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Abstract

Asset price bubbles are situations where asset prices exceed the funda-

mental values defined by the present value of dividends. This paper presents

a conceptually new perspective: the necessity of bubbles. We establish the

Bubble Necessity Theorem in a plausible general class of economic models:

with faster long-run economic growth (G) than dividend growth (Gd) and

counterfactual long-run autarky interest rate (R) below dividend growth,

all equilibria are bubbly with non-negligible bubble sizes relative to the

economy. This bubble necessity condition naturally arises in economies

with sufficiently strong savings motives and multiple factors or sectors with

uneven productivity growth.
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1 Introduction

A rational asset price bubble is a situation in which the asset price (P ) exceeds its

fundamental value (V ) defined by the present value of dividends (D). This paper

asks whether asset price bubbles must arise, that is, the necessity of bubbles. This

question is of fundamental importance. Economists have long held the view that

bubbles are either not possible in rational equilibrium models or even if they are,
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a situation in which asset price bubbles occur is a special circumstance and hence

fragile.1 If bubbles are inevitable, it would challenge the conventional wisdom and

economic modeling. In this paper, we establish a theorem showing that there is

a general plausible class of economic models with dividend-paying assets in which

asset price bubbles arise in all equilibria, implying the necessity of bubbles.

Our question of whether asset price bubbles must arise (the necessity of bub-

bles) is conceptually different from whether asset price bubbles can arise (the

possibility of bubbles). As is well known from the literature on rational bubbles

that starts with Samuelson (1958), the answer to the latter question is affirma-

tive.2 To date, this literature has almost exclusively focused on pure bubbles,

namely assets that pay no dividends (D = 0) and hence are intrinsically worth-

less (V = 0). In these models, there always exists an equilibrium in which the

asset price equals its fundamental value (fundamental equilibrium), which is zero,

as well as a bubbly steady state. In many models, there also exist a continuum

of bubbly equilibria converging to the fundamental steady state (asymptotically

bubbleless equilibria). Therefore bubbles are possible but not inevitable.

We present a conceptually new perspective on thinking about asset price bub-

bles: their necessity. The main result of our paper can be summarized as follows.

Let G be the long-run economic growth rate, Gd the long-run dividend growth

rate, and R the counterfactual long-run autarky interest rate. When

R < Gd < G (1.1)

holds, we prove that all equilibria feature asset price bubbles with non-negligible

bubble sizes relative to the economy (asymptotically bubbly equilibria). The intu-

ition for this result is straightforward. If a fundamental equilibrium exists, in the

long run the asset price (the present value of dividends) must grow at the same rate

of Gd. Then the asset price becomes negligible relative to endowments because

Gd < G and the equilibrium consumption allocation approaches autarky. With

an autarky interest rate R < Gd, the present value of dividends (the fundamental

value of the asset) becomes infinite, which is of course impossible in equilibrium.

1This view is summarized well by the abstract of Santos and Woodford (1997): “Our main
results are concerned with nonexistence of asset pricing bubbles in those economies. These
results imply that the conditions under which bubbles are possible—including some well-known
examples of monetary equilibria—are relatively fragile.”

2The development in the literature was mainly theoretical until the 2008 financial crisis. Since
then, there has been significant progress in analyzing the relationship between financial frictions
and bubbles, as well as in policy and quantitative analyses in light of those developments. For
reviews of the literature of rational bubbles, see Miao (2014b), Martin and Ventura (2018), and
Hirano and Toda (2024).

2



Therefore, there exist no fundamental equilibria nor bubbly equilibria that become

asymptotically bubbleless, and all equilibria must be asymptotically bubbly.

We emphasize that the bubble necessity condition (1.1) naturally arises in

plausible economic models. Regarding the inequality R < Gd, note that R is the

counterfactual autarky interest rate, not the actual equilibrium interest rate. In

models with sufficiently strong savings motives (such as stagnant life cycle income

profiles, incomplete markets, or financial frictions), it is not difficult to create a

low interest rate environment in the absence of trade. To clearly and convincingly

show that the other inequality Gd < G is also natural, in §3 we present two

example economies in closed-form in which land and stock price bubbles occur

as the unique equilibrium outcome. In one example, the economy features two

sectors with uneven productivity growth. In one sector, labor (human capital) is

the primary input for production such as the labor- or knowledge-intensive sectors.

In the other, labor and land are inputs such as the land-intensive agricultural or

real estate sectors. We show that when the productivity growth rate is lower in the

land-intensive sector, then the land price necessarily exhibits a bubble. In another

example, competitive firms produce the consumption good using capital and labor

as inputs. We show that when the elasticity of substitution between capital and

labor is less than one and capital grows fast, for instance, due to firm creation

and/or capital-augmenting technological progress, then the price of capital (the

stock price) necessarily exhibits a bubble.

Motivated by the examples in §3, we establish the Bubble Necessity Theo-

rem using workhorse models in macro-finance. In §4, we provide it in a classi-

cal two-period overlapping generations (OLG) endowment economy under mini-

mal assumptions on preferences, endowments, and dividends. In §5, we establish

the Theorem in the Diamond (1965) OLG model with capital accumulation and

infinite-horizon heterogeneous-agent models in the tradition of Bewley (1977),

one with idiosyncratic investment shocks and another with idiosyncratic prefer-

ence shocks. We show that under some conditions on technological innovations

that enhance the overall productivity, the conditions R < Gd and Gd < G are si-

multaneously satisfied, necessarily generating asset price bubbles. We emphasize

that our result of the necessity of bubbles is not merely a theoretical curiosity but

economically relevant and can naturally arise in modern macro-finance models.

Related literature The theoretical possibility of asset price bubbles in over-

lapping generations (OLG) models is well known since Samuelson (1958). In an

infinite-horizon two-agent model with fluctuating income, Bewley (1980) shows
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that an intrinsically useless asset like fiat money can have a positive value if agents

are subject to shortsales constraints. Scheinkman and Weiss (1986) extend Bewley

(1980)’s model to continuous time with endogenous labor supply and prove the

existence of a recursive monetary equilibrium. Following these seminal work, the

theoretical literature has studied both necessary and sufficient conditions for the

existence of bubbles.

Regarding sufficient conditions, Okuno and Zilcha (1983) study an OLG model

with time-invariant endowments and preferences and show the existence of a

Pareto efficient steady state, which is a competitive equilibrium with or with-

out valued fiat money. An immediate corollary is that if the autarky allocation

is Pareto inefficient, then there exists a bubbly (monetary) equilibrium. Aiyagari

and Peled (1991) extend this result to a Markov setting (with potentially a linear

storage technology) and show that a stationary allocation is Pareto efficient if and

only if the matrix of Arrow prices has spectral radius at most 1, as well as its

existence. See Barbie and Hillebrand (2018) and Bloise and Citanna (2019) for

recent extensions. This literature shows that bubbles tend to arise when there are

gains from trade (the autarky allocation is inefficient).

Regarding necessary conditions, Kocherlakota (1992) considers a deterministic

economy with infinitely-lived agents subject to shortsales constraints and proves

in Proposition 4 that in any bubbly equilibrium, the present value of the aggregate

endowment must be infinite. Santos and Woodford (1997, Theorem 3.3, Corol-

lary 3.4) significantly extend this result to an abstract general equilibrium model

with incomplete markets and prove the impossibility of bubbles when dividends

are non-negligible relative to the aggregate endowment.3 These results imply that

there is a fundamental difficulty in generating bubbles attached to dividend-paying

assets: bubbles can exist in infinite-horizon models only under sufficient financial

frictions that prevent agents from capitalizing infinite wealth and some conditions

on dividends. In particular, (i) bubbles are nearly impossible in representative-a-

gent models because market clearing forces the agent to hold the entire asset in

equilibrium (Kamihigashi, 1998; Montrucchio and Privileggi, 2001), and (ii) bub-

bles attached to dividend-paying assets are impossible in models with a steady

state.

A crucial difference of our paper from this literature on the possibility of bub-

bles is that we prove their necessity. In this respect, our paper is related to Wilson

(1981) and Tirole (1985). Wilson (1981) studies an abstract general equilibrium

model with infinitely many agents and commodities. Under standard assump-

3See Hirano and Toda (2024, §3.4) for a simple illustration of this result.
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tions, he proves in Theorem 1 that an equilibrium with transfer payments exists

and that the transfers can be set to zero (so budgets balance exactly) for agents

endowed with only finitely many commodities. However, he shows in §7 through

an example that an equilibrium without transfer payments may not exist and notes

that an equilibrium with positive transfers could be interpreted as an equilibrium

with money. To our knowledge, this is the first example of the nonexistence of

fundamental equilibria. Proposition 1(c) of Tirole (1985) recognizes the possibility

that bubbles are necessary for equilibrium existence if the interest rate without

bubbles is negative in an OLG model with positive population growth and con-

stant rents, which corresponds to R < Gd = 1 < G. Although he provides some

intuition, he did not necessarily provide a formal proof.4 Relative to these works,

our contribution is that we provide a general nonexistence theorem in workhorse

models, and the nonexistence applies not only to fundamental equilibria but also

to bubbly equilibria that are asymptotically bubbleless.

Pure bubble models (D = 0) can naturally be interpreted as models of money.

In this context, bubbly and fundamental equilibria are synonymous to monetary

and non-monetary equilibria. As discussed in the introduction, these models of-

ten admit a continuum of equilibria (Gale, 1973, Theorem 4). Wallace (1980)

refers to the fact that the monetary steady state is only one point among a con-

tinuum as tenuous. Scheinkman (1978) introduces arbitrarily small dividends to

the pure bubble asset to eliminate the non-monetary steady state with P = 0,

which is sometimes called commodity money refinement; see also Brock (1990,

§2.1). However, commodity money refinement only rules out equilibria converging

to the non-monetary steady state,5 and it does not consider whether the equilib-

rium with positive dividends is bubbly. Brock and Scheinkman (1980, Theorem

4) and Scheinkman (1980) provide sufficient conditions on preferences and endow-

ments (for instance, limx→0 xu
′(x) > 0 and the old have no endowment) for the

nonexistence of monetary equilibria converging to the non-monetary steady state,

which Santos (1990) further generalizes. Balasko and Shell (1980, 1981a) study

the existence of equilibria in OLG models with and without money. With Cobb-

Douglas utility functions, Balasko and Shell (1981b, Proposition 3.3) show that

the equilibrium is unique without money and is one-dimensional (in particular, a

continuum) with money. With the gross substitute property, Kehoe, Levine, Mas-

Colell, and Woodford (1991, Theorem G) show the uniqueness of monetary and

4See the discussion in §5.1 and Hirano and Toda (2024, §5.2) for details.
5Lagos, Rocheteau, and Wright (2017, p. 411) state “While [commodity money refinement]

rules out equilibria [converging to the non-monetary steady state], there can still exist cyclic,
chaotic and stochastic equilibria”.
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non-monetary steady states. Our results are different from these monetary models

because we prove the nonexistence of any fundamental equilibria and any bubbly

equilibria that are asymptotically bubbleless in economies with dividend-paying

assets under minimal assumptions on preferences and endowments.

2 Definition and characterization of bubbles

We define bubbles following the literature. (See Blanchard and Fischer (1989,

Ch. 5) and Miao (2014a, §13.6) for textbook treatment.) We consider an infinite-

horizon, deterministic economy with a homogeneous good and time indexed by

t = 0, 1, . . . . Consider an asset with infinite maturity that pays dividend Dt ≥ 0

and trades at ex-dividend price Pt, both in units of the time-t good. In the

background, we assume the presence of rational, perfectly competitive investors.

Free disposal of the asset implies Pt ≥ 0.6 Let qt > 0 be the Arrow-Debreu

price, i.e., the date-0 price of the consumption good delivered at time t, with the

normalization q0 = 1. The absence of arbitrage implies

qtPt = qt+1(Pt+1 +Dt+1). (2.1)

Iterating the no-arbitrage condition (2.1) forward and using q0 = 1, we obtain

P0 =
T∑
t=1

qtDt + qTPT . (2.2)

Noting that Pt ≥ 0, Dt ≥ 0, and qt > 0, the infinite sum of the present value

of dividends V0 :=
∑∞

t=1 qtDt exists, which is called the fundamental value of the

asset. Letting T → ∞ in (2.2), we obtain

P0 =
∞∑
t=1

qtDt + lim
T→∞

qTPT = V0 + lim
T→∞

qTPT . (2.3)

We say that the transversality condition for asset pricing holds if

lim
T→∞

qTPT = 0, (2.4)

6If Pt < 0, by purchasing one additional share of the asset at time t and immediately disposing
of it, an investor can increase consumption at time t by −Pt > 0 with no cost, which violates
individual optimality.
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in which case the identity (2.3) implies that P0 = V0 and the asset price equals its

fundamental value. If the transversality condition (2.4) is violated, or limT→∞ qTPT >

0, then P0 > V0, and we say that the asset contains a bubble.

Note that in deterministic economies, for all t we have

Pt =
1

qt

∞∑
s=1

qt+sDt+s︸ ︷︷ ︸
fundamental value Vt

+
1

qt
lim
T→∞

qTPT︸ ︷︷ ︸
bubble component

. (2.5)

Therefore either Pt = Vt for all t or Pt > Vt for all t, so the economy is permanently

in either the bubbly or the fundamental regime. Thus, a bubble is a permanent

overvaluation of an asset, which is a feature of rational expectations.

In general, checking the transversality condition (2.4) directly could be difficult

because it involves qT . The following lemma, which is Proposition 7 of Montruc-

chio (2004), provides an equivalent characterization. This lemma, although quite

simple, may be of independent interest because it significantly facilitates checking

the presence or absence of bubbles. We provide a proof in the main text as it is

short and the lemma is useful for the subsequent proofs.

Lemma 2.1 (Bubble Characterization, Montrucchio, 2004). If Pt > 0 for all t,

the asset price exhibits a bubble if and only if
∑∞

t=1Dt/Pt < ∞.

Proof. Changing t to t − 1 in the no-arbitrage condition (2.1) and dividing both

sides by qtPt > 0, we obtain qt−1Pt−1/qtPt = 1 + Dt/Pt. Multiplying from t = 1

to t = T , expanding terms, and using 1 + x ≤ ex, we obtain

1 +
T∑
t=1

Dt

Pt

≤ q0P0

qTPT

=
T∏
t=1

(
1 +

Dt

Pt

)
≤ exp

(
T∑
t=1

Dt

Pt

)
.

Letting T → ∞, we have limT→∞ qTPT > 0 if and only if
∑∞

t=1 Dt/Pt < ∞.

If Dt > 0 infinitely often, then Pt > 0 by (2.5) and the assumption is satisfied.

Lemma 2.1 implies that there is an asset price bubble if and only if the infinite sum

of dividend yields Dt/Pt is finite. Because
∑∞

t=1 1/t = ∞ but
∑∞

t=1 1/t
α < ∞ for

any α > 1, roughly speaking, there is an asset price bubble if the price-dividend

ratio Pt/Dt grows faster than linearly.
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3 Bubble necessity in example economies

In this section, to convince the reader of the necessity of asset price bubbles

in plausible economic models, we present example economies with unique equi-

libria in which asset price bubbles necessarily arise. Throughout this section,

for tractability we consider two-period overlapping generations (OLG) economies

with Cobb-Douglas utility function U(y, z) = (1 − β) log y + β log z, where y, z

denote the consumption when young and old and β ∈ (0, 1). The population size

is constant at 1 unless otherwise stated.

3.1 Textbook endowment economy

We first consider a textbook endowment economy. The initial old are endowed

with a unit supply of an asset with infinite maturity. At time t, the young are

endowed with at > 0 units of the consumption good, the old none, and the asset

pays dividendDt > 0. A competitive equilibrium with sequential trading is defined

by a sequence {(Pt, xt, yt, zt)}∞t=0 of asset price Pt, asset holdings of young xt, and

consumption of young and old (yt, zt) such that (i) the young maximize utility

subject to the budget constraints yt + Ptxt = at and zt+1 = (Pt+1 + Dt+1)xt,

(ii) commodity market clears: yt + zt = at + Dt, and (iii) asset market clears:

xt = 1. The following proposition provides a necessary and sufficient condition for

bubbles.

Proposition 3.1. There exists a unique equilibrium, and the asset price exhibits

a bubble if and only if
∑∞

t=1 Dt/at < ∞.

Proof. Due to log utility, the optimal consumption of the young is yt = (1− β)at.

Asset market clearing and the budget constraint of the young imply Pt = Ptxt =

at − yt = βat. Clearly, the equilibrium is unique. Since the dividend yield is

Dt/Pt = Dt/(βat), the claim follows from Lemma 2.1.

3.2 Two-sector growth economy with land

The endowment economy in §3.1 is arguably stylized. We next provide a micro-

foundation by considering a production economy with labor and land.

The initial old are endowed with a unit supply of land, which is durable and

non-reproducible. Each period, the young are endowed with one unit of labor

and the old none. There are two production technologies with time t production
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functions given by

F1t(H,X) = Gt
1H, (3.1a)

F2t(H,X) = Gt
2H

αX1−α, (3.1b)

where H,X denote the inputs of labor and land and α ∈ (0, 1). Sector 1 uses labor

as the primary input and can be interpreted as a labor-intensive industry with total

productivity growth rate G1 such as service or knowledge-intensive sectors. Sector

2 uses both labor and land as inputs and can be interpreted as a land-intensive

sector such as agriculture or real estate with a Cobb-Douglas production function

and productivity growth rate G2.

A competitive equilibrium with sequential trading is defined by a sequence

{(Pt, rt, wt, xt, yt, zt, H1t, H2t)}∞t=0

of land price Pt, land rent rt, wage wt, land holdings of young xt, consump-

tion of young and old (yt, zt), and labor allocation (H1t, H2t) such that, (i) the

young maximize utility subject to the budget constraints yt + Ptxt = wt and

zt+1 = (Pt+1 + rt+1)xt, (ii) firms maximize profits, (iii) commodity market clears:

yt + zt = Gt
1H1t + Gt

2H
α
2t, (iv) labor market clears: H1t + H2t = 1, and (v) land

market clears: xt = 1. In this model, we can prove the necessity of land bubbles

under some conditions on productivity growth rates in the two sectors.

Proposition 3.2. If G1 > G2, then the unique equilibrium land price is Pt = βGt
1,

and there is a bubble.

Proof. In equilibrium, it must be H2t > 0 by the Inada condition. Therefore profit

maximization of Sector 2 implies wt = αGt
2H

α−1
2t . If H2t = 1, then wt = αGt

2 < Gt
1

because α < 1 and G2 < G1. Then firms in Sector 1 make infinite profits, which

is a contradiction. Therefore in equilibrium it must be H2t ∈ (0, 1), and profit

maximization of Sector 1 implies wt = Gt
1. Therefore labor in Sector 2 satisfies

αGt
2H

α−1
2t = wt = Gt

1 ⇐⇒ H2t = α
1

1−α (G2/G1)
t

1−α .

By profit maximization in Sector 2 and X = 1, land rent satisfies

rt = (1− α)Gt
2H

α
2t = (1− α)α

α
1−αGt

2(G2/G1)
αt

1−α .

As in Proposition 3.1, the young consume yt = (1 − β)wt, the land price equals

Pt = βwt = βGt
1, and hence the equilibrium is unique. The dividend yield on land
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is then

rt
Pt

=
(1− α)α

α
1−αGt

2(G2/G1)
αt

1−α

βGt
1

=
(1− α)α

α
1−α

β
(G2/G1)

t
1−α ,

which decays geometrically and is summable because G2 < G1 by assumption.

Lemma 2.1 implies a land bubble.

In this example, both the labor income and land price grow at rate G := G1,

while the land rent grows at rate Gd := G2(G2/G1)
α

1−α . The condition G1 > G2 in

Proposition 3.2 is equivalent to the bubble necessity condition G > Gd discussed

in the introduction.7

3.3 Innovation and stock market bubble

In the model of §3.2, the bubble was attached to the sector with slower growth

(land-intensive sector). However, bubbles can also arise in a sector or a production

factor with faster growth such as the stock market. To illustrate this point, we

consider a production economy with capital and labor.

Each period, firms produce the consumption good using the neoclassical pro-

duction function F (K,L), where K,L denote capital and labor inputs. To sim-

plify the analysis, we exogenously specify aggregate capital and labor at time

t as Kt, Lt.
8 Growth in these variables can be interpreted in various ways: it

could be growth in quantity (firm creation or population growth), quality (factor-

augmenting technological progress), or a combination thereof. The initial old are

endowed with the stock market index (claims to aggregate capital rents) with

outstanding shares normalized to 1. Only the young are endowed with labor.

Letting rt, wt be the rental and wage rates, profit maximization implies rt =

FK(Kt, Lt) and wt = FL(Kt, Lt). As before, the asset price (stock market index

Pt) equals aggregate savings, which equals fraction β of aggregate labor income:

Pt = βwtLt. Dividend equals aggregate rents: Dt = rtKt. Putting all the pieces

7There is empirical support for G1 > G2. According to Acemoglu (2009, p. 698, Figure 20.1),
the employment share of agriculture in U.S. has declined from about 80% to below 5% over the
past two centuries, so the technological growth rate in the “land” sector has been lower than the
whole economy.

8Because the equilibrium conditions are the same regardless of whether Kt, Lt are exogenous
or not, the subsequent argument applies to endogenous growth models as well. This is similar
to the fact that Euler equations hold in consumption-based asset pricing models regardless of
whether consumption is exogenous or not.
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together, the dividend yield is given by

Dt

Pt

=
1

β

FK(Kt, Lt)Kt

FL(Kt, Lt)Lt

. (3.2)

For concreteness, suppose capital and labor grow at rates GK , GL and that the

production function takes the constant elasticity of substitution (CES) form

F (K,L) =
(
αK1−1/σ + (1− α)L1−1/σ

) 1
1−1/σ ,

where σ > 0 is the elasticity of substitution and α ∈ (0, 1). Therefore we obtain

the following proposition.

Proposition 3.3. There is a stock market bubble if and only if

(σ − 1)(GK −GL) < 0. (3.3)

Proof. Under the maintained assumptions, the dividend yield (3.2) becomes

Dt

Pt

=
α

β(1− α)

(
(GK/GL)

t(K0/L0)
)1−1/σ

,

which decays geometrically if and only if either (i) σ < 1 and GK > GL or

(ii) σ > 1 and GK < GL. These conditions are equivalent to (3.3). Otherwise,

Dt/Pt is bounded below by a positive constant. Therefore the claim is immediate

from Lemma 2.1.

Empirical evidence suggests σ < 1.9 Therefore if GK > GL, so capital grows

at a faster rate than labor, for instance, due to innovation or firm creation, the

dividend yield geometrically decays and a stock market bubble emerges as the

unique equilibrium outcome. If the reverse inequality of (3.3) strictly holds, the

stock market index return diverges to ∞ and the price-dividend ratio converges

to 0, which is counterfactual. If σ = 1 or GK = GL, the dividend yield is constant

but this is obviously a knife-edge case.

4 Bubble necessity in OLG endowment economies

In §3, we showed the necessity of asset price bubbles in several example economies.

In this section, we establish the necessity in an abstract two-period OLG model.

9See Oberfield and Raval (2021) for a study using micro data and Gechert, Havranek, Irsova,
and Kolcunova (2022) for a literature review and metaanalysis.
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4.1 Model

We consider an OLG endowment economy with a long-lived asset.

Agents At each date t = 0, 1, . . . , a unit mass of a new generation of agents

are born, who live for two dates. An agent born at time t has utility function

Ut(yt, zt+1), where yt, zt+1 denote the consumption when young and old. At t = 0,

there is a unit mass of old agents, who care only about their consumption z0.

Commodities and asset There is a single perishable good. The endowments

of the young and old at time t are denoted by at > 0 and bt ≥ 0. There is a

unit supply of a dividend-paying asset with infinite maturity. Let Dt ≥ 0 be the

dividend of the asset at time t.

Budget constraints Letting Pt ≥ 0 be the asset price and xt the number of

asset shares demanded by the young, the budget constraints are

Young: yt + Ptxt = at, (4.1a)

Old: zt+1 = bt+1 + (Pt+1 +Dt+1)xt. (4.1b)

That is, at time t the young decide to spend income at on consumption yt and

asset purchase Ptxt, and at time t + 1 the old liquidate all wealth to consume.

The asset demand xt is arbitrary (positive or negative) as long as consumption is

nonnegative.

Equilibrium Our equilibrium notion is the competitive equilibrium with se-

quential trading. A competitive equilibrium consists of a sequence of prices and

allocations {(Pt, xt, yt, zt)}∞t=0 satisfying the following conditions.

(i) (Individual optimization) The initial old consume z0 = b0 + P0 +D0; for all

t, the young maximize utility Ut(yt, zt+1) subject to the budget constraints

(4.1).

(ii) (Commodity market clearing) yt + zt = at + bt +Dt for all t.

(iii) (Asset market clearing) xt = 1 for all t.

Note that, because at each date there are only two types of agents (the young

and old) and the old exit the economy, market clearing forces that the young buy
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the entire shares of the asset, which explains xt = 1. Consequently, using the

budget constraint (4.1), the equilibrium allocation is

(yt, zt) = (at − Pt, bt + Pt +Dt). (4.2)

We define fundamental and bubbly equilibria in the obvious way.

Definition 1. An equilibrium is fundamental (bubbly) if P0 = V0 (P0 > V0).

By definition, a bubbly equilibrium is an equilibrium in which the asset price

exceeds its fundamental value. However, pure bubble models with Dt = 0 often

admit fundamental and bubbly steady states as well as a continuum of bubbly

equilibria converging to the fundamental steady state.10 Therefore, proving the

nonexistence of fundamental equilibria alone may not be convincing because it

does not rule out bubbly equilibria converging to the fundamental steady state.

We thus define a more demanding equilibrium concept, asymptotically bubbly equi-

libria, which are bubbly equilibria with non-negligible bubble sizes relative to the

economy.

Definition 2 (Asymptotically bubbly equilibria). Let {Pt}∞t=0 be equilibrium asset

prices. The asset is asymptotically relevant (irrelevant) if

lim inf
t→∞

Pt

at
> 0 (= 0). (4.3)

A bubbly equilibrium is asymptotically bubbly (bubbleless) if the asset is asymp-

totically relevant (irrelevant).

By Definition 2, the set of asymptotically bubbly equilibria is a subset of bubbly

equilibria. The relevance condition (4.3) implies that there exists p > 0 such that

Pt/at ≥ p for all large enough t, so the asset price is always a non-negligible

fraction of the endowment of the young. Because the young are the natural buyer

of the asset, this condition implies that there will be trade in the asset in the long

run, which motivates the term “relevance”.11

10See Hirano and Toda (2024, §3.1) for a detailed analysis of a specific pure bubble model.
11In monetary theory, money is said to be essential if trading money is necessary for achieving

at least some (desirable) allocations (Hahn, 1973; Wallace, 2001). When condition (4.3) holds,
the equilibrium allocation (4.2) is relatively far from the autarky allocation (at, bt) because the
relative error in the consumption of the young, Pt/at, is bounded away from zero. In the sense
that asset trading achieves a nontrivial equilibrium allocation, the relevance condition (4.3) is
similar to essentiality. Obviously, the essentiality of money is a completely different concept
from the necessity of bubbles.
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4.2 Existence and characterization of equilibrium

We introduce the following assumptions.

Assumption 4.1. For all t, the utility function Ut : R2
+ → [−∞,∞) is contin-

uous, quasi-concave, and continuously differentiable on R2
++ with positive partial

derivatives.

Assumption 4.1 is standard. We define the marginal rate of substitution (MRS)

Mt(y, z) :=
(Ut)z(y, z)

(Ut)y(y, z)
> 0, (4.4)

where we denote partial derivatives with subscripts, e.g., Uy = ∂U/∂y. The fol-

lowing theorem shows that an equilibrium always exists under the maintained

assumptions. Furthermore, it characterizes the equilibrium as a solution to a

nonlinear difference equation.

Theorem 1. Suppose Assumption 4.1 holds and let Mt be the marginal rate of

substitution in (4.4). Then an equilibrium exists and asset prices satisfy

Pt = min {Mt(yt, zt+1)(Pt+1 +Dt+1), at} , (4.5)

where (yt, zt+1) = (at − Pt, bt+1 + Pt+1 +Dt+1).

Note that if Pt < at, (4.5) reduces to the familiar asset pricing equation

Pt = Mt(yt, zt+1)(Pt+1 +Dt+1).

In general, the min operator appears in (4.5) due to the nonnegativity constraint on

consumption: yt = at −Ptxt ≥ 0. If we assume the Inada condition Uy(0, z) = ∞,

this constraint never binds. If 0 < Pt < at, because the economy is deterministic,

we can define the interest rate between time t and t+ 1 by

Rt :=
Pt+1 +Dt+1

Pt

=
1

M(yt, zt+1)
. (4.6)

4.3 Bubble Necessity Theorem

The question of fundamental importance is whether bubbles must arise in equilib-

rium, that is, whether it is possible that fundamental equilibria or asymptotically

bubbleless equilibria may fail to exist. We address this question under additional

assumptions.
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Assumption 4.2. The endowments {(at, bt)}∞t=0 ⊂ R++ × R+ satisfy

lim
t→∞

at+1

at
=: G ∈ (0,∞), (4.7a)

lim
t→∞

bt
at

=: w ∈ [0,∞). (4.7b)

Condition (4.7a) implies that the endowments of the young grow at rate G > 0

in the long run. Although we use the term “growth”, it could be G ≤ 1, so

stationary or shrinking economies are also allowed. Furthermore, (4.7a) is an

assumption only at infinity, so the endowments are arbitrary for arbitrarily long

finite periods. Condition (4.7b) implies that the old-to-young endowment ratio

approaches w in the long run. Again, the income ratio is arbitrary for arbitrarily

long finite periods.

Motivated by the interest rate formula (4.6), we define

ft(y, z) :=
1

Mt(aty, atz)
=

(Ut)y(aty, atz)

(Ut)z(aty, atz)
, (4.8)

which gives the forward rate between time t and t+1 when generation t consumes

(aty, atz). We impose the following uniform convergence condition on ft.

Assumption 4.3. The forward rate function ft is continuous and uniformly con-

verges on compact sets: there exists a continuous function f : R++ × R+ → R+

such that for any nonempty compact set K ⊂ R++ × R+, we have

lim
t→∞

sup
(y,z)∈K

|ft(y, z)− f(y, z)| = 0. (4.9)

A few remarks are in order. First, the domain of ft and f is R++ × R+, not

R2
++. This is because we would like to allow the possibility of zero endowments

for the old, as in the examples in §3. For instance, suppose the utility function

exhibits constant relative risk aversion (CRRA), so Ut(y, z) = u(y) + βu(z) with

u(c) =


c1−γ

1−γ
if 0 < γ ̸= 1,

log c if γ = 1,
(4.10)

where β > 0 is the discount factor and γ > 0 is the relative risk aversion coefficient.

Then ft(y, z) = f(y, z) = (z/y)γ/β, which satisfies Assumption 4.3. More gener-

ally, ft is well defined and continuous on R++×R+ if ∂Ut/∂z can be continuously

extended on R++ × R+ by allowing the value ∞.
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Second, there are two interpretations of Assumption 4.3. If the utility func-

tion Ut is homothetic, then the marginal rate of substitution (4.4) is homoge-

neous of degree 0, so ft(y, z) = 1/Mt(y, z) by (4.8). Alternatively, if there

is population growth as in Tirole (1985), at denotes the population size, and

ut(y, z) := Ut(aty, atz) denotes the utility of an agent consuming (y, z), then ft in

(4.8) is exactly the reciprocal of the MRS of ut. In either case, condition (4.9)

reduces to the uniform convergence of MRS instead of the scaled MRS.

Under the maintained assumptions, we can prove the necessity of bubbles.

Theorem 2 (Necessity of bubbles in OLG model). If Assumptions 4.1–4.3 hold

and

f(1, Gw) < Gd := lim sup
t→∞

D
1/t
t < G, (4.11)

then all equilibria are asymptotically bubbly.

Note that the statement of Theorem 2 is not vacuous because an equilibrium

always exists by Theorem 1. Although the proof of Theorem 2 is technical, its

intuition is straightforward. For simplicity, suppose (at, Dt) = (a0G
t, D0G

t
d) with

Gd < G, so endowments and dividends grow at constant rates. If a fundamental

equilibrium exists, the price Pt must asymptotically grow at rate Gd because

(by the definition of a fundamental equilibrium) it must equal the present value

of dividends, which grow at rate Gd. Because Gd < G, the price-income ratio

Pt/at grows at rate Gd/G < 1 and hence converges to zero, so the asset becomes

asymptotically irrelevant. Hence the budget constraint (4.1) together with the

asset market clearing condition xt = 1 implies that the consumption allocation

(yt, zt+1) approaches autarky in the long run, and the equilibrium interest rate

(4.6) converges to

Rt =
1

Mt(yt, zt+1)
→ f(1, Gw) < Gd (4.12)

by Assumption 4.3 and condition (4.11). However, (4.12) implies that the interest

rate is asymptotically lower than the dividend growth rate, so the fundamental

value of the asset is infinite, which is of course impossible in equilibrium. Thus a

fundamental equilibrium cannot exist.

4.4 Examples

Clearly, the examples in §3.2, 3.3 are special cases of Theorem 2 (after converting

to endowment economies), but they both use log utility for tractability. We present

two more examples with other utility functions for illustration.
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Example 1 (Wilson, 1981). Let the utility function be Ut(y, z) = y+ βz, endow-

ments (at, bt) = (aGt, bGt), and dividends Dt = DGt
d. Since the marginal rate

of substitution M(y, z) = β is constant, Assumptions 4.1–4.3 clearly hold. The

bubble necessity condition (4.11) holds if 1/β < Gd < G. The example in Wilson

(1981, §7) is a special case with β = 3, Gd = 1/2, and G = 1.

In Appendix B, we prove the unique equilibrium price in Example 1 is Pt = aGt.

Example 2 (CRRA). Suppose agents have the CRRA utility in the remark af-

ter Assumption 4.3, endowments grow at a constant rate G > 1, so (at, bt) =

(aGt, bGt), and dividends are positive but constant: Dt = D > 0. Assumptions

4.1–4.3 clearly hold. Since Gd = 1, (4.11) reduces to

1

β
(bG/a)γ < 1 < G ⇐⇒ a > β−1/γGb. (4.13)

Thus if (4.13) holds, all assumptions of Theorem 2 are satisfied and all equilibria

are asymptotically bubbly.

The bubble necessity condition (4.13) implies that, if the young are sufficiently

rich, all equilibria are asymptotically bubbly. The intuition is that the young have

a strong savings motive, it pushes down the interest rate, but the interest rate

cannot fall below the dividend growth rate, for otherwise the asset price would

be infinite. This implies that when the economy falls into a low interest rate

environment, the only possible outcome is an asset price bubble.

Although an application of Theorem 2 to Example 2 implies that all equilibria

are asymptotically bubbly, Theorem 2 is silent about how to analyze them. For this

purpose, we may apply the Hartman-Grobman theorem (Chicone, 2006, Theorem

4.6) (essentially linearization around the steady state); see Appendix C for details.

5 Robustness of bubble necessity

§4 provides sufficient conditions for the necessity of asset price bubbles in over-

lapping generations endowment economies with exogenous dividends. Although

we chose this model for simplicity and clarity, there is nothing special about this

apparently restrictive setting. In fact, some examples in §3 feature production and

endogenous dividends. In this section, to further show the robustness of our re-

sults, we consider the Diamond (1965) OLG model with capital accumulation and

Bewley-type infinite-horizon heterogeneous-agent models. Because our purpose is
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to show the necessity of bubbles in plausible economic models, our models make

minimal modifications to well-known models in the literature.

Since all examples below concern production economies, we modify the defini-

tion of asymptotically bubbly equilibria in Definition 2 as follows.

Definition 3. Let {Pt}∞t=0 be equilibrium asset prices. A bubbly equilibrium is

asymptotically bubbly if lim inft→∞ Pt/G
t > 0 for suitably defined economic growth

rate G > 0.

5.1 Diamond OLG model with capital accumulation

We first consider the Diamond (1965) OLG model with capital accumulation.

Model The model description is brief because it is well known. Agents have

Cobb-Douglas utility with discount factor β ∈ (0, 1) as in §3. To simplify notation,

let F (K,L) be a neoclassical production function including undepreciated capital,

so F is homogeneous of degree 1, concave, and continuously differentiable on R2
++

with positive partial derivatives. Let the aggregate labor be L = 1. There is an

asset in unit supply, which pays exogenous dividend Dt ≥ 0 at time t and trades

at endogenous ex-dividend price Pt.

Equilibrium In any equilibrium, the wage is wt = FL(Kt, 1). Because the young

save fraction β of wealth, the budget constraint and the market clearing condition

for the asset imply

Kt+1 + Pt = βFL(Kt, 1). (5.1)

The no-arbitrage condition implies

Pt+1 +Dt+1

Pt

= Rt = FK(Kt+1, 1). (5.2)

We introduce the following technical condition.

Assumption 5.1. There exists K∗ > 0 such that

βFL(K, 1)−K


> 0 if 0 < K < K∗,

= 0 if K = K∗,

< 0 if K > K∗.

(5.3)

Using the budget constraint (5.1), the steady state savings (excluding capital)

is βFL(K, 1) − K. Assumption 5.1 implies that savings is positive (negative) at
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low (high) capital values. The following theorem shows the necessity of asset price

bubbles under the condition R < Gd < G.

Theorem 3 (Necessity of bubbles in Diamond model). If Assumption 5.1 holds

and

FK(K
∗, 1) < Gd := lim sup

t→∞
D

1/t
t < 1 =: G, (5.4)

then any equilibrium with lim inft→∞Kt > 0 is asymptotically bubbly.

Note that the bubble necessity condition (5.4) exactly parallels that of The-

orem 2 in (4.11). Theorem 3 is different from Proposition 1(c) of Tirole (1985)

because Tirole imposes several high-level assumptions without providing examples

satisfying them, assumes a constant dividend growth rate, and does not rule out

asymptotically bubbleless equilibria.

Example 3. Suppose F is Cobb-Douglas with depreciation rate δ, so F (K,L) =

AKαL1−α + (1− δ)K for A > 0, α ∈ (0, 1), and δ ∈ [0, 1]. Then

βFL(K, 1)−K = Kα(βA(1− α)−K1−α),

so condition (5.3) holds with K∗ = [βA(1 − α)]
1

1−α . Then the left-hand side of

(5.4) becomes

FK(K
∗, 1) =

α

β(1− α)
+ 1− δ.

5.2 Bewley model with idiosyncratic investment shocks

We next consider an endogenous growth model with infinitely-lived agents sub-

ject to idiosyncratic investment shocks. For analytical tractability, we employ

logarithmic preferences with a linear production function as in Kiyotaki (1998).12

Model There is a homogeneous good that can be consumed or used as capital.

There is an asset in unit supply, which pays exogenous dividend Dt ≥ 0 at time t

and cannot be shorted. There is a unit mass of a continuum of agents indexed by

12The model is also related to Kocherlakota (2009), who introduces an intrinsically useless
asset and a collateral constraint in a model with idiosyncratic investment risk and labor. We
modify the models of Kiyotaki (1998) and Kocherlakota (2009) by abstracting from labor and
the credit market and introducing a dividend-paying asset. Hirano, Jinnai, and Toda (2022)
study an extension with a more general production function, endogenous dividends, and a credit
market subject to a leverage constraint.
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i ∈ I = [0, 1].13 A typical agent has the logarithmic utility function

E0

∞∑
t=0

βt log cit, (5.5)

where β ∈ (0, 1) is the discount factor and cit ≥ 0 is consumption.

Let zit be the productivity of agent i at time t, which evolves over time accord-

ing to finite-state Markov chain, independently across agents. The set of possible

productivities is denoted by {z0, . . . , zN} with 0 = z0 < z1 < · · · < zN , so type 0

can be interpreted as savers (who have no entrepreneurial skill) and type n ≥ 1

can be interpreted as investors, with higher types being more productive. Agents

produce the good using the linear technology yi,t+1 = zitkit, where kit ≥ 0 is capital

input at time t and yi,t+1 is output at time t+ 1.

Equilibrium The economy starts at t = 0 with an initial specification of produc-

tivity and endowments of capital and asset {(zi0, ki,−1, xi,−1)}i∈I , with
∫
I
xi,−1 di =

1. A rational expectations equilibrium consists of sequences of asset prices {Pt}∞t=0

and allocations {(cit, kit, xit)i∈I}∞t=0 such that

(i) each agent maximizes utility (5.5) subject to the budget constraint

cit + kit + Ptxit = wt =: zi,t−1ki,t−1 + (Pt +Dt)xi,t−1 (5.6)

and the nonnegativity constraints cit, kit, xit ≥ 0, and

(ii) the asset market clears, so
∫
I
xit di = 1.

We introduce the following technical condition.

Assumption 5.2. Let πnn′ = Pr(zi,t+1 = zn′ | zit = zn) be the transition probabil-

ity. The transition probability matrix Π = (πnn′) as well as its N × N submatrix

Π1 := (πnn′)Nn,n′=1 are irreducible.

The irreducibility of Π implies that the agent types are not permanent. The

irreducibility of Π1 implies that once agents become investors, with positive prob-

ability, they could visit all productivity states before returning to savers. Because

low productivity agents are natural buyers of the asset, this assumption generates

a demand for the asset, which allows us to bound the asset price from below. In

what follows, for a square matrix A, let ρ(A) denote its spectral radius (largest

13See Sun and Zhang (2009) for a mathematical foundation of models with a continuum of
agents.
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absolute value of all eigenvalues). The following theorem shows the necessity of

asset price bubbles under the condition R < Gd < G.

Theorem 4 (Necessity of bubbles in Bewley model with investment shocks).

Define the square nonnegative matrix A := (βznπnn′). If Assumption 5.2 holds

and

0 < Gd := lim sup
t→∞

D
1/t
t < ρ(A) =: G, (5.7)

then all equilibria are asymptotically bubbly.

Some remarks are in order. Since by assumption z0 = 0, type 0 agents have

no entrepreneurial skill and can save only through asset purchase. Under this

condition, the counterfactual autarky interest rate is R = 0. The numbers G =

ρ(A) and Gd can be interpreted as (a lower bound of) the long-run economic

and dividend growth rates. (The actual growth rate of the economy is of course

endogenously determined because the risk-free rate is endogenous.) Thus the

bubble necessity condition (5.7) exactly parallels that of Theorem 2 in (4.11).

Using G = ρ(A), we can derive some comparative statics. Note that by Theo-

rem 8.1.18 of Horn and Johnson (2013), G = ρ(A) is increasing in each zn. There-

fore if the productivity of capital gets sufficiently high, the condition G > Gd will

be satisfied. This implies that technological innovations that enhance the overall

productivity will inevitably generate asset price bubbles, which is consistent with

the view in Scheinkman (2014, p. 22) that highlights the importance of the re-

lationship between technological progress and asset price bubbles. Furthermore,

applying an intermediate step of the proof of Proposition 5(iv) in Beare and Toda

(2022), G = ρ(A) is also increasing in the persistence of the Markov chain,14 so if

the persistence of productivity gets sufficiently high, bubbles inevitably arise.

5.3 Bewley model with idiosyncratic preference shocks

Finally, we consider a Bewley model with idiosyncratic preference shocks and

endogenous labor supply. For analytical tractability, we employ quasi-linear pref-

erences commonly used in monetary theory.15

14By “increasing persistence”, we mean that we parameterize the transition probability matrix
as τI + (1− τ)Π for τ ∈ [0, 1) and increase τ .

15Representative papers include Lagos and Wright (2005) and Rocheteau and Wright (2005),
who study the welfare cost of inflation under various market structures (e.g., bargaining, price-
taking, and price-posting). Our model is directly related to Chien and Wen (2022), who study
optimal taxation in a heterogeneous-agent model with capital and labor. We modify this model
by abstracting from capital and introducing a dividend-paying asset. The model of Chien and
Wen (2022) builds on Wen (2015), who studies a competitive equilibrium model with preference
shocks and endogenous labor supply in a setting similar to Lagos and Wright (2005).
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Model A representative firm produces the consumption good using the linear

technology Yt = AtLt, where At > 0 is labor productivity and Lt ≥ 0 is labor

input. Thus the wage rate equals At. There is an asset in unit supply, which

pays dividend Dt ≥ 0 at time t. The sequence {(At, Dt)}∞t=0 is exogenous and

deterministic.

There is a unit mass of a continuum of agents indexed by i ∈ I ∈ [0, 1]. A

typical agent has the quasi-linear utility function

E0

∞∑
t=0

βt[θitu(cit)− ℓit], (5.8)

where β ∈ (0, 1) is the discount factor, θit > 0 is a preference shock, cit ≥ 0 is

consumption, ℓit is labor supply, and u is the period utility function. We assume

that u exhibits constant relative risk aversion γ > 0 as in (4.10). As is common

in quasi-linear models, ℓ could be positive or negative, and we interpret the case

ℓ < 0 as leisure −ℓ > 0.

The timing convention is as follows. At the beginning of period t, the agent

first chooses the labor supply ℓit. After choosing labor, the preference shock θit

realizes, which is an iid draw from a cumulative distribution function F supported

on Θ := [θL, θH ] with 0 < θL < θH . After observing θit, the agent chooses

consumption cit and asset holdings xit. Intuitively, agents with high θ have an

urge to consume because the weight on the utility from consumption is higher.

Hence agents with low θ are the natural buyers of the asset.

Equilibrium The economy starts at t = 0 with an initial endowment of asset

(xi,−1)i∈I , where
∫
I
xi,−1 di = 1. A rational expectations equilibrium consists of se-

quences of wages and asset prices {(At, Pt)}∞t=0 and allocations {(cit, ℓit, xit)i∈I}∞t=0

such that

(i) each agent maximizes utility (5.8) subject to the budget constraint

cit + Ptxit = wit := Atℓit + (Pt +Dt)xi,t−1 (5.9)

and the shortsales constraint xit ≥ 0,

(ii) the commodity market clears, so∫
I

cit di = At

∫
I

ℓit di+Dt, (5.10)
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(iii) the asset market clears, so
∫
I
xit di = 1.

The following proposition characterizes the equilibrium dynamics.

Proposition 5.1. Letting Rt := (Pt+1+Dt+1)/Pt be the equilibrium gross risk-free

rate, there exists a threshold θ̄t ∈ Θ such that the optimal consumption rule is

ct(θ) =

(
At+1

βRt

min
{
θ, θ̄t

})1/γ

(5.11)

and the aggregate dynamics is

1

At

=
βRt

At+1

∫
Θ

max
{
1, θ/θ̄t

}
dF (θ), (5.12a)

Pt =

(
At+1

βRt

)1/γ ∫
Θ

max
{
0, θ̄

1/γ
t − θ1/γ

}
dF (θ). (5.12b)

The intuition for Proposition 5.1 is as follows. Due to quasi-linear preferences,

agents adjust labor supply to achieve a common wealth wit = wt in (5.9). Agents

with high θ do not save and set cit = wt, while those with low θ choose savings

xit to satisfy the Euler equation, which explains the cutoff rule (5.11). Conditions

(5.12a) and (5.12b) are essentially the (unconditional) Euler equation and the

asset market clearing condition.

Monetary theory interprets the integral

R(θ̄t) :=

∫
Θ

max
{
1, θ/θ̄t

}
dF (θ) (5.13)

as the liquidity premium (Wen, 2015, Equation (12)).16 This is because if agents

are liquidity-unconstrained, then θ̄t = θH and (5.12a) reduces to 1/At = βRt/At+1,

which is the usual Euler equation. In general, the liquidity premium arises because

constrained agents are prevented from shortselling the asset, which raises its price.

To see this formally, combining (5.12a) and (5.12b), we may write

Pt = A
1/γ
t

(∫
Θ

max
{
1, θ/θ̄t

}
dF (θ)

)1/γ ∫
Θ

max
{
0, θ̄

1/γ
t − θ1/γ

}
dF (θ), (5.14)

so Pt is proportional to R(θ̄t)
1/γ using (5.13). However, the liquidity premium

does not affect whether the asset price exhibits a bubble or not because R(θ̄t) ∈
[1, θH/θL] is bounded (see Lemma 2.1).

16See also Geromichalos, Licari, and Suárez-Lledó (2007), Lagos (2010), and Rocheteau and
Wright (2013) for asset pricing implications of the liquidity premium in monetary search models.
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We introduce the following technical condition.

Assumption 5.3. There exists δ > 0 such that 0 < F (θL) = F (θL + δ) < 1.

Assumption 5.3 states that θ = θL is an isolated point mass of the cumulative

distribution function F . Assumption 5.3 holds, for example, if F is a nondegener-

ate distribution taking finitely many values. Because agents with low θ are natural

buyers of the asset, this assumption generates a demand for the asset, which allows

us to bound the asset price from below using (5.14). The following theorem shows

the necessity of asset price bubbles under the condition R < Gd < G.

Theorem 5 (Necessity of bubbles in Bewley model with preference shocks). If

Assumption 5.3 holds and

0 < Gd := lim sup
t→∞

D
1/t
t < lim inf

t→∞
A

1/γt
t =: G, (5.15)

then all equilibria are asymptotically bubbly.

The interpretation of the bubble necessity condition (5.15) is similar to that of

Theorem 4. To see why, consider a complete-market setting where the preference

shock θit = θ is constant. Then setting ℓit = ℓt and xit = 1 in the budget

constraint (5.9), individual consumption is cit = ct = Atℓt +Dt. Maximizing the

utility function (5.8) (with relative risk aversion γ) with respect to ℓt yields the

first-order condition

θc−γ
t At = 1 ⇐⇒ ct = (θAt)

1/γ.

Thus a lower bound of long-run economic (consumption) growth is

lim inf
t→∞

c
1/t
t = lim inf

t→∞
A

1/γt
t ,

which explains the condition (5.15).

6 Conclusion

In this paper we presented a conceptually new perspective on thinking about asset

price bubbles: their necessity. We showed a plausible general class of economic

models with dividend-paying assets in which the emergence of bubbles is a ne-

cessity by proving that all equilibria are asymptotically bubbly. This surprising

insight of the necessity of bubbles is fundamentally different from economists’

long-held view that bubbles are either not possible in rational equilibrium models
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or even if they are, a situation in which bubbles occur is a special circumstance

and hence fragile. This is also conceptually different from rational bubble models

(most of which are monetary models) that show the possibility of bubbles. We

emphasize that the necessity of bubbles naturally arises in workhorse models in

macro-finance. Hence, our Bubble Necessity Theorem challenges the conventional

wisdom on bubbles and may open up a new direction for research.

In a series of working papers, we and our collaborators apply the idea of the

necessity of asset price bubbles to macro-finance (Hirano, Jinnai, and Toda, 2022),

housing (Hirano and Toda, 2023a), and growth (Hirano and Toda, 2023b). Inter-

estingly and importantly, in all of these models, bubbles naturally and necessarily

arise.

A Proofs

A.1 Proof of Theorem 1

We need several lemmas to prove Theorem 1.

Lemma A.1. In equilibrium, the asset pricing equation (4.5) holds.

Proof. Take any equilibrium. To simplify notation, let Ut = U , Pt = P , Pt+1 = P ′,

and Dt+1 = D′, etc. Using the budget constraint (4.1) to eliminate y, z′, the young

seek to solve

maximize U(a− Px, b′ + (P ′ +D′)x) (A.1a)

subject to a− Px ≥ 0, (A.1b)

b′ + (P ′ +D′)x ≥ 0. (A.1c)

In equilibrium, market clearing forces x = 1. Since b′ > 0 and P ′ + D′ ≥ 0, the

nonnegativity constraint (A.1c) never binds at x = 1. Let λ ≥ 0 be the Lagrange

multiplier associated with the nonnegativity constraint (A.1b) and let

L(x, λ) = U(a− Px, b′ + (P ′ +D′)x) + λ(a− Px)

be the Lagrangian. The first-order condition implies

−PUy + (P ′ +D′)Uz − λP = 0 ⇐⇒ P = M(P ′ +D′)− λ

Uy

P, (A.2)

where M = Uz/Uy and Uy, Uz are evaluated at (a − P, b′ + P ′ + D′). If P < a,
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then the nonnegativity constraint (A.1b) does not bind, λ = 0, and (A.2) reduces

to P = M(P ′ +D′) and (4.5) holds. If P = a, then the nonnegativity constraint

(A.1b) binds, λ ≥ 0, and (A.2) implies M(P ′ + D′) = a + (λ/Uy)a ≥ a, so (4.5)

holds.

Lemma A.2. For all Pt+1 ≥ 0, there exists Pt ∈ [0, at] that satisfies (4.5).

Define the function f : [0, a] → R by

f(P ) = (P ′ +D′)M(a− P, b′ + P ′ +D′)− P.

By Assumption 4.1, f is continuous. Since U is quasi-concave, the marginal rate

of substitution M in (4.4) is increasing in y. Therefore M(a− P, b′ + P ′ +D′) is

decreasing in P , so f is strictly decreasing. Clearly

f(0) = (P ′ +D′)M(a, b′ + P ′ +D′) ≥ 0.

If f(a) > 0, then the definition of f implies that

a < (P ′ +D′)M(0, b′ + P ′ +D′),

so (4.5) holds with P = a. If f(a) ≤ 0, by the intermediate value theorem, there

exists P ∈ [0, a] such that f(P ) = 0, which clearly satisfies (4.5).

Proof of Theorem 1. Although the existence of equilibrium follows from Wilson

(1981, Theorem 1), to make the paper self-contained, we present a standard trun-

cation argument as in Balasko and Shell (1980). Define the set A :=
∏∞

t=0[0, at] en-

dowed with the product topology induced by the Euclidean topology on [0, at] ⊂ R
for all t. By Tychonoff’s theorem, A is nonempty and compact.

Define a T -equilibrium by a sequence {Pt}∞t=0 such that Pt ∈ [0, at] for all t

and the asset pricing equation (4.5) holds for t = 0, . . . , T − 1. Let PT ⊂ A be

the set of all T -equilibria. For any sequence {Pt}∞t=T such that Pt ∈ [0, at] for all

t ≥ T , repeatedly applying Lemma A.2, by backward induction we can construct

a T -equilibrium {Pt}∞t=0. Therefore PT ̸= ∅.
Since Ut is continuously differentiable, the marginal rate of substitution Mt

is continuous, and hence PT is closed. Furthermore, by the definition of the T -

equilibrium, we have PT ⊃ PT+1 for all T . Since PT ⊂ A and A is compact, we

have P :=
⋂∞

t=0Pt ̸= ∅. If we take any {Pt}∞t=0 ∈ P , by definition (4.5) holds for

all t. The quasi-concavity of Ut implies that we have an equilibrium.
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A.2 Proof of Theorem 2

Take any equilibrium {Pt}∞t=0. Let pt = Pt/at and dt = Dt/at be the asset price

and dividend detrended by the endowment of the young. Let Gt = at+1/at be

the endowment growth rate and wt = bt/at be the old-to-young endowment ratio.

Since Gd > 0, we have Dt > 0 infinitely often, so by the remark after Lemma 2.1,

we have 0 < Pt ≤ at. Dividing both sides by at > 0, we obtain 0 < pt ≤ 1. Since

Dt ≥ 0, we have dt = Dt/at ≥ 0.

We need several lemmas to prove Theorem 2.

Lemma A.3. We have
∑∞

t=1Dt/at < ∞. In particular, limt→∞ dt = 0.

Proof. Using (4.7a) and (4.11), we can take ϵ > 0 and T > 0 such that

D
1/t
t < Gd + ϵ < G− ϵ < at+1/at

for t ≥ T . Therefore

Dt

at
=

Dt

aT

(
t−1∏
s=T

as+1

as

)−1

<
(Gd + ϵ)t

aT
(G− ϵ)T−t =

(G− ϵ)T

aT

(
Gd + ϵ

G− ϵ

)t

,

which is summable because Gd + ϵ < G− ϵ.

Lemma A.4. The following statement is true:

(∃r > 0)(∃T > 0)(∀t ≥ T ) pt ∈ (0, 1/2) =⇒ pt+1

pt
≤ r.

In other words, there exists a universal constant r > 0 such that pt+1/pt ≤ r for

all large enough t whenever pt < 1/2.

Proof. Suppose pt < 1/2. Then in particular pt < 1 and Pt < at, so (4.5) holds

without the min operator with at. Dividing both sides by at > 0 and using the

definition of the forward rate function in (4.8), we obtain

Gt+1(pt+1 + dt+1)

pt
= ft(1− pt, Gt+1(wt+1 + pt+1 + dt+1)). (A.3)

With a slight abuse of notation, let

(yt, zt) := (1− pt, Gt+1(wt+1 + pt+1 + dt+1)). (A.4)
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Then using dt ≥ 0 and (A.3), we obtain

0 <
pt+1

pt
≤ pt+1 + dt+1

pt
=

1

Gt+1

ft(yt, zt). (A.5)

By Assumption 4.2, we can take 0 < G
¯
< G < Ḡ and 0 ≤ w

¯
≤ w < w̄ such

that Gt ∈ (G
¯
, Ḡ) and wt ∈ [w

¯
, w̄) for large enough t. Define the compact set

K := [1/2, 1]× [G
¯
w
¯
, Ḡ(w̄ + 1)] ⊂ R++ × R+. (A.6)

Since 0 < pt+1 ≤ 1 and dt+1 → 0 by Lemma A.3, it follows from the definitions of

(yt, zt) in (A.4) and K in (A.6) that

(∃T1)(∀t ≥ T1) pt < 1/2 =⇒ (yt, zt) ∈ K, (A.7)

that is, (yt, zt) ∈ K for all large enough t whenever pt < 1/2. In general, for any

nonempty compact set K ⊂ R++ × R+, define

0 ≤ f̄(K) := max
(y,z)∈K

f(y, z), (A.8)

which is well defined because f is continuous by Assumption 4.3. By Assumption

4.3, we have

(∃T2 > 0)(∀t ≥ T2) (y, z) ∈ K =⇒ |ft(y, z)− f(y, z)| < 1.

In particular, if t ≥ T2, by the definition of f̄ is (A.8), we have

(∀t ≥ T2) (yt, zt) ∈ K =⇒ ft(yt, zt) ≤ f̄(K) + 1. (A.9)

Define T = max {T1, T2}. If t ≥ T and pt < 1/2, then (A.7) implies (yt, zt) ∈
K. Therefore putting all the pieces together, we obtain

pt+1

pt
≤ 1

Gt+1

ft(yt, zt) (∵ (A.5))

≤ 1

G
¯

(f̄(K) + 1) =: r. (∵ Gt+1 ≥ G
¯
, (A.9))

Lemma A.5. The following statement is true:

(∃ϵ > 0)(∃T > 0)(∀t ≥ T ) pt < ϵ =⇒ pt+1

pt
≤ Gd

G
< 1. (A.10)
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Proof. Take r > 0 and T > 0 as in Lemma A.4. For ϵ ∈ (0, 1/2), define the

compact set

K(ϵ) := [1− ϵ, 1]× [G
¯
w
¯
, Ḡ(w̄ + rϵ)] ⊂ R++ × R+. (A.11)

If t ≥ T and pt < ϵ, then in particular pt < 1/2. Therefore by Lemma A.4, we

have
pt+1

pt
≤ r =⇒ pt+1 ≤ rpt ≤ rϵ.

Therefore by the definition of K(ϵ) in (A.11), we have (yt, zt) ∈ K(ϵ). For any

δ > 0, by Assumption 4.3 we have

sup
(y,z)∈K(ϵ)

|ft(y, z)− f(y, z)| ≤ δ (A.12)

for t ≥ T (by choosing a larger T if necessary). Since (yt, zt) ∈ K(ϵ), it follows

from (A.5) that

pt+1

pt
≤ 1

Gt+1

ft(yt, zt) ≤
1

G
¯

(f(yt, zt) + δ) (∵ (A.5), (A.12))

≤ 1

G
¯

(f(1− ϵ, Ḡ(w̄ + rϵ)) + δ), (A.13)

where the last line follows from the quasi-concavity of Ut (hence f(y, z) is decreas-

ing in y and increasing in z) and the fact that (yt, zt) ∈ K(ϵ) with K(ϵ) defined

as in (A.11).

By Assumption 4.2, we may take G
¯
, Ḡ arbitrarily close to G and w̄ arbitrarily

close to w. Clearly, we can take ϵ, δ > 0 arbitrarily close to zero. Therefore the

right-hand side of (A.13) can be made arbitrarily close to f(1, Gw)/G, which is

less than Gd/G < 1 by condition (4.11). Therefore (A.10) holds.

Lemma A.6. In all equilibria, the asset is asymptotically relevant.

Proof. Choose ϵ, T as in Lemma A.5. By way of contradiction, suppose there

exists an equilibrium in which the asset is asymptotically irrelevant. Then by

Definition 2 we can take t0 ≥ T such that pt0 < ϵ. Let us show by induction that

pt < (Gd/G)t−t0ϵ for all t ≥ t0. The claim is trivial when t = t0. If the claim holds

for some t, then in particular pt < ϵ, so using (A.10) we obtain

pt+1 ≤ (Gd/G)pt < (Gd/G)(Gd/G)t−t0ϵ = (Gd/G)t+1−t0ϵ,

so the claim holds for t+ 1 as well.
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Since Gd/G < 1, we have pt → 0. Multiplying both sides of (A.5) by Gt+1 and

letting t → ∞, by Assumptions 4.2 and 4.3, we obtain

Rt = Gt+1
pt+1 + dt+1

pt
= ft(yt, zt) → f(1, Gw). (A.14)

By (4.11) and (A.14), we can take ϵ > 0 and T > 0 such that

Rt < f(1, Gw) + ϵ < Gd − ϵ

for t ≥ T . Furthermore, by (4.11), we haveD
1/t
t > Gd−ϵ infinitely often. Therefore

for such t, the present value of Dt can be bounded from below as

qtDt = qT (qt/qT )Dt ≥ qT (Gd − ϵ)T−t(Gd − ϵ)t = qT (Gd − ϵ)T .

Since the lower bound is positive and does not depend on t, and there are infinitely

many such t, we obtain P0 ≥ V0 =
∑∞

t=1 qtDt = ∞, which is a contradiction.

Proof of Theorem 2. Take any equilibrium. By Lemma A.6, the asset is asymptot-

ically relevant. By Definition 2, we can take T > 0 and p > 0 such that Pt/at ≥ p

for t ≥ T . Then
∞∑
t=1

Dt

Pt

≤
T−1∑
t=1

Dt

Pt

+
∞∑
t=T

Dt

pat
< ∞

by Lemma A.3. Lemma 2.1 implies that the equilibrium is bubbly, and it is

asymptotically bubbly because the asset is asymptotically relevant.

A.3 Proof of Theorem 3

Since F is homogeneous of degree 1 and concave, FL(K, 1) = FL(1, 1/K) is in-

creasing in K. We need several lemmas to prove Theorem 3.

Lemma A.7. If Assumption 5.1 holds, the map (0,∞) ∋ K 7→ βFL(K, 1) ∈
(0,∞) has a unique fixed point K∗ > 0, which is globally stable.

Proof. By (5.3), clearly K∗ is the unique fixed point of K 7→ βFL(K, 1). Take any

sequence {Kt} ⊂ (0,∞) such that Kt+1 = βFL(Kt, 1). If K0 ≤ K∗, then (5.3) and

the monotonicity of FL imply

K0 ≤ K1 = βFL(K0, 1) ≤ βFL(K
∗, 1) = K∗.

Continuing this argument, we have K0 ≤ K1 ≤ · · · ≤ Kt ≤ K∗. Since {Kt} is
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bounded and monotonically increasing, it is convergent. The limit is a fixed point

of K 7→ βFL(K, 1), and by (5.3), it must be K∗. The same argument applies

when K0 ≥ K∗. Therefore K∗ > 0 is the unique and globally stable fixed point of

K 7→ βFL(K, 1).

Lemma A.8. In any equilibrium, we have lim supt→∞Kt ≤ K∗.

Proof. By (5.1), we have Kt+1 ≤ βFL(Kt, 1). Define the sequence
{
K̄t

}
by K̄0 =

K0 and K̄t+1 = βFL(K̄t, 1). Since FL(K, 1) is increasing in K, by induction we

have Kt ≤ K̄t for all t. Since by Lemma A.7 the map K 7→ βFL(K, 1) is globally

stable, it follows that lim supt→∞ Kt ≤ limt→∞ K̄t = K∗.

Lemma A.9. Suppose there exists a subsequence such that limn→∞(Ptn , Ktn) =

(0, k0) for some k0 > 0. Define {kj} ⊂ (0,∞) recursively by

kj+1 = βFL(kj, 1). (A.15)

Then limn→∞(Ptn+j, Ktn+j) = (0, kj) for all j.

Proof. We show the claim by induction on j. The claim holds for j = 0 by

assumption. Suppose the claim holds for some j. Letting t = tn + j and n → ∞
in (5.1), we obtain Ktn+j+1 → βFL(kj, 1) =: kj+1 by (A.15). Rewriting (5.2) as

Pt+1 = PtFK(Kt+1, 1)−Dt+1 ≤ PtFK(Kt+1, 1)

and letting t = tn + j and n → ∞, it follows that Ptn+j+1 → 0.

Lemma A.10. For ϵ ∈ [0, K∗), define

p(ϵ) := βFL(K
∗ − ϵ, 1)− (K∗ − ϵ) ≥ 0, (A.16a)

r(ϵ) := FK(K
∗ − ϵ, 1) > 0. (A.16b)

If (5.4) holds, lim inft→∞ Pt = 0, and lim inft→∞Kt > 0, then there exist ϵ ∈
(0, K∗) with r(ϵ) < 1 and T > 0 such that for all t ≥ T , we have Kt ∈ (K∗ −
ϵ,K∗ + ϵ) and Pt ≤ r(ϵ)t−Tp(ϵ).

Proof. By (5.4) and the definition of r(ϵ) in (A.16b), we can choose sufficiently

small ϵ > 0 such that r(ϵ) < 1. Since lim inft→∞ Pt = 0 and lim inft→∞ Kt > 0, we

can take a subsequence such that (Ptn , Ktn) → (0, k0) for some k0 > 0. Let {kj} ⊂
(0,∞) be as in Lemma A.9. Then by (A.15) and Lemma A.7, we have kj → K∗ as

j → ∞. Therefore we can take large enough j such that kj ∈ (K∗−ϵ,K∗+ϵ). For
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this j, since by Lemma A.9 we have Ptn+j → 0 and Ktn+j → kj, we can take large

enough n such that Ktn+j ∈ (K∗ − ϵ,K∗ + ϵ) and Ptn+j ≤ p(ϵ). Define T = tn + j.

Since n can be taken arbitrarily large, by Lemma A.8, without loss of generality

we may assume Kt < K∗ + ϵ for all t ≥ T .

Let us show by induction that Kt ∈ (K∗ − ϵ,K∗ + ϵ) and Pt ≤ r(ϵ)t−Tp(ϵ) for

all t ≥ T . The claim is obvious for t = T . Suppose the claim holds for some t. As

mentioned before, Kt < K∗ + ϵ holds. Regarding the lower bound, we obtain

Kt+1 = βFL(Kt, 1)− Pt (∵ (5.1))

≥ βFL(K
∗ − ϵ, 1)− r(ϵ)t−Tp(ϵ) (∵ induction hypothesis)

≥ βFL(K
∗ − ϵ, 1)− p(ϵ) (∵ r(ϵ) < 1)

= K∗ − ϵ. (∵ definition of p(ϵ) in (A.16a))

Furthermore, using the concavity of F (so FK(K, 1) is decreasing),

Pt+1 ≤
Pt+1 +Dt+1

Pt

Pt (∵ Dt+1 ≥ 0)

= PtFK(Kt+1, 1) (∵ (5.2))

≤ PtFK(K
∗ − ϵ) (∵ Kt+1 ≥ K∗ − ϵ)

= r(ϵ)t+1−Tp(ϵ). (∵ Pt ≤ r(ϵ)t−Tp(ϵ), (A.16b))

Therefore the claim holds for t+ 1 as well.

Proof of Theorem 3. Suppose that there exists an equilibrium with lim inft→∞ Kt >

0 such that the asset is asymptotically irrelevant, so lim inft→∞ Pt = 0. By condi-

tion (5.4) and (A.16b), we can take sufficiently small ϵ > 0 such that r(ϵ) < Gd <

1. Applying Lemma A.10, we can take T > 0 such that Kt ∈ (K∗ − ϵ,K∗ + ϵ) for

t ≥ T . Using (5.2), the gross risk-free rate for t ≥ T is

Rt = FK(Kt+1, 1) ≤ FK(K
∗ − ϵ, 1) = r(ϵ) < Gd.

By the same argument as in the proof of Lemma A.6, we have P0 ≥ V0 = ∞,

which is a contradiction.

Therefore in all equilibria, the asset is asymptotically relevant, and there exists

p > 0 such that Pt ≥ p. Since Dt asymptotically grows at rate Gd < 1, we have∑∞
t=1 Dt/Pt < ∞, so by Lemma 2.1 the equilibrium is asymptotically bubbly.
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A.4 Proof of Theorem 4

We need several lemmas to prove Theorem 4.

Lemma A.11. Let Wnt be the aggregate wealth held by type n agents at time t

and v′t = (W0t, . . . ,WNt) be the row vector of aggregate wealth. Then v′t ≥ v′0A
t.

Proof. Let Rt = (Pt+1 + Dt+1)/Pt be the gross risk-free rate between time t and

t+1. Due to log utility, the optimal consumption rule is cit = (1− β)wit. Savings

is thus βwit. Because the productivity is predetermined, it is optimal for an agent

to invest entirely in the technology (asset) if zit > Rt (zit < Rt). If zit = Rt, the

agent is indifferent between the technology and asset. Therefore using the budget

constraint (5.6), individual wealth evolves according to

wi,t+1 = βmax {zit, Rt}wit. (A.17)

Let Wnt be the aggregate wealth held by type n agents. Then aggregating

(A.17) across agents and applying the strong law of large numbers, we obtain

Wn′,t+1 =
N∑

n=0

πnn′βmax {zn, Rt}Wnt ≥
N∑

n=0

πnn′βznWnt. (A.18)

Collecting the terms in (A.18) into a row vector and using the definitions of v′t

and A, we obtain v′t+1 ≥ v′tA. Iterating this inequality, we obtain v′t ≥ v′0A
t.

Lemma A.12. There exists a constant w0 > 0 such that W0t ≥ w0G
t for all t.

Proof. Noting that z0 = 0, partition the matrix A = (βznπnn′) as

A =

[
0 0

b1 A1

]
, (A.19)

where A1 = (βznπnn′)Nn,n′=1 is the N × N submatrix. Since Π is irreducible and

zn > 0 for all n ≥ 1, we have b1 > 0. Similarly, since Π1 = (πnn′)Nn,n′=1 is irreducible

by Assumption 5.2 and zn > 0 for all n ≥ 1, A1 is irreducible.

Since A is nonnegative, by Theorem 8.3.1 of Horn and Johnson (2013), the

spectral radius ρ(A) is an eigenvalue with a corresponding nonnegative left eigen-

vector u′. Partition u′ as u′ = (u0, u
′
1). Multiplying u′ to A in (A.19) from the left

and comparing entries, we obtain

ρ(A)u0 = u′
1b1, (A.20a)

ρ(A)u′
1 = u′

1A1. (A.20b)
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If u1 = 0, then (A.20a) and ρ(A) = G > 0 implies u0 = 0. Then u = 0,

which contradicts the fact that u is an eigenvector of A. Therefore u1 ̸= 0, and

(A.20b) implies that u′
1 is a nonnegative left eigenvector of A1. Since A is block

lower triangular, we have 0 < ρ(A) = ρ(A1). Since A1 is irreducible, by the

Perron-Frobenius theorem (Horn and Johnson, 2013, Theorem 8.4.4), u′
1 must

be the left Perron vector of A1 and hence u1 ≫ 0. Therefore (A.20a) implies

u0 = u′
1b1/ρ(A) > 0, so u′ = (u0, u

′
1) ≫ 0.

Since agents are endowed with positive endowments, the vector of initial ag-

gregate wealth v′0 is positive. Therefore we can take ϵ > 0 such that v′0 ≥ ϵu′. By

Lemma A.11, we obtain

v′t ≥ v′0A
t ≥ ϵu′At = ϵρ(A)tu′ = ϵGtu′.

Comparing the 0-th entry, we obtain W0t ≥ ϵu0G
t, so we can take w0 := ϵu0.

Proof of Theorem 4. Using the definition of Gd and the assumption Gd < G, it

follows from Lemma A.12 that we can take ϵ > 0 such that G > Gd + ϵ and

W0t ≥ w0G
t > (Gd + ϵ)t ≥ Dt (A.21)

for large enough t. Since z0 = 0, type 0 agents invest all wealth in the asset, so the

market capitalization of the asset (which equals the the asset price because it is in

unit supply) must exceed the aggregate savings of type 0: Pt ≥ βW0t. Therefore

using (A.21), for large enough t we can bound the dividend yield from above as

Dt

Pt

≤ Dt

βW0t

≤ 1

βw0

(
Gd + ϵ

G

)t

,

which is summable. By Lemma 2.1 the equilibrium is bubbly. Furthermore,

Pt ≥ βW0t ≥ βw0G
t implies that the equilibrium is asymptotically bubbly.

A.5 Proof of Proposition 5.1 and Theorem 5

We need several lemmas to prove Proposition 5.1. The following lemma is a

consequence of quasi-linear utility.

Lemma A.13. In equilibrium, there exists a sequence {wt}∞t=0 such that wit = wt

for all i: agents adjust labor supply ℓit to achieve a common wealth wit in (5.9).

Proof. Using the budget constraint (5.9) to eliminate consumption and labor, the
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continuation utility at time t is

Eθ

[
θu(wit − Ptxit)−

wit − (Pt +Dt)xi,t−1

At

]
+ Et

∞∑
s=1

βs[θi,t+su(ci,t+s)− ℓi,t+s].

Since (At, Pt, Dt, xi,t−1) is predetermined at time t, the continuation utility is or-

dinally equivalent to

Eθ[θu(wit − Ptxit)− wit/At] + Et

∞∑
s=1

βs[θi,t+su(ci,t+s)− ℓi,t+s].

By the budget constraint (5.9), choosing ℓit is equivalent to choosing wit. Because

θit is iid across agents and time, all agents face the same problem. Therefore the

optimal wit = wt is common by the strict concavity of u.

The following lemma characterizes the optimal consumption of agents.

Lemma A.14. Let Rt := (Pt+1 + Dt+1)/Pt be the gross risk-free rate and wt be

the common wealth in Lemma A.13. Then the optimal consumption is

cit = min

{(
θitAt+1

βRt

)1/γ

, wt

}
. (A.22)

Proof. Using the budget constraint (5.9) to eliminate consumption, the continua-

tion utility at time t is

Eθ [θu(Atℓ+ (Pt +Dt)xi,t−1 − Ptx)− ℓ] + Et

∞∑
s=1

βs[θi,t+su(ci,t+s)− ℓi,t+s],

where ℓ = ℓit and x = xit. The first-order condition with respect to ℓ is

Eθ[θu
′(cit)]At − 1 = 0. (A.23)

Noting that (cit, xit) is chosen after θit realizes and the asset cannot be shorted,

the first-order condition with respect to x is

−θitu
′(cit)Pt + β Et[θi,t+1u

′(ci,t+1)](Pt+1 +Dt+1)

{
= 0 if xit > 0,

≤ 0 if xit = 0.
(A.24)
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Dividing both sides of (A.24) by Pt > 0 and using (A.23), we obtain

−θitu
′(cit) +

βRt

At+1

{
= 0 if xit > 0,

≤ 0 if xit = 0.
(A.25)

If xit = 0, the budget constraint implies cit = wit = wt. Otherwise, using (A.25)

and u′(c) = c−γ, we obtain (A.22).

Proof of Proposition 5.1. If we define θ̄t := (βRt/At+1)w
γ
t , then (A.22) immedi-

ately implies the optimal consumption rule (5.11). Using this, we obtain

θu′(ct(θ)) = θct(θ)
−γ =

βRt

At+1

θ

min
{
θ, θ̄t

} =
βRt

At+1

max
{
1, θ/θ̄t

}
.

Integrating both sides with respect to F , using the first-order condition (A.23),

and rearranging terms, we obtain (5.12a).

Finally, let us show (5.12b). By (5.11), an agent with θ ≥ θ̄t satisfies

wt = ct(θ) = ct(θ̄t) =

(
θ̄tAt+1

βRt

)1/γ

. (A.26)

By Lemma A.13, wt is common across all agents, so the budget constraint (5.9)

implies that labor income is Atℓit = wt − (Pt + Dt)xi,t−1. Aggregating across

agents, using the market clearing conditions (5.10) and
∫
I
xit di = 1, and using

(5.11) and (A.26), we obtain∫
I

cit di = At

∫
I

ℓit di+Dt = wt − (Pt +Dt) +Dt

⇐⇒ Pt = wt −
∫
I

cit di = ct(θ̄t)−
∫
Θ

ct(θ) dF (θ)

=

(
At+1

βRt

)1/γ ∫
Θ

(
θ̄
1/γ
t −min

{
θ, θ̄t

}1/γ)
dF (θ)

=

(
At+1

βRt

)1/γ ∫
Θ

max
{
0, θ̄

1/γ
t − θ1/γ

}
dF (θ),

which is (5.12b).

Proof of Theorem 5. If θ̄t = θL, then θ ≥ θL = θ̄t and (5.14) implies Pt = 0, which

is impossible because Dt > 0 infinitely often. Therefore θ̄t ≥ θL+δ by Assumption

5.3, and (5.14) implies

Pt ≥ A
1/γ
t ((θL + δ)1/γ − θ

1/γ
L )F (θL) =: pA

1/γ
t (A.27)
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for the constant p > 0. By (5.15), we can take ϵ > 0 such that D
1/t
t < Gd + ϵ <

G− ϵ < A
1/γt
t for large enough t. Therefore we can bound the dividend yield from

above as
Dt

Pt

≤ Dt

pA
1/γ
t

≤ 1

p

(
Gd + ϵ

G− ϵ

)t

,

which is summable. By Lemma 2.1, the equilibrium is bubbly. Furthermore,

(A.27) and the definition of G in (5.15) imply that the equilibrium is asymptoti-

cally bubbly.
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Online Appendix

B Uniqueness of equilibrium in Example 1

This appendix characterizes the unique equilibrium in Example 1.

Proposition B.1. If 1/β < Gd < G in Example 1, then the unique equilibrium

asset price is Pt = aGt, and there is a bubble.

Proof. Let Pt > 0 be any equilibrium asset price. Because the old exit the econ-

omy, the equilibrium consumption allocation is

(yt, zt) = (aGt − Pt, bG
t + Pt +Dt).

Nonnegativity of consumption implies Pt ≤ aGt. Let Rt := (Pt+1 + Dt+1)/Pt be

the gross risk-free rate. The first-order condition for optimality together with the

nonnegativity of consumption implies that Rt ≥ 1/β, with equality if Pt < aGt.

Suppose Rt > 1/β. Then Pt = aGt, so

Rt−1 :=
Pt +Dt

Pt−1

=
aGt +DGt

d

Pt−1

≥ aGt +DGt
d

aGt−1
(∵ Pt−1 ≤ aGt−1)

=
aGt+1 +DGGt

d

aGt
>

aGt+1 +DGt+1
d

Pt

(∵ G > Gd, Pt = aGt)

≥ Pt+1 +Dt+1

Pt

= Rt >
1

β
. (∵ Pt+1 ≤ aGt+1)

Therefore by induction, if Rt > 1/β, then Rs > 1/β for all s ≤ t. This argument

shows that, in equilibrium, either (i) there exists T > 0 such that Rt = 1/β for all

t ≥ T , or (ii) Rt > 1/β for all t. In Case (i), using (2.5), 1/Rt = β for t ≥ T , and

1/β < Gd, the asset price at time t ≥ T can be bounded from below as

Pt ≥ Vt =
∞∑
s=1

βsDGt+s
d =

∞∑
s=1

DGt
d(βGd)

s = ∞,

which is impossible in equilibrium. Therefore it must be Case (ii) and hence

Pt = aGt and yt = 0 for all t. In this case, we have

Rt =
aGt+1 +DGt+1

d

aGt
≥ G >

1

β
,

so the first-order condition holds and we have an equilibrium, which is unique.
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Using Pt = aGt, Dt = DGt
d, and applying Lemma 2.1, we immediately see that

there is a bubble.

C Global dynamics of Example 2

This appendix provides a step-by-step analysis of the asymptotically bubbly equi-

librium in Example 2.

Start with the asset pricing equation (4.5), which is

Pt = β

(
bGt+1 + Pt+1 +D

aGt − Pt

)−γ

(Pt+1 +D). (C.1)

Define the detrended variable ξ = (ξ1t, ξ2t) by ξ1t := Pt/(aG
t) and ξ2t := D/(aGt).

Then (C.1) can be rewritten as the system of autonomous nonlinear implicit dif-

ference equations

H(ξt, ξt+1) = 0, (C.2)

where H : R4 → R2 is defined by

H1(ξ, η) = βG1−γ

(
w + η1 +Gξ2

1− ξ1

)−γ

(η1 +Gξ2)− ξ1, (C.3a)

H2(ξ, η) = η2 −
1

G
ξ2 (C.3b)

with w := b/a. Let ξ∗ = (ξ∗1 , ξ
∗
2) be a steady state of the difference equation (C.2),

so H(ξ∗, ξ∗) = 0. Since G > 1 and hence 1/G ∈ (0, 1), (C.3b) implies that ξ∗2 = 0.

Using (C.3a), we can solve for ξ∗1 as

βG1−γ

(
w + ξ∗1
1− ξ∗1

)−γ

ξ∗1 − ξ∗1 = 0 ⇐⇒ ξ∗1 =
(βG1−γ)1/γ − w

1 + (βG1−γ)1/γ
> 0 (C.4)

because (4.13) holds. (Note that the other (fundamental) steady state ξ∗1 = 0 is

ruled out by Theorem 2.)

We apply the implicit function theorem at (ξ, η) = (ξ∗, ξ∗) to express (C.2) as

ξt+1 = h(ξt) for ξt close to ξ∗. Noting that ξ∗2 = 0, a straightforward calculation

using (C.3) and (C.4) implies that

DξH(ξ∗, ξ∗) =

[
H1,ξ1 H1,ξ2

0 −1/G

]
and DηH(ξ∗, ξ∗) =

[
H1,η1 0

0 1

]
,
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where

H1,ξ1 = −γβG1−γ(w + ξ∗1)
−γ(1− ξ∗1)

γ−1ξ∗1 − 1 = −1− γ
ξ∗1

1− ξ∗1
,

H1,η1 = βG1−γ

(
w + ξ∗1
1− ξ∗1

)−γ (
1− γ

ξ∗1
w + ξ∗1

)
= 1− γ

ξ∗1
w + ξ∗1

,

and H1,ξ2 is unimportant. Therefore except the special case with γ = 1 + w/ξ∗1 ,

we may apply the implicit function theorem, and for (ξ, η) sufficiently close to

(ξ∗, ξ∗), we have H(ξ, η) = 0 ⇐⇒ η = h(ξ) for some C1 function h with

Dh(ξ∗) =

[
λ1 ∗
0 λ2

]
, where (λ1, λ2) =

 1 + γ
ξ∗1

1−ξ∗1

1− γ
ξ∗1

w+ξ∗1

,
1

G

 . (C.5)

We thus obtain the following proposition.

Proposition C.1. Let everything be as in Example 2 and define κ := (βG1−γ)1/γ.

If 1
γ
̸= κ−w

κ(1+w)
, then there exists an asymptotically bubbly equilibrium such that

Pt/(aG
t) converges to ξ∗1 in (C.4). If in addition

1

γ
>

1

2

κ− w

κ

1− κ

1 + w
, (C.6)

then such an equilibrium is unique.

Proof. By the implicit function theorem, the equilibrium dynamics can be ex-

pressed as ξt+1 = h(ξt) if ξt is sufficiently close to ξ∗1 . To study the local stability,

we apply the Hartman-Grobman theorem. Since G > 1, one eigenvalue of Dh(ξ∗)

is λ2 = 1/G ∈ (0, 1). If 1− γ
ξ∗1

w+ξ∗1
> 0, then clearly λ1 > 1. If 1− γ

ξ∗1
w+ξ∗1

< 0, then

λ1 =
1 + γ

ξ∗1
1−ξ∗1

1− γ
ξ∗1

w+ξ∗1

< −1 ⇐⇒ 1 + γ
ξ∗1

1− ξ∗1
> −1 + γ

ξ∗1
w + ξ∗1

⇐⇒ 1

γ
>

(κ− w)(1− κ)

2κ(1 + w)

using the definition of κ and ξ∗1 . Furthermore, we have

1− γ
ξ∗1

w + ξ∗1
= 0 ⇐⇒ 1

γ
=

κ− w

κ(1 + w)
.

Therefore if 1
γ
̸= κ−w

κ(1+w)
, the eigenvalues of Dh(ξ∗) are not on the unit circle, so

the Hartman-Grobman theorem (Chicone, 2006, Theorem 4.6) implies that for
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sufficiently large T (so that ξ2T = D/(aGT ) is sufficiently close to the steady state

value 0), there exists an equilibrium path {ξt}∞t=T starting at t = T converging to

ξ∗. A backward induction argument similar to Lemma A.2 implies the existence

of an equilibrium path {ξt}∞t=0 starting at t = 0. Finally, if (C.6) holds, then

|λ1| > 1 > λ2 > 0, so the number of free initial conditions (1, because P0 is

endogenous) agrees with the number of unstable eigenvalues (1, because |λ1| > 1)

and the equilibrium path is unique.
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