production economies
thus described. One can conceptualize this as the result of some agency friction between
firm management and the representative household or as an intermediate exercise leading
to the result.

Let us now allow the planner to solve the optimal allocation of labor without knowl-
edge of the shocks x̃. Still, the planner understands how the firm-size distribution governs
consumption risk. Formally, let the planner solve

max
l

E [u(Yx̃)] (25)

s.t. Yx̃ =
N

∑
i=1

aiex̃ilγ

i ,
N

∑
i=1

li = L, l ∈ RN
+

Note that the first order condition for this problem does not involve equalizing marginal
products across firms but rather equalizing risk-weighted expected marginal products as

E[u′ (Yx̃) z̃iγlγ−1
i ] = E[u′ (Yx̃) z̃ jγlγ−1

j ], ∀i ̸= j. (26)

Therefore, allocating more labor to a more productive firm has a larger effect on aggregate
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(a) Size of most productive firm ( N = 2 ) (b) Comparing optimal vs output maximizing
labor allocation (N = 10)

Figure 4: Distorting Production to Stabilize Activity

Note: This figure reports the optimal allocation of labor from solving (25) given the calibration in the text.

consumption risk, while low productivity firms can serve as partial insurance. Alternatively,
it is the covariance of marginal utility from consumption and firm-level productivity that
governs the optimal allocation of labor.

The assumption that x̃ is not known now lends much tractability to the problem, as
the planner does not need to allocate labor state-by-state but instead to form a non-state-
contingent allocation. While conceptually simple, the problem requires a large state space.
To illustrate, if x̃i can take k distinct levels, the state space consists of kN states, which is
infeasible for a realistic number of firms.

To numerically study this problem, I calibrate a model economy as follows. Consider
an economy with the representative household’s utility being CRRA with χ = 2, the span
of control parameter is γ = 0.8, and normalize the total allocation of labor to L = 1. Figure
4 demonstrates the optimal allocation of labor resulting from numerically solving (25) with
a discrete stochastic process for x̃i with k = 2 levels such that E

[
ex̃i
]
= 1 and σx = 8%. To

be as consistent as possible with previous sections, I choose individual firm productivity
levels according to the expected quantiles q = ( 1

N+1 , . . . ,
N

N+1) of a Pareto distribution with
a tail parameter such that ζemp = ζa

1−φ

1−γ
= 1.097 yielding a ζa = 4.99 when φ = 0.09 as in

Hsieh and Klenow (2014).
The simplest case to analyze is the one in which N = 2, depicted in Figure 4a, compar-

ing the optimal allocation of labor to the (expected) output maximizing one. The planner
understands that the output-maximizing allocation in equation (4) results in suboptimally
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(a) Welfare as a function of φ (b) Allocation of labor with optimal φ vs output
maximizing allocation

Figure 5: Distorting Production to Stabilize Activity: Constant Distortion Elasticity φ

Note: This figure reports the optimal allocation of labor obtained from solving (25) with the calibration
summarized in the text, but constraining the planner to follow labor allocation rule with a fixed φ .

high business cycle volatility and thus allocates less labor to the more productive firm.
The planner trades off production efficiency for economic stability as the optimal allocation
reduces both the expected output level and volatility. Equation (24) is the most straightfor-
ward way to illustrate the trade-off between production efficiency and economic stability
analytically. The two terms on the right-hand side of the equation demonstrate the trade-
off, as raising the first is done at the expense of raising the second. The more risk averse
the planner is, the more value they derive from reducing business cycle volatility. This
intuition is maintained when we increase the number of firms, as illustrated in Figure 4b,
which reports the optimal allocation of labor in the N = 10 case compared to the labor
allocation in equation (4). The planner again allocates less labor to the high-productivity
firms to stabilize economic activity compared with the output-maximizing case.

Note that the above is the result of an efficient welfare-maximizing planner. What if
some friction prevents the planner from allocating labor explicitly? Consider a frictional
economy where each firm owner maximizes profits due to some un-modeled friction. How-
ever, welfare is still given by the same objective. This is a restricted version of (25) in which
the planner can only set the institutional environment, or choose φ , the distortion elastic-
ity in equation (22) to maximize welfare and not to choose labor at the firm-level. Figure
5 reports the results of this exercise. Importantly, Figure 5a reports that the planner op-
timally sets a positively correlated distortion φ > 0 to maximize welfare. Note that the
resulting allocation of labor given in Figure 5a appears qualitatively similar to the one in
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Figure 4b, with the most productive firms under-producing and the least productive firms
over-producing compared with the output-maximizing allocation of labor.

To conclude, this exercise challenges the commonly held normative interpretation of
positively correlated distortions in the data. Viewed from a static perspective, a dispersion
of marginal products is output-decreasing, thus decreasing welfare. However, a stochastic
view of the same empirical regularity yields a different interpretation whereby a degree
of positively correlated distortion can be optimal as it stabilizes economic activity. I re-
iterate that these results should be viewed as only qualitative, and a more comprehensive
quantitative assessment of ‘optimally distorting the firm-size distribution’ is left for future
work.

6 Concluding remarks

This paper combines two strands of the macroeconomic literature: the literature on gran-
ular business cycles and misallocation. The key idea of this paper is that factors affecting
the firm-size distribution can affect business cycles through the granularity hypothesis. I
develop a framework embedded within the canonical firm-dynamics model à la Hopenhayn
(1992) in which correlated distortions dampen or amplify business cycles as a function of
the correlation between distortions and productivity, where the empirical literature supports
the former. I quantify how much business cycle volatility should respond to this channel
in the U.S. economy. I find sizable effects under various model specifications and param-
eterizations. These effects suggest that positively correlated distortions have a significant
stabilizing effect on economic activity.

I demonstrate how size-dependent policies, such as SME subsidies, can reduce business
cycle volatility and act as automatic stabilizers in an ex-ante sense. Having SME subsidies
in the economy reduces business cycle risk. The final section of this paper challenges the
normative interpretation of positively correlated distortions, suggesting that size-dependent
policies play a significant role in the policymaker’s toolkit when market frictions prevent
the allocation of labor from internalizing business cycle risk due to firm-level shocks. The
extent to which these policies should be employed depends on the efficiency of the market
mechanism and the degree to which business cycle fluctuations resulting from firm-level
shocks are detrimental to welfare. Moreover, such policies might introduce new inefficien-
cies or long-run effects not explored in this paper.
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Appendix A Proofs

A.1 Proof of Lemma 1 and a Step by Step Derivation

Proof. Allocation rule for labor. The first order condition for the production problem 2, is
given by

γa jl j
γ−1 = w =⇒ l j =

(
a j
) 1

1−γ

(
γ

w

) 1
1−γ

(27)

Using the market clearing condition for labor we obtain

N

∑
i=1

li =
(

γ

w

) 1
1−γ

N

∑
i=1

ai
1

1−γ = L. (28)
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Substituting the above relationship as
(

γ

w

) 1
1−γ = L

∑
N
i=1 ai

1
1−γ

, into 27 yields the labor alloca-

tion rule in Lemma 1 (1), and the resulting firm-level output

l j =
a j

1
1−γ

∑
N
i=1 ai

1
1−γ

L, y j =
a j

1
1−γ ex̃ j(

∑
N
i=1 ai

1
1−γ

)γ Lγ (29)

Aggregate production function representation. To derive the aggregate production func-
tion representation we can sum all the realizations of y j to derive the aggregate production
function in Lemma 1 (2)

Yx̃ =
N

∑
i=1

yi =
∑

N
i=1 ai

1
1−γ ex̃i[

∑
N
i=1 ai

1
1−γ

]γ Lγ = Zx̃ ×Lγ , Zx̃ =
∑

N
i=1 ai

1
1−γ ex̃i[

∑
N
i=1 ai

1
1−γ

]γ . (30)

Hulten’s theorem. Given the above structure, the elasticity of the resulting economy’s
log TFP, to a one-percent shock to the productive ability of the jth firm is straightforward:

η j =
∂ logZx̃

∂ log z̃ j
=

∂ logZx̃

∂ x̃ j
=

1
Zx̃

a j
1

1−γ ex̃ j[
∑

N
i=1 ai

1
1−γ

]γ =
a j

1
1−γ ex̃ j

∑
N
i=1 ai

1
1−γ ex̃i

, (31)

where the first equality sign comes from the definition of an elasticity, the second from the
relationship log z̃ j = loga j + x̃ j, the third from deriving Zx̃ with respect to x̃ j, and the last
from substituting in the definition of Zx̃. Furthermore, observe that the sales share of firm
j, denoted by sY, j = y j/Yx̃ is given by

sY, j =
y j

Yx̃
=

a j
1

1−γ ex̃ j(
∑

N
i=1 ai

1
1−γ

)γ Lγ ×

 ∑
N
i=1 ai

1
1−γ ex̃i(

∑
N
i=1 ai

1
1−γ

)γ Lγ


−1

= η j, (32)

thus yielding Lemma 1 (3) and demonstrating that Hulten’s theorem holds exactly in the
environment. Note that Hulten’s theorem holds in TFP and in output terms since ∂ logYx̃

∂ log z̃ j
=

∂ logZx̃
∂ log z̃ j

.
Business cycle volatility. To derive the volatility of aggregate TFP, which is the final

part of the proof, Lemma 1 (4), we need to examine the stochastic properties of Zx̃. Given
the idiosyncratic shock structure introduced, TFP in the economy can be restated with some
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abuse of notation as

Zx̃ =
N

∑
i=1

ai
1

1−γ ex̃i ×

(
N

∑
i=1

ai
1

1−γ

)−γ

= Z(x̃), (33)

where x̃ ∈ RN is the vector containing all the N iid realizations of x̃ j. Using a Taylor
series expansion around the point x ∈ RN in which all the idiosyncratic shocks are at their
expected level x, we can derive the approximation given in Lemma 1 (4) as follows

VAR[log(Z(x̃)) ]≈ VAR

[
log(Z(x)) +

N

∑
i=1

∂ log(Z(x))
∂ x̃i

(x̃i − x)

]
= σx

2
N

∑
i=1

η
2
i , (34)

where η i =
∂ log(Zx̃)

∂ x̃i

∣∣∣
x̃=x

, and σ2
x is the second moment of x̃ j. The standard deviation of log

TFP, σZ in equation (7) of Lemma 1 (4), is simply the squared root of the above. This ends
the proof.

A.2 Proof of Lemma 2 and a Step by Step Derivation

Proof. Allocation rule for labor. The first order condition for the production problem (8),
is given by

γa j
(
1− τ j

)
l j

γ−1 = w. (35)

we can rearrange this expression and use the market clearing condition for labor to obtain

N

∑
i=1

li =
(

γ

w

) 1
1−γ

N

∑
i=1

(ai(1− τi))
1

1−γ = L. (36)

Thus, in equilibrium we would have that

l j =

(
a j
(
1− τ j

)) 1
1−γ

∑
N
i=1 (ai(1− τi))

1
1−γ

L, y j =
a j

1
1−γ

(
1− τ j

) γ

1−γ ex̃ j(
∑

N
i=1 (ai(1− τi))

1
1−γ

)γ Lγ , (37)

which is the allocation rule given in equation (9), and firm-level output.
Aggregate production function representation. Using the above firm-level output y j

and summing across all N firms allows one to obtain the aggregate production function in
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equation (10) as

Y d
x̃ =

N

∑
i=1

yi = Zd
x̃ ×Lγ , Zd

x̃ =
∑

N
i=1 ai

1
1−γ (1− τi)

γ

1−γ ex̃i[
∑

N
i=1 (ai(1− τi))

1
1−γ

]γ . (38)

Hulten’s theorem. As in the efficient production economy, the elasticity of the resulting
economy’s log TFP, to a one-percent shock to the productive ability of the jth firm is derived
as:

δ j =
∂ log

(
Zx̃

d
)

∂ log z̃ j
=

∂ log
(
Zx̃

d
)

∂ x̃ j
=

1
Zx̃

d
a j

1
1−γ (1− τ j)

γ

1−γ ex̃ j[
∑

N
i=1 (ai(1− τi))

1
1−γ

]γ =
a j

1
1−γ (1− τ j)

γ

1−γ ex̃ j

∑
N
i=1 ai

1
1−γ (1− τi)

γ

1−γ ex̃i

, (39)

this derivation closely follows the one in the proof of Lemma 1 (3). Furthermore, as was
the case in Lemma 1, observe that sd

Y, j = y j/Y d
x̃ is given by

sd
Y, j =

y j

Y d
x̃
=

a j
1

1−γ

(
1− τ j

) γ

1−γ ex̃ j(
∑

N
i=1 (ai(1− τi))

1
1−γ

)γ Lγ ×

∑
N
i=1 ai

1
1−γ (1− τi)

γ

1−γ ex̃i[
∑

N
i=1 (ai(1− τi))

1
1−γ

]γ ×Lγ


−1

= δ j,

thus yielding Lemma 1 (3), and demonstrating that Hulten’s theorem holds exactly in the
environment.

Business cycle volatility. As was the case in Lemma 1 (4), with some abuse of notation
we can express

Zd
x̃ =

N

∑
i=1

ai
1

1−γ (1− τi)
γ

1−γ ex̃i ×

[
N

∑
i=1

(ai(1− τi))
1

1−γ

]−γ

= Zd(x̃), (40)

where x̃ is the vector containing all the N iid. realizations of x̃ j. Using a Taylor series
expansion around the mean point x ∈RN , we can derive the approximation given in Lemma
2 (4) as follows

VAR
[
log
(

Zd(x̃)
)]

≈ VAR

[
log
(

Zd(x)
)
+

N

∑
i=1

∂ log
(
Zd(x)

)
∂ x̃i

(x̃i − x)

]
= σx

2
N

∑
i=1

δ
2
i , (41)

where δ i =
∂ log(Zd

x̃ )
∂ x̃i

∣∣∣∣
x̃=x

, and σ2
x is the second moment of x̃ j. The volatility, σd

Z , in equation

(7) of Lemma 2 (4) is simply the squared root of the above, thus concluding the proof.
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A.3 Proof of Lemma 3

Proof. To prove that SME subsidies dampen business cycle volatility and that large-business
subsidies amplify it, we must first derive the aggregate properties of the economy in ques-
tion. The firm problem in (17) yields the following first order condition

l j = a j
1

1−(γ−ν)

(
C0

ν (1− t0)(γ −ν)

w

) 1
1−(γ−ν)

. (42)

Using labor market clearing as

L =
N

∑
i=1

li =

(
C0

ν (1− t0)(γ −ν)

w

) 1
1−(γ−ν) N

∑
i=1

a j
1

1−(γ−ν) , (43)

we obtain the labor allocation rule in equation (18). It is trivial that the resulting allocation
of labor is identical to the one in an economy with a different span of control parameter γ .
Note that output at the firm level is given by

y j = ex̃ ja j
1+ν

1−(γ−ν)

[
N

∑
i=1

ai
1

1−(γ−ν)

]−γ

Lγ , (44)

and therefore, aggregate output and productivity are given by

Yx̃
SME =

N

∑
i=1

yi = ZSME
x̃ Lγ , ZSME

x̃ =
N

∑
i=1

ex̃iai
1+v

1−(γ−ν)[
∑

N
i=1 ai

1
1−(γ−ν)

]γ . (45)

Similarly to the derivations in Appendix A.1, and A.2, we can compute the elasticity of
TFP with respect to shocks to firm j as

η
SME
j =

∂ logZSME
x̃

∂ x̃ j
=

1
ZSME

x̃

ex̃ ja j
1+v

1−(γ−ν)[
∑

N
i=1 ai

1
1−(γ−ν)

]γ =
ex̃ ja j

1+v
1−(γ−ν)

∑
N
i=1 ex̃iai

1+v
1−(γ−ν)

. (46)

Repeating the approximation in equation (34) allows us to state that business cycle volatil-
ity, in this case, is given by

σ
SME
Z = σx ×Ψ

SME, Ψ
SME =

√
N

∑
i=1

(
η

SME
i

)2
(47)
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where η
SME
j again denote the values of ηSME

j when all the idiosyncratic shocks x̃ are set to
their expected value.

With some abuse of notation, let p = 1+ν

1−(γ−ν) and define the auxiliary function

h(p) = Ψ
SME(p) =

√
N

∑
i=1

ai2p ×

[
N

∑
i=1

ai
p

]−1

. (48)

where the efficient production benchmark in equation (7) is given by h(p = 1
1−γ

) = Ψ.
To prove that stronger SME subsidies dampen business cycle volatility and large-business
subsidies amplify them, it is sufficient to show that ΨSME is a decreasing function of ν or
that h is an increasing function of p since we have that d p

d ν
= −γ

(1−(γ−ν))2 < 0 for all values
of ν obeying the regularity condition γ −1 < ν < γ . Given the definitions of γ and ν , p can
take values between one at the limit where γ → 0 and infinity when γ → 1+ν .22 We now
state technical claim 1.

Claim 1. Let a ∈ RN
++. The function: h(p) = ∥a p∥2

∥a p∥1
where, ap is the elementwise power

of a by p and ∥·∥1 and ∥·∥2 denote the L1 and L2 norms correspondingly. Then, h′(p) ⩾

0,∀p > 0 with strict inequality if ∃ j,k ∈ {1, . . . ,N} for which a j ̸= ak.

The proof follows below. This concludes the proof of Lemma 3.

A.3.1 Proof of Claim 1

Proof. For convenience, we will look at h(p)2 as

h(p)2 =
∥a p∥2

2

∥a p∥2
1

=

∑
i

(
ap

i
)2

∑
i

(
ap

i
)2

+ ∑
i ̸= j

ap
i ap

j

=

∑
i

(
ap

i
)2

+ ∑
i ̸= j

ap
i ap

j − ∑
i ̸= j

ap
i ap

j

∑
i

(
ap

i
)2

+ ∑
i ̸= j

ap
i ap

j

= 1−
∑

i ̸= j
ap

i ap
j

∥a p∥2
1

.

22In the latter case, the bounds also impose that ν → 0 as γ −1 < ν .
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Taking the derivative with respect to p yields

(
h(p)2)′ =−

(
∑

i̸= j
ap

i ·a
p
j · log(aia j)

)
· ∥a p∥2

1 −2∥a p∥1 ·
(

∑
k

ap
k · log(ak)

)
· ∑

i ̸= j
ap

i ·a
p
j

∥a p∥4
1

=−

(
∑

i ̸= j
ap

i ·a
p
j · log(aia j)

)
·∑

k
ap

k −
(

∑
k

ap
k · log(a2

k)

)
· ∑

i ̸= j
ap

i ·a
p
j

∥a p∥3
1

=
1

∥a p∥3
1

·∑
i̸= j

∑
k

ap
i ·a

p
j ·a

p
k · log

(
a2

k
aia j

)
,

Where the first equality sign follows from the quotient rule; the second from canceling out
∥a p∥1 and substituting in the definition of the L1 norm while noting that the vector ap is
strictly positive, and bringing in the two inside the log sign; and the last from using log
rules and taking note of the minus sign outside the fraction. We can perform the following
transformation

1

p∥a p∥3
1

· p ·∑
i ̸= j

∑
k

ap
i ·a

p
j ·a

p
k · log

(
a2

k
aia j

)
=

2

p∥a p∥3
1

·∑
i< j

∑
k

ap
i ·a

p
j ·a

p
k · log

(
a2p

k
ap

i ap
j

)
,

where all we did is multiply and divide by p, used the fact that log(ab) = b log(a), and
switched the indexing under the sum from ̸= to <. The above expression signs the deriva-
tive of interest. We now prove that this expression is positive, and strictly so if a contains
at least one element that is different than the rest.

For the remainder of the proof, I use the following change of variables, letting ui = ap
i

and proving that

M(N) = ∑
1⩽i< j⩽N

N

∑
k=1

ui ·u j ·uk · log
(

u2
k

uiu j

)
⩾ 0, ∀u ∈ RN

++, u1 ⩽ . . .⩽ uN ,

and with strict inequality if at least one of the inequalities u1 ⩽ . . .⩽ uN is a strict inequality.
The proof follows by induction leveraging the two-firm example; if changing p modifies
the share of the one firm, η1, the share of the other is equally affected with an opposite
sign. Introducing an SME subsidy (ν > 0) and increasing the share of the smaller firm at
the expense of the larger one, thus leading p and Ψ to decrease. Formally, when N = 2 the
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function h(p) is monotonically increasing in p as follows in the base case. I then proceed
by induction to demonstrate that this will be true for all integer N ⩾ 2.

Base case: N = 2:

M(N = 2) =
2

∑
k=1

u1 ·u2 ·uk · log
(

u2
k

u1u2

)
. (49)

If u1 = u2, the above expression is zero. Otherwise, since we have at least one strict in-
equality, we know that u1 < u2 and therefore u2

1 < u1u2 < u2
2. Thus,

M(N = 2) =−u2
1 ·u2 · log

(
u2

u1

)
+u1 ·u2

2 · log
(

u2

u1

)
= u1u2 log

(
u2

u1

)
(u2 −u1)> 0,

which is true because u1 < u2.
Inductive step N: We need to prove that if M(N−1)⩾ 0 then M(N)⩾ 0 ∀u1 ⩽ . . .⩽ uN .

Note that we can rewrite M(N) recursively as:

M(N) = ∑
1⩽i< j⩽N−1

N−1

∑
k=1

uiu juk log
(

u2
k

uiu j

)
︸ ︷︷ ︸

M(N−1)

+
N−1

∑
i=1

N−1

∑
k=1

uiuNuk log
(

u2
k

uiuN

)
+ ∑

1⩽i< j⩽N−1
uiu juN log

(
u2

N
uiu j

)
+

N−1

∑
i=1

uiu2
N log

(
uN

ui

)
︸ ︷︷ ︸

=R(N)

,

where R includes all the added terms when increasing N by exactly one, or alternatively
R(N) = M(N)−M(N −1). To briefly explain the above recursive formulation, M(N) is a
recursive expression that is a function of M(N−1) for all N > 2, where M(2) is defined via
equation (49). Thus, M(N) is a function of four terms: M(N−1); all expressions involving
j = N and k < N; all expressions involving j < N and k = N; and finally, all expressions
involving j = N and k = N.

To prove that M(N) > 0, it is sufficient to show that that R(N) > 0 since M(N − 1) is
positive by the induction hypothesis. Without loss of generality, it is sufficient to show that
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R(N)
uN

> 0, as u ∈ RN
++. Let us examine R(N)

uN
> 0

R(N)

uN
=

N−1

∑
i=1

N−1

∑
k=1

uiuk ·
(

log
(

uk

ui

)
− log

(
uN

uk

))
︸ ︷︷ ︸

T1

(50)

+ ∑
1⩽i< j⩽N−1

uiu j ·
(

log
(

uN

ui

)
+ log

(
uN

u j

))
+

N−1

∑
i=1

uiuN log
(

uN

ui

)
.

It is helpful to decompose the first term of the sum T1 as follows

T1 =
N−1

∑
i=1

N−1

∑
k=1

ui ·uk ·
(

log
(

uk

ui

)
− log

(
uN

uk

))
= ∑

1⩽k<i⩽N−1
uiuk ·

(
− log

(
ui

uk

)
− log

(
uN

uk

))

+ ∑
1⩽i<k⩽N−1

ui ·uk ·
(

log
(

uk

ui

)
− log

(
uN

uk

))
+

N−1

∑
i=1

−u2
i · log

(
uN

ui

)
−u2

i · log
(

ui

ui

)
. (51)

The first term on the right-hand side accounts for all the pairs for which k < i, the second
term accounts for all the pairs in which i < k, and the last term accounts for the case where
i = k.

R(N)

uN
=

N−1

∑
i=1

N−1

∑
k=1

uiuk ·
(

log
(

uk

ui

)
− log

(
uN

uk

))
︸ ︷︷ ︸

T1

+ ∑
1⩽i< j⩽N−1

uiu j ·
(

log
(

uN

ui

)
+ log

(
uN

u j

))
+

N−1

∑
i=1

uiuN log
(

uN

ui

)
= ∑

1⩽k<i⩽N−1
uiuk ·

(
− log

(
ui

uk

)
− log

(
uN

uk

))
︸ ︷︷ ︸

H1

+ ∑
1⩽i<k⩽N−1

ui ·uk ·
(

log
(

uk
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)
− log

(
uN
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))
︸ ︷︷ ︸

H2

+
N−1

∑
i=1

−u2
i · log

(
uN
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)
−u2

i · log
(
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)
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=0

+ ∑
1⩽i< j⩽N−1

uiu j ·
(

log
(

uN

ui

)
+ log

(
uN

u j
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︸ ︷︷ ︸

H3

+
N−1

∑
i=1

uiuN log
(

uN

ui

)
=

N−1

∑
i=1

(uN −ui) ·ui · log
(

uN

ui

)
⩾ 0

Where the first equality sign is just restating equation (50), the second comes from substi-
tuting in T1 from equation (51), and the third from noting that H1+H2+H3 = 0. Finally, we
can verify that by our definition of the vector u ∈ RN

++ as ordered such that u1 ⩽ . . .⩽ uN ,
we obtain that both the expressions (uN −ui)⩾ 0 element by element and that log

(
uN
ui

)
> 0

for all i. Thus concluding that R(N) is positive, and strictly so if (uN −ui)ui log
(

uN
ui

)
> 0

for at least one i, or that u1 ⩽ . . . ⩽ uN holds with at least one strict inequality. This con-
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cludes the proof.

A.4 Proof of Lemma 5

Proof. Given Lemma 1, firm size is proportional to ai
1

1−γ . Given that ai is drawn from a
Pareto distribution, we can obtain that

Prob
(

a
1

1−γ > x
)
= Prob

(
a > x1−γ

)
= x−ζa(1−γ) = x−ζ . (52)

A.5 Proof of Lemma 6

Proof. The amplification term as given by the approximation in equation (20), along with
the definition of qi = E [qi] =

N+1−i
N+1 , and the relationship ai = Q(qi) allows one to derive

that given a Pareto ability distribution we have that

Ψ =

√
N

∑
i=1

η i
2 =

√
∑

N
i=1 ai

2
1−γ

∑
N
i=1 ai

1
1−γ

=

√
∑

N
i=1 (1−qi)

− 1
ζa

2
1−γ

∑
N
i=1 (1−qi)

− 1
ζa

1
1−γ

=

√
∑

N
i=1 (1−qi)

− 2
ζ

∑
N
i=1 (1−qi)

− 1
ζ

= (53)√
∑

N
i=1
(
1− N+1−i

N+1

)− 2
ζ

∑
N
i=1
(
1− N+1−i

N+1

)− 1
ζ

=

√( 1
N+1

)− 2
ζ

∑
N
i=1 i−

2
ζ( 1

N+1

)− 1
ζ

∑
N
i=1 i−

1
ζ

=

√
∑

N
i=1 i−

2
ζ

∑
N
i=1 i−

1
ζ

.

Where the first equality sign is due to equation (7), the second from the definition of as

η j =
a j

1
1−γ

∑
N
i=1 ai

1
1−γ

, the third from substituting in the relationship ai = Q(qi), the forth from

noting that ζ = (1− γ)ζa, the fifth from exploiting that qi = E [qi] =
N+1−i

N+1 and the rest
from straightforward algebra. This concludes the proof of Lemma 6.

To obtain Corollary 1, we need to understand the limit behavior of Ψ as N →∞. For that
purpose, it is worthwhile introducing the following notations. Let ζR(p) = ∑

∞
i=1 i−p denote

the Riemann zeta function. I restrict attention to real values of p > 0. When p > 1 this
function is bounded, and represents a convergent series. For p= 1, this function is divergent
and corresponds to the harmonic sum which diverges at the same rate as log(N) since its
limit behavior is given by γEM + log(N), with γEM ≈ 0.577 being the Euler Mascheroni
constant.23 For values of p < 1 we can observe that the series increases polynomially in N

23The constant is in fact defined by the limit of the difference between the harmonic sum up to N and
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since ∑
N
i=1

1
ip ≈

∫ N
1 x−pdx = N1−p−1

1−p . Now, observe that at the limit we have that

lim
N→∞

Ψ =

√
ζR

(
2
ζ

)
×
[

ζR

(
1
ζ

)]−1

, (54)

thus, the approximate amplification term Ψ can be described as the ratio of two Riemann
zeta functions. The above expression can be analyzed in cases

1. When ζ < 1 both expressions are given by constants since 1
ζ
> 1.

2. When ζ = 1 the numerator is a constant since 2
ζ
= 2, but the denominator is given by

the harmonic sum such that asymptotically Ψ ∼ Constant
log(N) .

3. When 1 < ζ < 2, the numerator is still a constant since 2
ζ
> 1, but the denominator

diverges and its limit behavior is given by Ψ ∼ Constant×N−
(

1− 1
ζ

)
.

4. When ζ ⩾ 2, the numerator and denominator diverge the former behaves as

√
N1− 2

ζ

and the latter as N1− 1
ζ , thus the ratio exhibits decay at a rate of 1√

N
.

Supplemental Appendices

Appendix B Extensions

The analysis presented in the main text is centered around a model of a vertical economy,
in which shocks to all firms have identical variance, and factors are allocated before the
shock is realized. The fact that Hulten’s theorem holds in both the efficient production case
in Lemma 1 and the distorted case in Lemma 2 guarantees that, to a first order, positively
correlated distortions dampen business cycles in economies with arbitrary production net-
works.24 However, the other two limitations, namely, equal variance and no reallocation
ex-post, merit a more systematic analysis. The tools developed in the main text facilitate
an analysis even in cases where clear analytical results are not possible to derive.

log(N) as N → ∞.
24For an analogous argument, see Gabaix (2011), and for a discussion of the limitations of first-order

approximations, see Baqaee and Farhi (2019).
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B.1 Size-Volatility Relationship

The baseline model assumes that firm-level volatility σx is independent of size (Gibrat’s
law). However, the literature has documented systematic deviations from Gibrat’s law,
especially for young and small firms, e.g., Evans (1987), Haltiwanger et al. (2013), such
that young and small firms are more volatile. Theoretically, one can think of such deviations
as resulting from a frictional view of firm dynamics whereby firms find it difficult to attain
their optimal size quickly. These can result from adjustment costs to capital and labor
or from financial frictions as proposed by Cooley and Quadrini (2001) and Clementi and
Hopenhayn (2006). Alternatively, such an outcome might emerge as the result of within-
firm diversification as in the model of Koren and Tenreyro (2013).

For the purpose of the present work, it is more important to describe this statistical
regularity and see whether it alters the model’s prediction on the link between correlated
distortions and business cycle volatility. Works such as Stanley et al. (1996), Amaral et al.
(1997), Sutton (2002), Koren and Tenreyro (2013), and most recently Yeh (2023) measure
the elasticity between volatility and size, or estimate α in the following functional form
σx(Size) = σ0 ×Size−α . All of these works find positive values of α , i.e., firm size is neg-
atively correlated with firm volatility, with headline estimates ranging between α = 0.1 and
α = 0.25. Yeh (2023) goes even further and compares this constant-elasticity specification
to a non-parametric smoother, and finds that the constant-elasticity assumption performs
remarkably well. The author also conducts a structural break analysis for the size volatility
relationship and finds no evidence of breaks.

To connect this literature to my analysis, I now develop a modified formula for Ψ,
adjusted to allow for α > 0, and use estimates from the literature to repeat the analysis
in Figure 3. I allow for a size-volatility relationship expressed in terms of sales such that
σx(y j)=σ0×y−α

j .25 I use the parameterization which includes misallocation for generality
and to map empirical estimates, based on observed firm size, more easily.

Lemma 7. Business cycle volatility in an economy with size-volatility relationship such

that σx(δ j) = σ0 ×δ
−α

j is approximately given by

σ
d
Z ≈ σ0

Y dα ×

√
N

∑
i=1

δi
2(1−α)

=
σ0

Y dα ×Ψ
d(α), (55)

25Given the repeated static nature of my model, I simplify the definition of size to the expected size when
all idiosyncratic shocks are switched off, so as to make the model tractable.
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Figure 6: The Effect of Correlated Distortions on Business Cycle Volatility Due to Granular
Shocks Allowing for a Size-Volatility Relationship

Note: This figure compares the volatility of business cycle fluctuations due to micro-level shocks, while
allowing for deviations from Gibrat’s law, with positively correlated distortions (benchmark) vs when these
distortions are counterfactually removed using different assumptions on α and φ . All computations are done
using γ = 0.8 and N = 4.5×106 while targeting ζemp = 1.097.

where Y d = Y d
x̃

∣∣
x̃=x.

Proof in Appendix C.3. When α = 0 this lemma collapses into the structure given by
Lemma 2, equation (12), with Ψd = Ψd(α = 0). Note that Ψd(α) is no longer the HHI, but
an adjusted measure whereby larger firms also have lower volatility and are thus weighted
down. Additionally, the volatility is decaying in total output in the case where all shocks
are at their expected level Y d , which affects the asymptotic properties for large N in this
case, when compared with the baseline.

I follow the calibration strategy of Yeh (2023), and target an average volatility of firm-
level Solow residual of 12% for different values of α , within the empirically likely range.
The technical procedure to conduct this calibration exercise is specified in detail in Ap-
pendix C.3. Results are reported in Figure 6 for values of α ranging between 0.1 and
0.25. All else being equal, the level of volatility one can attribute to firm-level shocks
is lower, the higher the value of α . However, in all cases considered, the existence of
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positively correlated distortions in the benchmark stabilizes volatility compared with the
efficient production counterfactual. The increase in volatility is monotonically increasing
in the strength of the distortions. The basic intuition behind this result is that as long as
the elasticity α is strictly below unity, the empirically likely case, as a large firm grows,
in relative terms, by one percent, the economy is more exposed to its idiosyncratic shock
by 1−α percent, and is thus less diversified. It is possible that removing the distortions
raises output so much that volatility decreases, since output, given by Y d in equation (55),
increases. However, for this effect to be significant, one must have that both α is large
and the distortions themselves are severe. This effect is present but not dominant in all
examined scenarios reported in Figure 6.

B.2 Ex-post Reallocation

An assumption that underlies the entire analysis thus far is that the allocation of labor is
done without knowledge of the realized values of x̃i. In the main text, I assume that factors
are allocated ex ante, and it is impossible to reallocate them after learning the realizations
of the shocks. From the perspective of a short-run analysis, I believe this is a likely sce-
nario in practice.26 However, the stylized nature of my model also allows me to gauge the
importance of relaxing this assumption.

To illustrate the key differences that arise compared to my analysis in the main text,
suppose now that we were to solve a problem similar to (8) but with full knowledge of
the values of x̃. For ease of comparison between the two cases, I use the same notations
when possible; for completeness, the full derivation is included in Appendix C.4. In both
the efficient production case characterized in Lemma 1 and the inefficient case described
in Lemma 2, Hulten’s theorem holds exactly. Thus, letting the output share of firm j in the
efficient case by sY, j, for the inefficient case by sd

Y, j, and their corresponding values when
x̃ = x by sd

Y, j and sY, j. I compared the volatility in both cases by exploiting the following
relationship

δ j = sd
Y, j = sY, j ×

√
1−d j = η j ×

√
1−d j.

However, allowing the choice of labor to be made with full knowledge of the firm-level

26For example, Google’s CEO in announcing major layoffs in January 2023 stated that: "Over the past
two years we’ve seen periods of dramatic growth. To match and fuel that growth, we hired for a different
economic reality than the one we face today." The full statement is available at https://blog.google/
inside-google/message-ceo/january-update/. Thus, hinting that hiring decisions had been made in
the absence of information about the present state of the economy.
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shocks, we obtain that
δ j = sd

Y, j +
γ

1− γ

(
sd
Y, j − sd

L, j

)
, (56)

where sd
L, j denotes the input share of firm j in the inefficent production case where x̃ = x.

For the explicit derivation of the above, see Appendix C.4. In the efficient production case,
input and output shares are identical, so it would always be the case that sY, j − sL, j = 0
and Hulten’s theorem would hold exactly. However, in the presence of misallocation and
ex-post reallocation, input shares and output shares are not necessarily aligned and we have
the extra higher-order term γ

1−γ

(
sd
Y, j − sd

L, j

)
.27

The expression in equation (56) is not necessarily positive and depends on the exact
values for the implicit taxes or the severity of misallocation. When the difference between
input and output shares is sufficiently pronounced, the elasticity δ j might be negative. Such
a negative elasticity has profound implications for understanding the effects of granular
shocks on aggregate volatility as follows. Suppose that a firm has a negative elasticity, it
implies that we are so far removed from the efficient production case that the input share
of this firm is sufficiently high compared to its output share, or that sd

Y, j < γsd
L, j to be exact.

Suppose further that this firm experiences a positive shock. Such a shock draws more
resources into this firm at the expense of other, more productive firms, thus reducing TFP
as a result. The converse also holds since a negative shock to such a firm frees up inputs to
be employed elsewhere.

These negative elasticities render the previously introduced transformation impractical.
This is because we cannot map between the ability of the firm and the size of the squared
elasticities. These might be high for large negative or positive values. Thus, breaking the
previously established link in this case. This rationale implies that understanding the effects
of firm-level shocks on business cycle volatility in an environment with ex-post reallocation
hinges on the covariance between input and output shares. Specifically, recall that earlier
we had

Ψ
d =

√
N

∑
i=1

δ i
2
=

√
N

∑
i=1

(
sd
Y,i

)2
, (57)

which is also the HHI of the economy computed using output or sales shares. However,

27For formal discussion of Hulten’s theorem and higher-order effects in that context see Baqaee and Farhi
(2019). The particular expression derived here and the effects it generates concerning the propagation of
shocks described in the next paragraphs are similar to the effects detailed in Baqaee and Farhi (2020) con-
cerning the propagation of shocks in a horizontal economy in relation to the inverse harmonic mark-up.
Examining the formulas derived in Appendix C.4 will show similar ratios between weighted averages of the
implicit taxes.
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Figure 7: The Effect of Correlated Distortions on Business Cycle Volatility Due to Granular
Shocks Allowing for Ex-Post Reallocation

Note: This figure presents the volatility of business cycle fluctuations due to micro-level shocks, while allow-
ing for ex-post reallocation. All computations are done targeting ζemp = 1.097 and N = 4.5×106.

with ex-post reallocation, it follows from equation (56) that

(
Ψ

d
)2

=

(
1

1− γ

)2 N

∑
i=1

(
sY,i

d
)2

︸ ︷︷ ︸
Sales HHI

+

(
γ

1− γ

)2 N

∑
i=1

(
sL,i

d
)2

︸ ︷︷ ︸
Input HHI

− 2γ

(1− γ)2

N

∑
i=1

sY,i
dsL,i

d

︸ ︷︷ ︸
Olley-Pakes term

. (58)

Thus, the total volatility in this economy is a function of input and output concentration and
the relationship between the two, which is related to the covariance term in the Olley-Pakes
decomposition (Olley and Pakes, 1996).28 The total effect of misallocation on volatility in
this case depends crucially on the third term.

Figure 7 uses Ψd =

√
∑

N
i=1 δ i

2
and the formula in equation (56) to evaluate how pos-

itively correlated distortions affect business cycle volatility when allowing firms to reallo-
cate factors flexibly in response to the shock. Compared to the results reported in Figure 3,

28The above term is stated with respect to the input and output share and using a non-centered measure,
whereas the Olley-Pakes formula uses the covariance between firm-level productivity and output shares.
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allowing for ex-post reallocation implies a higher degree of volatility at the baseline level.
Using the same calibration as in Table 2 implies that volatility due to firm-level shocks in
this case is 0.59% compared to 0.38% without reallocation ex post. Still, removing corre-
lated distortions raises this volatility even further to 0.65%, implying a strong dampening
effect. The result holds in the same direction for all parameter values explored in this
section.

Appendix C Proofs and Additional Derivations for Sup-
plemental Appendix

C.1 Step by step derivation of the approximation in Equation (23)

Consider the following second-order Taylor series approximation for welfare, where the
approximation is taken around Zd = Zd

x̃

∣∣
x̃=x

u
(

Zd
x̃

)
≈ u

(
Zd
)
+

[
u′
(

Zd
) N

∑
i=1

∂Zd
x̃

∂ x̃i

]
(x̃i − x) (59)

+
1
2

[
N

∑
j=1

N

∑
i=1

(
u′′
(

Zd
)

∂Zd
x̃

∂ x̃i

∂Zd
x̃

∂ x̃ j
+ u′

(
Zd
)

∂ 2Zd
x̃

∂ x̃i∂ x̃ j

)
(x̃i − x)

(
x̃ j − x

) ]
.

Taking expectations around the above and exploiting the facts that E[(x̃i − x)]= 0, E
[
(x̃i − x)2

]
=

σx
2 and all shocks are i.i.d. thus all the covariance terms are zero yields

E
[

u
(

Zd
x̃

)]
≈ u

(
Zd
)
+

σx
2

2

[
N

∑
i=1

(
u′′
(

Zd
) [

∂Zd
x̃

∂ x̃i

]2

+ u′
(

Zd
)

∂ 2Zd
x̃

(∂ x̃i )
2

) ]
. (60)

We can use the elasticities δi to express the derivatives as ∂Zd
x̃

∂ x̃i
= δiZd

x̃ . This expression

allows one to derive that ∂ 2Zd
x̃

(∂ x̃i )
2 = ∂δi

∂ x̃i
Zd

x̃ + δi
∂Zd

x̃
∂ x̃i

. Additionally, one can compute ∂δi
∂ x̃i

and

50



obtain that ∂ 2Zd
x̃

(∂ x̃i )
2 = δiZd

x̃ .29 We can combine those derivatives and the definition of Ψd to
obtain that

E
[

u
(

Zd
x̃

)]
= u

(
Zd
)
+

1
2

(
Ψ

d
σx

)2
Zd2

u′′
(

Zd
)
+

σx
2

2
Zd u′

(
Zd
)
. (61)

Finally, by exploiting the CRRA utility specification, i.e., χ =−
Zd u′′

(
Zd
)

u′
(

Zd
) , we have that

E
[

u
(

Zd
x̃

)]
= u

(
Zd
)
+
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2

2
Zd u′

(
Zd
)
−χ

1
2

(
Ψ

d
σx

)2
Zd u′

(
Zd
)
. (62)

Log utility case. When utility takes log form we have that χ = 1 and Zd u′
(

Zd
)
= 1

thus,

E
[

u
(

Zd
x̃

)]
= u

(
Zd
)
+

σx
2

2
− 1

2

(
Ψ

d
σx

)2
, (63)

whereas in the case without misallocation, one can analogously derive that

E[u(Zx̃) ] = u
(
Z
)
+

σx
2

2
− 1

2
(Ψσx)

2 . (64)

Equation (24) is the result of subtracting the two.

29This can be shown directly from

∂δ j
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=
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1
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∑
N
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1
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[
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[
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1
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] = δ j(1−δ j),

which implies ∂ 2Zd
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(∂ x̄i )
2 = ∂δi
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×Zd

x̃ +δi
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∂ x̄i

= ∂δi
∂ x̄i

×Zd
x̃ +δi

2 ×Zd
x̃ = Zd
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[
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2
]
= δiZd
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C.2 Approximating Ψd Using the Quantile Function

To approximate the value of Ψd in equation (12), with positively correlated distortions as
in equation (22), we begin by substituting in the expression δ j from equation (11) such that

Ψ
d
=

√
N

∑
i=1

δi
2
=

√
∑

N
i=1

(
ai

1
1−γ (1− τi)

γ
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N
i=1 ai

1
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√
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N
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(
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)2

∑
N
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1
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γ
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(65)

=

√
∑

N
i=1 (Q(qi))

2 1−φγ

1−γ

∑
N
i=1 (Q(qi))

1−φγ

1−γ

=

√
∑

N
i=1
(
1− N+1−i

N+1

)− 2
ζa

1−φγ

1−γ

∑
N
i=1
(
1− N+1−i

N+1

)− 1
ζa

1−φγ

1−γ

=

√
∑

N
i=1 i

− 2
ζsales

∑
N
i=1 i

− 1
ζsales

.

This equation follows closely the transformations in equation (53) in the proof of Lemma 6.
However, note that, as discussed in the main text, in the presence of correlated distortions
as in equation (22), the observed tail of the firm-size distribution maps to the fundamentals
as ζsales = ζa

1−γ

1−φγ
.

C.3 Proof of Lemma 7 and Related Required Approximations

Proof. The economy with misallocation and size-dependent volatility behaves identically
to the one described in Lemma 2, up to the derivation of business cycle volatility. Starting
from equation (41), but this time with σx(y j) = σ0 × y−α

j

VAR
[
log
(

Zd(x̃)
)]

(66)
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[
log
(
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)
+

N

∑
i=1

∂ log
(
Zd(x̃ = x)

)
∂ x̃i
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]
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δ
2
i ×σ

2
0 y−2α
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)2 N
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δ i
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(
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)2 N
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δ i
2(1−α)

=
(

σ0Y d−α

×Ψ
d(α)

)2
.

The approximation above follows from a first-order Taylor series expansion around the
mean point; the first equality sign is the result of substituting in the size-adjusted volatility
of each firm, with yi = yi|x̃=x and Y d = Y d

x̃

∣∣
x̃=x; the second equality sign from multiply-

ing and dividing by Y d−2α

; the third from noting that δ i =
yi

Y d
; and the last from letting√

∑
N
i=1 δ i

2(1−α)
= Ψd(α). Taking the square root of the above concludes the proof.
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Approximating Ψd(α) Using the Quantile Function. To approximate the value of
Ψd(α) in equation (55), with positively correlated distortions as in equation (22) and Pareto
distributed ability, we begin by substituting in the expression δ j from equation (11) such
that

Ψ
d
(α) =

√
N

∑
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=

√
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− 1
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.

This equation follows closely the transformations in equation (53) in the proof of Lemma
6, with ζsales = ζa

1−γ

1−φγ
.

Calibrating σ0. To obtain the correct counterpart of σ0, one needs to use the first-
order quantile-based approximation introduced in equation (20), to calibrate to the correct
average volatility σx in a sample of N firms. To do so amounts to computing:

σx =
∑

N
i=1 σx(yi)

N
=

∑
N
i=1 σ0y−α

i
N

. (67)

Observe that

y j = a j
1

1−γ

(
1− τ j

) γ

1−γ ×

[
L

∑
N
i=1 (ai(1− τi))

1
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]γ

︸ ︷︷ ︸
Cy

= a j
1−φγ

1−γ Cy, (68)

where the last equality sign follows from substituting in (1− τ j) = a−φ

j . Next, using the
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quantile-based approximation method, and ζemp = ζa
1−γ

1−φ
, we have that

N

∑
i=1

(ai(1− τi))
1

1−γ =
N

∑
i=1

(ai)
1−φ

1−γ =
N

∑
i=1

(Q(qi))
1−φ

1−γ =
N

∑
i=1

(1−qi)
− 1

ζa
1−φ

1−γ

=
N

∑
i=1

(
1− N +1− i

N +1

)− 1
ζa

1−φ

1−γ

=
N

∑
i=1

(
i

N +1

)− 1
ζa

1−φ

1−γ

= (1+N)
1

ζemp
N

∑
i=1

i
− 1

ζemp ,

and thus we can approximate Cy with
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. (69)

Finally, we can target a particular σx and obtain σ0 via

σx =
∑σ0y j
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implying that

σ0 = σx
N(N +1)

α

ζsales Cy
α

∑
N
i=1 i

α

ζsales

. (70)

C.4 The Economy With Misallocation When Labor is Allocated Ex
post

Allocation rule for labor. The first order condition for the production problem (8) when the
value of x̃i is known, is given by

γaiex̃i(1− τi)liγ−1 = w. (71)

we can again rearrange this expression and use the labor market clearing condition to obtain

N

∑
i=1
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(

γ

w

) 1
1−γ

N

∑
i=1

(
aiex̃i(1− τi)

) 1
1−γ = L. (72)
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Thus, the allocation rule for labor is as follows

l j =

(
a jex̃ j

(
1− τ j

)) 1
1−γ

∑
N
i=1 (aiex̃i(1− τi))

1
1−γ

L. (73)

Aggregate production function representation. Firm level output is given by

y j =

(
a jex̃ j

) 1
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(
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) γ
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1
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)γ Lγ . (74)

Aggregating this by summing across all production units allows us to obtain
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Transmission of firm-level shocks. To derive the value of the TFP elasticities, observe
that TFP is now given by

Zd
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N
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) 1
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Therefore we can derive the elasticity by
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which can be condensed into
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Now, observe that the output share or sales share of firm j is given by
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and its input share is given by

sL, j
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l j
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where the dependence of sL, j
d and sY, j

d upon the aggregate state x̃ is suppressed to econo-
mize on notation. Thus, we obtain equation (56)

δ j,x̃ = sY, j
d +

γ

1− γ

(
sY, j

d − sL, j
d
)
. (79)

Business cycle volatility. To derive the aggregate effect of firm-level shocks, we can
proceed as in the proofs of Lemmas 1 and 2, and use the first-order Taylor series approxi-
mation of the variance of log TFP. Letting TFP as a function of x̃ by

Zd
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∑
N
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one can use a Taylor series expansion around the point x̃ = x to derive that
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, and σ2
x is the second moment of x̃ j.

Approximating Ψd with Ex-Post Reallocation. To apply the approximation method of
equation (20), we can proceed as follows. The object of interest is

Ψ
d =

√
N

∑
i=1

δ
2
i , (82)

it is sufficient to apply the approximation for each value of δ j and sum them. The approx-
imation is given by
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