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Abstract

This paper analyzes optimal policy in setups where both the policymaker and the private

sector have doubts about the probability model of uncertainty and form endogenous worst-

case beliefs. There are two forces that shape optimal policy results: a) the manipulation of

the endogenous beliefs of the private sector so that the forward-looking constraints that the

policymaker is facing are relaxed, b) the discrepancy (if any) in pessimistic beliefs between

a paternalistic policymaker and the private sector, which captures ultimately differences in

welfare evaluation. I illustrate the methodology in an optimal fiscal policy problem and

show that manipulation of beliefs materializes as an effort to make government debt cheaper

through the endogenous beliefs of the household. This force may lead to either mitigation

or amplification of the household’s pessimism, depending on the problem’s parameters. The

policymaker’s relative pessimism determines whether paternalism reinforces or opposes the

price manipulation incentives.
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1 Introduction

This paper analyzes the effects of model uncertainty on the design of optimal policy. Uncertainty

is pervasive, hard to quantify and difficult to act upon. Economic agents (households or firms) and

policymakers acknowledge that. They recognize that their probability models may be misspecified

and are cautious towards this model uncertainty or ambiguity.

In this paper, I put the policymaker and the private sector on equal footing and allow them both

to fear that the probability model of exogenous uncertainty is misspecified. I study optimal policy

under commitment and use the multiplier preferences of Hansen and Sargent (2001) to express

aversion to this model ambiguity.1 In order to illustrate the methodology and get sharp results, I

focus on an optimal fiscal policy problem in the main text.

I consider an economy with a representative household and a policymaker (interchangeably

government), who has no access to lump-sum taxes. The policymaker needs to finance an exogenous

stochastic stream of non-utility providing government expenditures, and can either use a linear

distortionary tax on labor income, or issue state-contingent debt. Both the policymaker and the

household have doubts about the probability model of spending shocks. The policymaker can

distrust the probability model of spending shocks more, the same, or less than the household.

This setup is useful for two distinct reasons: first, it allows us to show explicitly how to introduce

doubts about the model for both the policymaker and the private sector in a general equilibrium

economy. Second, it permits the natural distinction between the case of a benevolent planner,

who adopts the welfare criterion of the representative household, and the case of a paternalistic

government, which may doubt the model more or less than the household. This freedom in forming

the criterion of the policymaker is welcome because, in an environment with subjective uncertainty,

it is not clear anymore what the normative welfare criterion should be.

In an environment of model ambiguity, economic participants form endogenous worst-case

beliefs, which depend on their welfare objective. For example, a government and a representative

household assign high probability to low utility events, which are typically associated with high

spending shocks. Aside from this obvious pessimism, there is an additional angle in optimal policy

problems: the policymaker’s choices affect the private sector’s utility, and consequently, its worst-

case beliefs. Therefore, model ambiguity incentivizes the policymaker to ‘manage’ the private

sector’s worst-case expectations.

To see this angle in the fiscal policy problem, note that the household’s pessimistic evaluations

determine the equilibrium price of state-contingent debt, and therefore, the tradeoffs between

taxing today versus issuing debt and taxing in the future. Intuitively, the government wants to

make new debt cheaper through the household’s endogenous worst-case beliefs. In particular, the

government has an incentive to make the household assign high probability towards events where

the ‘value’ of debt, that is, debt adjusted by marginal utility, is relatively high, and low probability

1See Hansen and Sargent (2008) for a textbook treatment of ambiguity aversion and robustness.
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towards events where the ‘value’ of debt is relatively low. Such a policy raises the market value

of the portfolio of government securities, relaxing the government budget and increasing welfare.

To achieve this price manipulation, the government taxes more at states of the world where the

‘value’ of debt is high, decreasing the household’s utility and increasing therefore the endogenous

probability assigned. In similar fashion, the government taxes less at states of the world where the

‘value’ of debt is low.

Hence, if the states of the world with high ‘values’ of debt are the good times of low spending,

then the government wants to tax more in good times (and less in bad times), mitigating the

household’s pessimism. Instead, the government amplifies the household’s pessimism by taxing

less in good times and more in bad times, if the ‘value’ of debt is high when spending increases. Note

that the government hedges fiscal shocks by issuing relatively more state-contingent debt against

good times, but the reduction of marginal utility in good times can actually decrease the ‘value’

of debt. Thus, it is not a priori clear if there are incentives for mitigation or amplification of the

household’s pessimism for price manipulation reasons. If we bound the reaction of marginal utility

by either assuming a curvature of the utility function that is smaller than the logarithmic case,

or an infinite Frisch elasticity of labor supply, which leads to no crowding out of consumption

(and therefore constant marginal utility), then the ‘value’ of debt remains high in good times,

incentivizing the policymaker to mitigate the household’s pessimism. Instead, if the curvature of

the utility function is high and the Frisch elasticity is finite and small, then the amplification of the

household’s pessimism is potentially possible, provided that the need for distortionary taxation is

high.

Furthermore, whenever there is disagreement between the policymaker and the private sector,

the ratio of worst-case beliefs of the household and the government plays an independent role

in the design of policy, since it reflects differences in welfare evaluation. A paternalistic govern-

ment has an incentive to tax more in states of the world that are not deemed –relative to the

household– probable, since the welfare cost of a tax is considered small in the government’s eyes.

A policymaker, who doubts the model more than the household, increases taxes in –relative to

the household– less probable good times, and decreases taxes in –relative to the household– more

probable bad times. The opposite happens if the policymaker doubts the model less than the

household. Consequently, paternalism can act either in the same direction as, or in the oppo-

site direction to the management of the household’s pessimistic expectations, depending on the

policymaker’s relative pessimism.

I utilize a small-doubts approximation that allows a full-blown, almost analytical, characteriza-

tion of optimal policy. To achieve a quantitatively relevant evaluation of the strength of pessimistic

expectation management and paternalism, I use a probability model that captures U.S. data, and

discipline the doubts of the policymaker and the household by using the methodology of detection

error probabilities. Several insights emerge. First, mitigation of the household’s pessimism is typi-

cally the relevant case, unless the curvature of the utility function is high, the Frisch elasticity very
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low, and the level of debt several multiples of output. Second, when the policymaker doubts the

model more than the household, the forces of paternalism and pessimistic expectation management

reinforce each other, leading altogether to a tax rate that falls in bad times and increases in good

times. Third, the relative strength of price manipulation versus paternalism becomes important

when the policymaker doubts the model less than the household, since in that case the two forces

oppose each other. If the policymaker is -relative to the household- sufficiently confident in the

model, then paternalistic incentives dominate, whereas, if the policymaker’s doubts are close to

the household’s, price manipulation incentives dominate.

The management of the follower’s endogenous expectations in order to relax the forward-looking

constraints that the policymaker faces is an idea that transcends the fiscal policy application. In

supplementary material, I consider a broader framework with forward-looking constraints, that

nests the fiscal policy application, as well as New Keynesian or limited commitment setups, and

derive a general criterion for the mitigation or amplification of the follower’s pessimism.

1.1 Related literature

Studies in optimal policy design consider typically model uncertainty on the side of the policymaker.

A noteworthy early contribution is Tetlow and von zur Muehlen (2001), who study the effects of

unstructured and structured misspecifications on the design of policy rules. Giannoni (2002, 2007)

analyzes the design of robust Taylor rules and considers both shock and parameter uncertainty

respectively. Barlevy (2009, 2011) delves further into these issues.2

Turning to optimal policy setups where the private sector has fears of model misspecification,

the price manipulation through the management of the household’s pessimistic expectations was

first analyzed in Karantounias (2013), who considered a situation where the policymaker had

full confidence in the model, whereas the household had not. By introducing model doubts to

both the policymaker and the household, the current paper nests and generalizes the analysis

in Karantounias (2013). In particular, an in-depth analysis of the incentives for mitigation or

amplification of the household’s pessimism is provided. In addition, it is shown that pessimistic

expectation management and paternalism can act either in the same or the opposite direction with

regard to the tax rate, depending on the relative pessimism of the policymaker. A small-doubts

approximation is utilized, furnishing novel analytical and quantitative results about the behavior

of tax rates and debt in a full-blown infinite horizon economy. Last, optimal policy design under

model uncertainty is generalized in a broader framework with forward-looking constraints, and a

general criterion for mitigation or amplification of the follower’s pessimism is derived.

Other relevant contributions are Ferrière and Karantounias (2019), who study distortionary

taxation and the design of utility-providing government expenditures when there is ambiguity

2For other contributions that are motivated by robustness concerns on the side of the policymaker, see Tetlow
(2015), Cogley et al. (2008), Luo et al. (2014), Orphanides and Williams (2007) and Ajello et al. (2019).
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about the business cycle, and Benigno and Paciello (2014), who study the implications of ambiguity

aversion of the representative consumer and the policymaker for the design of optimal monetary

policy. Michelacci and Paciello (2020) associate the credibility of the monetary authority actions

to the worst-case beliefs of a heterogeneous private sector, and Orlik and Presno (2018) analyze

optimal fiscal policy by dropping the commitment assumption and using the notion of sustainable

plans.

Hansen and Sargent (2012) clarify several concepts of a robust policymaker and propose a useful

nomenclature in terms of three types of ambiguity. The work of Dennis (2008) is relevant for type I

ambiguity. Type II, and type 0 ambiguity - which is how Hansen and Sargent call the formulation

of Karantounias (2013)- are nested in the current paper. Woodford (2010), Adam and Woodford

(2012) and Adam and Woodford (2021) are relevant contributions for type III ambiguity.3

Interesting applications of ambiguity aversion outside the realm of optimal policy are Benigno

and Nisticò (2012), Bidder and Smith (2012), Pouzo and Presno (2016) and Croce et al. (2012), who

study respectively optimal portfolio choice in open economies, stochastic volatility, default premia

and positive fiscal policy. Molavi (2019) constructs a general theory of learning and misspecification

and Christensen (2019) explores identification and estimation of models of robust decision makers.

For a prominent example that analyzes business cycles using max-min expected utility, instead

of the smooth preferences we consider here, see Ilut and Schneider (2014). Ilut and Schneider (2023)

provide a comprehensive review of the literature of ambiguity aversion in macroeconomics and

finance. Lastly, several papers interpret survey evidence on expectations in the United States, the

United Kingdom and Germany through the lens of worst-case beliefs, strengthening the empirical

plausibility of ambiguity aversion. See respectively Bhandari et al. (2019), Michelacci and Paciello

(2023) and Bachmann et al. (2020).

1.2 Organization

Section 2 considers an economy with distortionary taxation and model uncertainty. Section 3

sets up the policy problem and derives the optimal tax rate. Section 4 analyzes the forces of the

public’s pessimistic expectations management and the paternalism (if any) of the policymaker.

Section 5 evaluates the implications of the two forces for the tax rate by utilizing a small-doubts

approximation. Section 6 concludes. Appendix A provides proofs for the fiscal policy application.

Appendix B generalizes the analysis of optimal policy design under model uncertainty in a broader

framework with forward-looking constraints. Appendix C provides the details of the small-doubts

approximation that may be of independent interest. Appendices B and C are online.

3Kwon and Miao (2017) operationalize the concepts of Hansen and Sargent (2012) in a discrete-time setup.
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2 An economy with model uncertainty

Time is discrete and the horizon is infinite. We use the economy of Lucas and Stokey (1983) and

attribute fears of model misspecification to both the government (interchangeably policymaker)

and the representative household. There is a single perishable good that can be allocated to private

consumption ct or government consumption gt. Government consumption is exogenous, stochastic,

takes finite or countable values, and does not provide any utility. A linear production technology

uses labor as input and converts one unit of labor to one unit of good.

Let gt = (g0, ..., gt) denote the partial history of government expenditures up to time t. There

is a representative consumer that is endowed with one unit of time, works ht(g
t), enjoys leisure

lt(g
t) = 1 − ht(gt), and consumes ct(g

t) at history gt for each t ≥ 0. The notation indicates that

the respective variables are measurable functions of gt. The resource constraint of the economy

reads

ct(g
t) + gt = ht(g

t). (1)

Markets are complete and competitive. Competition makes the real wage wt(g
t) = 1 for all

t ≥ 0 and any history gt. The government has no access to lump-sum taxes; instead it finances

its time t expenditures either by using a linear tax τt(g
t) on labor income, or by issuing state-

contingent debt bt+1(gt+1, g
t) that is sold at price pt(gt+1, g

t) at history gt. This debt security

pays one unit of the consumption good if government expenditures are gt+1 next period, and zero

otherwise. The one-period government budget constraint at t is

bt(g
t) + gt = τt(g

t)ht(g
t) +

∑
gt+1

pt(gt+1, g
t)bt+1(gt+1, g

t). (2)

Equivalently, using the proper no-Ponzi game condition, we get the single intertemporal budget

constraint

b0 +
∞∑
t=0

∑
gt

qt(g
t)gt ≤

∞∑
t=0

∑
gt

qt(g
t)τt(g

t)ht(g
t), (3)

where qt(g
t) the history-contingent prices of Arrow-Debreu contracts that trade at t = 0.

2.1 Model misspecification

The representative household and the government share a reference probability model in terms of

a sequence of joint densities πt(g
t) over histories gt. These densities do not coincide necessarily

with the true data-generating process. Uncertainty at t = 0 has been realized, so π0(g0) ≡ 1.

We use E to denote the expectation operator with respect to the reference model π throughout

the paper. Both the household and the government fear that the reference model is misspecified

and consider alternative probability models. We follow Hansen and Sargent (2005) and take the
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alternative models to be absolutely continuous with respect to the reference model over finite time

intervals. This allows us to use the Radon-Nikodym theorem and express an alternative model as

a change of measure, that is, a non-negative random variable, that is a measurable function of gt

and a martingale with respect to π, with unitary mean value.

Representative household. The alternative models of the household are expressed as a non-

negative random variable Mt(g
t), with EMt = 1 and EtMt+1 = Mt. We set the initial value of M0

to unity, since uncertainty is realized at t = 0, M0 ≡ 1. We can think of Mt as an unconditional

likelihood ratio of the alternative density π̂t(g
t) over the reference density πt(g

t). Moreover, we

can decompose Mt by defining mt+1(gt+1) ≡ Mt+1(gt+1)/Mt(g
t). The random variable mt+1 has

then the interpretation of a conditional likelihood ratio, and has to integrate to unity, Etmt+1 = 1.

Unconditional expectations of a generic random variable Xt(g
t) with respect to the alternative

measure π̂ can be calculated as ÊXt ≡ EMtXt. Conditional expectations take the form ÊtXt+1 ≡
Etmt+1Xt+1.

Government. Similarly to the household, the government’s alternative models are captured by

the non-negative likelihood ratio Nt(g
t) with ENt = 1, EtNt+1 = Nt, and N0 ≡ 1. The respective

conditional likelihood ratio is nt+1(gt+1) ≡ Nt+1(gt+1)/Nt(g
t), with Etnt+1 = 1. Same comments as

previously apply for the calculation of (un)conditional expectations of a variable Xt with respect

to the government’s alternative model.

2.2 Ambiguity aversion

Both the household and the government are averse to model ambiguity. We use the multiplier

preferences of Hansen and Sargent (2001) and Hansen et al. (2006), which were axiomatized by

Strzalecki (2011), to express this aversion.

Representative household. The household ranks consumption and leisure plans using the

following criterion:

min
mt+1≥0,Mt≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)U(ct(g
t), 1− ht(gt)) + βθA

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)εt
(
mt+1(gt+1)

)
(4)

subject to
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Mt+1(gt+1) = mt+1(gt+1)Mt(g
t),M0 ≡ 1 (5)∑

gt+1

πt+1(gt+1|gt)mt+1(gt+1) = 1, (6)

where 0 < θA ≤ ∞. The positive parameter θA is a penalty parameter that measures fear

of model misspecification. The period utility U(ct, 1 − ht) satisfies the typical monotonicity and

concavity assumptions. We use relative entropy as a measure of discrepancies between probability

measures in (4),

εt(mt+1) ≡ Etmt+1 lnmt+1 =
∑
gt+1

πt+1(gt+1|gt)mt+1(gt+1) lnmt+1(gt+1). (7)

According to (4), the representative household evaluates expected utility under the alternative

probability models and shows its aversion to model ambiguity by considering the model that

furnishes the worst utility. Deviations from the reference model are penalized in terms of a measure

of discounted relative entropy. The “farther” a model is, the more it is penalized. Higher values of

the parameter θA represent more confidence in the reference model πt. Full confidence is captured

by θA = ∞, which reduces the above preferences to the expected utility preferences of the Lucas

and Stokey household.

Government. Analogously, the government’s preferences are described by

min
nt+1≥0,Nt≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Nt(g

t)U(ct(g
t), 1− ht(gt)) + βθR

∞∑
t=0

βt
∑
gt

πt(g
t)Nt(g

t)εt
(
nt+1(gt+1)

)
(8)

subject to

Nt+1(gt+1) = nt+1(gt+1)Nt(g
t), N0 ≡ 1 (9)∑

gt+1

πt+1(gt+1|gt)nt+1(gt+1) = 1, (10)

where 0 < θR ≤ ∞. The penalty parameter θR captures the government’s confidence in the

reference probability model.

The period utility U in (4) and (8) is the same for both the household and the government.

Preferences though can differ due to different attitudes towards model misspecification. If θR = θA,

then the government becomes a “benevolent” planner that adopts the preferences of the household.
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In the case of θR 6= θA, the government exhibits paternalism, that is, it imposes its own evaluation

of the utility that the household is deriving from a stochastic stream of consumption and leisure.

We don’t take a stance on the criterion of the government, and we allow the policymaker to doubt

the model less (θR > θA), the same (θR = θA), or more than the household (θR < θA).

2.3 The representative household’s problem

The problem of the household is

max
ct,ht

min
mt+1≥0,Mt≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Mt(g

t)
[
U(ct(g

t), 1− ht(gt))

+θAβ
∑
gt+1

πt+1(gt+1|gt)mt+1(gt+1) lnmt+1(gt+1)
]

subject to

∞∑
t=0

∑
gt

qt(g
t)ct(g

t) ≤
∞∑
t=0

∑
gt

qt(g
t)(1− τt(gt))ht(gt) + b0 (11)

ct(g
t) ≥ 0, ht(g

t) ∈ [0, 1],∀t, gt (12)

Mt+1(gt+1) = mt+1(gt+1)Mt(g
t),M0 ≡ 1,∀t, gt (13)∑

gt+1

πt+1(gt+1|gt)mt+1(gt+1) = 1,∀t, gt (14)

Inequality (11) is the intertemporal budget constraint of the household. The right side is the

discounted present value of after-tax labor income plus an initial asset position b0 that can assume

positive (denoting government debt) or negative (denoting government assets) values.

2.4 Household’s worst-case beliefs

The optimal conditional likelihood ratio that solves the minimization problem in (4) is denoted by

asterisks. It takes the exponentially twisting form

m∗t+1(gt+1) =
exp (σAVt+1(gt+1))∑

gt+1
πt+1(gt+1|gt) exp (σAVt+1(gt+1))

,∀t ≥ 0, gt, (15)

where σA ≡ −1/θA ≤ 0. Vt(g
t) stands for the household’s (indirect) utility under the worst-case

measure,

Vt = U(ct, 1− ht) + β
[
Etm

∗
t+1Vt+1 + θAEtm

∗
t+1 lnm∗t+1

]
. (16)
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Using (15) in (16) delivers a risk-sensitive recursion for Vt,

Vt = U(ct, 1− ht) +
β

σA
lnEt(exp(σAVt+1)). (17)

Recursion (17) connects the multiplier preferences of Hansen and Sargent (2001) to setups with

full confidence in the model, but aversion towards volatility in continuation utilities, as the risk-

sensitive preferences used by Tallarini (2000) or, for some particular parameter values, the recursive

preferences of Epstein and Zin (1989).4

Equation (15) summarizes how a cautious household forms pessimistic beliefs. The household

assigns high probability (relative to the reference model) on histories with low continuation util-

ities Vt+1, and low probability on histories with high Vt+1. In that sense, the household tilts its

probability assessments towards low-utility events.

Lastly, the law of motion in (13) becomes

M∗
t+1(gt+1) =

exp
(
σAVt+1(gt+1)

)∑
gt+1

πt+1(gt+1|gt) exp
(
σAVt+1(gt+1)

)M∗
t (gt), M0 ≡ 1. (18)

2.5 Labor supply, asset choice and equilibrium

The labor supply of the household is determined by equalizing the marginal rate of substitution

between consumption and leisure to the after-tax wage,5

Ul(g
t)

Uc(gt)
= 1− τt(gt). (19)

The asset choice of the household is determined by condition

qt(g
t) = βtπt(g

t)M∗
t (gt)

Uc(g
t)

Uc(g0)
, (20)

which equalizes the intertemporal rate of substitution between consumption at time t and consump-

tion at the initial period to the price of an Arrow-Debreu contract. The price at t = 0 is normalized

to unity, q0 ≡ 1. Similarly, the optimality condition when there is trade in state-contingent Arrow

4The source of the aversion to volatility is fear of model misspecification in the case of multiplier preferences,
whereas it is related to the attitudes towards time and risk in the case of recursive preferences. More generally,
the equivalence of the multiplier preferences with recursive preferences breaks down when we have multiple sources
of uncertainty, and a decisionmaker who exhibits differential ambiguity attitude towards them. See for example
Hansen and Sargent (2007) and Hansen and Sargent (2010). Richer setups allow also the distinction between risk
aversion, intertemporal elasticity of substitution and ambiguity aversion. See for example Klibanoff et al. (2005)
and Ju and Miao (2012).

5Uc(g
t) is shorthand for Uc(ct(g

t), 1− ht(gt)). Same comment applies for Ul(g
t).
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securities takes the form

pt(gt+1, g
t) = βπt+1(gt+1|gt)

exp
(
σAVt+1(gt+1)

)∑
gt+1

πt+1(gt+1|gt) exp
(
σAVt+1(gt+1)

)︸ ︷︷ ︸
m∗
t+1

Uc(g
t+1)

Uc(gt)
. (21)

The expression for the equilibrium price of a state-contingent claim (21) involves the ratio

of marginal utilities, and, most importantly, the pessimistic evaluation of the likelihood of the

particular contingency, m∗t+1, which depends on continuation utilities. By affecting an endogenous

object like utility, the policymaker’s choices influence the household’s worst-case beliefs, and,

ultimately, the equilibrium price of government debt. This is the core of the pessimistic expectation

management in the particular application, and a channel that was first analyzed in Karantounias

(2013).

Definition 1. A competitive equilibrium is a consumption-labor allocation (c, h), a set of worst-

case conditional and unconditional likelihood ratios (m∗,M∗), a price system q, and a government

policy (g, τ) such that (a) given (q, τ), (c, h) and (m∗,M∗) solve the household’s problem, and (b)

markets clear, so that ct(g
t) + gt = ht(g

t)∀t, gt.

3 Optimal policy under model uncertainty

Consider the design of optimal fiscal policy under model uncertainty.

3.1 Fiscal policy problem

The government chooses taxes and state-contingent debt at t = 0 in order to maximize the gov-

ernment’s welfare criterion (8). We use the primal approach of Lucas and Stokey (1983) and posit

a policymaker who chooses under commitment allocations subject to the resource constraint (1)

and implementability constraints imposed by the competitive equilibrium.

Problem 1. The government’s problem is

max
{c≥0,h∈[0,1],M∗,V }

min
n,N≥0

∞∑
t=0

βt
∑
gt

πt(g
t)Nt(g

t)
[
U
(
ct(g

t), 1− ht(gt)
)

+ βθRεt(nt+1(gt+1))
]
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subject to

∞∑
t=0

βt
∑
gt

πt(g
t)M∗

t (gt)[Uc(g
t)ct(g

t)− Ul(gt)ht(gt)] = Uc(g0)b0 (22)

ct(g
t) + gt = ht(g

t),∀t, gt (23)

M∗
t+1(gt+1) =

exp (σAVt+1(gt+1))∑
gt+1

πt+1(gt+1|gt) exp (σAVt+1(gt+1))
M∗

t (gt), ∀t, gt,M0 ≡ 1, (24)

Vt(g
t) = U(ct(g

t), 1− ht(gt)) +
β

σA
ln
∑
gt+1

πt+1(gt+1|gt) exp
(
σAVt+1(gt+1)

)
,∀t, gt, t ≥ 1 (25)

Nt+1(gt+1) = nt+1(gt+1)Nt(g
t),∀t, gt, N0 ≡ 1 (26)∑

gt+1

πt+1(gt+1|gt)nt+1(gt+1) = 1,∀t, gt, (27)

where (b0, g0) are given.6

Proof. The competitive equilibrium is characterized fully by the resource constraint, the house-

hold’s optimality conditions, the intertemporal budget constraint (11) (which holds with equality),

the law of motion of the household’s worst-case belief distortions (18), and the recursion for Vt in

(17), which helps determine the pessimistic beliefs. Use (19) and (20) to substitute for prices and

after-tax wages in the intertemporal budget constraint to obtain (22).

The presence of the household’s endogenous pessimistic beliefs in the implementability con-

straint (22) contributes two additional implementability constraints to those already in Lucas and

Stokey (1983): the law of motion of the endogenous likelihood ratio M∗
t in (24), and the household’s

utility recursion in (25).

3.2 Government’s worst-case beliefs

The worst-case beliefs of the policymaker are given by the optimality conditions of the minimization

problem in problem 1. The optimal conditional likelihood ratio of the government, denoted with

asterisks, takes the form

n∗t+1(gt+1) =
exp
(
σRWt+1(gt+1)

)∑
gt+1

πt+1(gt+1|gt) exp
(
σRWt+1(gt+1)

) , (28)

where σR ≡ −1/θR ≤ 0 and Wt the (indirect) utility of the government under the worst-case

measure πt · N∗t . As expected, the government assigns, relative to the reference model, high

probability to events that provide low continuation utility Wt+1.

6We do not exclude initial assets, b0 < 0, but these assets are not allowed to be so large that they can finance
spending without the use of distortionary taxation.
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Following the same steps as in the household’s minimization problem, delivers a risk-sensitive

recursion for Wt,

Wt = U(ct, 1− ht) +
β

σR
lnEt exp(σRWt+1). (29)

Belief ratio. The worst-case unconditional likelihood ratio of the policymaker has a law of

motion N∗t+1 = n∗t+1N
∗
t , N0 ≡ 1. Define the belief ratio Λt ≡M∗

t /N
∗
t as the ratio of the martingales

M∗
t over N∗t . The belief ratio follows the law of motion

Λt =
m∗t
n∗t
· Λt−1 =

exp(σAVt+1)/Et exp(σAVt+1)

exp(σRWt+1)/Et exp(σRWt+1)
· Λt−1, t ≥ 1 (30)

with Λ0 ≡ 1, and Vt and Wt following recursions (17) and (29) respectively. The ratio Λt captures

the disagreement that the household and the policymaker have about the likelihood of a particular

contingency, and is, by construction, a martingale with respect to the worst-case beliefs of the

policymaker, Et−1n
∗
tΛt = Λt−1. A high Λt denotes a history gt on which the cautious household

assigns a higher probability than the policymaker. Similarly, if Λt is low, then the policymaker

assigns a higher probability than the household. The disagreement between the policymaker and

the household matters because it implies a different welfare ranking of competitive equilibrium

allocations. Note that if θR = θA (equivalently σR = σA), the government’s utility recursion (29)

becomes the same as the household’s utility recursion (17), and therefore, we have Wt = Vt and

N∗t = M∗
t . The belief ratio becomes then identically unity, Λt(g

t) = 1,∀t, gt.

3.3 Optimal tax rate

Consider first the optimal tax rate. It is useful to consider the following restriction on period

utility U (besides monotonicity and concavity), which implies that consumption and leisure are

normal goods, and helps us prove that the optimal tax rate is positive.

Assumption 1. (“Normal goods”) UllUc − UclUl < 0 and UccUl − UclUc < 0.

Clearly, if Ucl ≥ 0, assumption 1 is satisfied.7 Let Φ > 0 denote the multiplier on the imple-

mentability constraint (22), which we call the marginal cost of (distortionary) taxation, and let ξ̃t

denote the (scaled by N∗t ) multiplier on the household’s utility recursion (25) in problem 1.8

Proposition 1. (“Optimal tax rate”)

The optimal tax rate for t ≥ 1 is

7We take the inequalities in assumption 1 to hold weakly when we treat the case of quasi-linear utility or infinite
Frisch elasticity in later sections.

8See the Appendix for the Lagrangian of the policy problem.
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τt =
ΦΛt(εcc,t + εch,t + εhh,t + εhc,t)

1 + ξ̃t + ΦΛt(1 + εhh,t + εhc,t)
(31)

where εcc,t ≡ −Uccct/Uc, εch,t ≡ Uclht/Uc, εhh,t ≡ −Ullht/Ul and εhc,t ≡ Uclct/Ul, the own and

cross elasticities of marginal utility of consumption and marginal disutility of labor respectively. If

Assumption 1 holds, then the tax rate is positive, τt ≥ 0.

Proof. See Appendix A.

Relative to the full-confidence environment of Lucas and Stokey (1983), the formula for the

optimal tax rate has two additional variables, which are the subject of the analysis in the rest of the

paper: the variable ξ̃t, which captures the management of the household’s endogenous pessimistic

expectations, and the belief ratio Λt, which captures the paternalism (if any) of the policymaker.

To see that, shut down doubts about the model, (σR = σA = 0). In that case, there is no room for

the policymaker to manipulate the worst-case beliefs of the household through Vt, so the multiplier

on the household’s utility recursion has to be zero, ξ̃t = 0. Furthermore, for σR = σA = 0, we have

N∗t = M∗
t = 1, so the belief ratio becomes identically unity, Λt = 1, ∀t ≥ 0. With full confidence

in the model, the optimal tax rate depends only on the marginal cost of distortionary taxation Φ,

which would be zero if lump-sum taxes were available, and on the curvature of the period utility

function, as captured by the elasticities εij, i, j = c, h. Consequently, any variation in the tax rate

in the full-confidence economy is coming from variation in elasticities.

Consider for example power utility functions with either constant, or varying Frisch elasticity,

as in Aiyagari et al. (2002).

Example 1. Power function in (c, h): Let U(c, 1−h) = c1−γ−1
1−γ − ah

h1+φh

1+φh
. The optimal tax rate is

τt =
ΦΛt(γ + φh)

1 + ξ̃t + ΦΛt(1 + φh)
. (32)

Example 2. Power function in (c, l): Let U(c, l) = c1−γ−1
1−γ + al

l1−ψ−1
1−ψ . The optimal tax rate is

τt =
ΦΛt(γ + ψ ht

1−ht )

1 + ξ̃t + ΦΛt(1 + ψ ht
1−ht )

. (33)

Example 1 is the typical example that furnishes perfect tax-smoothing if σR = σA = 0, since

elasticities are constant. In that case, the tax rate is τt = τ̄ = Φ(γ + φh)/(1 + Φ(1 + φh)), where

Φ corresponds to the marginal cost of taxation in the full-confidence economy.

With ambiguity though (σR < 0, σA < 0), in addition to the elasticity channel, which is

inactive in example 1 but active in example 2, there is variation in the tax rate coming from ξ̃t, if
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we have a benevolent policymaker (σR = σA < 0), since then Λt = 1,∀t. Obviously, in the case of

paternalism, (σR 6= σA < 0), there is further action in the tax rate coming from the belief ratio

Λt. In the extreme case of a government that doubts the model (σR < 0), but of a household

that does not (σA = 0), then we have no manipulation of the worst-case beliefs of the household

(ξ̃t = 0), and any novel action in the tax rate would come only from the belief ratio, that simplifies

to Λt = 1/N∗t .9

4 Belief manipulation and disagreement

Let’s analyze now the variables ξ̃t and Λt, which can be also interpreted as state variables that

summarize the history of shocks.10

4.1 Pessimistic expectation management

4.1.1 Law of motion of ξ̃t

The multiplier ξ̃t on the household’s utility recursion captures the shadow value of increasing the

household’s utility, revealing how the policymaker wants to manage the household’s endogenous

pessimistic expectations. Clearly, ξ̃t would assume a zero value if the household’s beliefs were

exogenous. Its law of motion is given by the first-order condition with respect to Vt,

ξ̃t = σA
m∗t
n∗t

[Uctbt − Et−1m
∗
tUctbt]Φ︸ ︷︷ ︸

net value of reducing m∗
t

Λt−1 +
m∗t
n∗t
ξ̃t−1, t ≥ 1, ξ̃0 ≡ 0. (34)

The policymaker has no need to keep track of any utility promises at t = 0 (since uncertainty

is realized at t = 0), which explains why ξ̃0 = 0. Moreover, as we expect, when the household

has full confidence in the model (σA = 0), there is no room for belief manipulation, even if the

policymaker has doubts, so ξ̃t = 0,∀t. It is easy to see that ξ̃t is a martingale with respect to the

worst-case beliefs of the policymaker πt ·N∗t , Et−1n
∗
t ξ̃t = ξ̃t−1, a fact that induces persistence, that

would be otherwise absent.11 So the mean value of the multiplier is zero, EN∗t ξ̃t = ξ̃0 = 0, and ξ̃t

can take positive and negative values.

If we shut down paternalism and consider a benevolent government by setting σR = σA = σ̄ < 0,

the law of motion of ξ̃t simplifies to

9The case (σR < 0, σA = 0) and the diametrically opposite case (σR = 0, σA < 0) are called respectively type II
and type 0 ambiguity in the optimal policy nomenclature of Hansen and Sargent (2012).

10To achieve that, we can employ the Marcet and Marimon (2019) methods in order to represent the commitment
problem recursively. Details are available upon request. Karantounias (2013) used similar methods in a setup where
the government has no doubts about the model, σA < σR = 0.

11We have Et−1n
∗
t ξ̃t = σA

(
Et−1m

∗
t [Uctbt − Et−1m

∗
tUctbt]

)
ΦΛt−1 + (Et−1m

∗
t )ξ̃t−1 = ξ̃t−1, since Et−1m

∗
t [Uctbt −

Et−1m
∗
tUctbt] = Et−1m

∗
tUctbt − (Et−1m

∗
t )Et−1m

∗
tUctbt = 0, due to Et−1m

∗
t = 1.
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ξ̃t = σ̄
[
Uctbt − Et−1m

∗
tUctbt

]
Φ + ξ̃t−1, ξ̃0 ≡ 0, (35)

since in that case the ratio of conditional and unconditional beliefs becomes unity,
m∗
t

n∗
t

= Λt =

1,∀t ≥ 0.

4.1.2 Expectation management, contingent debt prices and optimal taxes

To facilitate the analysis, we use the following definition of “high-” and “low-debt” states.12

Definition 2. Consider realizations ĝ, ǧ at t. We call ĝ a “high-debt” (in marginal utility units)

state if Uct(ĝ)bt(ĝ) > Et−1m
∗
tUctbt. We call ǧ a “low-debt” (in marginal utility units) state, if

Uct(ǧ)bt(ǧ) < Et−1m
∗
tUctbt.

Incentives to decrease or increase utility. Let’s turn paternalism off, σR = σA = σ̄ < 0. Fix

history gt−1 and assume first that ξ̃t−1 is at its average value, ξ̃t−1 = 0. By definition, at ĝ (ǧ),

debt in marginal utility units is relatively high (low). Then, the law of motion (35) implies that

ξ̃t(ĝ) < 0 < ξ̃t(ǧ). Consequently, since ξ̃t is the shadow value of the household’s utility, we interpret

this result as a situation where the policymaker has an incentive to decrease the household’s utility

at states ĝ, ξ̃t(ĝ) < 0, and to increase utility at states ǧ, ξ̃t(ǧ) > 0.

Debt prices. What is the mechanism here? By decreasing Vt(ĝ) at “high-debt” states ĝ, the

policymaker increases the respective likelihood ratio m∗t , that is, he makes the cautious household

assign higher probability on ĝ. Hence, the equilibrium price of state-contingent debt increases, as

seen in (21). But ĝ is exactly the state of the world for which debt in marginal utility units, that

is, the “value” of debt, is relatively high. So, the policymaker tries to increase the price of debt,

when he sells relatively more debt. Such a policy generates higher revenue from debt issuance,

relaxing the government budget (captured by Φ, as seen in (35) or, more generally, in (34)) and

increasing welfare. Exactly the same logic holds for “low-debt” states ǧ. The policymaker, by

increasing Vt(ǧ), reduces the probability mass that the household assigns on ǧ and decreases the

respective price of an Arrow security. But at states ǧ the government sells relatively less debt (or

buys assets). Thus, the price of assets bought is reduced, relaxing again the government budget.

The same intuition of manipulating the household’s beliefs to make debt cheaper (or to make

assets more profitable) goes through when we are at histories of shocks gt−1 that imply ξ̃t−1 6= 0.

For “high-” and “low-debt” states ĝ and ǧ we have ξ̃t(ĝ) < ξ̃t−1 < ξ̃t(ǧ). Thus, the policymaker

decreases more (or increases less) Vt at states ĝ than he will do at states ǧ.

12We leave the dependence on the history gt−1 implicit in our notation.
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Optimal tax rate and ξ̃t. How is the action in ξ̃t at “high-” and “low-debt” states related to

the tax rate? We have the following claim.

Claim 1. Let σR = σA and let assumption 1 hold. Then, ∂τt/∂ξ̃t < 0.

Proof. See Appendix A.

So, an increase in ξ̃t decreases the optimal tax rate. Consequently, the policymaker increases

the tax rate at high-debt states ĝ and decreases the tax rate at low-debt states ǧ, reducing and

increasing respectively continuation utilities, so that the overall value of the government securities

portfolio, Et−1m
∗
tUctbt, increases.

4.2 Mitigation or amplification of the household’s pessimism

An ambiguity averse household assigns high probability to “bad” times of high spending, and low

probability to “good” times of low spending. The pessimistic expectation management we just

described targets the manipulation of equilibrium prices. How is this related to good and bad

times?

Definition 3. Fix the history of shocks gt−1 and assume without loss of generality that gt takes

two values, gH > gL. We say that the government has an incentive to mitigate (amplify) the

household’s worst-case beliefs if ξ̃t(gH) > (<)ξ̃t(gL).

Discussion. A shadow value of the household’s utility that is higher in bad times than in good

times, ξ̃t(gH) > ξ̃t(gL), means that the policymaker has an incentive - for price manipulation

reasons- to increase utility more in bad times than in good times. But such an action makes

the household shift probability mass from bad times towards good times, mitigating therefore the

household’s endogenous pessimism, which motivates the terminology in definition 3. The opposite

logic applies when ξ̃t(gH) < ξ̃t(gL).

Given the negative relationship between the tax rate and ξ̃t that we saw in claim 1, definition

3 implies that in the case of mitigation (amplification), the tax rate increases (decreases) in good

times and decreases (increases) in bad times. Note that when we turn paternalism on in the next

section (σR 6= σA), there will be additional incentives to change the tax rate in good and bad

times, stemming from the different welfare evaluation of alternative policies by the policymaker.

An immediate corollary of definition 3 is the following.

Corollary 1. If Uct(gL)bt(gL) > (<)Uct(gH)bt(gH), then ξ̃t(gH) > (<)ξ̃t(gL), so the government

mitigates (amplifies) the household’s worst-case beliefs.

Proof. If Uct(gL)bt(gL) > (<)Uct(gH)bt(gH), then the good shock gL coincides with the “high-debt”

(“low-debt”) state of definition 2. The conclusion is obvious from the law of motion (35).
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Consequently, if the “value” of debt, Uctbt, is negatively (positively) correlated with gt, then

we have incentives for mitigation (amplification) of the household’s pessimism. The sign of the

correlation is not clear though, because bt correlates negatively with gt, whereas marginal utility

correlates positively with gt. To see why, consider first bt. Due to the complete markets assumption,

we expect that the government hedges fiscal shocks by issuing more state-contingent debt against

good times of low shocks and less state-contingent debt against bad times of high shocks. Thus, we

expect a negative correlation of bt with gt. However, in good times consumption is high, leading to

low marginal utility. If this counteracting force is sufficiently small, then the “value” of debt, Uctbt,

still remains high in good times and low in bad times, leading to a negative correlation of Uctbt

with gt, generating incentives for mitigation of the household’s pessimism. However, the reduction

in Uc can be so large, that Uctbt actually falls in good times and rises in bad times, incentivizing

the policymaker to amplify the household’s pessimistic beliefs.

Small doubts about π and ξ̃t. Thankfully, we can make further progress in the analysis of ξ̃t

and the respective incentives for mitigation or amplification by considering the impacts of small

doubts about the model. We express the relevant variables as function of the robustness parameters

σ ≡ (σR, σA) and perform a first-order Taylor expansion around the full-confidence case of Lucas

and Stokey (1983), σ = (0, 0).13 To ease notation, let xt(σ) be shorthand for the endogenous

variable xt(g
t, σR, σA). We use the “zero” notation, xt(0), to denote the same variable evaluated

at (σR, σA) = (0, 0). We get the following lemma.

Lemma 1. (“Dynamics of ξ̃t for small doubts about the model”)

For small doubts about the model, the law of motion of ξ̃t (34) becomes

ξ̃t(σ) = ξ̃t−1(σ) + σA
[
Uct(0)bt(0)− Et−1Uct(0)bt(0)

]
Φ(0), ξ̃0 ≡ 0. (36)

Proof. See Appendix C.

Lemma 1 shows that for small doubts about the model, the dynamics of ξ̃t are determined to

first-order by the relative debt position in marginal utility units of the full-confidence Lucas and

Stokey (1983) economy, Uct(0)bt(0), the marginal cost of taxation of the same economy, Φ(0), and

the size of the doubts of the household, σA.14

13These heuristic expansions follow the logic of Holmes (1996) and Judd (1998) in perturbing around a known
solution. The history-independence of the Lucas and Stokey allocation makes it effectively known, as it is easy to
solve. There are examples of similar in spirit expansions in terms of preference parameters in asset pricing and
portfolio choice theory by Hansen et al. (2007) and Kogan and Uppal (2002). Appendix C provides a detailed
analysis and caveats, and delves into the intricacies that are stemming from the fact that the coefficients in the
Taylor expansion are random variables.

14For small doubts, ξ̃t becomes a martingale with respect to the reference model π. Note that σR plays to
first-order no role in (36), even if the non-approximated law of motion (34) allows for a role for σR through Λt.
Thus, the conditions for mitigation/amplification in proposition 2, which are based on the dynamics of (36), hold
irrespective of the government’s paternalism.
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Proposition 2. (“Conditions for mitigation/amplification of beliefs”)

Let the reference model be i.i.d. or Markov with a monotone transition matrix and consider the

utility function in example 1. Let κi ≡ gi/hi denote the share of gi in output in the full-confidence

economy. For small doubts about the model we have the following:

a) If γ ≤ 1 or if φh = 0, then the government has an incentive to mitigate the household’s

worst-case beliefs ∀g.

b) If γ > 1 and φh > 0, then:

– The government has an incentive to mitigate the household’s worst-case beliefs ∀g, iff

Φ(0) <
1

γ − 1
· 1

1 + φh
·
γ +

(
1 + (γ − 1)κ

)
φh

γ + (1− κ)φh
,where κ ≡ min

i
κi. (37)

– The government has an incentive to amplify the household’s worst-case beliefs ∀g, iff

Φ(0) >
1

γ − 1
· 1

1 + φh
·
γ +

(
1 + (γ − 1)κ̄

)
φh

γ + (1− κ̄)φh
, where κ̄ ≡ max

i
κi. (38)

Proof. Given definition 3, corollary 1 and lemma 1, it is sufficient to show that ∂
(
Uct(0)bt(0)

)
/∂gt

is negative (positive) to show mitigation (amplification). See Appendix A for the details of the

proof and for conditions for mitigation/amplification for more general utility functions that nest

also example 2.

The conditions in proposition 2 are intuitive. If the curvature of the utility function is lower

than, or the same as the logarithmic case, γ ≤ 1, then the reduction of marginal utility never

counteracts the increased issuance of contingent debt that is payable in good times. Moreover,

in the case of infinite Frisch elasticity, φh = 0, labor increases one-to-one with an increase in

gt, so there is no crowding out of consumption. Marginal utility is constant since consumption

is constant. Consequently, Uct(0)bt(0) is a decreasing function of gt in both cases, leading to

mitigation of the household’s pessimism.

In the case of sufficiently large curvature, γ > 1, and finite Frisch elasticity, φh > 0, the possi-

bility of a positive reaction of Uct(0)bt(0) to gt opens up, depending on the need for distortionary

taxation in the full-confidence economy, as captured by the marginal cost of taxation Φ(0). Recall

from (32) that the tax rate is constant, and a monotonic function of Φ(0) when σR = σA = 0,

τ(0) = Φ(0)(γ+φh)
1+Φ(0)(1+φh)

. Condition (37) shows that if Φ(0) is small enough, implying small taxes, then

Uct(0)bt(0) reacts negatively to shocks, despite the strong response of marginal utility, leading to

mitigation. In contrast, we get amplification of the household’s worst-case beliefs when Φ(0) is
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sufficiently large, as we can see in condition (38). The mechanism behind conditions (37) and (38)

has to do with the size of surpluses in bad times. If the need for distortionary taxation is high,

then surpluses in bad times can be pretty large, although they are still smaller than in good times.

Thus, the increase of marginal utility in bad times (which is large since γ > 1), together with a

sufficiently large surplus, can make the “value” of surpluses, and therefore Uct(0)bt(0), increase in

bad times.

Dual role of Φ(0). The marginal cost of taxation Φ(0) plays a dual role in the analysis.

First, and most importantly, it denotes how much the government budget is relaxed, and therefore

it captures the strength of the price manipulation motives through expectation management for

small doubts about the model, as seen in the approximated law of motion of ξ̃t in lemma 1. Second,

and only for the case of large curvature, it plays a more subtle role: it acts as an indicator of when

the “value” of debt, or else debt in marginal utility units, flips its response to shocks, reversing the

incentives for price manipulation in good and bad times. Φ(0) is obviously an endogenous object

that depends on the specification of the exogenous process and on the initial conditions, among

other variables. It increases with any parameter that increases the need for distortionary taxation.

For example, it increases with the level of spending that needs to be financed and it increases with

the size of initial debt. We evaluate both roles of Φ(0), and the quantitative relevance of conditions

(37) and (38) for several different parameterizations in section 5.

4.3 Paternalism

Paternalism (σR 6= σA) activates the belief ratio Λt in the formula for the optimal tax rate (31) in

proposition 1. Besides the incentives for expectation management, differences in welfare evaluation

affect now how tax distortions are allocated over states and dates.

Claim 2. Let σR 6= σA and let assumption 1 hold. Then, ∂τt/∂Λt > 0.

Proof. See Appendix A. In the same proof, we show also how claim 1 goes through when σR 6=
σA.

Discussion. An increase in Λt increases the tax rate τt, keeping everything else equal. The reason

behind this outcome is intuitive. An increase in Λt(g
t) means that the household considers history

gt more probable than the government. Given that the paternalistic government considers these

histories relatively less probable, the welfare loss it associates with a given distortionary tax is

small. Hence, the government has an incentive to tax more states of the world that it considers less

probable (relative to the household) and less states of the world that it considers more probable

relative to the household, due to different welfare assessments.

Relative pessimism and implications for τt. The effects of paternalism in good and bad

times depend on the relative pessimism of the government. To see that in a transparent way, we
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use the small-doubts approximation and show that the dynamics of Λt are driven by innovations

in the household’s utility of the full-confidence economy, Vt(0), and the relative size of the doubts

of the government (σR) and the household (σA).15

Lemma 2. (“Belief ratio Λt for small doubts about the model”)

For small doubts about the model, the law of motion of Λt in (30) becomes

Λt(σ) = Λt−1(σ) + (σA − σR)
[
Vt(0)− Et−1Vt(0)

]
,Λ0 ≡ 1. (39)

Proof. See Appendix C.

Fix the history of shocks gt−1 (and therefore Λt−1) and consider a “good,” low spending shock

that leads to a higher than average utility, Vt(0) > Et−1Vt(0). If the government is relatively

more pessimistic than the household, (σR < σA), then the belief ratio increases, according to (39),

creating a paternalistic incentive to increase the tax rate in good times (and decrease it obviously

in bad times when Vt(0) < Et−1Vt(0)). A government, that is relatively more pessimistic than

the household, assigns –relative to the household– lower probability on good times and higher

probability on bad times. Thus, m∗t/n
∗
t increases in good times and falls in bad times. This makes

the government concentrate tax distortions on good times, that are not considered –relatively–

very probable.

The opposite happens when the government is relatively less pessimistic than the household,

σR > σA. The ratio of the household’s over the government’s beliefs falls in good times and

increases in bad times, since the government assigns –relative to the household– higher probability

to good times, creating a paternalistic incentive to concentrate tax distortions on –relatively– less

probable bad times.

5 Evaluation of the two forces

We utilize further the small-doubts approximation to answer two remaining questions: a) What

is the joint impact of the forces of pessimistic expectation management (ξ̃t) and paternalism (Λt)

on the ultimate object of interest, the optimal tax rate? b) What is the quantitative relevance of

the incentives for amplification/mitigation of the household’s pessimism when the curvature of the

utility function is large, as detailed in proposition 2?

15Note that Λt becomes now a martingale with respect to the reference model π, similarly to ξ̃t in lemma 1.
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5.1 Quasi-linear utility

Consider first a quasi-linear utility function

U(c, 1− h) = c− h1+φh

1 + φh
, (40)

which is a subcase of example 1 for γ = 0, ah = 1. By focusing on the quasi-linear case, we

have a setup where the government manipulates asset prices only through the worst-case beliefs

of the household. Given the lack of curvature in the utility function and the results of proposition

2, we already know that the government has an incentive to mitigate the household’s pessimism

for price manipulation reasons. Moreover, we get closed-form solutions in terms of the exogenous

process of spending.

Proposition 3. (“Dynamics of (ξ̃t,Λt) and worst-case beliefs for the quasi-linear case”)

Assume the utility function (40) and let the reference model for gt have the Wold moving average

representation

gt = µg + ϕ(L)ugt , (41)

where µg > 0, ϕ(L) ≡
∑

i ϕiL
i the lag polynomial, ϕ(β) > 0 the present value of the polynomial

coefficients, and ugt ∼ iid(0, σ2
u).16 Then, for small doubts about the model,

1. The increments of (ξ̃t,Λt) in lemmata 1 and 2 are determined by the innovation in the present

discounted value of gt

bt(0)− Et−1bt(0) = Vt(0)− Et−1Vt(0) = −(Et − Et−1)[
∞∑
i=0

βigt+i] = −ϕ(β)ugt (42)

2. The government’s and the household’s conditional likelihood ratios are approximately equal

to

n∗t = 1 +
1

θR
ϕ(β)ugt , m∗t = 1 +

1

θA
ϕ(β)ugt . (43)

3. The government’s worst-case mean and variance of ugt are approximately equal to

Etn
∗
t+1u

g
t+1 =

1

θR
ϕ(β)σ2

u > 0, V arGov.
t (ugt+1) = σ2

u +
ϕ(β)

θR
Et
(
ugt+1

)3
, (44)

whereas the household’s worst-case mean and variance can be described by the above formulas

by replacing θR with θA and n∗t+1 with m∗t+1.
16We drop here the restriction that g lives on a countable space. We also assume that shocks have bounded

support, so that g remains positive.
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Proof. See Appendix C.

Proposition 3 connects the dynamics of (ξ̃t,Λt) in lemmata 1 and 2 directly to innovations

in the present discounted value of gt under π. The expression in (42) shows that a positive

shock in government spending reduces state-contingent debt and utility in the full-confidence

economy. Both the cautious government and the household assign higher probability mass on high

spending shocks, as seen in (43). Consequently, the worst-case conditional means of ugt for both the

government and the household are positive. In this example, the worst-case conditional variance

remains unaltered, if we assume that the reference model has zero skewness, Et
(
ugt+1)3 = 0.

Consider now the implied tax and debt policies.

Proposition 4. (“Taxes and debt for the quasi-linear case”)

Assume the utility function (40) and the reference process (41). Let τ ≡ Φ(0)φh
1+Φ(0)(1+φh)

stand for

the constant full-confidence tax rate, and let h ≡ (1 − τ)1/φh denote the respective full-confidence

labor. For small doubts about the model we have the following:

1. The optimal tax, tax revenues and labor follow random walks with respect to π,17

τt(σ)− τt−1(σ) =
Φ(0)φh(

1 + Φ(0)(1 + φh)
)2 ·

[
σAΦ(0)︸ ︷︷ ︸

Exp. mgmt (−)

+ (σR − σA)︸ ︷︷ ︸
Paternalism (−/+)

]
ϕ(β)ugt (45)

Tt(σ)− Tt−1(σ) =
h

1 + Φ(0)

Φ(0)φh(
1 + Φ(0)(1 + φh)

)2

[
σAΦ(0) + (σR − σA)

]
ϕ(β)ugt (46)

ht(σ)− ht−1(σ) = − h

1 + Φ(0)

Φ(0)

1 + Φ(0)(1 + φh)

[
σAΦ(0) + (σR − σA)

]
ϕ(β)ugt , (47)

where Tt ≡ τtht.

2. The optimal debt policy is

bt(σ) =
τh

1− β
− Et

∞∑
i=0

βigt+i︸ ︷︷ ︸
Lucas and Stokey debt policy

+
(1− β)−1h

1 + Φ(0)

Φ(0)φh(
1 + Φ(0)(1 + φh)

)2 · [
σAΦ(0)︸ ︷︷ ︸

Exp. mgmt (−)

+ (σR − σA)
]︸ ︷︷ ︸

Paternalism (−/+)

ϕ(β)
t∑
i=1

ugi . (48)

Proof. See Appendix C.

17These non-stationary results are not to be taken at face value for the long-run; we interpret them as being
instructive for a short-run analysis starting at t = 0. See Appendix C for further discussion.
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The increments in the random walks in (45)-(47) show explicitly the joint impact of pessimistic

expectation management and the paternalistic incentives of the policymaker. Consider the tax

rate in (45) and note that the innovation in the present discounted value of gt is factored out,

since it determines both the innovation in debt and in utility, according to (42). If we eliminate

paternalism, σR = σA < 0, then the tax rate increases (decreases) when there is a fall (increase)

in ugt , according to (45). This is exactly what we expected, given the lack of curvature and the

negative response of government debt to spending. The government mitigates the worst-case beliefs

of the household in good times, in order to increase the price of debt sold.

Note that we use the terminology of mitigation (or amplification) and the respective definition

3 exclusively for the pessimistic expectation management through ξ̃t, even when we consider a

paternalistic policymaker (σR 6= σA). The paternalistic incentives, captured in the second term of

the increment in (45), can either reinforce or oppose the incentives for price manipulation through

expectation management. If the government is more pessimistic than the household (σR < σA < 0

or, equivalently, σR/σA > 1), the relatively pessimistic government wants to put less tax distortions

on bad times and more on good times for paternalistic reasons. Hence, the two forces act in the

same direction, reinforcing each other and magnifying the total negative effect of spending on the

tax rate, as seen in (45).

When the government is less pessimistic than the household, (σR > σA, or equivalently,

σR/σA < 1), the two forces oppose each other, since there is a paternalistic incentive to put

higher taxes on bad times. The net effect of an increase of spending on the tax rate depends on

how much the government budget is relaxed through the manipulation of equilibrium prices via the

household’s beliefs, as captured by Φ(0), and on the strength of the government’s and household’s

doubts, σR/σA. If Φ(0) > 1 − σR/σA, the price manipulation though expectation management

dominates, and the tax rate falls in bad times of high spending and increases in good times of low

spending, leading to a negative net effect of spending on the tax rate. If Φ(0) < 1− σR/σA, then

the paternalistic incentives of the less pessimistic government dominate, leading to a positive net

effect of spending on the tax rate.

To conclude, tax revenues in (46) reflect the behavior of the optimal tax rate in (45), whereas

labor in (47) is the opposite image of the tax rate; when the tax rate increases, labor decreases.

The Lucas and Stokey component in the optimal debt policy (48) reflects the typical fiscal hedging

that the government conducts with state-contingent debt. The second component in (48) reflects

the behavior of the tax rate in (45); higher taxes against a contingency are accompanied by higher

issuance of state-contingent debt.

5.2 Quantitative implications of an example with curvature

For a quantitatively relevant evaluation of the two forces, we need to turn the curvature of the

utility function in example 1 back on, to calibrate carefully parameters (σR, σA) with detection
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error probabilities, and to use a reference model π and a level of initial debt that depict well the

data, so that we have good estimates of the need for distortionary taxation.

Proposition 5. (“Tax rate for the constant Frisch elasticity case”) For the utility function of

example 1, the optimal tax rate for small doubts becomes

τt(σ)− τt−1(σ) =
Φ(0)(γ + φh)

(1 + Φ(0)(1 + φh))2

[
−σA

(
Uct(0)bt(0)− Et−1Uct(0)bt(0)

)
Φ(0)︸ ︷︷ ︸

Exp. mgmt (−/+)

−(σR − σA)
(
Vt(0)− Et−1Vt(0)

)︸ ︷︷ ︸
Paternalism (−/+)

]
, t ≥ 1. (49)

Proof. See Appendix C.

The formula for the tax rate in (49) is the generalization of (45). The history of shocks, that

would be captured by (ξ̃t−1,Λt−1), is embedded in τt−1, and the tax rate becomes an additive

random walk with respect to π. The two increments, which simplified to negative innovations in

the present discounted value of spending in the quasi-linear case (see (42)), display the (possible)

tension between pessimistic expectation management and paternalism.18

Baseline calibration. Assume that (β, φh, γ) = (0.96, 1, 1), so that the frequency is annual, the

Frisch elasticity of labor supply is unitary, and utility is logarithmic in consumption. Consider the

reference model gt = G exp(xgt ), where

xgt = ρgx
g
t−1 + vgt , (50)

with vgt ∼ N(0, (1 − ρ2
g)σ

2
x), and σx the unconditional standard deviation of xgt . In order to

capture well the U.S. post-war dynamics of government expenditures, we use the calibration of

Chari et al. (1994), and set ρg = 0.89, σx = 0.07. We discretize the process using 7 points and

provide the implied monotone transition matrix in the Appendix.

We set G = 0.08, which implies an unconditional mean and standard deviation of g that

correspond to 20.05% and 1.40% of average first-best output respectively. The labor disutility

parameter is ah = 7.8173, which implies that the household works 40% of its available time at the

first-best when government expenditures are at their mean value. Let b0 = 0.2, which corresponds

18See results 1-5 in Appendix C for the full-blown small-doubts analysis of consumption, taxes, debt and the
marginal cost of taxation Φ for any utility function that satisfies the typical concavity and differentiability assump-
tions. For a general utility function, we can see the same tension between pessimistic expectation management and
paternalism (see result 3), but we don’t have necessarily the martingale result for the tax rate. Convenient formulas
for a Markovian reference model that are used in the quantitative exercise are also provided.
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Figure 1: The top panel plots the detection error probabilities p as a function of 1/θ for different samples of length
N . Indicatively, for N = 100 we have p = 44.46% and p = 41.7% for σ = −0.5 and σ = −0.75 respectively. The
bottom left panel plots the conditional likelihood ratios for σ = −0.5,−0.75, conditional on g taking its average
value. The bottom right panel plots the reference conditional distribution π (σ = 0), and the respective worst-case
conditional distributions for σ = −0.5,−0.75.

to 50% of average first-best output and let the initial value of g0 be set to its mean value. The

optimal tax rate in the full-confidence economy is constant and at the level of 25.23%.
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Detection error probabilities. In order to carefully discipline the doubts about the model, we

use the detection error probability methodology of Anderson et al. (2003) and Hansen and Sargent

(2008). The detection error probability is the probability of falsely rejecting a model through a

likelihood ratio test, when the data are actually generated by that model. In particular, let model

A stand for the government’s worst-case model, and let model B stand for the reference model π.

Assume that we have a finite sample of T periods. The detection error probabilities are

pGov.
A ≡ Prob(N∗T < 1|data generated by the government’s worst-case model) (51)

pGov.
B ≡ Prob(N∗T > 1|data generated by π). (52)

We get the detection error probability of the government by averaging between (51) and (52),

pGov. ≡ 0.5 ·
(
pGov.
A + pGov.

B

)
, assuming that the two models have a priori the same probability.

Analogously, to get the detection error probability of the household, we use the household’s worst-

case model as model A (π remains model B) and employ the likelihood ratio M∗
T in the likelihood

ratio test in (51)-(52), to finally get pHous. ≡ 0.5 ·
(
pHous.
A + pHous.

B

)
.

If two models are very different, then the probability of a detection error is small. Instead, if

two models are hard to distinguish with finite data, then the detection error probability is high.

In order to focus on “reasonable” alternative models, Hansen and Sargent advocate to calibrate

the preference parameter σ = −1/θ, so that the induced detection error probability is as low as

10%.

Consider now the case of a benevolent government, with σR = σA = −0.5. This value of the

penalty parameter corresponds to relatively small doubts about the model, since the respective

detection error probability is 44.46% for samples of 100 periods length. The top panel of figure 1

plots the detection error probabilities for various values of σ. The bottom panels plot the worst-

case conditional likelihood ratios of the household (which are the same as the government’s) and

the respective worst-case beliefs. As expected, the ambiguity averse decision maker assigns higher

probability mass on higher values of spending shocks.19

Pessimistic expectation management versus paternalism. The first part of proposition

2 implies mitigation of the household’s pessimism for price manipulation reasons for the baseline

logarithmic utility function (γ = 1). This can be seen graphically in Figure 2, which plots the

impulse responses of ξ̃t, the belief ratio Λt and the tax rate τt to a positive spending shock.

Consider first the benevolent case of σA = σR = −0.5, so that the second increment in the optimal

19The proof of lemma 2 in Appendix C shows that, to first-order, the worst-case beliefs of the household (govern-
ment) depend only on the respective preference parameter σA (σR). This property implies that we can calculate
detection error probabilities and the respective worst-case beliefs for agent i irrespective of the doubts about the
model of agent −i. Thus, we can use figure 1 for both the case of a benevolent planner and the case of a paternalistic
policymaker.
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Figure 2: Impulse responses to a positive one standard deviation spending shock at t = 1. The top right panel
plots ξ̃t that captures the expectation management. The bottom left and right panel plot respectively the belief
ratio Λt and the tax rate τt for different values of σR, keeping the doubts of the household fixed at σA = −0.5. The
impulse response of Λt has to be zero when σR = σA.

tax formula in (49) is absent. A positive spending shock is associated with a reduction in debt in

marginal utility units, leading to an increase in ξ̃t, and therefore a desire to increase utility in bad

times, as displayed in the top right panel of figure 2.20 Since there is no paternalism, this motive

for price manipulation through expectation management is accompanied with a reduction in the

tax rate, as seen in the bottom right panel of figure 2.

Turning paternalism on, we fix σA = −0.5 and vary σR.21 Consider first a government that

is relatively more pessimistic than the household, σR < σA. A positive spending shock makes

Λt fall, since the government twists its pessimism relatively more towards bad times, creating a

paternalistic incentive to decrease the tax rate in bad times. Thus, as in the quasi-linear case, the

two forces act in the same direction and reinforce each other, making the tax rate fall even more

than in the benevolent case, as seen in the bottom right panel for σR = 1.1 · σA or σR = 1.2 · σA.

20The impulse response changes value at t = 1 and at t = 2 and then it stays there forever (instead of returning to
zero), indicating the persistence of the solution. Note that the increments in (39) and (36) depend on the realization
of the shock at t − 1, since they are conditional innovations. If in our quantitative exercise we assumed an i.i.d.
reference model, this dependence would be absent, and the impulse response would remain forever at the value
assumed at t = 1.

21The evolution of ξ̃t depends only on σA to first-order, as illustrated by (36) in lemma 1, so the impulse response
function of ξ̃t in figure 2 in the paternalistic case is the same as in the benevolent case.
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Figure 3: In each economy, we calculate Φ(0) for different levels of b0 and use markers ’o’ or ’x’ if condition (37)
or condition (38) is respectively valid. The exercise is conducted for the baseline shock specification (solid line) and
for a high spending specification (dotted line). On the y-axis we plot the respective τ(0). For each (γ, φh), ah is
adjusted so that the household works 40% of its time at the first-best. The vertical line in each panel corresponds
to the baseline b0 of 50% (as share of output).

When the government is less pessimistic than the household (σR > σA), Λt increases when

there is a positive spending shock, and the two increments in (49) oppose each other since the

paternalistic government wants to concentrate more tax distortions on bad times. Our quantitative

exercise allows us to evaluate the net effect of spending on the tax rate. When σR = 0.9 · σA, the

price manipulation through expectation management dominates the paternalism effect, leading to

a negative net effect of spending on the tax rate. If we lower the pessimism of the government

relative to the household to σR = 0.7 · σA, the paternalism effect dominates, leading to a positive

net effect of spending on the tax rate.

Incentives for amplification when γ > 1? To see if there is potential for amplification of

the household’s pessimism when γ > 1, we need to calculate the marginal cost of taxation Φ(0)

and evaluate conditions (37) and (38) in proposition 2. Clearly, if amplification turns out to be

the case, our previous conclusions about the direction of the two forces are reversed. Pessimistic

expectation management commands then higher taxes in bad times and lower taxes in good times,

so the two forces would act in the same direction if the government doubts the model less than
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the household (σR > σA). Moreover, in that case, an increase in spending would have a positive

effect on the tax rate. If the government doubts the model more than the household (σR < σA),

then the two forces would act in the opposite direction, and the net effect of spending on the tax

rate would depend on their respective relative strength.

We fix the reference model to the baseline specification of Chari et al. (1994) and vary b0 for four

different pairs of (γ, φh), in order to generate values of Φ(0). For each Φ(0) we check if conditions

(37) or (38) hold.22 We repeat the same exercise for a high-spending specification, setting G = 0.12

and using the same process for xgt as in (50). The mean and standard deviation of g correspond

to 30.07% and 2.11% of average first-best output respectively. We consider values γ = 2 or 4 and

φh = 1 or 10.23 A higher b0 leads to a higher Φ(0), that corresponds to a higher full-confidence

tax rate, τ(0) = Φ(0)(γ+φh)
1+Φ(0)(1+φh)

. To facilitate interpretation of the size of tax distortions, we plot the

respective τ(0) (instead of Φ(0)) in the four panels of Figure 3.

Note first that for all four panels and for both spending specifications, our baseline b0 of

50% of output does not generate a sufficiently large marginal cost of taxation that would lead to

amplification of the household’s pessimism. Considering larger values of b0, the top and bottom

left panels of figure 3 show that when φh = 1, for either γ = 2 or γ = 4, and for both spending

specifications, we are always in the case of mitigation, even for extraordinary high levels of initial

debt that reach 1500% of output.

Turning to the case of low Frisch elasticity, φh = 10, the response of labor is muted and

government spending crowds out consumption to a large extent, leading to a strong reaction of

marginal utility. When γ = 2, the top right panel shows that for the baseline specification we

have mitigation for every shock if initial debt is smaller than 1150% of output, and amplification

for every shock if b0 is larger than 1300% of output. For intermediate levels of b0 the government

may either mitigate or amplify, depending on the shock g. For the high-spending specification, the

respective thresholds for debt are below 950% of output for mitigation and above 1200% of output

for amplification.

Similarly, for γ = 4 at the bottom right panel, we find mitigation for the baseline specification

if b0 is smaller than 650%, and amplification if b0 is larger than 900%. A similar picture emerges

for the high-spending specification. We conclude that the incentives to amplify the household’s

pessimism do not seem to be quantitatively relevant for the case of γ > 1, unless we consider very

large values of initial debt and very low values for the Frisch elasticity.

Empirical implications. The analysis of optimal policy in this paper is normative in nature,

without aiming to have positive explanatory power. That said, some cursory remarks concerning

22For example, for (γ, φh) = (2, 1), inequalities (37) and (38) simplify respectively to Φ(0) < 1
2 ·

3+κ
3−κ and

Φ(0) > 1
2 ·

3+κ̄
3−κ̄ .

23The Frisch elasticity for φh = 10 becomes 0.1, which is consistent with the small estimates of the microeconomic
literature. See for example Keane and Rogerson (2012) and references therein.
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the relationship of optimal policy prescriptions to the actual data may be due. One well-known

feature of the data is the persistence of tax rates and debt.24 Moreover, Berndt et al. (2012) find

in post-war U.S. data that spending shocks have been absorbed more by increases in tax revenues

and less by reductions on the returns of government debt, in contrast to standard prescriptions

of optimal policy. Turning to our analysis, if we take the stance that the actual data has been

generated in an economy with a paternalistic policymaker that doubts the model less than the

household (σR > σA), and given our analysis that mitigation of the household’s pessimism is the

relevant scenario for the current levels of government debt, then we would have a situation that

has the following three features: a) a large autocorrelation of taxes and debt that is driven by the

two martingales ξ̃t and Λt, b) a high market price of risk due to the ambiguity aversion of the

household, c) assuming that paternalism dominates the pessimistic expectation management, a

tax rate, and therefore tax revenues, that increases in bad times of high spending and decreases in

good times of low spending, making the channel of tax revenues quantitatively more important.

All these features bring the model prescriptions closer to some aspects of the data, a fact that we

find interesting on its own.

5.3 Lessons for optimal policy in a general framework

A major idea in the paper is that doubts about the model on the side of the household incentivize

the policymaker to manage the household’s endogenous pessimistic expectations. Clearly, this idea

is relevant for any policy problem with forward-looking constraints. In Appendix B we analyze

optimal policy design in a general framework with model uncertainty where both the Stackelberg

leader and the follower have doubts about the probability model of exogenous uncertainty.25

We use forward-looking constraints –properly augmented to reflect the doubts of the follower–

that are in the spirit of Marcet and Marimon (2019). The constraints nest the fiscal policy applica-

tion, as well as setups with multiple implementability, participation, or present-value constraints,

that are within the New-Keynesian or the limited commitment tradition.26 The basic policy pre-

scription is intuitive: the policymaker should make the follower assign more probability mass

towards states of the world which relax the forward-looking constraints that the policymaker is

facing. The direction of relaxation in the fiscal policy application is obvious – increase the value

of the government portfolio so that the government budget is relaxed– but it may not be trivial to

characterize in other setups, since it can alternate depending on the history of shocks. We derive

general conditions for the mitigation or amplification of the follower’s pessimism, that depend on

the direction of relaxation and on the correlation of ‘forward-looking’ variables (a role played by

24See Aiyagari et al. (2002) and Marcet and Scott (2009).
25I am grateful to an anonymous referee who suggested to explore a more general setup.
26See respectively Clarida et al. (1999), Woodford (2003), Kehoe and Levine (1993) and Aguiar and Amador

(2016).
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debt in marginal utility units in the fiscal policy problem) with shocks.27

6 Concluding remarks

We focus these remarks on future research avenues. We have not touched upon the issue of

parameter uncertainty, but the methodology developed in the current paper is suitable for such

an endeavor. Situations with multiple sources of uncertainty are particularly interesting. For

example, Hansen and Sargent (2007) develop a machinery with two risk-sensitivity operators,

that allow misspecification both within a model and learning across models. These environments

lead to fragility of the worst-case beliefs, with intriguing consequences for the market price of

risk, as Hansen and Sargent (2010) show. Optimal policy in such environments would entail the

management of the endogenous fragile learning process of the investor.28

The current study has focused on a situation where multiple agents perturb a baseline proba-

bility model by surrounding it with a set of unstructured models, and studied the implications for

optimal policy design. More elaborate schemes of both structured and unstructured ambiguity can

be constructed, following the lead of Hansen and Sargent (2022). Furthermore, by representing

ambiguity aversion with smooth preferences, the current paper focused on how small changes in

the policy instrument lead to small changes in the worst-case beliefs of the follower. If we fol-

lowed other approaches (non-smooth or non-additive) to represent ambiguity aversion, regions of

inaction or inertia could potentially appear, as in the seminal work of Dow and da Costa Werlang

(1992). Inertial behavior would require large actions from the policymaker to induce a change in

the pessimistic beliefs of the follower. Such directions are all worthy of future research.

27For an interesting example of amplification, see a previous version of the current paper, which considers a large
firm with market power that faces a competitive fringe in an environment of ambiguity about exogenous demand
shocks. The large firm has an incentive to amplify the fringe’s worst-case forecasts of demand conditions, so that
the fringe’s production is reduced. More details can be found in Karantounias (2020).

28See Ju and Miao (2012) and Collard et al. (2018) for further applications of learning under ambiguity in asset
pricing.
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A Fiscal policy problem

A.1 Optimality conditions of the fiscal policy problem

Define for convenience

Ω(c, h) ≡ Uc(c, 1− h)c− Ul(c, 1− h)h, (A.1)

which stands for the consumption net of after-tax labor income in marginal utility units as a

function of (c, h). This object is also equal in equilibrium to the government surplus in marginal

utility units, Uct(τtht − gt).
The Lagrangian of the fiscal policy problem is

L =
∞∑
t=0

∑
gt

βtπt(g
t)
{
Nt(g

t)
(
U(ct(g

t), 1− ht(gt)) + βθR
∑
gt+1

πt+1(gt+1|gt)nt+1(gt+1) lnnt+1(gt+1)
)

+ΦM∗
t (gt)Ω(ct(g

t), ht(g
t))− λt(gt)

[
ct(g

t) + gt − ht(gt)
]

−
∑
gt+1

βπt+1(gt+1|gt)µt+1(gt+1)
[
M∗

t+1(gt+1)− exp(σAVt+1(gt+1))∑
gt+1

πt+1(gt+1|gt) exp(σAVt+1(gt+1))
M∗

t (gt)
]

−ξt(gt)
[
Vt(g

t)− U(ct(g
t), 1− ht(gt))−

β

σA
ln
∑
gt+1

πt+1(gt+1|gt) exp(σAVt+1(gt+1))
]

−β
∑
gt+1

πt+1(gt+1|gt)ρt+1(gt+1)
[
Nt+1(gt+1)− nt+1(gt+1)Nt(g

t)
]

−νt(gt)
[∑
gt+1

πt+1(gt+1|gt)nt+1(gt+1)− 1
]}
− ΦUc(c0, 1− h0)b0,

with ξ0 = 0, M0 = N0 = 1 and (b0, g0) given.

The policymaker’s minimization problem with respect to (n,N) has the same structure as

the household’s minimization problem. See Karantounias (2013) for a detailed derivation of the

household’s worst-case belief distortions in (15). The first-order necessary conditions for an interior

solution arising from the maximization problem are the following:
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ct : (N∗t (gt) + ξt(g
t))Uc(g

t) + ΦM∗
t (gt)Ωc(g

t) = λt(g
t), t ≥ 1 (A.2)

ht : (N∗t (gt) + ξt(g
t))Ul(g

t)− ΦM∗
t (gt)Ωh(g

t) = λt(g
t), t ≥ 1 (A.3)

M∗
t : µt(g

t) = ΦΩ(gt) + β
∑
gt+1

πt+1(gt+1|gt)m∗t+1(gt+1)µt+1(gt+1), t ≥ 1 (A.4)

Vt : ξt(g
t) = σAm

∗
t (g

t)M∗
t−1(gt−1)

[
µt(g

t)−
∑
gt

πt(gt|gt−1)m∗t (g
t)µt(g

t)
]

+m∗t (g
t)ξt−1(gt−1), t ≥ 1 (A.5)

c0 : (N0 + ξ0)Uc(g0) + ΦM0Ωc(g0) = λ0(g0) + ΦUcc(g0)b0 (A.6)

h0 : −(N0 + ξ0)Ul(g0) + ΦM0Ωh(g0) = −λ0(g0)− ΦUcl(g0)b0. (A.7)

Ωi, i = c, h stand for the respective partial derivatives of Ω. In (A.4) and (A.5), we used

expression (15) for the optimal conditional likelihood ratio m∗t+1 to save notation. Optimality

conditions (28-29), (A.2-A.7), together with constraints (22-27) determine the Ramsey plan.

Let ξ̃t ≡ ξt/N
∗
t denote the normalized multiplier, and recall the law of motion of the belief ratio

(30) to rewrite (A.5) as

ξ̃t = σA
m∗t
n∗t

[µt − Et−1m
∗
tµt]Λt−1 +

m∗t
n∗t
ξ̃t−1, t ≥ 1, ξ̃0 ≡ 0. (A.8)

Eliminate the multiplier µt on the household’s worst-case likelihood ratio M∗
t by solving (A.4)

forward, and remember that Ω(gt) stands for the government surplus in marginal utility units. We

get

µt(g
t) = ΦUc(g

t)
∞∑
i=0

∑
gt+i|gt

qtt+i(g
t+i)[τt+i(g

t+i)ht+i(g
t+i)− gt+i]︸ ︷︷ ︸

bt(gt)

= ΦUc(g
t)bt(g

t), (A.9)

where qtt+i(g
t+i) ≡ qt+i(g

t+i)
qt(gt)

= βiπt+i(g
t+i|gt)

∏i
j=1 m

∗
t+j(g

t+j)Uc(g
t+i)

Uc(gt)
, the equilibrium price of an

Arrow-Debreu security in terms of consumption at gt. Use now µt = ΦUctbt in (A.8) to get (34) in

the text.

A.2 Proof of proposition 1

Optimal tax for t ≥ 1. Combine (A.2) and (A.3) in order to eliminate the multiplier λt and

get
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Ul
Uc
·
N∗t + ξt − ΦM∗

t
Ωht
Ult

N∗t + ξt + ΦM∗
t

Ωct
Uct

= 1 (A.10)

The derivatives Ωi, i = c, h are

Ωc = Uc + Uccc− Uclh⇒
Ωc

Uc
= 1− εcc − εch (A.11)

Ωh = −Ul + Ullh− Uclc⇒
Ωh

Ul
= −1− εhh − εhc, (A.12)

where the elasticities are defined in the body of the proposition. Divide over N∗t , recall that

ξ̃t ≡ ξt/N
∗
t , and use (A.11) and (A.12) to rewrite (A.10) as

(1− τt) ·
1 + ξ̃t + ΦΛt[1 + εhh,t + εhc,t]

1 + ξ̃t + ΦΛt[1− εcc,t − εch,t]
= 1. (A.13)

Solve in terms of τt to get (31) in the text.

Sign of τt. Assumption 1 implies the following restrictions for the signs of the elasticities:

UllUc − UclUl < 0⇒ εhh + εch > 0

UccUl − UclUc < 0⇒ εcc + εhc > 0

Thus, the numerator in (31) is positive. Furthermore, by using (A.11) and (A.12), rewrite

(A.2) and (A.3) as

1 + ξ̃t + ΦΛt

[
1− εcc,t − εch,t

]
=

λt
UctN∗t

> 0, (A.14)

1 + ξ̃t + ΦΛt

[
1 + εhh,t + εhc,t

]
=

λt
UltN∗t

> 0, (A.15)

since λt > 0. Therefore, the denominator in (31) is positive according to (A.15), despite the fact

that ξ̃t can take negative values. The result follows.

Initial period. For completeness, we provide here the optimal tax rate at t = 0, which may be

different due to b0 6= 0. Use (A.6)-(A.7) to eliminate λ0 and recall that N0 = M0 = 1 and ξ0 = 0.

Follow the same steps as previously, to finally get
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τ0 =
Φ
(
(εcc,0 + εhc,0)(1− b0

c0
) + εhh,0 + εch,0

)
1 + Φ

(
1 + εhh,0 + εhc,0(1− b0

c0
)
) . (A.16)

Rewrite (A.7) to get 1 + Φ
(
1 + εhh,0 + εhc,0(1− b0

c0
)
)

= λ0/Ul0 > 0, so the denominator in (A.16)

is positive. The sign of the numerator depends on b0. Under assumption 1, if initial debt is not

large enough (b0/c0 < 1), then the numerator is positive, so τ0 > 0. However, initial debt can be

so large, that we have an initial subsidy, τ0 < 0.

A.3 Proofs of Claims 1 and 2

The proofs here extend the proofs of Karantounias (2013), who worked with a two-period model

and σR = 0, σA < 0.

Claim 1. Let σR = σA = σ̄ so that Λt = 1. Combine (A.2) and (A.3) to get

(1 + ξ̃t)
(
Uc(ct, 1− ht)− Ul(ct, 1− ht)

)
+ Φ

[
Ωc(ct, ht) + Ωh(ct, ht)

]
= 0 (A.17)

From the resource constraint (1) we have ht = ct + gt. Differentiate implicitly (A.17) with

respect to ξ̃t, taking gt and Φ as given, to get,

∂ct

∂ξ̃t
=
∂ht

∂ξ̃t
=
Ul − Uc
Kbenev.

, (A.18)

where

Kbenev. ≡ (1 + ξ̃t)(Ucc − 2Ucl + Ull︸ ︷︷ ︸
< 0 due to concavity

) + Φ
[
Ωcc + 2Ωch + Ωhh

]
(A.19)

We work under the assumption that Kbenev. < 0. We discuss further the sign of Kbenev. in the

proof of claim 2. Note that under assumption 1 we have a positive tax rate, τt > 0, which implies

that Uc > Ul. Therefore, from (A.18) we get ∂ct
∂ξ̃t

= ∂ht
∂ξ̃t

> 0.

Differentiate the tax rate τt = 1− Ul/Uc with respect to ξ̃t to get

∂τt

∂ξ̃t
=

(
UccUl − UclUc

)
+
(
UllUc − UclUl

)
U2
c

· ∂ct
∂ξ̃t

< 0, (A.20)
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since ∂ct
∂ξ̃t

> 0, and the numerator in (A.20) is negative, due to assumption 1.

Claim 2. Let σR 6= σA. Combine (A.2) and (A.3) to get

(1 + ξ̃t)
(
Uc(ct, 1− ht)− Ul(ct, 1− ht)

)
+ ΦΛt

[
Ωc(ct, ht) + Ωh(ct, ht)

]
= 0 (A.21)

Define ηt ≡ (Uctbt − Et−1m
∗
tUctbt)Φ. Solve the law of motion of ξ̃t in (34) backwards to get

ξ̃t = σAΛtHt, where Ht ≡
∑t

i=1 ηi. Thus, Λt affects the dynamics of ξ̃t (which is not true for small

doubts about the model– see lemma 1). Rewrite (A.21) as

(1 + σAΛtHt)
(
Uc(ct, 1− ht)− Ul(ct, 1− ht)

)
+ ΦΛt

[
Ωc(ct, ht) + Ωh(ct, ht)

]
= 0, (A.22)

and differentiate implicity with respect to Λt to get

∂ct
∂Λt

=
∂ht
∂Λt

=
ξ̃t(Ul − Uc)− ΦΛt(Ωc + Ωh)

ΛtKpatern.

(A.21)
=

Uc − Ul
ΛtKpatern.

, (A.23)

where

Kpatern. ≡ (1 + ξ̃t)(Ucc − 2Ucl + Ull) + ΦΛt

[
Ωcc + 2Ωch + Ωhh

]
(A.24)

Note that Kpatern. reduces to Kbenev. in (A.19) if we set σR = σA. Our working assumption is

that Kpatern. < 0. Given that Uc > Ul, we have ∂ct
∂Λt

= ∂ht
∂Λt

< 0. Similarly to (A.20), we have

∂τt
∂Λt

=

(
UccUl − UclUc

)
+
(
UllUc − UclUl

)
U2
c

· ∂ct
∂Λt

> 0. (A.25)

To see how claim 1 goes through, implicitly differentiate (A.21) to get ∂ct
∂ξ̃t

= Ul−Uc
Kpatern.

> 0, and

therefore ∂τt
∂ξ̃t

< 0, using (A.20). Note that in the paternalistic case, by partially differentiating

with respect to ξ̃t = σAΛtHt and keeping Λt constant, we effectively differentiate with respect to

(σAHt), which was the relevant object in the benevolent case of σR = σA; see (35). We obviously

have ∂ct
∂(σAHt)

= Λt
∂c(ξ̃t,Λt;gt,Φ)

∂ξ̃t
.
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Sign of Kpatern. and examples 1 and 2. Assuming that Kpatern. < 0 (which nests the sign

of Kbenev.) imposes local concavity of the Lagrangian with respect to consumption and labor. We

consider period utility functions that satisfy this assumption. In appendix C we show that the

respective sign condition for σR = σA = 0 guarantees that the second-order conditions for the

Lucas and Stokey (1983) economy hold, and this is our working assumption for the small-doubts

approximation. We show now that examples 1 and 2 satisfy Kpatern. < 0.

Separability. At first note that Ωcc = Ucccc + 2Ucc − Ulcch, Ωhh = −Ulllh + 2Ull + Ucllc and

Ωch = Ωhc = −Ucclc−2Ulc+Ullch. Assume now Ucl = 0 to get Ωcc = Ucccc+2Ucc, Ωhh = −Ulllh+2Ull

and Ωch = Ωhc = 0. Kpatern. simplifies to

Kpatern. = T c − T l (A.26)

T c ≡ (1 + ξ̃t + 2ΦΛt)Ucc + ΦΛtUcccct (A.27)

T l ≡ −(1 + ξ̃t + 2ΦΛt)Ull + ΦΛtUlllht (A.28)

Consider now a utility function that is power in c, c1−γ/(1− γ), as in examples 1 and 2. Note

that from (A.14) we get

1 + ξ̃t + ΦΛt(1− γ) > 0. (A.29)

Therefore,

T c = −γc−γ−1
t

[
1 + ξ̃t + ΦΛt(1− γ)

]
< 0, by (A.29). (A.30)

Turning to T l, note first that from (A.14) we get that 1 + ξ̃t + ΦΛt > ΦΛtεcc,t. Thus, 1 + ξ̃t +

2ΦΛt > ΦΛt(1 + εcc,t) > 0. Therefore, if Ul is a convex function of l, then T l > 0, as we can see

from (A.28). Consequently, if the utility function is a power function in c and the marginal utility

of leisure is convex, then T c < 0, T l > 0 and Kpatern. = T c − T l < 0. Ul in example 2 is convex

so this example satisfies our assumption. In the constant Frisch elasticity case of example 1, this

sufficient restriction is not satisfied, since Ulll = ahφh(φh − 1)hφh−2, so Ul is convex (concave) if

φh > (<)1. In that case, we calculate directly T l to get

T l = ahφhh
φh−1

[
1 + ξ̃t + ΦΛt(1 + φh)

]
> 0, (A.31)

since 1 + ξ̃t + ΦΛt(1 + φh) > 0 from (A.15). Thus, we have again Kpatern. < 0.
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A.4 Conditions for mitigation or amplification

We analyze first the reaction of the surplus in marginal utility units at the optimal full-confidence

allocation. This will let us determine the behavior of Uct(0)bt(0) in proposition 2.

Reaction of surplus in Uc units. Let σR = σA = 0 and drop the “zero” notation. The optimal

wedge in (A.21) reduces to (Uc − Ul) + Φ(Ωc + Ωh) = 0, since ξ̃t = 0 and Λt = 1. Using the

resource constraint (1), we determine consumption and labor as functions of g and Φ, c = c(g,Φ)

and h = h(g,Φ). This is obviously the history-independent Lucas and Stokey (1983) allocation.

Let S(g,Φ) denote the surplus in marginal utility units as function of (g,Φ), S(g,Φ) ≡
Uc(c(g,Φ), 1− h(g,Φ))− Ul(c(g,Φ), 1− h(g,Φ))h(g,Φ). Differentiate with respect to g to get

∂S

∂g
= Ωc

∂c

∂g
+ Ωh

∂h

∂g

= Uc
[Ωc

Uc

∂c

∂g
+

Ωh

Ul

Ul
Uc

∂h

∂g

]
= Uc

[
(1− εcc − εch)

∂c

∂g
− (1 + εhh + εhc)(1− τ)

∂h

∂g

]
, (A.32)

where we used Ul/Uc = 1 − τ and the expressions for the elasticities in (A.11) and (A.12).

Therefore,

∂S/∂g < (>)0 iff (1− εcc − εch)
∂c

∂g
< (>)(1 + εhh + εhc)(1− τ)

∂h

∂g
. (A.33)

Sufficient condition for ∂S/∂g < 0. Consider now the case of Ucl ≥ 0, so that εch, εhc ≥ 0 and

let ∂c/∂g ≤ 0 and ∂h/∂g ≥ 0, as we may expect. Then, if the curvature of the utility function is

not sufficiently large,

εcc + εch ≤ 1, (A.34)

condition (A.33) implies that ∂S/∂g < 0,∀g. Thus, the elasticity condition (A.34) is a sufficient

condition for the negative reaction of surplus to spending shocks.

Comparative statics of (c, h). Consider now the derivatives of the full-confidence allocation

with respect to g. We have
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∂c

∂g
=
−Ull − ΦΩhh + Ucl − ΦΩch

KLS

(A.35)

∂h

∂g
=

∂c

∂g
+ 1 =

Ucc + ΦΩcc − Ucl + ΦΩhc

KLS

, (A.36)

where KLS is the object Kpatern. in (A.24) reduces to, when σR = σA = 0, KLS ≡
(
Ucc− 2Ucl +

Ull
)

+ Φ
[
Ωcc + 2Ωch + Ωhh

]
. As previously, we assume that KLS < 0.

Assume now that Ucl = 0. The relevant expressions simplify to KLS = T cLS − T lLS,

∂c

∂g
=

T lLS
T cLS − T lLS

and
∂h

∂g
=

T cLS
T cLS − T lLS

, (A.37)

where

T cLS ≡ (1 + 2Φ)Ucc + ΦUcccc and T lLS ≡ −(1 + 2Φ)Ull + ΦUlllh, (A.38)

that is, the respective expressions (A.27) and (A.28) for σR = σA = 0.

Examples 1 and 2. We have already proved that T c < 0 and T l > 0 for our two examples,

even when there are doubts about the model. So T cLS < 0, T lLS > 0 and KLS < 0. From (A.37) we

get then that ∂c/∂g ≤ 0, ∂h/∂g ≥ 0, and the sufficient condition (A.34) for ∂S/∂g < 0 becomes

γ ≤ 1.

A.5 Proof of proposition 2

Let the shock take N values, ordered from lowest to highest, g1 < ... < gN . Given the assumptions

of the proposition, it is sufficient to determine only the sign of ∂S/∂g. To see that, consider first

an i.i.d. reference model. Let y ≡ Ucb denote the history-independent debt in marginal utility

units, with yi ≡ y(gi,Φ), and let Si be shorthand for S(gi,Φ) ≡ Ω(c(gi,Φ), h(gi,Φ)), i = 1, ..., N .

From the dynamic budget constraint we have

yi = Si + β
∑
j

πjyj, i = 1, ..., N, (A.39)

so yi inherits the monotonicity properties of Si. More generally, consider a monotone transition

matrix Π, with πij ≡ π(g′ = gj|g = gi) and
∑

j πij = 1,∀i. Monotonicity of the transition matrix

means that each probability row vector π(·|i) stochastically dominates π(·|j) for i > j. Thus,

we have
∑

k≥l πik ≥
∑

k≥l πjk∀l, for i > j. Monotone transition matrices are useful because they
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preserve monotonicity when they pre-multiply a monotonic vector. For example, if elements of

column vector x are increasing (x1 ≤ x2 ≤ ... ≤ xN), the elements of Πx are also increasing if Π

is monotone. Recursion (A.39) becomes

yi = Si + β
∑
j

πijyj, i = 1, ..., N ⇒ ~y = (I− βΠ)−1~S, (A.40)

where ~y and ~S the respective vectors that collect yi and Si, and I the identity matrix. Use

now the following properties of monotone transition matrices as listed by Keilson and Kester

(1977): a) powers of monotone transition matrices Πk, k = 0, 1, ..., are monotone, b) convex

combinations of monotone transition matrices are monotone. Thus, (1 − β)(I − βΠ)−1 = (1 −
β)
∑∞

i=0 β
iΠi is a monotone transition matrix, as a convex combination of monotone transition

matrices. Consequently, if the elements of ~S are decreasing (increasing), then the elements of

(1 − β)(I − βΠ)−1 · ~S are decreasing (increasing) and therefore the elements of ~y are decreasing

(increasing).29

Sign of ∂S/∂g. Recall that the optimal full-confidence tax rate is τ = Φ(γ+φh)
1+Φ(1+φh)

, which is given

by expression (32) in example 1 for σR = σA = 0. For σR = σA = 0, (A.30) and (A.31) simplify to

T cLS = −γc−γ−1
(
1 + Φ(1− γ)

)
< 0 (A.41)

T lLS = ahφhh
φh−1

(
1 + Φ(1 + φh)

)
. (A.42)

Thus, from (A.37) we get that

∂c

∂g
= −ahh

φh

c−γ︸ ︷︷ ︸
1−τ

·
φhh

−1
(
1 + Φ(1 + φh)

)
γc−1

(
1 + Φ(1− γ)

)
+ φhh−1 ahh

φh

c−γ

(
1 + Φ(1 + φh)

)
= −

φhh
−1(1− τ)

(
1 + Φ(1 + φh)

)
γc−1

(
1 + Φ(1− γ)

)
+ φhh−1(1− τ)

(
1 + Φ(1 + φh)

)
1−τ=

1+Φ(1−γ)
1+Φ(1+φh)

= −
φhh

−1
(
1 + Φ(1− γ)

)
γc−1

(
1 + Φ(1− γ)

)
+ φhh−1

(
1 + Φ(1− γ)

)
= − φhh

−1

γc−1 + φhh−1
= − (1− κ)φh

γ + (1− κ)φh
, κ ≡ g/h, (A.43)

and

29It is easy to show that when N = 2, the matrix (1− β)(I− βΠ)−1 is necessarily monotone, independent of the
properties of Π. Hence, we can discard the assumption of a monotone transition matrix if we stick to N = 2.
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∂h

∂g
= 1 +

∂c

∂g
=

γc−1

γc−1 + φhh−1
=

γ

γ + (1− κ)φh
. (A.44)

Use now (A.43) and (A.44) in condition (A.33) to get

∂S

∂g
< (>)0∀g iff γ(1 + φh)(1− τ) + (1− γ)(1− κi)φh > (<)0,∀i, (A.45)

where κi ≡ gi/h(gi,Φ), i.e. the share of spending in output when the shock is gi.

Recall that the optimal tax rate in (A.45) is a function of (Φ, γ, φh). Eliminate τ , collect the

terms that involve Φ and define the function

I(γ, φh,Φ, κ) ≡ Φ(1− γ)(1 + φh)
[
γ + (1− κ)φh

]
+ γ +

[
1 + (γ − 1)κ

]
φh. (A.46)

Then, criterion (A.45) is expressed equivalently as ∂S/∂g < (>)0∀g iff I(γ, φh,Φ, κi) > (<)0,∀i.

a) Assume γ ≤ 1 or φh = 0. Then (A.45) implies that ∂S/∂g < 0,∀g. Some remarks are due:

for γ ≤ 1, we can skip the calculations in (A.45) and use the previous conclusions about

the elasticity condition (A.34). Moreover, if the reference model is i.i.d. or Markov with a

monotone transition matrix, γ ≤ 1 guarantees that Ucb is decreasing in g also for the case

of example 2. Turning to the case of infinite Frisch elasticity (φh = 0), the sign of ∂S/∂g

can be also immediately inferred by realizing that ∂c/∂g = 0, as seen from (A.43). Thus, S

decreases when g increases, as seen from (A.33).

b) Let γ > 1 and φh > 0. Note that ∂I
∂κ

= φh(γ − 1)(1 + Φ(1 + φh)) > 0, so the function I

is increasing in κ. Thus, it is sufficient to consider only the minimum share κ ≡ mini κi

and the maximum share κ̄ ≡ maxi κi when we consider the reaction of S. So, we finally

get that ∂S/∂g < 0,∀g iff I(γ, φh,Φ, κ) > 0 and ∂S/∂g > 0∀g iff I(γ, φh,Φ, κ̄) < 0. These

two conditions deliver (37) and (38) respectively in the text, where we revert to the “zero”

notation.

A.6 Details about the quantitative example

We use the Rouwenhorst method to discretize the process for xgt in (50) with 7 points. The vector

~xg and the respective transition matrix are
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~xg =



−0.1715

−0.1143

−0.0572

0

0.0572

0.1143

0.1715


, Π =



0.7122 0.2487 0.0362 0.0028 0.0001 0.0000 0.0000

0.0414 0.7242 0.2087 0.0242 0.0014 0.0000 0.0000

0.0024 0.0835 0.7315 0.1675 0.0145 0.0006 0.0000

0.0001 0.0073 0.1256 0.7340 0.1256 0.0073 0.0001

0.0000 0.0006 0.0145 0.1675 0.7315 0.0835 0.0024

0.0000 0.0000 0.0014 0.0242 0.2087 0.7242 0.0414

0.0000 0.0000 0.0001 0.0028 0.0362 0.2487 0.7122


. (A.47)

The vector of spending shocks is ~g = G exp(~xg), where G = 0.08. For the high-spending

specification we use the same vector ~xg and transition matrix Π, but set G = 0.12. For the

calculation of the worst-case beliefs and the respective detection error probabilities, see the formulas

in Appendix C.
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B.1 Preliminaries

In this appendix, we consider a general framework where a Stackelberg leader (interchangeably

policymaker) faces some abstract forward-looking constraints that capture the optimizing behavior

of the follower (interchangeably private sector). We follow the lead of Marcet and Marimon (2019)

in the way we formalize forward-looking constraints, which allows us to consider several cases

of interest. Both the leader and the follower may doubt the probability model of exogenous

uncertainty. To focus on the design of optimal policy under model uncertainty and to avoid

notational clutter, we strip down the framework to the bare essentials: we assume that all relevant

variables are one-dimensional and we omit backward-looking variables like capital.2

Let st capture the state of nature, which without loss of generality, lives in a finite set S,

and let st = (s0, s1, ..., st) capture the partial history up to t. The reference probability model

is denoted by πt(s
t), and uncertainty is realized at the initial period, so π0(s0) ≡ 1. Let at(s

t)

denote the action of the policymaker. We think of at as the policy instrument, or as any variable

that the policymaker may affect through its instruments (for example it could be the follower’s

consumption). In order to be feasible, actions have to live in a non-empty set A ⊆ R, which may

depend on the state st, A(st). As earlier in the paper, Et denotes the conditional expectation

operator with respect to π.

B.2 Full confidence in the model

To fix ideas, we start with the case of full confidence in π. The policymaker is facing the following

generic forward-looking constraints:

f 0(at, st) + βEtxt+1 ≥ 0, t ≥ 0 (B.1)

xt = f 1(at, st) + βEtxt+1, t ≥ 1, (B.2)

where f 0, f 1 real-valued functions of the action and the exogenous state.3 There are several

ways to think of the forward-looking constraints (B.1) and (B.2). At first, note that the variable

xt, which is a measurable function of st, captures the present value of the non-linear effects of

future actions and states through the function f 1, since, by solving forward (B.2) (henceforth PV)

and imposing an asymptotic “no-bubble” condition, we get

2It is easy to incorporate such variables, without adding much though to our understanding of expectation
management in policy settings with model uncertainty.

3The functions f0, f1 could be indexed by time t, or they could depend on other exogenous parameters. Any
such dependence remains implicit in our notation.
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xt = Et

∞∑
i=0

βif 1(at+i, st+i). (B.3)

For that reason, we will call xt the ‘forward-looking’ variable. Note that we can use (B.3) to

eliminate xt in (B.1) and work only with (B.1). However, it is more convenient for the analysis

to separate (B.1) and (B.2). Depending on the application, we can think of (B.1) (henceforth

(PC/IC)) as a participation, sustainability or an implementability constraint that involves the

optimality conditions of the follower, as encoded in functions f 0 and f 1. We treat (B.1) as an

inequality constraint throughout the analysis, but more generally, we could take it as an equality

constraint, i.e. the direction at which the constraint binds could be potentially alternating.

Problem B.1. The problem of the policymaker is to choose {at(st), xt(st)}t≥0,st at t = 0 to maxi-

mize

E0

∞∑
t=0

βtr(xt, at, st) (B.4)

subject to (B.1) and (B.2), where at ∈ A(st) and s0 is given.

The real-valued function r(xt, at, st) stands for the period return function and can depend on

both actions at and on xt. We assume that all relevant functions r, f 0, f 1 are “well behaved”, i.e.

continuously differentiable to whatever degree necessary, and that the constraint space is such that

a solution to problem B.1 exists. At this level of abstraction, we are not making necessarily any

convexity assumptions. We work with the first-order necessary conditions for an interior solution

of the problem, assuming that they are sufficient to characterize the problem.

‘LS’ case. Constraints (PC/IC) and (PV) are sufficiently rich to nest several examples in optimal

policy design. Of particular interest is the case where we have only one (PC/IC) constraint at

t = 0, and a return function that depends only on the action and the shock, so r = r(at, st). This

case fits the Lucas and Stokey economy that we used in the text. To see that, set st ≡ gt, at ≡ ct

and an action set A(gt) ≡ [0, 1 − gt]. The return function is r(ct, gt) ≡ U(ct, 1 − ct − gt). The

‘forward-looking’ variable xt in (PV) corresponds to debt in marginal utility units, xt ≡ Uctbt, and

we have f 1(c, g) ≡ Ucc− Ul(c+ g). At t = 0 we have f 0(c0, g0) ≡ Uc0c0 − Ul0(c0 + g0)− Uc0b0.

‘NK’ case. Moreover, forward-looking constraints (PC/IC) and (PV) allow the analysis of other

commonly used setups. Assume for example that we have no (PC/IC) constraints, and that (PV)

holds for t ≥ 0, i.e. for every period from period zero onward. Then, the setup corresponds to a

non-linear version of the typical framework used for the analysis of optimal monetary policy in
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the New-Keynesian tradition. Think for example of xt as inflation, at as the output gap, and the

(PV) constraint as the New-Keynesian Phillips curve. If the return function is quadratic in (xt, at)

and the f 1 function linear in at, then the setup is exactly as in Clarida et al. (1999) and Woodford

(2003).

‘AA’ case. Lastly, we would could have a situation where we have multiple participation or

implementability constraints for all t ≥ 0, but a return function of the policymaker that does not

depend on the variable xt, so r = r(at, st). This would match the environment of Aguiar and

Amador (2016), who analyze issues of limited commitment à la Kehoe and Levine (1993) in open

economies, and call (B.1) sovereign constraints.4

B.3 Optimal policy with full confidence in the model

With full confidence in the model, the policymaker is determining the behavior of the forward-

looking follower by affecting expectations of xt+1, Etxt+1, through the choice of future actions

at+i, i ≥ 1, as demonstrated by (B.3). To see that, assign multipliers βtπtΦt(s
t) and βtπtψt(s

t) on

constraints (B.1) and (B.2) respectively. The first-order necessary condition for at, t ≥ 0 takes the

form

ra(xt, at, st) + Φtf
0
a (at, st)︸ ︷︷ ︸

direct effect on PC/IC

+ ψtf
1
a (at, st)︸ ︷︷ ︸

direct effect on PV

= 0. (B.5)

Besides calculating the direct marginal benefit or cost of action a, ra, the policymaker takes into

account how actions affect the (PC/IC) and (PV) constraints through f 0 and f 1, with respective

shadow values Φt ≥ 0 and ψt. The law of motion of ψt is given by the first-order condition with

respect to xt, t ≥ 1,

ψt = rx(xt, at, st)︸ ︷︷ ︸
direct benefit/cost

+ Φt−1︸︷︷︸
old promise through (PC/IC)

+ ψt−1︸︷︷︸
old promise through (PV)

, t ≥ 1 (B.6)

with initial condition ψ0 ≡ 0.5 As expected, the shadow value ψt is determined by the direct

benefit/cost of changing xt (rx), and by taking into account how changes in current xt affect

previous expectations at t − 1 for period t, through the (PC/IC) constraint (Φt−1), and through

the (PV) constraint (ψt−1). Solving (B.6) backwards, we get

4Thus, our three cases correspond respectively to 1, 0 or infinite (PC/IC) constraints.
5The first-order condition with respect to x0 is rx(x0, a0, s0) = 0.
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ψt =
t∑
i=1

rx,i +
t−1∑
i=0

Φi, t ≥ 1. (B.7)

Thus, under the commitment protocol that we are using, ψt cumulates the direct marginal

benefits and costs and the shadow value of all past promises from the initial period up to t − 1,

reflecting how the policymaker manipulates the expectations of the follower through the choice of

future actions. Plugging (B.7) in (B.5) hammers this point home.

The law of motion (B.6) nests several interesting cases. For the ‘LS’ case we have Φt = 0∀t ≥ 1

and rx = 0. Then, (B.6) implies that for t ≥ 1 we have ψt = ψt−1 = ... = Φ0 + ψ0 = Φ0, since

ψ0 = 0.6 For the ‘NK’ case we have Φt = 0∀t and the law of motion of ψt, which holds now for

t ≥ 0, becomes

ψt = rx(xt, at, st) + ψt−1, (B.10)

with ψ−1 ≡ 0, so ψt =
∑t

i=0 rx,i. Finally, for the ‘AA’ case we have rx = 0, so (B.7) becomes

ψt =
∑t−1

i=0 Φi. In that case, ψt just cumulates the past multipliers on the (PC/IC) constraints up

to t− 1.

B.4 Doubts about the model

Consider now an environment where the leader and the follower are afraid that the probability

model π is misspecified. We use the same martingale machinery and notation as in section 2.2

to capture the alternative probability models of the leader, (N, n), and the follower, (M,m), with

initial values N0 = M0 ≡ 1. Asterisks are used to denote the worst-case models. We utilize the

multiplier preferences of Hansen and Sargent (2001) with respective penalty parameters θR > 0

and θA > 0. We can get back to the full confidence case when the penalty parameters become

infinite.

Constraints (PC/IC) and (PV) are thought of as containing optimizing behavior on the side of

the follower. The fear of model misspecification enters through the formation of expectations. In

the background, we have in mind a follower with preferences that are characterized by the following

6Similarly, condition (B.5) becomes

at, t ≥ 1 : ra(xt, at, st) + Φ0f
1
a (at, st) = 0 (B.8)

a0 : ra(xt, a0, s0) + Φ0f
0
a (a0, s0) = 0, (B.9)

showing that the optimality condition at t = 0 is different, due to the fact that there are no old promises that
have to be kept.
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recursion7

Vt = u(xt, at, st) + β min
mt+1≥0

[
Etmt+1Vt+1 + θAεt(mt+1)

]
, (B.11)

subject to Etmt+1 = 1, where εt(mt+1) the conditional relative entropy defined in (7). The period

return function of the follower can depend on (xt, at, st), similarly to the return function of the

leader, r. As usual, the worst-case conditional likelihood ratio of the follower is given by

m∗t+1 =
exp(σAVt+1)

Et exp(σAVt+1)
, (B.12)

where σA ≡ −1/θA ≤ 0, with an indirect risk-sensitive utility recursion

Vt = u(xt, at, st) +
β

σA
lnEt exp(σAVt+1). (B.13)

As expected, the follower’s worst-case model assigns high probability on events that bear low

utility Vt+1. If necessary, we can construct the worst-case unconditional likelihood ratio recursively

from M∗
t = m∗tM

∗
t−1,M0 ≡ 1.

The worst-case beliefs m∗t+1 alter the formation of expectations in (B.1) and (B.2):

f 0(at, st) + βEtm
∗
t+1xt+1 ≥ 0, t ≥ 0 (B.14)

xt = f 1(at, st) + βEtm
∗
t+1xt+1, t ≥ 1. (B.15)

The fact that the worst-case beliefs of the follower are endogenous generates again a motive for

pessimistic expectation management on the side of the leader. Hence, a leader that also doubts

the model solves the following problem.

Problem B.2. The problem of a policymaker who doubts the model with penalty parameter θR

and faces a follower who doubts the model with penalty parameter θA is to choose at t = 0

{at(st), xt(st)}t≥0,st and {m∗t (st), Vt(st)}t≥1,st to maximize

min
nt+1≥0,Nt≥0

E0

∞∑
t=0

βtNt

[
r(xt, at, st) + βθRεt(nt+1)

]
(B.16)

subject to (B.14) and (B.15), where the worst-case beliefs of the follower are determined by (B.12)

7This is just the equivalent recursive representation of the multiplier preferences we used in (4).
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and (B.13), actions are feasible, at ∈ A(st), (N, n) satisfy Nt+1 = nt+1Nt, N0 ≡ 1, Etnt+1 = 1,

and s0 is given.

B.5 Optimal policy with doubts about the model

Disagreement and paternalism. Consider first the worst-case beliefs of the policymaker in

problem B.2. We have

n∗t+1 =
exp(σRWt+1)

Et exp(σRWt+1)
, (B.17)

where σR ≡ −1/θR ≤ 0 and Wt the leader’s indirect utility, which follows recursion

Wt = r(xt, at, st) +
β

σR
lnEt exp(σRWt+1). (B.18)

The unconditional worst-case likelihood ratio of the policymaker is given by N∗t+1 = n∗t+1N
∗
t , N0 ≡

1.

Using (B.12) and (B.17), we can form the ratio of the conditional worst-case beliefs, m∗t/n
∗
t .

Consequently, we can generate the unconditional belief ratio, Λt =
m∗
t

n∗
t

Λt−1,Λ0 ≡ 1. In contrast to

the analysis in the text, the worst-case beliefs of the leader (B.17) can differ from the worst-case

beliefs of the follower (B.12) due to differences either in ambiguity attitude (σR 6= σA), or in

return functions (r 6= u). This richer setup implies that the case of a benevolent leader requires

both σR = σA and r = u. Turning now to optimal policy with doubts about the model, we have

the following proposition.

Proposition B.1. (“Managing pessimistic expectations in the general framework”) Let the mul-

tipliers Φ̃t and ψ̃t denote the scaled (with the worst-case beliefs of the policymaker N∗t ) multipliers

on (B.14) and (B.15) respectively. Let ξ̃t denote the scaled multiplier on the utility recursion of

the follower (B.13).8

� The optimality condition for actions at, t ≥ 0 is

ra(xt, at, st) + ξ̃tua(xt, at, st)︸ ︷︷ ︸
direct effect of at on Vt

+ Φ̃tf
0
a (at, st) + ψ̃tf

1
a (at, st) = 0. (B.19)

� The law of motion of ψ̃t takes the form

8We scale with N∗
t as a matter of convenience. We could leave the multipliers unscaled, or scale them with M∗

t ,
altering the respective optimality conditions.
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ψ̃t = rx(xt, at, st) + ξ̃tux(xt, at, st)︸ ︷︷ ︸
direct effect of xt on Vt

+
m∗t
n∗t

(Φ̃t−1 + ψ̃t−1), t ≥ 1, (B.20)

with initial value ψ̃0 = 0.

� The law of motion of ξ̃t takes the form

ξ̃t = σA
m∗t
n∗t

(xt − Et−1m
∗
txt)(Φ̃t−1 + ψ̃t−1)︸ ︷︷ ︸

net value of decreasing m∗
t

+
m∗t
n∗t
ξ̃t−1, (B.21)

with ξ̃0 = 0. The multiplier ξ̃t is a martingale with respect to the policymaker’s beliefs πt ·N∗t ,

with average value zero, and is obviously zero ∀t if the follower had no doubts about the model

(σA = 0).

Proof. See the last section B.7 for the formulation of the Lagrangian and the derivation of the

respective first-order conditions. Contrasting (B.19) and (B.20) to (B.5) and (B.6) respectively,

we see that the policymaker has also to take into account how at and xt affect directly utility Vt

(through u) and therefore the beliefs of the follower, with shadow value ξ̃t.

Discussion. Model uncertainty on the side of the follower shows up in the worst-case expectation

Etm
∗
t+1xt+1 in the forward-looking constraints (B.14) and (B.15) that the leader is facing. Hence,

in addition to the traditional managing of future expectations of xt+1 through future actions that

we saw in the previous section, the policymaker is affecting also the endogenous probability mass

m∗t+1 that the follower assigns on a particular history.

The incentives of the policymaker about pessimistic expectation management are captured by

ξ̃t, which has now a law of motion (B.21) that is the generalization of (34) in the text. Intuitively,

the benefit of increasing the mass on some history st+1 should depend obviously on xt+1(st+1),

since now this particular realization has higher probability in the eyes of the follower, and on the

shadow value of the forward-looking constraints (B.14) and (B.15), which may now get relaxed

or tightened. This shadow value is obviously captured by the multipliers Φ̃t and ψ̃t and this is

exactly what we show in section B.7: the shadow value of increasing m∗t+1 is equal to xt+1 ·(Φ̃t+ψ̃t).

Of course, states are interconnected, since probabilities have to integrate to unity, leading us to

consider the net shadow value of increasing m∗t+1 in (B.21).

Thus, the pessimistic expectation management in the general setup depends on the value of xt

relative to its average value, Et−1m
∗
txt, and on the sign of the sum of the multipliers Φ̃t−1 + ψ̃t−1,

which cumulate the shadow value of old promises, as we can see in (B.20). For example, if
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Φ̃t−1 + ψ̃t−1 > 0, (B.21) implies that the policymaker has an incentive to increase the follower’s

probability mass (by reducing Vt) at states for which xt is, relatively to its average value, high.

This way the policymaker relaxes the forward-looking constraints (B.14) and (B.15). Similarly, if

the sum of the multipliers were negative, Φ̃t−1 + ψ̃t−1 < 0, then there would be an incentive for the

leader to make the follower assign high probability on states of the world for which xt is relatively

low.

Depending on the particular application, we can provide an economic interpretation to the

direction of relaxation of the forward-looking constraints (B.14) and (B.15), captured by the pos-

itivity or negativity of the sum of the multipliers. Independent of the application, one lesson is

clear: the policymaker has always an incentive to manipulate the follower’s worst-case beliefs in

the most beneficial way, so that the forward-looking constraints are relaxed.

B.6 Mitigation or amplification of worst-case beliefs

To talk about mitigation of amplification of the follower’s worst-case beliefs in the general frame-

work, assume without loss of generality that the follower’s utility is increasing in st, everything

else equal, so that a high s captures ‘good’ times and a low s captures ‘bad’ times. We use a

similar definition of mitigation or amplification of the follower’s worst-case beliefs as in the text,

adjusting it properly for the fact that high shocks now are ‘good’.

Definition 4. Fix the history of shocks st−1 and assume without loss of generality that st takes two

values, sH > sL. Let yt(i) denote yt(s
t−1, st = si), i = L,H, for a generic random variable yt. We

say that the policymaker mitigates (amplifies) the follower’s worst-case beliefs if ξ̃t(H) < (>)ξ̃t(L).

A shadow value of the follower’s utility that is lower in good times and higher in bad times

captures the policymaker’s incentives to reduce the follower’s utility in good times and increase it in

bad times. The opposite logic holds for amplification. We can draw the following conclusions from

the law of motion (B.21) when ξ̃t−1 is at its average value, which is zero, or when the discrepancy

in beliefs between leader and follower is absent.

Proposition B.2. (‘Mitigation or amplification in the general framework’)

� Fix the history of shocks st−1 and assume that Φ̃t−1 + ψ̃t−1 > 0.

a) Assume that ξ̃t−1 = 0.

* If xt(H) > xt(L), then ξ̃t(H) < 0 < ξ̃t(L), so the policymaker wants to mitigate the

worst-case beliefs of the follower.

* If xt(H) < xt(L), then ξ̃t(H) > 0 > ξ̃t(L), so the policymaker wants to amplify the

worst-case beliefs of the follower.
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b) Assume that either the policymaker is not paternalistic (so σR = σA and r = u) or that

(σR, σA) and (Wt(H), Vt(H)) are such that m∗t (H) = n∗t (H), so the worst-case beliefs of

the policymaker and the follower happen to be the same.

* If xt(H) > xt(L), then ξ̃t(H) < ξ̃t−1 < ξ̃t(L), so the policymaker wants to mitigate

the worst-case beliefs of the follower.

* If xt(H) < xt(L), then ξ̃t(H) > ξ̃t−1 > ξ̃t(L), so the policymaker wants to amplify

the worst-case beliefs of the follower.

� Fix the history of shocks st−1 and assume that Φ̃t−1 + ψ̃t−1 < 0. The inequalities in the

conclusions of (a) and (b) hold in the opposite direction, reversing therefore the statements

about mitigation and amplification of beliefs.

Proof. Use the law of motion of ξ̃t in (B.21). The result follows.

B.6.1 Correlation with good shocks and the shadow value of the constraints

Proposition B.2 makes transparent that the pessimistic expectation management depends both on

the conditional dependence of xt on the shocks and on the sign of the sum of the multipliers. In

short, if the sum of the multipliers is positive (so that constraints are relaxed with increases in

x) and there is (to first order) a positive (negative) correlation of x with good shocks, then the

policymaker wants to mitigate (amplify) the worst-case beliefs of the follower, making it assign

a higher probability on good (bad) times, since this relaxes the constraints. If the sum of the

multipliers were negative, and the correlation of x with good shocks is positive (negative), then

the policymaker amplifies (mitigates) the worst-case beliefs of the follower. Table B.1 summarizes

conveniently this result. Depending on the application in hand, the sign of the conditional cor-

relation with shocks may depend on the value of parameters, or may be changing over time as a

function of the history of shocks st−1, properly captured by the respective state variables of the

commitment problem.

Table B.1: Optimal management of the follower’s beliefs.

Correlation of x with good shocks

positive negative

Sum of multipliers (Φ̃ + ψ̃)

positive Mitigate Amplify

negative Amplify Mitigate

This table summarizes the conclusions of proposition B.2.
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B.6.2 On the sign of the multipliers

To delve deeper into the sign of the multipliers, solve backwards the law of motion of ψ̃t (B.20) to

get

ψ̃t = Λt

t∑
i=1

rx,i + ξ̃iux,i
Λi

+ Λt

t−1∑
i=0

Φ̃i

Λi

, t ≥ 1, (B.22)

where ψ̃0 ≡ 0. Therefore, the sum of the multipliers that enters (B.21) becomes

Φ̃t + ψ̃t = Λt

t∑
i=1

rx,i + ξ̃iux,i
Λi︸ ︷︷ ︸

+/−

+ Λt

t∑
i=0

Φ̃i

Λi︸ ︷︷ ︸
+

, t ≥ 1. (B.23)

The sum of multipliers has two components: a) the cumulative marginal benefit or cost to the

policymaker rx, together with the shadow value of the cumulative effect of affecting the worst-

case beliefs of the follower through changes in x, (ξ̃tux) b) the cumulative effect of relaxing the

forward-looking PC/IC constraints. The sign of the first component in (B.23) can be positive or

negative depending on the signs of rx and ux. Even if we did restrict the signs of the derivatives,

the multiplier ξ̃t can still be positive or negative with mean value zero, so the sign of the first

component still remains unclear. The second component in (B.23) is necessarily non-negative,

since Φ̃t ≥ 0,∀t. Consider now our three cases.

‘LS’ case. In that case there is only one (PC/IC) constraint (B.14) at t = 0 and both the

policymaker’s and the follower’s return criterion are independent of xt. Thus, we have Φ̃t =

0,∀t ≥ 1 and rx = ux = 0. From (B.23) we get that the sum of multipliers for t ≥ 1 is Φ̃t + ψ̃t =

ψ̃t = ΛtΦ̃0 = ΛtΦ0 since Φ̃0 = Φ0 (recall that N0 = 1). At t = 0 we have Φ̃0 + ψ̃0 = Φ0, since

ψ̃0 = 0. Thus, we are in the case of a positive sum of multipliers for all t ≥ 0, and the first part

of proposition B.2 becomes relevant. The policymaker wants to increase the probability mass on

states at which xt is relatively high. Thus, the mitigation or amplification of beliefs depends in

the ‘LS’ case only on the correlation of x with shocks.

The optimality condition for actions (B.19) becomes9

ra(xt, at, st) + ξ̃tua(xt, at, st) + ΛtΦ0f
1
a (at, st) = 0, t ≥ 1, (B.24)

and the respective law of motion (B.21) simplifies to

9The initial period condition is the same as in footnote 6.
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ξ̃t = σA
m∗t
n∗t

(xt − Et−1m
∗
txt)Λt−1Φ0 +

m∗t
n∗t
ξ̃t−1, ξ̃0 = 0. (B.25)

Note how the unconditional belief ratio Λt re-appears in the optimality conditions of the ‘LS’

case, capturing effectively the difference in welfare evaluations between policymaker and follower,

as in the text. If we further assume that the two return functions are the same, r = u (but σR

potentially different than σA), we have exactly the setup of the fiscal policy application.10

Discussion. We can re-interpret now the results about mitigation or amplification of the house-

hold’s beliefs in the main text of the paper. The respective multiplier on the implementability

constraint is the marginal cost of taxation, which is positive. Hence, the mitigation or amplifica-

tion will depend only on the correlation of the forward-looking variable xt with the ‘good’ shocks,

a result that holds more generally for setups that fit the ‘LS’ case. Recall that for the fiscal policy

application we have xt = Uctbt, so (B.25) is the same as (34). The ‘good’ shocks are low spending

shocks, so a positive correlation of debt in marginal utility units with the good shocks translates

to a negative correlation of Uctbt with gt. This is exactly the criterion for mitigation that we found

in the text. Proposition 2 characterizes the conditions necessary to determine the sign of this

correlation.

‘NK’ case. Consider now the case without (PC/IC) constraints, and the respective PV con-

straints (B.15) holding for t ≥ 0 . We have Φ̃t = 0,∀t ≥ 0, ψ̃−1 ≡ 0, and (B.23), which holds now

for t ≥ 0, becomes

Φ̃t + ψ̃t = ψ̃t = Λt

t∑
i=0

rx,i + ξ̃iux,i
Λi

. (B.26)

The interesting feature of the ‘NK’ case is that the sign of the multiplier ψ̃t depends now on

the details of the application.11 Therefore, the amplification or mitigation of beliefs depends both

on the sign of the multipliers and on the correlation of x with shocks. Signing the derivatives rx

and ux may not be necessarily straightforward. For example, if we had a New-Keynesian model,

rx can be positive or negative depending on where inflation is relative to the target and this may

be changing over time depending on the history of shocks st−1.12

10The formula for the optimal tax rate in proposition 1 is derived effectively by expressing (B.24) in terms of the
policy instrument for the case of r = u.

11Note that depending on the application, the return functions can be the same or different. For example,
in Benigno and Paciello (2014) the firm is owned by the household, leading to a setup where r = u is natural.
Otherwise, we could have a u that reflects the profits of the price-setter, whereas r may reflect the period utility of
the consumer.

12In Karantounias (2020), we considered a large firm with market power which is facing a competitive fringe in an
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‘AA’ case. Finally, in the case of infinite (PC/IC) constraints and no dependence of the return

functions on x, we get from (B.23)

Φ̃t + ψ̃t = Λt

t∑
i=0

Φ̃i

Λi

. (B.27)

Thus, the sum of the multipliers is positive, so we find ourselves in the first row of table B.1, as in

the ‘LS’ case. Only the conditional correlation of xt with the shocks will determine the incentives

to mitigate or amplify beliefs in good and bad times.

B.7 Lagrangians of the policy problems

Full confidence. Assign multipliers βtπt(s
t)Φt(s

t) and βtπt(s
t)ψt(s

t) on (B.1) and (B.2). The

Lagrangian of problem B.1 is

L =
∞∑
t=0

βt
∑
st

πt(s
t)r(xt(s

t), at(s
t), st)

+
∞∑
t=0

βt
∑
st

πt(s
t)Φt(s

t)
[
f 0(at(s

t), st) + β
∑
st+1

πt+1(st+1|st)xt+1(st+1)
]

−
∞∑
t=0

βt
∑
st

πt(s
t)ψt(s

t)
[
xt(s

t)− f 1(at(s
t), st)− β

∑
st+1

πt+1(st+1|st)xt+1(st+1)
]
.

We have included for convenience the respective (PV) constraint for t = 0, although it holds

for t ≥ 1. To accommodate that, we set ψ0 ≡ 0. Note that for the ‘NK’ case we would not have

constraints (B.1), and constraint (B.2) would actually hold for t ≥ 0. In that case, the second line

in the Lagrangian above would be absent, and we would set ψ−1 ≡ 0.

Doubts about the model. For convenience, repeat here problem B.2. A policymaker who

doubts the model chooses {at(st) ∈ A(st), xt(s
t)}t≥0,st and {Vt(st),m∗t (st)}t≥1,st to maximize

min
nt+1≥0,Nt≥0

∞∑
t=0

βt
∑
st

πt(s
t)Nt(s

t)
[
r(xt(s

t), at(s
t), st) + βθR

∑
st+1

πt+1(st+1|st)nt+1(st+1) lnnt+1(st+1)
]

environment of ambiguity about exogenous demand shocks. This application fits the ‘NK’ setup. The correlation
of the respective xt with the ‘good’ demand shocks is positive. Under some specific simplifying assumptions, the
respective multiplier ψ̃t in (B.26) is negative, capturing the desire of the large firm to reduce the market share of
the competitive fringe. Thus, the large firm amplifies the worst-case beliefs of the fringe, according to proposition
B.2 and table B.1.
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subject to

f 0(at(s
t), st) + β

∑
st+1

πt+1(st+1|st)m∗t+1(st+1)xt+1(st+1) ≥ 0 (B.28)

xt(s
t) = f 1(at(s

t), st) + β
∑
st+1

πt+1(st+1|st)m∗t+1(st+1)xt+1(st+1), t ≥ 1 (B.29)

m∗t+1(st+1) =
exp(σAVt+1)∑

st+1
πt+1(st+1|st) exp(σAVt+1(st+1))

, t ≥ 1 (B.30)

Vt(s
t) = u(xt(s

t), at(s
t), st) +

β

σA
ln
∑
st+1

πt+1(st+1|st) exp(σAVt+1(st+1)) (B.31)

Nt+1(st+1) = nt+1(st+1)Nt(s
t), N0 ≡ 1 (B.32)∑

st+1

πt+1(st+1|st)nt+1(st+1) = 1 (B.33)

Assign multipliers βtπt(s
t)Φt(s

t) on (B.28), βtπt(s
t)ψt(s

t) on (B.29), βt+1πt+1(st+1)µt+1(st+1)

on (B.30), βtπt(s
t)ξt(s

t) on (B.31), βt+1πt+1(st+1)ρt+1(st+1) on (B.32), and βtπt(s
t)νt(s

t) on (B.33).

Form the respective Lagrangian:

L =
∞∑
t=0

βt
∑
st

πt(s
t)Nt(s

t)
[
r(xt(s

t), at(s
t), st) + βθR

∑
st+1

πt+1(st+1|st)nt+1(st+1) lnnt+1(st+1)
]

+
∞∑
t=0

βt
∑
st

πt(s
t)Φt(s

t)
[
f 0(at(s

t), st) + β
∑
st+1

πt+1(st+1|st)m∗t+1(st+1)xt+1(st+1)
]

−
∞∑
t=0

βt
∑
st

πt(s
t)ψt(s

t)
[
xt(s

t)− f 1(at(s
t), st)− β

∑
t+1

πt+1(st+1s
t)m∗t+1(st+1)xt+1(st+1)

]
−
∞∑
t=0

βt
∑
st

πt(s
t)β
∑
st+1

πt+1(st+1|st)µt+1(st+1)
[
m∗t+1(st+1)− exp(σAVt+1(st+1))∑

st+1
πt+1(st+1|st) exp(σAVt+1(st+1))

]
−
∞∑
t=0

βt
∑
st

πt(s
t)ξt(s

t)
[
Vt(s

t)− u(xt(s
t), at(s

t), st)−
β

σA
ln
∑
st+1

πt+1(st+1|st) exp(σAVt+1(st+1))
]

−
∞∑
t=0

βt
∑
st

πt(s
t)β
∑
st+1

πt+1(st+1|st)ρt+1(st+1)
[
Nt+1(st+1)− nt+1(st+1)Nt(s

t)
]

−
∞∑
t=0

βt
∑
st

πt(s
t)νt(s

t)
[∑
st+1

πt+1(st+1|st)nt+1(st+1)− 1
]
,

with ψ0 ≡ 0, ξ0 ≡ 0 and N0 ≡ 1. For the ‘NK’ case the same comment as in the previous

section applies.

As in Appendix A, the minimization with respect to (n,N) (which delivers conditions (B.17)
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and (B.18)), has the same structure as the household’s minimization problem in the text; we refer

again the interested reader to Karantounias (2013) for the details of the derivations. Consider now

the optimality conditions of the maximization problem:

at, t ≥ 0 : N∗t ra(xt, at, st) + ξtua(xt, at, st) + Φtf
0
a (at, st) + ψtf

1
a (at, st) = 0 (B.34)

xt, t ≥ 1 : ψt = N∗t rx(xt, at, st) + ξtux(xt, at, st) +m∗t (Φt−1 + ψt−1), ψ0 = 0 (B.35)

m∗t+1, t ≥ 0 : µt+1 = xt+1(Φt + ψt) (B.36)

Vt, t ≥ 1 : ξt = σAm
∗
t

[
µt − Et−1m

∗
tµt
]

+m∗t ξt−1, ξ0 = 0 (B.37)

Define the scaled multipliers Φ̃t ≡ Φt/N
∗
t , ψ̃t ≡ ψt/N

∗
t and ξ̃t ≡ ξt/N

∗
t . Equation (B.36) cap-

tures the shadow value of increasing the conditional likelihood ratio m∗t and is used to eliminate µt

from (B.37). Rewrite (B.34),(B.35) and (B.37) in terms of the scaled multipliers to get respectively

(B.19), (B.20) and (B.21).
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C.1 Logic of expansion and some caveats

We express every endogenous variable (either random or non-random as the multiplier Φ) as

function of the parameter vector σ = (σR, σA). The first-order expansion for a generic variable xt

around (σR, σA) = (0, 0) takes the form

xt(g
t, σR, σA) ' xt(g

t, 0, 0) + σRxσR(gt, 0, 0) + σAxσA(gt, 0, 0) (C.1)

where xt(g
t, 0, 0) refers to the respective variable in the Lucas and Stokey (1983) economy and

xσi , i = R,A, the respective partial derivative. For convenience, we use the notation xt(σ) ≡
xt(g

t, σ) and xit(σ) ≡ xσi(g
t, σ), i = R,A, with xt(0) and xit(0), i = R,A the respective evaluation

at σ = (0, 0).

The Lucas and Stokey (1983) plan is easy to calculate because it is essentially static. This is

due to its history-independence property for variables like consumption, labor and the tax rate,

xt(g
t, 0, 0) = x(gt, 0, 0).13 The expansion is focused on the calculation of the partial derivatives

xit(0), i = R,A, which are random variables in most cases. Substantial simplification comes from

the fact that, without doubts about the model, the conditional and unconditional likelihood ratios

become unity, m∗t (0) = n∗t (0) = M∗
t (0) = N∗t (0) = Λt(0) = 1. Furthermore, there is no room

for price manipulation through continuation utilities, so ξ̃t(0) = 0, and the government’s and

household’s utility coincide, Wt(0) = Vt(0), since both the government and the household share

the same reference model.

Caveats and caution. We want to draw here some caution on the results of the small-doubts

expansion. The optimal plan with model uncertainty is driven by the state variables (ξ̃t,Λt), which

summarize the history gt. In the full-confidence economy these state variables are constant, so this

type of perturbation is singular in the terminology of Holmes (1996). Moreover, the state variables,

which are martingales, become random walks in the expansion, as seen in lemmata 1 and 2. So,

in a sense, we approximate a non-stationary economy by using information from the stationary

counterpart at σ = (0, 0). We are not worried so much about the persistence indicated by the

random walk result; this is expected, given the martingale nature of the state variables.14 More

worrisome is the fact that some variables, like the tax rate, will surpass 100% after a sufficiently

long time.

How should we use the expansion? For both of the reasons stated in the previous paragraph,

we consider the heuristic expansions as valid only for the short-run, that is, for a limited number

of periods, starting from t = 0 (and not from some long-run ‘steady state’). This is both to avoid

13The history-independence property extends also to debt if we assume Markovian shocks.
14Note that persistence is also very high in problems where a global solution method is used. See for example

Ferrière and Karantounias (2019).
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the explosiveness in the long-run, and also to limit the error accumulated from the expansion. To

elaborate on the second point, lemma 1 shows that the increment to the multiplier ξ̃t is determined

by the Lucas and Stokey debt position. But if we had a realization of good shocks over time, which

would lead to an increasing amount of debt over time, the full-confidence debt position would not

be a good approximation point anymore. Initializing the economy from t = 0 and constraining the

number of periods deals with these issues.

C.2 Proof of lemma 1

Define for convenience the innovation in µt (under the household’s worst-case measure),

ηt ≡ µt − Et−1m
∗
tµt, (C.2)

and rewrite the law of motion of the multiplier ξ̃t in (A.8) as

ξ̃t(σ) = σAηt(σ)Λt(σ) +
m∗t (σ)

n∗t (σ)
ξ̃t−1(σ), ξ̃0 ≡ 0

Differentiate with respect to σ to get

ξ̃Rt (σ) = σA
[
ηRt (σ)Λt(σ) + ηt(σ)ΛR

t (σ)
]

+
m∗Rt (σ)n∗t −m∗t (σ)n∗Rt (σ)

(n∗t (σ))2
ξ̃t−1(σ)

+
m∗t (σ)

n∗t (σ)
ξ̃Rt−1(σ) (C.3)

ξ̃At (σ) = ηt(σ)Λt(σ) + σA
[
ηAt (σ)Λt(σ) + ηt(σ)ΛA

t (σ)
]

+
m∗At (σ)n∗t −m∗t (σ)n∗At (σ)

(n∗t (σ))2
ξ̃t−1(σ)

+
m∗t (σ)

n∗t (σ)
ξ̃At−1(σ), (C.4)

with ξ̃i0(0) ≡ 0, i = R,A.

Evaluate (C.3) and (C.4) at σ = (0, 0) (recalling the unitary likelihood ratios and ξ̃t(0) = 0 for

full confidence in the model) to get

ξ̃Rt (0) = 0 (C.5)

ξ̃At (0) = ηt(0) + ξ̃At−1(0)⇒ ξ̃At (0) =
t∑
i=1

ηi(0). (C.6)

Recall the definition of ηt and the fact that µt = ΦUctbt (from (A.9)) to get
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ηt(0) = µt(0)− Et−1µt(0) =
[
Uct(0)bt(0)− Et−1Uct(0)bt(0)

]
Φ(0), (C.7)

where Φ(0) the respective marginal cost of taxation in the full-confidence economy. Use now

(C.1) and (C.5)-(C.6) to get ξ̃t = σAξ̃
A
t (0). Take first differences to finally get the approximate

law in (36).

C.3 Proof of lemma 2

Consider the belief ratio as function of the vector σ ≡ (σR, σA), Λt(σ) ≡ M∗
t (σ)

N∗
t (σ)

. Differentiate with

respect to σi, i = R,A to get

Λi
t(σ) =

M∗i
t (σ)N∗t (σ)−M∗

t (σ)N∗it (σ)

(N∗t (σ))2
, i = R,A

Evaluate at σ = (0, 0) to get

Λi
t(0) = M∗i

t (0)−N∗it (0), i = R,A. (C.8)

Consider the martingales N∗t and M∗
t , with laws of motion N∗t (σ) = n∗t (σ)N∗t−1(σ) and M∗

t (σ) =

m∗t (σ)M∗
t−1(σ), and initial values N0 = M0 ≡ 1. Differentiate the law of motion of N∗t with respect

to σi, i = R,A

N∗it (σ) = n∗it (σ)N∗t (σ) + n∗t (σ)N∗it−1(σ), N∗i0 (0) ≡ 0, i = R,A.

Thus, at σ = (0, 0) we get

N∗it (0) = n∗it (0) +N∗it−1(0), N∗i0 (0) ≡ 0, i = R,A (C.9)

Repeating exactly the same steps for the martingale M∗
t delivers

M∗i
t (0) = m∗it (0) +M∗i

t−1(0),M∗i
0 (0) ≡ 0, i = R,A (C.10)

Consider now the conditional likelihood ratios (n∗t ,m
∗
t ). We have

n∗t (σ) =
exp(σRWt(σ))

Et−1 exp(σRWt(σ))
and m∗t (σ) =

exp(σAVt(σ))

Et−1 exp(σAVt(σ))
.

20



The increments n∗it (σ),m∗it (σ), i = R,A to the martingale derivatives are

n∗Rt (σ) = n∗t (σ)
[
Wt(σ) + σRW

R
t (σ)− Et−1n

∗
t (σ)[Wt(σ) + σRW

R
t (σ)]

]
n∗At (σ) = σRn

∗
t (σ)

[
WA
t (σ)− Et−1n

∗
t (σ)WA

t (σ)
]

m∗Rt (σ) = σAm
∗
t (σ)

[
V R
t (σ)− Et−1m

∗
t (σ)V R

t (σ)
]

m∗At (σ) = m∗t (σ)
[
Vt(σ) + σAV

A
t (σ)− Et−1m

∗
t (σ)[Vt(σ) + σAV

A
t (σ)]

]
Evaluating now at σ = (0, 0) delivers

n∗Rt (0) = m∗At (0) = Vt(0)− Et−1Vt(0) (C.11)

n∗At (0) = m∗Rt (0) = 0 (C.12)

Therefore, using (C.11) and (C.12), the unconditional martingale derivatives in (C.9) and (C.10)

become

M∗A
t (0) = N∗Rt (0) =

t∑
j=1

(
Vj(0)− Ej−1Vj(0)

)
(C.13)

N∗At (0) = M∗R
t (0) = 0 (C.14)

Hence, (C.8), (C.13) and (C.14) imply that

ΛA
t (0) = M∗A

t (0) (C.15)

ΛR
t (0) = −N∗Rt (0) = −M∗A

t (0). (C.16)

Use now (C.1) to get

Λt = 1 + σAΛA
t (0) + σRΛR

t (0) = 1 + (σA − σR)M∗A
t (0). (C.17)

Evaluate (C.17) at t−1, take differences and use (C.11) for the martingale derivative increment

to get (39).
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C.4 Useful definitions and facts

C.4.1 Second-order conditions

For the rest, bear in mind the following definitions:

Kt(0) ≡ (1 + 2Φ(0))∆(ct(0)) + Φ(0) [∆′(ct(0))ct(0) + Γ′(ct(0))gt] , t ≥ 1 (C.18)

K0(0) ≡ (1 + 2Φ(0))∆(c0(0)) + Φ(0) [∆′(c0(0))c0(0) + Γ′(c0(0))g0 − Z ′(c0(0))b0] , (C.19)

where

∆(ct) ≡ Ucct − 2Uclt + Ullt < 0 (C.20)

Γ(ct) ≡ Ullt − Uclt (C.21)

Z(ct) ≡ Ucct − Uclt (C.22)

Note that we have already substituted for labor from the resource constraint, so all expressions

above should be understood as functions of consumption only and in particular of the full-

confidence consumption allocation, ct(0). The term ∆(ct) is negative due to the concavity of

the period utility function. ∆′() stands for the derivative of the particular expression with respect

to consumption. ∆′t(ct(0)) denotes the evaluation of the derivative at the consumption of the no

doubts economy. The same notational interpretations hold for Γ′, Z ′.

Assumption C.1. Kt(0) < 0,∀t ≥ 0.

We work under assumption C.1 for the rest of the expansion. We encountered expression Kt(0)

for t > 0, in Appendix A, where we expressed it equivalently as KLS (which was the expression that

Kpatern. in (A.24) was reducing to when σR = σA = 0). We show here that Kt(0) is directly related

to the second derivative of the Lagrangian of the problem without doubts about the model and is

intimately connected to the sufficient second-order conditions of the Lucas and Stokey problem.

Lemma C.1. If assumption C.1 holds, then the second-order sufficient conditions of the optimal

fiscal policy problem without fear of misspecification are satisfied.

Proof. Drop the “zero” notation and let l(c,Φ) ≡ U(c, 1−c−g)+Φ
[
(Uc(c, 1−c−g)−Ul(c, 1−c−

g))c−Ul(c, 1−c−g)g
]

denote the period return in the Lagrangian for the Lucas and Stokey economy

for t ≥ 1 and let l0(c,Φ, b0) ≡ U(c, 1−c−g0)+Φ
[
(Uc(c, 1−c−g0)−Ul(c, 1−c−g0))c−Ul(c, 1−c−

g0)g0−Uc(c, 1−c−g0)b0

]
denote the respective Lagrangian for t = 0. It is easy to see that lcc = K

and l0cc = K0 where K and K0 the expressions in (C.18) and (C.19). The second-order sufficient

conditions require the Hessian of the Lagrangian with respect to ct(g
t) to be negative definite

on the tangent plane of the constraint space defined by A ≡
{
x :

∑∞
t=0

∑
gt

∂F ({c})
∂ct(gt)

xt(g
t) = 0

}
,
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where F ({c}) ≡
∑∞

t=0

∑
gt πt(g

t)[(Uc(g
t)−Ul(gt))ct(gt)−Ul(gt)gt]−Uc0b0, i.e. the implementability

constraint (in terms of ct). All expressions are calculated at {c} that is regular and satisfies the

first-order conditions. The time separability of the utility function with full confidence in π makes

the Hessian diagonal, so the second order conditions take the form
∑∞

t=0 β
t
∑

gt Kt(g
t)x2

t (g
t) < 0

for all x 6= 0, x ∈ A. It is apparent that they are satisfied if Kt < 0, ∀t ≥ 0.

Utility functions in examples 1 and 2. In Appendix A we showed that Assumption C.1

is satisfied for our two main parametric examples for t ≥ 1. Considering K0 in (C.19), we can

rewrite it for the separable case as K0 = T c0 − T l0, with T c0 = (1 + 2Φ)Ucc + ΦUccc(c0 − b0) and T l0

the same as for t ≥ 1, T l0 = T l, where T l defined in (A.38). T l is positive for our two examples. If

we have a power utility function in c, we get

T c0 = −γc−γ−1
0

[
(1 + Φ

(
1− γ + (1 + γ)

b0

c0

)]
(C.23)

When b0 ≥ 0 we have T c0 < 0 and therefore K0 < 0.15 We are assuming that even in the case of

initial assets b0 < 0, their size is not large enough to violate the K0 < 0 condition.

C.4.2 Optimal wedges and some simplifications

Rewrite the optimal wedge Ul − Uc for t ≥ 1 (that we encountered in (A.21)), and the respective

one for t = 0, as

Ul − Uc =
ΦΛt

1 + ξ̃t + ΦΛt

[
Uccct − Ucl(ct + ht) + Ullht

]
, t ≥ 1 (C.24)

Ul0 − Uc0 =
Φ

1 + Φ

[
Ucc0(c0 − b0)− Ucl0(c0 + h0 − b0) + Ull0h0

]
. (C.25)

Use the resource constraint (1) to eliminate labor ht and rewrite the optimal wedges as

Ul − Uc =
ΦΛt

1 + ξ̃t + ΦΛt

[
∆(ct)ct + Γ(ct)gt

]
, t ≥ 1 (C.26)

Ul0 − Uc0 =
Φ

1 + Φ

[
∆(c0)c0 + Γ(c0)g0 − Z(c0)b0

]
, (C.27)

where ∆,Γ, Z defined in (C.20), (C.21) and (C.22) respectively.

15Note that from the first-order condition (A.6) we get 1 + Φ(1 − εcc,0(1 − b0/c0) − εch,0) = λ0/Uc0 > 0, so for
the power case we have 1 + Φ(1− γ + γb0/c0) > 0.
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Recall from (A.1) that Ω(c, h) stands for the government surplus in marginal utility terms. Use

the resource constraint to write Ω as function of consumption only,

Ω(c) ≡ Ω(c, c+ g) =
[
Uc(c, 1− c− g)− Ul(c, 1− c− g)

]
c− Ul(c, 1− c− g)g (C.28)

Differentiating with respect to consumption delivers

Ω′(c) = ∆(c)c+ Γ(c)g + Uc − Ul (C.29)

The change in the surplus of the government Ω′() will show up repeatedly later. We simplify

(C.29) using information from the optimal wedges. Evaluate the optimal wedges (C.26) and (C.27)

at the full confidence economy σ = (0, 0) and rearrange to get16

∆(ct(0))ct(0) + Γ(ct(0))gt =
1 + Φ(0)

Φ(0)
(Ult(0)− Uct(0)) (C.30)

∆(c0(0))c0(0) + Γ(c0(0))g0 − Z(c0(0))b0 =
1 + Φ(0)

Φ(0)
(Ul0(0)− Uc0(0)). (C.31)

Using facts (C.30) and (C.31) allows us to write Ω′ in (C.29) as

Ω′(ct(0)) =
Ult(0)− Uct(0)

Φ(0)
, t ≥ 1 (C.32)

Ω′(c0(0)) =
Ul0(0)− Uc0(0)

Φ(0)
+ Z(c0(0))b0. (C.33)

C.5 Consumption and labor

Result 1. (’Consumption and labor for small doubts’) The partial derivatives of consumption and

labor evaluated at the full-confidence allocation are

cRt (0) = hRt (0) =
Ult(0)− Uct(0)

Kt(0)

[
M∗A

t (0)− ΦR(0)

Φ(0)

]
, t ≥ 0 (C.34)

cAt (0) = hAt (0) =
Ult(0)− Uct(0)

Kt(0)

[
ξ̃At (0)−M∗A

t (0)− ΦA(0)

Φ(0)

]
, t ≥ 0. (C.35)

Φi(0), i = R,A stands for the derivative of the marginal cost of distortionary taxation, and

Kt(0) defined in (C.18) and (C.19). Hence, using (C.1), we get

16Uct(0) is shorthand for the evaluation of the marginal utility of consumption at the full-confidence allocation.
The same interpretation holds for Ult(0).
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ct(σ) = ct(0) +
Ult(0)− Uct(0)

Kt(0)

[
σAξ̃

A
t (0) + (σR − σA)M∗A

t (0)− σRΦR(0) + σAΦA(0)

Φ(0)

]
. (C.36)

Note the presence of Kt(0) < 0 in the determination of the partial derivatives cit(0), i = R,A.

The term (Ul − Uc)/K that shows up in both expressions depends only on the consumption al-

location of Lucas and Stokey at time t, and therefore only on the realization of the government

expenditure shock gt. Under assumption 1, the tax rate is positive for t ≥ 1, so Ul − Uc < 0, and

therefore (Ul − Uc)/K > 0.

Expression (C.36) shows that pessimistic expectation management and paternalism affect con-

sumption in the way we expect. A positive innovation in debt in marginal utility units (which

increases ξ̃At (0)), increases the tax rate and therefore reduces consumption. Furthermore, if we

assume paternalism and the government doubts the model less than the household (σR > σA), a

positive innovation in utility (good times) is associated with less taxes (since the less pessimistic

government taxes more bad times and less good times), which increases consumption. A positive

innovation in utility would reduce consumption, if σR < σA.

Proof. From the resource constraint (1), we have cit(0) = hit(0), i = R,A. Rewrite the optimal

wedge for t ≥ 1 (C.26) as function of σ,

(Ult(σ)− Uct(σ))
(
1 + ξ̃t(σ) + Φ(σ)Λt(σ)

)
= Φ(σ)Λt(σ)

[
∆(ct(σ))ct(σ) + Γ(ct(σ))gt

]
(C.37)

Derivatives with respect to σR. Differentiate the left-hand side and the right-hand side of

(C.37) with respect to σR and evaluate at (σR, σA) = (0, 0) to get

LHSR(0) = −(1 + Φ(0))∆(ct(0))cRt (0) + (Ult(0)− Uct(0))
[
ΦR(0)− Φ(0)M∗A

t (0)
]

(C.38)

RHSR(0) =
[
ΦR(0)− Φ(0)M∗A

t (0)
]
(∆(ct(0))ct(0) + Γ(ct(0))gt) + Φ(0)

[
∆′(ct(0))ct(0)

+Γ′(ct(0))gt + ∆(ct(0))
]
cRt (0) (C.39)

In deriving these expressions we used the result ξ̃Rt (0) = 0 from (C.3) and that ΛR
t (0) =

−N∗Rt (0) = −M∗A
t (0) from (C.16). Combining the two sides, collecting the terms that multiply

cRt (0) and using the definition of Kt(0) in (C.18) delivers

cRt (0)Kt(0) =
[
Ult(0)− Uct(0)−

(
∆(ct(0))ct(0) + Γ(ct(0))gt

)](
ΦR(0)− Φ(0)M∗A

t (0)
)

(C.40)

Use now (C.30) to simplify (C.40) and get (C.34).
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Derivatives with respect to σA. Proceed now to differentiation of the optimal wedge with

respect to σA. At σ = (0, 0) we have

LHSA(0) = −(1 + Φ(0))∆(ct(0))cAt (0) + (Ult(0)− Uct(0))
[
ξ̃At (0) + ΦA(0)

+Φ(0)M∗A
t (0)

]
(C.41)

RHSA(0) = [ΦA(0) + Φ(0)M∗A
t (0)](∆(ct(0))ct(0) + Γ(ct(0))gt) + Φ(0)

[
∆′(ct(0))ct(0)

+Γ′(ct(0))gt + ∆(ct(0))
]
cAt (0), (C.42)

where we used (C.15). Equalize the two sides and collect terms that multiply cAt (0) to get

cAt (0)Kt(0) = (Ult(0)− Uct(0))
[
ξ̃At (0) + ΦA(0) + Φ(0)M∗A

t (0)
]

−
(
ΦA(0) + Φ(0)M∗A

t (0)
)[

∆(ct(0))ct(0) + Γ(ct(0))gt
]

(C.43)

Using (C.30) to simplify (C.43) delivers (C.35).

Initial period. The analysis above used the optimal wedge for t ≥ 1. The initial period is

different due to the possible presence of initial debt b0. Write the optimal wedge (C.27) as function

of σ,

(1 + Φ(σ)) (Ul0(σ)− Uc0(σ)) = Φ(σ)
[
∆(c0(σ))c0(σ) + Γ(c0(σ))g0 − Z(c0(σ))b0

]
. (C.44)

Differentiating now with respect to (σR, σA), evaluating at σ = (0, 0) and using fact (C.31) and

the definition of K0(0) in (C.19) delivers ci0(0) = −Ul0(0)−Uc0(0)
K0(0)

Φi(0)
Φ(0)

, i = R,A, which are the same

expressions as in (C.34) and (C.35), since M∗A
0 = ξ̃A0 = 0.

C.6 Marginal cost of distortionary taxation

Result 2. (“Marginal cost of distortionary taxation for small doubts”)

The partial derivatives of the marginal cost of taxation at σ = (0, 0) are

ΦR(0) =
Φ(0)E0

∑∞
t=0 β

tzt(0)M∗A
t (0)

E0

∑∞
t=0 β

tzt(0)
(C.45)

ΦA(0) =
Φ(0)2E0

∑∞
t=0 β

tM∗A
t (0)Ω(ct(0)) + Φ(0)E0

∑∞
t=0 β

tzt(0)
[
ξ̃At (0)−M∗A

t (0)
]

E0

∑∞
t=0 β

tzt(0)
,(C.46)
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where

zt(0) ≡ (Ult(0)− Uct(0))2

Kt(0)
, (C.47)

and Ω(.) defined in (C.28). Thus, we get

Φ(σ) = Φ(0) + σRΦR(0) + σAΦA(0). (C.48)

Proof. The partial derivatives Φi show up in the calculation of the approximate consumption and

labor, (C.34) and (C.35). Note that, in contrast to the other derivatives that we considered, Φi are

not random (because the multiplier Φ is non-stochastic). Rewrite the implementability constraint

(22) as

E0

∞∑
t=0

βtM∗
t (σ)Ω(ct(σ)) = Uc0(σ)b0. (C.49)

Proceeding with differentiation and evaluation at σ = (0, 0), and using (C.13) and (C.14), we

get

σR : E0

∞∑
t=0

βtΩ′(ct(0))cRt (0) = Z(c0(0))cR0 (0)b0

σA : E0

∞∑
t=0

βtM∗A
t (0)Ω(ct(0)) + E0

∞∑
t=0

βtΩ′(ct(0))cAt (0) = Z(c0(0))cA0 (0)b0.

Use now expressions (C.32) and (C.33) to substitute for Ω′ to get

σR : E0

∞∑
t=0

βt
Ult(0)− Uct(0)

Φ(0)
cRt (0) = 0

σA : E0

∞∑
t=0

βtM∗A
t (0)Ω(ct(0)) + E0

∞∑
t=0

βt
Ult(0)− Uct(0)

Φ(0)
cAt (0) = 0.

Finally, using expressions (C.34) and (C.35) for cit(0), i = R,A and solving for Φi(0), i = R,A

delivers (C.45) and (C.46). Note that zt(0) < 0 since Kt(0) < 0. So the denominator in (C.45)

and (C.46) is negative. We need additional information on the specifics of the problem to be able

to sign the numerators.
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C.7 Optimal tax rate

C.7.1 General utility function

Result 3. (‘Tax rate for small doubts’)

� The tax rate for small doubts about the model is equal to

τt(σ) = τt(0) + αt(0)

[
σAξ̃

A
t (0) + (σR − σA)M∗A

t (0)− σRΦR(0) + σAΦA(0)

Φ(0)

]
, t ≥ 0, (C.50)

with αt(0) a coefficient that depends only on the current shock gt through the full confidence

allocation. If assumption 1 holds, αt(0) < 0 for t ≥ 1.

� The tax rate can be rewritten equivalently as

τt(σ) = τt(0)− αt(0)

[
−ξ̃t(σ) + Λt(σ) +

Φ(σ)

Φ(0)
− 2

]
, t ≥ 0, (C.51)

where ξ̃t(σ) and Λt(σ) follow the approximate laws of motion (36) and (39) in lemmata 1

and 2, and Φ(σ) the marginal cost of taxation for small doubts about the model.

Proof. Write the tax rate as τt(σ) = 1 − Ult(σ)/Uct(σ). Differentiating and evaluating at (0, 0)

gives

τ it (0) =
Ucct(0)Ult(0) + Ullt(0)Uct(0)− Uclt(0)(Uct(0) + Ult(0))

(Uct(0))2
cit(0), i = R,A

Under assumption 1, the expression multiplying cit(0) is negative. Using now (C.34) and (C.35)

we get

τRt (0) = αt(0)
[
M∗A

t (0)− ΦR(0)

Φ(0)

]
(C.52)

τAt (0) = αt(0)
[
ξ̃At (0)−M∗A

t (0)− ΦA(0)

Φ(0)

]
, (C.53)

where

αt(0) ≡ Ucct(0)Ult(0) + Ullt(0)Uct(0)− Uclt(0)(Uct(0) + Ult(0))

(Uct(0))2

Ult(0)− Uct(0)

Kt(0)
. (C.54)
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Combining (C.52) and (C.53) and using (C.1) delivers (C.50). The coefficient αt(0) depends

only on the realization of the shock the current period gt through the Lucas and Stokey allocation.

Furthermore, under assumption 1, we have Ult(0) < Uct(0) for t ≥ 1, so αt(0) < 0 for t ≥ 1 as can

been seen from (C.54). If we also assume that initial debt is not so large that it would lead to an

initial subsidy, so if τ0(0) > 0, then Ul0(0) < Uc0(0) and α0(0) < 0 under assumption 1. To rewrite

the tax rate as in (C.51), use the approximate formula for Φ(σ) in (C.48) and recall that to first

order we have ξ̃t = σAξ̃
A
t (0) (see proof of lemma 1) and Λt(σ) = 1 + (σA − σR)M∗A

t (0). The result

follows.

C.7.2 Proof of proposition 5 (utility function of example 1)

Proof. Recall at first that with this utility function the tax rate with full confidence about the

model is constant for t ≥ 1 and can be potentially different at t = 0 when b0 6= 0. In particular,

τt(0) =
Φ(0)(γ + φh)

1 + Φ(0)(1 + φh)
, t ≥ 1 (C.55)

τ0(0) =
Φ(0)(γ(1− b0

c0(0)
) + φh)

1 + Φ(0)(1 + φh)
(C.56)

Consider coefficient αt(0) in (C.54) in result 3. Drop for simplicity the ‘zero’ notation and time

indices and let Ucl = 0. We can rewrite (C.54) as

α =
Ul − Uc
Uc

Ucc
Ul
Uc

+ Ull

K

= − τ

K
(Ucc(1− τ) + Ull),

where in the second line we used τ = 1 − Ul/Uc. Use now the constant Frisch utility function to

get

α =
τ

K
c−γ
(
(1− τ)γc−1 + φhh

−1ah
hφh

c−γ︸ ︷︷ ︸
1−τ

)
=

τ(1− τ)

K
c−γ(γc−1 + φhh

−1). (C.57)

Use now (A.41) and (A.42) to calculate K. We have
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K = T c − T l = −c−γ
[
γc−1(1 + Φ(1− γ)) + φhh

−1ahh
φh

c−γ
(1 + Φ(1 + φh))

]
= −c−γ

[
γc−1(1 + Φ(1− γ)) + φhh

−1(1− τ)(1 + Φ(1 + φh))
]

(C.55)
= −c−γ(1 + Φ(1− γ))[γc−1 + φhh

−1], t ≥ 1. (C.58)

Use now (C.58) in (C.57) and simplify to get

α = − τ(1− τ)

1 + Φ(1− γ)

(C.55)
= − Φ(γ + φh)(

1 + Φ(1 + φh)
)2 , t ≥ 1. (C.59)

Thus, αt(0) is constant for t ≥ 1. Take then first differences in (C.50) and use expressions

(C.11) and (C.7) for the increments m∗At (0) and ηt(0) respectively to get (49).

Initial tax rate. For completeness, we show also how to calculate τ0(σ). Use (C.50) to get

τ0(σ) = τ0(0) − α0(0)σRΦR(0)+σAΦA(0)
Φ(0)

, where τt(0) is given by (C.56). We can calculate easily

Φi(0), i = R,A for the case of a Markovian reference model; see the formulas in result 5. The

initial α0 is given by

α0 =
τ0(1− τ0)

K0

c−γ0 (γc−1
0 + φhh

−1
0 ) (C.60)

where K0 = T c0 − T l0, and T c0 and T l0 given respectively by (C.23) and (A.42).

C.8 Debt

Result 4. (‘Debt for small doubts’)

� Let yt ≡ Uctbt denote debt in marginal utility units for t ≥ 1. The partial derivatives are

given by

yRt (0) = A(gt)M∗A
t (0) +BR(gt), t ≥ 1 (C.61)

yAt (0) = A(gt)
(
ξ̃At (0)−M∗A

t (0)
)

+BA(gt), t ≥ 1 (C.62)

where the respective coefficients are defined as
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A(gt) ≡ Et
∑∞

i=0 β
izt+i(0)

Φ(0)
(C.63)

BR(gt) ≡ Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

(
M∗A

t+i(0)−M∗A
t (0)

)
− ΦR(0)

(Φ(0))2
Et

∞∑
i=0

βizt+i(0) (C.64)

BA(gt) ≡ Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

[
(ξ̃At+i(0)− ξ̃At (0))− (M∗A

t+i(0)−M∗A
t (0))

]
− ΦA(0)

(Φ(0))2
Et

∞∑
i=0

βizt+i(0) + Et

∞∑
i=1

βim∗At+i(0)yt+i(0), (C.65)

with zt(0) defined in (C.47). Thus, debt in marginal utility is given approximately by

yt(σ) = yt(0) + A(gt)
[
σAξ̃

A
t (0) + (σR − σA)M∗A

t (0)
]

+ σRBR(gt) + σABA(gt), t ≥ 1. (C.66)

The coefficients A(gt), Bi(g
t), i = R,A depend on the entire history of shocks. If the reference

model π is Markov, then the history-independence of the full-confidence allocation delivers

history-independent coefficients, A(gt) = A(gt), Bi(g
t) = Bi(gt), i = R,A.

� Let ct(σ) = ct(0) + σRc
R
t (0) + σAc

A
t (0) and yt(σ) = yt(0) + σRy

R
t (0) + σAy

A
t (0) denote the

approximate consumption and debt in marginal units. Then, debt to first-order is given by

bt(σ) =
yt(σ)

Uct(0)
− Z(ct(0))

Uct(0)
bt(0)

(
ct(σ)− ct(0)

)
, t ≥ 1, (C.67)

where Z(.) is defined in (C.22).

Proof. From the dynamic budget constraint of the government we have

yt(σ) = Ω(ct(σ)) + βEtm
∗
t+1(σ)yt+1(σ), t ≥ 1. (C.68)

Debt in Uc units. Differentiate (C.68), evaluate at (0, 0) and use (C.11) and (C.12) to get

σR : yRt (0) = Ω′(ct(0))cRt (0) + βEty
R
t+1(0)

σA : yAt (0) = Ω′(ct(0))cAt (0) + βEtm
∗A
t+1(0)yt+1(0) + βEty

A
t+1(0)
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Solving forward we get

yRt (0) = Et

∞∑
i=0

βiΩ′(ct+i(0))cRt+i(0)

yAt (0) = Et

∞∑
i=0

βiΩ′(ct+i(0))cAt+i(0) + Et

∞∑
i=1

βim∗At+i(0)yt+i(0)

Use now (C.32), (C.34), (C.35) and the definition of zt(0) in (C.47) to get

yRt (0) = Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

[
M∗A

t+i(0)− ΦR(0)

Φ(0)

]
(C.69)

yAt (0) = Et

∞∑
i=0

βi
zt+i(0)

Φ(0)

[
ξ̃At+i(0)−M∗A

t+i(0)− ΦA(0)

Φ(0)

]
+ Et

∞∑
i=1

βim∗At+i(0)yt+i(0) (C.70)

Use now the identities M∗A
t+i(0) =

(
M∗A

t+i(0)−M∗A
t (0)

)
+M∗A

t (0) and ξ̃At+i(0) =
(
ξ̃At+i(0)−ξ̃At (0)

)
+

ξ̃At (0) and rewrite (C.69) and (C.70) as (C.61) and (C.62) respectively.

Debt. Write debt in marginal utility units as yt(σ) = Uct(σ)bt(σ). Differentiate and evaluate at

(0, 0) to get

yit(0) = Z(ct(0))bt(0)cit(0) + Uct(0)bit(0), i = R,A.

Thus,

bit(0) =
1

Uct(0)

[
yit(0)− Z(ct(0))bt(0)cit(0)

]
, i = R,A, (C.71)

and therefore,

bt(σ) = bt(0) + σRb
R
t (0) + σAb

A
t (0)

= bt(0) +
1

Uct(0)

[
σRy

R
t (0) + σAy

A
t (0)

]
︸ ︷︷ ︸

yt(σ)/Uct(0)

− Z(ct(0))

Uct(0)
bt(0)

[
σRc

R
t (0) + σAc

A
t (0)

]︸ ︷︷ ︸
ct(σ)−ct(0)

,

by realizing that bt(0) = yt(0)/Uct(0).
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C.9 Formulas for Markov shocks

Assume that the reference probability model is a time-invariant Markov chain with transition

matrix Π of dimension N × N . Let 1N×1 denote an N × 1 column vector with ones everywhere,

so Π1N×1 = 1N×1, and let I the N ×N denote the identity matrix.

Martingale increments. We need to calculate the increments to the martingale derivatives

M∗A
t and ξ̃At . For that we need to calculate Vt(0) and yt(0) ≡ Uct(0)bt(0). Dropping the “zero”

notation, we have:

~V = (I− βΠ)−1~U (C.72)

~y = (I− βΠ)−1~Ω, (C.73)

where ~U and ~Ω vectors of dimension N×1, which collect the period utility and surplus in marginal

utility units of the Lucas and Stokey (1983) history-independent allocation for t ≥ 1, for each

realization of g.17 The induced vectors ~V and ~y help us create now the martingale increments. Let

m∗A denote the matrix that collects the increments to the martingale M∗A
t with corresponding

element m∗Aij = m∗A(j|i) = n∗R(j|i) = Vj −E(V |i) and let η denote the matrix that collects the

increments to ξ̃At with element ηij = η(j|i) = Φ(0)(yj − E(y|i)). Given ~V and ~y in (C.72) and

(C.73), we can write these matrices as

m∗A = 1N×1
~V T −Π~V 1TN×1 (C.74)

η = Φ(0)
(
1N×1~y

T −Π~y1TN×1

)
, (C.75)

where the superscript ‘T ’ refers to transpose. Note that the increments to the martingale deriva-

tives inherit the Markov property.

Worst-case beliefs. Recall that the worst-case likelihood ratio of the household is given by

m∗(j|i) = 1 + σAm
∗A(j|i). Similarly, the respective likelihood ratio of the government is given

by n∗(j|i) = 1 + σRm
∗A(j|i). To express the worst-case beliefs in terms of a matrix, let ◦ de-

note element-by-element multiplication between two matrices with the same dimensions (or else

Hadamard multiplication). We have

ΠHous. = Π ◦
(
1N×N + σAm∗A

)
(C.76)

ΠGov. = Π ◦
(
1N×N + σRm∗A

)
, (C.77)

17We used vector ~S for the same object in (A.40) in Appendix A. We reserve the use of boldface for matrices in
this section.
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where 1N×N is the N ×N matrix with ones everywhere. The rows of the worst-case transition

matrices add to unity. To see that, let 0N×1 denotes the N-dimensional zero column vector.

We have (Π ◦ m∗A)1N×1 = 0N×1 and (Π ◦ η)1N×1 = 0N×1, since the conditional mean of the

increments is zero. Thus, ΠHous.1N×1 = Π1N×1 + σA(Π ◦m∗A)1N×1 = 1N×1. The same property

holds obviously for the government’s worst-case transition matrix, ΠGov.1N×1 = 1N×1. Note that

we constrain ourselves to sufficiently small (in absolute value) σi, i = R,A, which guarantees the

non-negativity of the elements of (C.76) and (C.77), making them proper transition matrices. We

use formulas (C.76) and (C.77) in the simulation of detection error probabilities.

Present discounted values. We want to calculate the discounted present values that show up

in results 2 and 4. These expressions involve expected discounted sums of products of the history-

dependent martingale derivatives (M∗A
t or ξ̃At ), or the increment m∗At (0), with functions of the

Lucas and Stokey allocation like Ω(ct(0), ht(0)) or zt(0), that are only state-dependent.

For example, consider the sum S ≡ Et
∑∞

i=1 β
im∗At+i(0)yt+i(0) that shows up in (C.65). If we

expand it, we get

S = β
∑
gt+1

π(gt+1|gt)m∗A(gt+1|gt)y(gt+1)

+β2
∑
gt+1

π(gt+1|gt)
∑
gt+2

π(gt+2|gt+1)m∗A(gt+2|gt+1)y(gt+2)

+β3
∑
gt+1

π(gt+1|gt)
∑
gt+2

π(gt+2|gt+1)
∑
gt+3

π(gt+3|gt+2)m∗A(gt+3|gt+2)y(gt+3) + ...

= βeTgt(Π ◦m∗A)~y + β2eTgtΠ(Π ◦m∗A)~y + β3eTgtΠ
2(Π ◦m∗A)~y + ...

= βeTgt(I + βΠ + β2Π2 + β3Π3 + ...)(Π ◦m∗A)~y

= βeTgt(I− βΠ)−1(Π ◦m∗A)~y,

where egt be a column vector with 1 at position i, when gt = gi and zero otherwise.

The case where we have multiplication with the martingale M∗A
t (0) =

∑t
i=1m

∗A
i (0) is slightly

more complicated. Consider for example the term I ≡ E0

∑∞
t=0 β

tM∗A
t (0)Ωt(0) in the numerator

in (C.46), where Ωt(0) shorthand for Ω(ct(0), ht(0)). I can be rewritten as
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I = E0

∞∑
t=1

m∗At (0)
∞∑
j=t

βjΩj(0) = E0m
∗A
1 (0)E1

[
βΩ1(0) + β2Ω2(0) + ...

]
+E0m

∗A
2 (0)E2

[
β2Ω2(0) + β3Ω3(0) + ...

]
+ E0m

∗A
3 (0)E3

[
β3Ω3(0) + β4Ω4(0) + ...

]
+ ...

= βeTg0
(Π ◦m∗A)(I− βΠ)−1~Ω + β2eTg0

Π(Π ◦m∗A)(I− βΠ)−1~Ω

+β3eTg0
Π2(Π ◦m∗A)(I− βΠ)−1~Ω + ...

= βeTg0
(I + βΠ + β2Π2 + ...)(Π ◦m∗A)(I− βΠ)−1~Ω

= βeTg0
(I− βΠ)−1(Π ◦m∗A)(I− βΠ)−1~Ω.

We get similar expressions when the product involves the partial sum ξ̃At (0) =
∑t

i=1 ηi(0). For

example, the term that involves ξ̃At (0) in the numerator of (C.46) becomes

E0

∞∑
t=0

βtzt(0)ξ̃At (0) = E0

∞∑
t=1

ηt(0)
∞∑
j=t

βjzj(0) = βeTg0
(I− βΠ)−1(Π ◦ η)(I− βΠ)−1~z,

where ~z an N×1 column vector that collects the induced state-dependent zt(0) for t ≥ 1 in (C.47).

In some of the calculations we have to be careful because they may involve terms that depend

on the t = 0 allocation, which is different from the t ≥ 1 allocation when initial debt is not zero,

b0 6= 0.18 For example, when we calculate the denominator of (C.45-C.46), we get

E0

∞∑
t=0

βtzt(0) = z0 + eTg0
βΠ(I− βΠ)−1~z, (C.78)

since z0 is function of the (c0, h0) allocation. If b0 = 0, then the present value formula simplifies

to E0

∑∞
t=0 β

tzt(0) = eTg0
(I− βΠ)−1~z.

Using this type of calculations, we can collect all relevant expressions in the following result.

Result 5. Assume the reference model is Markov with transition matrix Π.

� The coefficients in (C.45) and (C.46) become

18This was not an issue when we calculated products of zt(0) or Ωt(0) with the martingales M∗A
t (0), ξ̃At (0),

because M∗A
0 = ξ̃A0 ≡ 0.
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ΦR(0) =
Φ(0)eTg0

β(I− βΠ)−1(Π ◦m∗A)(I− βΠ)−1~z

z0 + eTg0
βΠ(I− βΠ)−1~z

ΦA(0) =
Φ(0)eTg0

β(I− βΠ)−1
[
Φ(0)(Π ◦m∗A)(I− βΠ)−1~Ω +

[
(Π ◦ η)− (Π ◦m∗A)

]
(I− βΠ)−1~z

]
z0 + eTg0

βΠ(I− βΠ)−1~z
.

� The coefficients in (C.63)-(C.65) become

A(gt) =
eTgt(I− βΠ)−1~z

Φ(0)
, t ≥ 1

BR(gt) =
1

Φ(0)
eTgt

[
β(I− βΠ)−1(Π ◦m∗A)− ΦR(0)

Φ(0)
I
]
(I− βΠ)−1~z, t ≥ 1

BA(gt) =
1

Φ(0)
eTgt

[
β(I− βΠ)−1

[
(Π ◦ η)− (Π ◦m∗A)

]
− ΦA(0)

Φ(0)
I
]
(I− βΠ)−1~z

+eTgtβ(I− βΠ)−1(Π ◦m∗A)~y, t ≥ 1.

C.10 Quasi-linear utility

C.10.1 No doubts about the model

The relevant variables for σ = (0, 0) are as follows:

τt(0) = τ ≡ Φ(0)φh
1 + Φ(0)(1 + φh)

(C.79)

ht(0) = h = (1− τ)
1
φh (C.80)

ct(0) = h− gt (C.81)

Vt(0) = (1− β)−1
(
h− h1+φh

1 + φh

)
− Et

∞∑
i=0

βigt+i (C.82)

bt(0) =
τh

1− β
− Et

∞∑
i=0

βigt+i. (C.83)

In order to find the multiplier of the full-confidence economy Φ(0), we solve for the constant

tax rate from the intertemporal budget constraint of the government:
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τ(1− τ)
1
φh︸ ︷︷ ︸

Tax revenues

= G, where G ≡ (1− β)
[
b0 + E0

∞∑
t=0

βtgt
]
. (C.84)

We assume that G > 0, which implies that initial assets are not sufficiently large to finance

government expenditures without resorting to distortionary taxes. We are looking for solutions of

(C.84) at the increasing side of the Laffer curve, which implies that we are looking for τ < τLaffer ≡
φh

1+φh
. For a solution to exist we assume also that G is less than the maximum tax revenues

possible, so G < T Laffer = φh

(1+φh)
1+ 1

φh

.19 Note that if φh = 1, then (C.84) becomes a quadratic

equation, Q(τ) = −τ 2 + τ − G. The root at the proper side of the Laffer curve is τ = 1−
√

1−4G
2

since τ < τLaffer = 1/2.

C.10.2 Proof of proposition 3

Part 1. Use (C.82) and (C.83) to get

Vt(0)− Et−1Vt(0) = bt(0)− Et−1bt(0) = −(Et − Et−1)
∞∑
i=0

βigt+i

= −
∞∑
i=0

βi(Et − Et−1)gt+i

= −
( ∞∑
i=0

βiϕi
)
ugt = −ϕ(β)ugt . (C.85)

The third line comes from the fact that given (41), we have (Et − Et−1)gt+i = ϕiu
g
t , i ≥ 0.

Consequently, from (C.11), (C.13), (C.4) and (C.7) we have,

m∗At (0) = n∗Rt (0) = Vt(0)− Et−1Vt(0) = −ϕ(β)ugt (C.86)

ηt(0) = Φ(0)
[
bt(0)− Et−1bt(0)

]
= −Φ(0)ϕ(β)ugt (C.87)

M∗A
t (0) =

t∑
i=1

m∗Ai (0) = −ϕ(β)
t∑
i=1

ugi (C.88)

ξ̃At (0) =
t∑
i=1

ηt(0) = −Φ(0)ϕ(β)
t∑
i=1

ugi . (C.89)

Part 2. Use (C.12) and (C.86) and apply the first-order expansion (C.1) to get

19From (C.79) we see that the tax rate at the top of the Laffer curve τLaffer corresponds to Φ(0) = ∞, which is
excluded by not allowing G to equal TLaffer.
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n∗t = 1 + σRn
∗R
t (0) = 1 + σR(Vt(0)− Et−1Vt(0)) = 1 +

1

θR
ϕ(β)ugt (C.90)

m∗t = 1 + σAm
∗A
t (0) = 1 + σA(Vt(0)− Et−1Vt(0)) = 1 +

1

θA
ϕ(β)ugt , (C.91)

by using (C.85).

Part 3. Use now (C.90) to get Etn
∗
t+1u

g
t+1 = Etu

g
t+1 + 1

θR
ϕ(β)Et(u

g
t+1)2 = 1

θR
ϕ(β)σ2

u, since

Etu
g
t+1 = 0. Turning to the conditional variance, we have V arGov.

t (ugt+1) ≡ Etn
∗
t+1(ugt+1−Etn∗t+1u

g
t+1)2.

Treat the variance as any other function of the parameter vector σ and expand around (0,0) to get

∂

∂σi
V arGov.

t (ugt+1)|σ=(0,0) = Etn
∗i
t+1(0)(ugt+1 − Etu

g
t+1)2 − 2Et(u

g
t+1 − Etu

g
t+1)Etn

∗i
t+1(0)ugt+1

= Etn
∗i
t+1(0)(ugt+1)2, i = R,A.

Use (C.12) and (C.86) to get

∂

∂σR
V arGov.

t (ugt+1)|σ=(0,0) = −ϕ(β)Et
(
ugt+1

)3
, and

∂

∂σA
V arGov.

t (ugt+1)|σ=(0,0) = 0,

which, after using (C.1), deliver the expression in (44). We can use (C.91) and perform a similar

approximation for the conditional variance according to the household’s worst-case beliefs, to get

∂

∂σR
V arHous.

t (ugt+1)|σ=(0,0) = 0, and
∂

∂σA
V arHous.

t (ugt+1)|σ=(0,0) = −ϕ(β)Et
(
ugt+1

)3
,

leading to the result stated in the proposition.

A last comment is due. The reader may wonder how the approximation of the conditional vari-

ance is related to the actual conditional variance that we would get according to the approximated

beliefs in (C.90). We have

V arGov.
t (ugt+1) = Etn

∗
t+1

(
ugt+1

)2 −
(
Etn

∗
t+1u

g
t+1

)2

(C.90)
= σ2

u +
1

θR
ϕ(β)Et

(
ugt+1

)3︸ ︷︷ ︸
first-order approx.

− (ϕ(β))2

θ2
R

σ4
u, (C.92)

which shows that a first-order approximation of the worst-case variance around σ = (0, 0)
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ignores terms that are fourth-order in the reference standard deviation of the exogenous shock.

C.10.3 Proof of proposition 4

Part 1. Use the general formula (49) in proposition 5 for γ = 0, and the formulas for the

innovations (42) to get (45). Turning to labor, write it as ht(σ) = (1− τt(σ))
1
φh , differentiate with

respect to σi, i = R,A and evaluate at (0, 0) to get

hit(0) = − 1

φh

h

1− τ
τ it (0), i = R,A, (C.93)

where τ and h were defined in (C.79) and (C.80) respectively. Then, the first-order approximation

of labor is

ht(σ) = h− 1

φh

h

1− τ
[
σRτ

R
t (0) + σAτ

A
t (0)

]
= h− 1

φh

h

1− τ
(τt(σ)− τ), (C.94)

where in the second line we use the first-order approximation for the tax rate. Evaluate now (C.94)

at t− 1, take first differences, use (45), and simplify by setting 1− τ = 1+Φ(0)
1+Φ(0)(1+φh)

, to get (47).

The tax revenues Tt(σ) ≡ τt(σ)ht(σ) have first-order derivatives

T it (0) = τ it (0)h+ τhit(0) = h
(
1− 1

φh

τ

1− τ
)
τ it (0)

=
h

1 + Φ(0)
τ it (0), i = R,A. (C.95)

In the first line we used (C.93) and in the second line we simplified by using the fact that
τ

1−τ = Φ(0)φh
1+Φ(0)

from (C.79). Thus, the first-order expansion becomes

Tt(σ) = τh+
h

1 + Φ(0)

[
σRτ

R
t (0) + σAτ

A
t (0)

]
= τh+

h

1 + Φ(0)

[
τt(σ)− τ

]
, (C.96)

by using again the first-order approximation of the tax rate. Take first differences in (C.96) and

use (45) to get (46).

Part 2- Preliminaries. For the rest of the section recall from (C.13) and (C.4) and that the

derivatives of the martingales are themselves martingales (with respect to π), i.e. EtM
∗A
t+1(0) =
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M∗A
t (0), Etξ̃

A
t+1(0) = ξ̃At (0). The means are zero, EM∗A

t (0) = Eξ̃At = M∗A
0 (0) = ξ̃A0 (0) = 0.

Consider first K, which can be found from formula (C.58) as

K = −φhhφh−1
(
1 + Φ(0)(1 + φh)

)
= −φh

1− τ
h

(
1 + Φ(0)(1 + φh)

)
= −φh

1 + Φ(0)

h
∀t ≥ 0 (C.97)

The second equality comes from using the labor supply condition, i.e. hφh = 1−τ and the third

equality by using the expression for the tax rate in (C.79). Expressions (A.41) and (C.23)) imply

that T c = T c0 = 0, so the formula for K holds for all t ≥ 0. Thus, K is constant for all t ≥ 0, a

fact which implies that zt(0) in (C.47) becomes constant,

zt(0) = z̄ =
(Ul − Uc)2

K
= −(hφh − 1)2

K
=
τ 2

K

(C.97)
= − τ 2h

φh(1 + Φ(0))

(C.79)
= − h

1 + Φ(0)

(Φ(0))2φh(
1 + Φ(0)(1 + φh)

)2 . (C.98)

Part 2 - Cost of taxation. Proceed now to the calculation of the derivatives Φi(0), i = R,A

in result 2, which are necessary for the determination of the coefficients of debt in result 4. These

will be greatly simplified because z is constant. Consider (C.45):

ΦR(0) = Φ(0)
z̄E0

∑∞
t=0 β

tM∗A
t (0)

z̄/(1− β)
= 0, (C.99)

since E0M
∗A
t (0) = M∗A

0 (0) = 0. Similarly, using again the martingale property of M∗A
t (0) and

ξ̃At (0)), ΦA(0) in (C.46) becomes20

ΦA(0) =
(1− β)(Φ(0))2

z̄
E0

∞∑
t=0

βtM∗A
t (0)Ωt(0)

= −(1− β)(Φ(0))2

z̄
E0

∞∑
t=0

βtM∗A
t (0)gt. (C.100)

The second line comes from the fact that Ωt = ct− (1− τ)h = τh− gt. The discounted sum in

(C.100) can be written as

20Recall that Ωt(0) is shorthand for Ω(ct(0), ht(0)) which is also equal to Ω(ct(0)).
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E0

∞∑
t=0

βtM∗A
t (0)gt =

∞∑
t=1

βt
( t∑
i=1

m∗Ai (0)
)
gt = E0

∞∑
t=1

βtm∗At (0)
∞∑
j=0

βjgt+j(0)

(C.86)
= −ϕ(β)

∞∑
t=1

βt
∞∑
j=0

βjE0u
g
t gt+j

= −ϕ(β)σ2
u

∞∑
t=1

βt
∞∑
j=0

βjϕj = − β

1− β
(ϕ(β))2σ2

u (C.101)

In the first line we have expanded the cumulative sum and collected terms multiplying each incre-

ment m∗At (0). The third line comes from the fact that E0utgt+j = ϕjσ
2
u, j ≥ 0. Use now (C.101)

in (C.100) to finally get

ΦA(0) =
βΦ(0)2(ϕ(β))2

z̄
σ2
u. (C.102)

Part 2 - Debt. The expressions for yit(0), i = R,A, in result 4 are equal to bit(0), i = R,A since

Uc = 1. Using the constancy of z̄, the martingale property and (C.99) we get

A(gt) =
z̄

(1− β)Φ(0)

(C.98)
= −(1− β)−1h

1 + Φ(0)

Φ(0)φh(
1 + Φ(0)(1 + φh)

)2 (C.103)

BR(gt) = 0. (C.104)

Similarly, the expression for BA(gt) in (C.65) simplifies to

BA(gt) = −ΦA(0)

Φ(0)2

z̄

1− β
+ Et

∞∑
i=1

βim∗At+i(0)bt+i(0)

(C.83)
= −ΦA(0)

Φ(0)2

z̄

1− β
+ Et

∞∑
i=1

βim∗At+i(0)
[ τh

1− β
− Et+i

∞∑
j=0

βjgt+i+j
]

= −ΦA(0)

Φ(0)2

z̄

1− β
− Et

∞∑
i=1

βim∗At+i(0)

∞∑
j=0

βjgt+i+j

(C.86)
= −ΦA(0)

Φ(0)2

z̄

1− β
+ ϕ(β)

∞∑
i=1

βi
∞∑
j=0

βj

ϕjσ
2
u︷ ︸︸ ︷

Etu
g
t+igt+i+j

= −ΦA(0)

Φ(0)2

z̄

1− β
+

β

1− β
(ϕ(β))2σ2

u

(C.102)
= − β

1− β
(ϕ(β))2σ2

u +
β

1− β
(ϕ(β))2σ2

u = 0. (C.105)

Use now (C.103)-(C.105) in the first-order expansion (C.66) and substitute for the martingale

derivatives by using (C.88) and (C.89) to get the debt policy (48) in the text.
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