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When to Lock, Not Whom: Managing Epidemics Using Time-Based
Restrictions

1 Introduction

The COVID19 pandemic has created a global health and economic crisis of a
magnitude not experienced since the Great Influenza Pandemic of 1918-1919.
After 33 months, about 630 million people have become infected, about 6.6 mil-
lion people worldwide have died, and estimates of excess deaths are more than
three times as high;1IMF (2022) reported a 3.1% drop in world GDP in 2020,
and a 4.5% drop in the advanced economies. The death toll in the U.S. is almost
1.1 million; the declines in U.S. GDP and consumer expenditures for 2020 have
been −3.4% and −3.8%, respectively.

We address the issue of policy responses to the pandemic, providing an
analysis of new time-based tools to manage epidemics. These policy strategies
were proposed in epidemiologically-grounded work by Karin et al (2020). The
contribution of our paper is the economic analysis of these new policy tools.
The proposed policy consists of alternating periods of work and lockdown, at
pre-defined frequencies, for the entire population. We present both normative
and positive analyses. The former applies to future pandemics or epidemics
while the latter evaluates policy against real world benchmarks in the U.S. us-
ing data.

The proposed policy tools are particularly relevant in light of the difficulties
experienced by policymakers in finding a policy strategy that lessens the trade-
offs involved. In theory, targeted population lockdowns could constitute “fine
tuning” of lockdown measures, which would serve to lessen any economic cost.
In practice, however, it turned out to be challenging to identify sub populations
to be allowed unrestricted economic activity, while imposing restrictions on
other population groups. Political and moral issues, as well as practical imple-
mentation issues, have come into play. The time-based public health manage-
ment policy avoids these difficulties, taking time, rather than population, as the
medium of restrictions.

Our model lies within a line of COVID19 research in Economics, which
posits a planner problem. The planner formulates an optimal policy of Non-
Pharmaceutical Interventions (NPIs), and in particular, lockdowns, subject to
a model of disease dynamics, taking into account vaccine arrival. The plan-
ner trades off the costs of public health outcomes, such as breach of ICU ca-
pacity and death, with the economic costs of suppression policy, including
declines in production. Prominent contributions in this line of literature include
Acemoglu, Chernozhukov, Werning, and Whinston (2021), Alvarez, Argente,
and Lippi (2021), Brotherhood, Kircher, Santos, and Tertilt (2021), Brotherhood
and Jerbashian (2020), Farboodi, Jarosch, and Shimer (2021), and Jones, Philip-
pon, and Venkateswaran (2021). Our analysis pertains to new policy strategies,
which were not considered in the literature.

1See https://ourworldindata.org/covid-deaths
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We highlight five dimensions related to time:
(i) From the normative perspective, we analyze policy that relies on time re-

strictions. Such policy is an alternative to policy based on restrictions of sectors,
age groups, regions, or other targeted population groups. The success of the
policy hinges on two mechanisms that operate over time. In lockdown days, the
disease is suppressed through exogenous government-imposed restrictions. In
work days, the disease is suppressed through the endogenous rational behavior
of the population. This combination allows the effective reproduction number
to be kept at around 1 on average. Notably, a full, prolonged lockdown is not
needed to keep death rates low. All that is needed is to have the open periods
short enough, backed up by rational precaution of the population, and followed
by lockdown periods of reasonable length ahead of the next re-opening.

(ii) The epidemiological rationale for the proposed policy is, inter alia but
not exclusively, based on the timescales of virus transmission. The idea is that for
every 14 day period, there will be k days of work and 14− k days of lockdown.
This number, k, uses the timescales of the virus against itself, taking into account
a latent period after exposure, whereby the infected person does not infect oth-
ers. In other words, the epidemiological cost of open days is mitigated by the
fact that individuals do not become infectious immediately. The epidemiologi-
cal benefit of lockdown days is enhanced because the schedule locks down the
economy when individuals are at their most infectious.

(iii) Using an optimizing social planner model, the control variables for this
policy are the timing of the various measures – initial lockdown, the cyclical policy
phase, and release. Hatchett, Mecher, and Lipsitch (2007) highlight the idea that
imposing NPIs early in an epidemic can significantly reduce mortality. In the
current paper, the exploration of timing issues, both start time and duration,
are at the heart of the analysis.

(iv) This policy is compared to a prevalent policy path which sets lockdown
and release as functions of disease prevalence, which is time-varying. Specifically,
the latter uses trigger thresholds, such as the number of persons hospitalized
in ICU in a given period of time, and gives rise to the pattern of recurrent lock-
down and release observed in the U.S. and other countries since the start of
COVID19.

(v) The proposed policy is subsequently compared to the actual experience
of New York State (NYS) and Florida. The outcomes observed for NYS turn
out to depend crucially on the timing of the policies undertaken; those for Florida
reveal particular policy preferences.

We explicitly model the dynamic path for the reproduction parameter, re-
flecting both rational individual behavior and the effects of lockdown policy.
Thus, we model the endogenous response by individuals, who adjust to the
new environment and behave accordingly. Additionally, government interven-
tions in the form of lockdowns induce behavioral change. These elements are
included in a model whereby individuals maximize utility and a social plan-
ner maximizes a welfare function, which incorporates individual utility. We
then take the model to the data and use the resulting estimates to calibrate the
relevant parameters, which we subsequently use in simulations.
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The social planner in our model uses a PDF in order to form ex-ante ex-
pectations of vaccine arrival time. This serves three key roles; first, it sets the
horizon for the problem, acting as a rate of leaving the state of the pandemic.
Second, it is an expression of the risk and uncertainty embodied in the planner
problem. Third, relative to the interest rate, it plays the major quantitative role
in discounting future streams. In our simulations vaccine arrival is realized af-
ter 540 days. Using these elements, our analysis quantifies outcomes in terms
of social welfare. We simulate the optimal cyclical policies and examine their
health and economic implications.

The cyclical policy is compared to four non-cyclical benchmarks: two polar
cases, of no policy intervention (i.e., no lockdown) or full lockdown till vac-
cine arrival; a single time span lockdown policy, whereby the starting date and
the duration are chosen optimally; and a theoretical path trying to mimic a
real-world rationale, whereby the planner chooses thresholds for multiple lock-
downs in terms of the critically ill. Subsequently, and additionally, we evalu-
ate the time-based policy tools in relation to the actual experience of NYS and
Florida in 2020.

We plot the policy plans in terms of a policy possibilities frontier. These
show the outcomes of optimal planner policies, using a two-dimensional graph
of the death toll per 1 million people and the value of lost output, in annual
GDP terms. Movement along the frontier occurs as the policy instrument in use
changes, or as the weight assigned to fatalities in the planner objective function
changes, or as the lethality of the disease changes.

Our analysis yields the following key findings.
First, the policy instruments, based on time restrictions, provide for signif-

icant improvement, substantially lessening the trade-offs involved relative to
the four non-cyclical benchmarks. The latter are situated in points on the graph
beyond the frontier.

Second, we quantify social welfare costs. These are given in utility terms
and in Present Discounted Value (PDV) consumption terms. Using the con-
sumption loss measure, comparing actual consumption to the pre-COVID steady
state (formally defined below), the different cyclical strategies place these losses
at 22% to 26% , the no intervention policy results in 36%, full lockdown in 29%,
optimal lockdown duration in 27%, and the thresholds strategy in 25%. The
underlying rationale for the improvement is that cyclical strategies allow the
planner to achieve similar death tolls with fewer lockdowns, or to reduce the
death toll dramatically without a significant damage to output. These results
are due to the optimally-derived timings of intervention (for example, “front
loading” interventions is beneficial in specific cases, which are spelled out) and
the ability of the cyclical strategies to suppress the disease while maintaining a
reasonable level of economic activity.

Third, using daily data from March 2020 to early 2021, optimal cyclical poli-
cies fare much better than actual experience in the states of New York and
Florida. When deriving this result, we use estimated state-specific parameters
in the simulations.

Importantly, the benefits of the time-based policy tools that we find are
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likely to be a lower bound of their true advantage over policy strategies that
have been implemented. This is so because, for tractability, we are not giving
the planner full flexibility when applying the cyclical tools. Similarly, we do
not quantify additional benefits, such as predictability of production, gains in
non-COVID health matters, transparency, ease of communication, and fairness.

We note that the idea of a cyclical strategy, which is at the focal point of
the normative analysis of our analysis, has been brought to the attention of
policymakers (see Yashiv (2020), Alon and Yashiv (2020), and Alon, Milo and
Yashiv (2020)) and has been considered or implemented by a host of firms and
educational institutions in the U.S., in Europe, and in Latin America. Online
Appendix A provides elaboration.

The paper proceeds as follows: Section 2 discusses the model, including
the policies we propose, on which we further elaborate in online Appendix
A. Section 3 presents the calibration and the solution methodology. Section 4
presents the results. Section 5 explores the underlying mechanism. Section 6
examines the relation between the model planner solution and actual outcomes
in two U.S. states – NYS and Florida. Section 7 concludes. Online Appendices
B and C provide further elaboration.

2 The Model

We model an optimizing social planner who operates within a SEIR model of
the epidemic and a model of the macroeconomy with optimizing agents re-
sponding to the epidemic. We elaborate on the novel policy strategies based on
time restrictions.

2.1 The Evolution of the Epidemic

We analyze the evolution of the epidemic in two complementary blocks – infec-
tion transmission and clinical progression.

2.1.1 The Infection Transmission Block

The infection transmission block is characterized by the SEIR-Erlang model, re-
flecting the epidemiological properties of COVID19. The model is essentially
based on the seminal contribution of Kermack and McKendrick (1927). Its
present form is discussed in Champredon, Dushoff, and Earn (2018). See Bar-
On, Baron, Cornfeld, Milo and Yashiv (2021) for a more detailed analysis, where
we explain the need for the two complementary model blocks. Before contact-
ing the disease for the first time, a person is Susceptible (S). Once a person gets
infected, disease progression is split into distinct compartments – Exposed (E),
Infectious (I), and Resolved (R). We denote by βt the infections transmission
rate, σ, the transition rate from E to I, and γ, the transition rate from I to R.
An infected individual spends some time in each compartment before moving
on to the next one. The person is infectious only when in the I compartment,
but not when residing in the preceding E compartment. The time durations
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spent in the E and I compartments are known as the latent and infectious pe-
riods, respectively. Once people move to the Resolved stage, they no longer
participate in disease transmission. With Poisson transition rates between com-
partments, the residence times in each of them are distributed exponentially,
and thus have zero mode. Exponential distributions capture the mean but not
the mode of the biologically accurate distributions of residence times, because
in reality what most people spend in each stage is close to the mean of the dis-
tribution, rather than zero. Therefore, we split the E and I compartments into
two sub-compartments and double the rate of transition. Now, the latent and
infectious periods are the sum of the time spent in the E1 and E2 or I1 and I2
sub-compartments, respectively. Their distribution is the sum of exponentially
distributed random variables, a special case of the Gamma distribution, known
as the Erlang distribution. The means of Erlang distributions remain 1/σ and
1/γ, but the modes are now near the means, as they should be. In the remain-
der of the paper we shall refer to this model as the SEIR model, without noting
the number of sub-compartments.

Graphically, this block is presented in panel a of Figure 1.

Figure 1

The following equations describe this block. Throughout, all stock variables
are expressed as a fraction of the population.

Ṡt = −βt(I1t + I2t)St (1)
Ė1t = βt(I1t + I2t)St − 2σE1t (2)

Ė2t = 2σE1t − 2σE2t (3)
İ1t = 2σE2t − 2γI1t (4)
İ2t = 2γI1t − 2γI2t (5)

Ṙt = 2γI2t (6)

An important parameter is the reproduction number Rt, which is the aver-
age number of people infected by a person, and is given by:

Rt =
βt
γ

(7)

We use Rt for the reproduction number at date t and denote the basic re-
production number by R0 at the initial stage, when S0 = 1. Beyond the initial
t = 0, our formulation will allow forRt to be affected by policy and by rational
individual behavior, as elaborated below in sub-section 2.2. We shall also be
discussing the effective reproduction number, defined as:

Re = StRt (8)

We model the transmission rate βt as a function of three arguments, using
the following formulation:
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βt = βW − βN

(
1− Nt

NSS

)α

+ βΛ exp (−Λt) (9)

The arguments are motivated as follows:
a. βW is the transmission rate when the economy is open, i.e., production

and employment are not restricted.
b. βN parameterizes the scale of the decline in transmission as activity falls

(decline in Nt
NSS , employment relative to its steady state), using a power function

with parameter α.
c. βΛ exp (−Λt) expresses the decline in transmission due to learning over

time by individuals.
At time t = 0, when Nt

NSS = 1 we get:

β0 = βΛ + βW (10)

which is the transmission at the initial stage and corresponds toR0 =
β0
γ .

After a period of time, which depends on the rate of decline Λ, individuals
change their behavior, and when exp (−Λt)� βW we get that the transmission
rate (and henceRt) rises with employment:

βt = βW − βN

(
1− Nt

NSS

)α

(11)

2.1.2 The Clinical Block

The clinical block describes the clinical progression of the disease and the pro-
gression of new cases through the healthcare system, depending on the devel-
opment and severity of symptoms. We postulate the following. Once infected,
a person enters an incubation period, a P state, during which there are no
symptoms, lasting for 1/θP on average. Following it, a person either remains
asymptomatic (O) or develops symptoms (M). Denote the share of asymp-
tomatic cases by η. The others (1− η ) develop symptoms, and with probability
ξ are hospitalized (H). A given share π of patients become critically ill (denoted
X), i.e., develop conditions requiring transition to ICU. Following the literature
(see, for example, Kaplan, Moll and Violante (2020) and Brotherhood, Kircher,
Santos, and Tertilt (2021)), we specify the death probability in this critical state
X as:

δ(Xt) = δ1 + δ2 ·
I(Xt > X) · (Xt − X)

Xt
(12)

where X denotes ICU capacity and I is the indicator function. The reasoning
is as follows. When there is no breach of ICU capacity, the death probability is
given by δ1. Whenever there is an overflow, I(Xt > X) = 1, the death proba-
bility increases with the risk that a patient will not be provided ICU care when
needed. The underlying assumption is that the allocation to ICU is random
among all patients in need of it, so the risk to be left out of ICU (for a given
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patient) is given by (Xt−X)
Xt

. At the limit, the death probability δ(Xt � X, X) is
given by δ1 + δ2.

At any stage, a person may recover (C). The clinical block is represented
graphically in panel b of Figure 1.

The analytical description of the symptomatic branch is:

Ṗt = βt(I1t + I2t)St − θPPt (13)
Ṁt = (1− η)θPPt − θM Mt (14)

Ḣt = ξ · θM Mt − θH Ht (15)
Ẋt = πθH Ht − θXXt (16)
Ḋt = δ(Xt)θXXt (17)

The parameters θP, θM, θH, and θX relate to the average time that passes be-
tween the stages of infection, symptoms onset, hospitalization, ICU admission,
and death, respectively.

Note that a given person moves through the two blocks simultaneously.
They relate to two timescales, the infectiousness profile and the clinical pro-
gression, which develop in parallel. Each of the blocks characterizes different
properties of an infection case: one identifies whether a given person is infec-
tious and the other identifies the severity of the disease (whether one needs
hospitalization, for example). Thus, a person might be infectious (stage I of the
infection transmission block) and at the same time still show no symptoms, i.e.,
be in stage P, the incubation period, of the clinical block. Similarly, a person
may no longer be infectious (stage R of the infection transmission block) but
still be hospitalized (stage H of the clinical block).

2.2 The Economy

We first describe optimal individual decisions (2.2.1) and then elaborate on the
aggregate outcomes (2.2.2).

2.2.1 Consumer-Worker Optimization

In each period, there are two groups of individuals in the economy: the majority
who are active and a minority who are inactive because of health reasons.

Active workers. Active workers maximize a utility function, which includes
standard utility from consumption and disutility from labor; there is no sav-
ing/investment. Additionally and importantly, they respond to the epidemic
endogenously. The model is thus related to papers which tie macroeconomic
dynamics to epidemiological dynamics, which posit that individual rational
economic behavior has two-way connections with disease transmission.2 No-
table COVID-related contributions include Atkeson (2021b, 2022), Atkeson, Kopecky,

2This issue was explored long before COVID19; prominent examples include Geoffard and
Philipson (1996), Fenichel et al (2011), and Fenichel (2013), Greenwood, Kircher, Santos, and
Tertilt (2019), and the surveys by Philipson (2000) and Verelst, Lander, and Beutels (2016).
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and Zha (2021), Eichenbaum, Rebelo, and Trabandt (2021), Garibaldi, Moen,
and Pissarides (2020), and Krueger, Uhlig, and Xie (2020). An elaborate analy-
sis, emphasizing heterogeneous agents, is offered by Kaplan, Moll, and Violante
(2020).

Inactive workers. This group is comprised of the following pools (shares of
the population): Dt, deceased; Xt, critically ill; Ht, hospitalized; and φMt, work-
ers with COVID19 symptoms, who do not work because they are isolated. The
individuals in these pools, apart from the deceased, get a fixed consumption
transfer from the government. This formulation follows a modelling idea of Ka-
plan, Moll and Violante (2020, see page 28); it assumes that the government has
access to a storage technology for final goods and has accumulated a sufficient
quantity of goods to provide for the consumption of the afore-cited pools dur-
ing the pandemic. As a result, their consumption is not part of the flow resource
constraint. This assumption simplifies the simulation exercise and has no bear-
ing on its quantitative results as these pools are negligibly small throughout
relative to the active population.

The utility function of the active workers is given by:

U(ct, nt, Ḋt) = u(ct)−
1

ωn(Ḋt, t)
v(nt)− ln ωx(Ḋt, t) (18)

We define and explain each term in turn:
(i) For consumption we postulate a conventional functional form and para-

meter value.

u(ct) =
c1−ζc

t
1− ζc

(19)

where ζc is the constant relative risk aversion parameter, which we set to 1.
(ii) For labor we postulate a conventional functional form and parameter

value.

v(nt) = θ1+ζn
n1+ζn

t
1+ ζn

(20)

and ζn is the inverse Frisch elasticity of labor supply, set to 4, in line with the
synthesis of micro evidence reported by Chetty et al (2013), pointing to Frisch
elasticities around 0.25.

This conventional term is multiplied by 1
ωn(Ḋt,t)

capturing the individual re-
sponse to the epidemic, in the spirit of modelling by Kaplan, Moll and Violante
(2020, see their eqs. 21-22). It expresses an increase in the marginal disutility of
labor due to the social interactions component of market work in the times of
the epidemic. It is a function of the current daily death rate Ḋt, and we assume
1 > ωn(Ḋt, t) > 0 , ωn

ss = 1, and ∂ωn(Ḋt,t)
∂Ḋt

< 0.
(iii) The last term in equation 18 offsets the level shift in utility generated

by the marginal utility shifter 1
ωn(Ḋt,t)

. We assume 1 > ωx(Ḋt, t) > 0 , ωx
ss =

1, and ∂ωx(Ḋt,t)
∂Ḋt

< 0 so that this term, − ln ωx(Ḋt, t), is positive and increases
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in Ḋ. This offset follows Kaplan, Moll and Violante (2020) when computing
social welfare. The offset term precludes a big fall in one’s own individual
utility (and consequently in social welfare which aggregates individual utility)
when others die, while the individual undertakes precautionary behavior. It
can be interpreted as capturing the added value of precautionary behavior, i.e.,
the value to the individual herself or himself from engaging in precautionary
behavior in the face of the death of others.

Under these restrictions, the utility function becomes:

U(ct, nt, Ḋt) = ln ct −
1

ωn(Ḋt, t)
θ5 n5

t
5
− ln ωx(Ḋt, t) (21)

The lifetime utility maximization problem of active workers, given the indi-
vidual discount rate r, is given by:

max{ct,nt}

∫ ∞

t=0
e−rtU(ct, nt, Ḋt)dt = max{ct,nt}

∫ ∞

t=0
e−rt

[
ln ct −

1
ωn(Ḋt, t)

θ5 n5
t

5
− ln ωx(Ḋt, t)

]
dt

(22)

s.t. ct = wnt (23)

Using the budget constraint, the F.O.C implies that individual labor supply
of utility-maximizing agents can be written as follows:

nt =
ωn(Ḋt, t)

θ

1/5

(24)

We assume the following functional form for the marginal utility shifter
ωn(Ḋt, t):

ωn(Ḋt, t) =
(
ωx(Ḋt, t)

)5 (25)

where ωx(Ḋt, t) is defined to be

ωx(Ḋt, t) ≡ (1− g(Ḋt, t)), g(Ḋt, t) < g ∀t, (26)

The function g(Ḋt, t) depends on the daily death flow and on time and is bounded
from above by g. We discuss the restrictions on g(Ḋt, t) and its functional form
below. We use estimation to undertake empirically-based parameterization of
this epidemic-related feedback function, ωx(Ḋt, t).

Hence, optimal labor supply and consumption of individuals drop when
death rates rise and are given by:

nt =
1
θ

(
1− g(Ḋt, t)

)
(27)

ct = w · nt = w · 1
θ

(
1− g(Ḋt, t)

)
(28)
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The parameter 1
θ in equation (27) represents optimal labor supply in steady state

(nSS) without the epidemic. The term
(
1− g(Ḋt, t)

)
is the endogenous time-

varying reduction in the individual labor supply relative to the no-epidemic
steady state, due to the rational behavioral response by individuals. In the
course of the epidemic, actual labor supply is not necessarily the optimal la-
bor supply given by equation (27), because the government might impose even
stricter reductions on activity. Denote the limitation on labor supply mandated
by the government by 1− h(Lt, t) , where Lt expresses lockdown measures. In
that case, actual labor supply will follow the government mandate, and con-
sumption will be set according to the budget constraint ct = wnt. Therefore,
the following inequality should hold true in all periods:

nt ≤
1
θ
(1− h(Lt, t)) (29)

Hence, formally:

nt =
1
θ

min{1− g(Ḋt, t), 1− h(Lt, t)} = 1
θ
(1−max{g(Ḋt, t), h(Lt, t)}) (30)

ct = w · 1
θ

(
1−max{g(Ḋt, t), h(Lt, t)}

)
(31)

2.2.2 Production and Labor

Denote byPt the aggregate population of active, representative agents in period
t. In the pre-epidemic steady-state: Pt = PSS. During the epidemic, aggregate
employment falls due to people being unable to work because of health reasons.
The active population is therefore:

Pt = PSS · (1− Dt − Xt − Ht − φMt). (32)

The hours of labor supplied by the representative agent in period t, nt, de-
rived in equation (30), is in daily hours. The aggregate hours worked in period
t, Nt, are thus:

Nt = Pt · nt (33)

In the pre-epidemic steady-state, NSS = PSS · nSS . During the epidemic, both
aggregate employment Pt and the intensive margin nt change, so that:

Nt = PSS · (1− Dt − Xt − Ht − φMt) ·
1
θ

(
1−max{g(Ḋt, t), h(Lt, t)}

)
(34)

Therefore, the relative scale of economic activity during the epidemic, aag-
gregate hours worked by the active population relative to the pre-epidemic
steady-state, is given by (noting that nSS =

1
θ ):

Nt

NSS
=
PSS · (1− Dt − Xt − Ht − φMt) · 1

θ

(
1−max{g(Ḋt, t), h(Lt, t)}

)
PSSnSS

(35)

= (1− Dt − Xt − Ht − φMt) ·
(
1−max{g(Ḋt, t), h(Lt, t)}

)
11



The production function of the firm is linear in aggregate hours:

Yt = A · Nt (36)
YSS = A · NSS (37)

Where the empirical counterpart of A is the average daily output per worker
in the pre-epidemic steady-state. The firm maximizes its flow profits w.r.t. em-
ployment so:

Πt = ANt − wNt

→ w = A (38)

Thus aggregate consumption of active workers equals the aggregate flow
output:

Ct = Pt · ct = Pt · w · nt = Pt · A · nt = A · Nt = Yt (39)

We normalize to 1 the pre-epidemic steady-state population of representa-
tive agents, i.e., PSS = 1.

2.3 Policy Based on Time Restrictions

The new policy, pertaining to the entire population, was introduced in Karin et
al (2020), where its epidemiological implications are analyzed extensively. Fol-
lowing an initial lockdown, move to a regime of k days of work and 14− k days
of lockdown, every 14 days. On work days, people are released from lockdown
with strict hygiene and physical distancing measures on the same k weekdays
for everyone. On lockdown days, people are kept away from work places as
well as from other public spaces. Epidemiological measures need to be used
throughout, including rapid testing, contact isolation, and compartmentaliza-
tion of workplaces. All strategies respect regular weekends, facilitating appli-
cation. Table 1 offers a visual summary.

Table 1

Epidemic dynamics using these policies are discussed in detail below, where
they are depicted graphically in Figure 4 (see Section 4).

The rationale for the policy is as follows. Cyclical strategies reduce the av-
erage value of the reproduction parameter – which will be shown below to
capture the progress of the disease – through two effects: time-restrictions and
anti-phasing.

The time-restrictions effect is a reduction in the time T that an infectious per-
son is in contact with many others, compared to the situation with no lock-
down. For example, a 4-day work, 10-day lockdown cycle (k = 4) reduces T
to 4

14 T ≈ 0.3T. The anti-phasing effect uses the timescales of the virus against
itself. Most infected people are close to peak infectiousness for about 3-5 days,
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beginning after a latent period of about 3 days (on average) after exposure. A
proper work-lockdown cycle, such as a 4-work 10-lockdown schedule, allows
most of those infected during work days to reach maximal infectiousness dur-
ing lockdown, thus avoid infecting many others. Those with significant symp-
toms can be infectious for longer, but remain hospitalized, isolated, or quar-
antined along with their household members, preventing secondary infections
outside the household.

As Table 1 shows, we only consider k ≤ 8 in our analysis of the cyclical
strategies. This is because higher values of k imply shorter periods of lock-
downs, for example, locking only on weekends. Though similar lockdown poli-
cies have been implemented (for example, in India), they do not line up with
the epidemiological rationale of the cyclical policies. Furthermore, we find that,
in the U.S. context, such extremely open policy tools are hardly consistent with
a policy of efficient epidemic suppression. As noted above, online Appendix A
provides further details.

2.4 The Planner Problem

The Social Welfare Function. The benevolent planner maximizes discounted so-
cial welfare, in expected present value terms. In any given period, social flow
welfare is the sum of the agents’ flow utilities, less the value of lives lost in that
period:

W(T0, T1, T2) = (40)

=
∫ ∞

TV=0
f (TV) ·

∫ T

0
e−rt

[
PSS · (1− Dt − Xt − Ht − φMt)U(ct, nt, Ḋt)

−PSS VSLU · Ḋt

]
dt

where ct and nt are defined in equations (30) -(31), T is the planning horizon,
TV denotes the time till vaccine arrival distributed according to f (TV), and the
term VSLU denotes the statistical value of life in utility units.

The first term in the square brackets depends on the utility of active workers,
from the group PSS · (1− Dt − Xt − Ht − φMt) , and is given by U(ct, nt, Ḋt),
where ct, nt and Ḋt are defined in (30) - (31) and in 17. The planner assumes
that the welfare of inactive agents is zero. Hence, relative to their steady state
utility, prior to disease outbreak, there is a social welfare loss for the duration
of their inactivity.

The second term in the square brackets is a lost lives value term, not part of
the individual utility function. It often features in this context; see, for example,
Acemoglu, Chernozhukov, Werning, and Whinston (p.492, 2021), Alvarez, Ar-
gente, and Lippi (eq.7 on p. 371, 2021), and Farboodi, Jarosch, and Shimer (eq.
13 on p.13, 2021). It is made up of the product of the aggregate death flow Ḋt
and the value of statistical life in utility terms, VSLU .

The planner takes into account the possibility of a pharmaceutical resolution
of the epidemic. We assume that at time TV a vaccine and a cure are found si-
multaneously (similar to the assumptions made by Acemoglu, Chernozhukov,
Werning, and Whinston (2021) and Alvarez, Argente, and Lippi (2021)). We

13



assume that after TV no new cases arise and all inactive workers recover imme-
diately. The waiting time till vaccine/cure introduction is uncertain, and it is
distributed according to the probability density function f (TV), known to the
planner. We elaborate on the functional form of f (TV) and the intuition under-
lying it in sub-section 2.5 below. Immediately after TV , the economy moves to
the no-epidemic steady state.

The Planner Maximization Problem. The planner takes the individual opti-
mization described in sub-section 2.2.1 as given, and maximizes the afore-cited
objective function through the choice of three regime-switching dates: T0, the
start of the initial lockdown, T1, the date at which the planner switches from
initial lockdown to the cyclical strategy, and T2, the date at which the planner
abandons the cyclical strategy and removes all restrictions on economic activ-
ity. The lockdown regime Lt changes at dates T0, T1, T2, as described below, and
the stringency of lockdowns under different regimes is fixed when the planner
decides on the optimal timing T0, T1, T2. We describe the calibration of Lt under
different regimes in sub-section 3.2.2 below. The full problem of the planner
reads:

maxT0,T1,T2W(T0, T1, T2) (41)

subject to equations (1) -(6), (9), (12) ,(13)-(17), (21), and (30) - (31), where lock-
down policy Lt is defined as follows:

Lt =


0 i f t ≤ T0

LL i f T0 < t ≤ T1

LW = 0 on open days or LL on closed days i f T1 < t ≤ T2

0 i f t > T2

(42)

where LL is the lockdown stringency on “closed” days and LW = 0 on “open”
days. We further assume that the process of learning (see the last term in equa-
tion (9)) is triggered either by the imposition of lockdown of at least 14 days or
by the endogenous response that is significant enough (i.e., g(Ḋt, t) > LL).

Social Welfare Loss. One can compute the social welfare loss in consumption
or output terms. We define the flow welfare loss as follows:

WL
(
nt, Ḋt

)
≡ Ṽ (nss, 0)− Ṽ

(
nt, Ḋt

)
(43)

where Ṽt is the planner instantaneous utility, U (nss, 0) = Ṽ (nss, 0) is steady
state utility with no deaths, and

Ṽ
(
nt, Ḋt

)
= ln (w · nt)−

1
5

(
nt

nss ·ωx(Ḋt, t)

)5

− ln ωx(Ḋt, t)−VSLU · Ḋt (44)

We also define the function WL0 to be the welfare loss function when no disease
is present
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WL0 (nt) ≡WL (nt, 0) (45)

Appendix B shows that we can define the inverse function

ñt = WL−1
0 (WLt) (46)

This function maps the instantaneous welfare loss, WLt, to a correspond-
ing hours value, ñt, that if worked in a world with no disease, would have
caused this welfare loss. The decline in consumption (in percentage points)
corresponding to WLt is given by

CL (WLt) =
nss −WL−1

0 (WLt)

nss
= 1− WL−1

0 (WLt)

nss
(47)

Equation 47 translates the instantaneous welfare loss WLt to an instanta-
neous reduction in consumption, CLt, in percentage terms. The corresponding
PDV value of consumption reduction corresponding to the welfare loss due the
disease is given by

PDV_CL (WLt) =

∞∫
t=0

exp (−rt)CL (WLt) dt (48)

2.5 Modelling Vaccine Arrival Time

The term f (TV) is the probability density function of the availability of a vac-
cine at time TV . This is an important term as it sets the horizon for the problem,
acting as a hazard rate for leaving the state of the pandemic. It is an expression
of the essential risk and uncertainty embodied in the planner problem. Note
that were we to model an arrival time known with certainty, not only would an
important real world aspect be removed, but such modelling might create an
artifact in the optimal plan. The planner may enable an outbreak shortly before
vaccine arrival, relying on the vaccine to eradicate it. Such a plan is not robust
to delays in the arrival time. Relative to the interest rate r, expressing time pref-
erence, f (TV) plays the major quantitative role in discounting future streams.
The constancy of r makes the planner problem time-consistent, as shown by
Halevy (2005). We examine two alternative distributions for f (TV).

The baseline distribution is the Gumbel distribution, which use is justified
by the following logic. We assume that the arrival of the vaccine is a result of
simultaneous competition among many firms. The time of arrival is the mini-
mum development time across these firms. Note that over the course of 2020-
2022 over 110 vaccines were in clinical trials and dozens more in pre-clinical
evaluations. The distribution of arrival time is then well approximated by a
Gumbel distribution (see Kotz and Nadarajah (2000)), which is a member of the
family of extreme value distributions. Specifically, it is used for modeling the
minimum of a sample from many distributions, including exponential, logistic,
and normal distributions. Under mild regularity conditions, it is suitable to be
a model for a sample minimum even when the distributions from which the
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sample is drawn are unknown. In our setting, we remain agnostic about the
distributions of vaccine development time by individual firms.

In terms of the model, TV refers to the time of sufficient vaccination. With
logistics, production times, gradual take-up rates, etc. an ex-ante expected 540
days seems reasonable relative to the March 2020 start date of the epidemic in
the U.S. 3This number (540 days) is also the one used by Alvarez, Argente, and
Lippi (2021) and Farboodi, Jarosch, and Shimer (2021), and is the middle of the
range in Acemoglu, Chernozhukov, Werning, and Whinston (2021).

The cumulative distribution function G (x) of a Gumbel distribution is de-
fined over the real numbers and parametrized by a location parameter µG and
a scale parameter σG :

G(x; µG, σG) = 1− exp
(
− exp

(
x− µG

σG

))
(49)

We anchor the distribution’s parameters (µG, σG), by positing that the mean
of the distribution is 540 days, and that the probability of sufficient vaccination
before day 360 is only 1%. These assumptions engender two linear equations:

E(Gumbel (µG, σG)) = µG − EulerGamma · σG = 540
Q(Gumbel (µG, σG) , q) = µG + log (− log (1− q)) · σG = 360

where E is the mean and Q is the quantile function. Targeting a mean of 540
and Q(q = 0.01) = 360 leads to the solution of µG = 565.83, σG = 44.74.

As an alternative we examine the exponential distribution, reflecting a Pois-
son process for vaccine arrival, at a fixed rate for any given day. This has been
used by Acemoglu, Chernozhukov, Werning, and Whinston (2021), Alvarez,
Argente, and Lippi (2021), Farboodi, Jarosch, and Shimer (2021), and Jones,
Philippon, and Venkateswaran (2021). Its drawback is that it has a mode of
zero, which is implausible in the case of vaccine development. We calibrate the
parameter of the exponential distribution to 1/540, so that it has the same mean
waiting time of 540 days as in Gumbel distribution.

Figure 2 illustrates the resulting calibrated probability density functions.
The Gumbel is shown by the solid line and the exponential by the dashed line.

Figure 2

The Gumbel distribution has an asymmetric bell-shaped form, with mode
around 540 days, and a rather long left tail. The density drops quite fast after
540 days. The exponential distribution has the desired mean expected waiting
time, 540 days, but the implied probability density is strictly decreasing, imply-
ing that the first day of the epidemic is the most likely date of vaccine devel-
opment. This property of the distribution is highly counter-intuitive. However,
assuming the exponential distribution is convenient because it fits in smoothly

3We have used 540 days in work on simulating this model since the summer of 2020. Actual
developments turned out broadly consistent with this number.
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with the exponential discount factor which is frequently used in dynamic opti-
mization problems in Economics. In Appendix B we compare the use of Gum-
bel and Exponential distributions as the basis for an optimizing planner, and
show that the welfare loss in using the Exponential is higher.

2.6 Benchmarks

We shall compare the results of simulating the model, calibrated for the U.S.
economy, to the following benchmarks:

(i) and (ii) The polar cases of no policy intervention (i.e., no lockdown) or
full lockdown till vaccine arrival.

(iii) The case whereby the duration of lockdown is set optimally. This is
essentially the case of k = 0, i.e., no open days within a cyclical setting, and we
shall denote it Optimal Lockdown.

(iv) A theoretical path trying to mimic real-world rationale by re-interpreting
the planner problem as choosing thresholds for lockdown policy in terms of the
critically ill, X. The first threshold defines a level X0 whereby if Xt > X0 an ini-
tial lockdown is imposed. Subsequently, a second threshold defines a level X1
whereby if Xt < X1 lockdown is released. Finally, a third threshold defines a
level X2 whereby if Xt > X2 lockdown is re-imposed. The planner chooses the
three thresholds optimally. The logic is that the first eruption of the disease is
different from later eruptions, since the initial learning period has not yet oc-
curred, and the endogenous response to death lags the infection. Therefore,
X0 allows the planner the freedom to lock earlier or later in the phase of ini-
tial eruption, while X2 enables the planner to lock at a different threshold for
later eruptions. The release threshold X1 is the same throughout. Note that this
strategy leads to recurrent lockdown and release policies, and, that the planner
here is not as constrained as in the case of the cyclical strategies, where we have
allowed for only three optimal points in time to be chosen.

These four cases are compared to six cyclical strategies, which use k =
3, 4, 5, 6, 7, 8.

In Section 6 we compare the model to the actual experience of the states of
New York and Florida.

3 Calibration and Solution Methodology

We calibrate the model to fit the U.S. economy, which was badly hit by COVID19.
Throughout we work in daily terms. In Section 6, we discuss the methodology
and calibration values used for the analysis of two specific states in the U.S.

3.1 Calibration of the Epidemiological Model

In Table 2, we present the relevant parameter values for the two blocks, where
we rely on sources in the epidemiological and medical literatures published in
Science, Nature, the Lancet, and JAMA, as detailed in the table’s notes.

Table 2
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3.1.1 The Infection Transmission Block

For the duration numbers of the latency period (1/σ) and the infectiousness
period (1/γ) we rely on studies that have appeared early on in the COVID19
pandemic and were published in Science; see Tian et al (2020) and Li et al
(2020). These studies were co-written by university researchers from China (Ts-
inghua, Hong Kong, and others), from the U.S. (Harvard, Princeton, Columbia,
Penn State, UC Davis, and NIH), and from the U.K. (Imperial, Oxford, and
Southampton). Their findings are confirmed by studies on infector-infectee
pairs; see He et al. (2020) and Ma et al. (2020). A number of papers (Tin-
dale et al (2020), Kong et al (2020), and Ren (2021)) highlight the fact that a
significant part of disease transmission happens before the onset of symptoms.
This implies that the latent period is shorter than the incubation period, which
is usually 5-6 days (see the review in Bar-On et al (2020) and the references
therein). The latter appears within the clinical block to which we turn now.

3.1.2 The Clinical Block.

The value for the duration till death is given by 1
θP
+ 1

θM
+ 1

θH
+ 1

θX
and is set at

19.5 days based on CDC estimates. We use X = 58,094
329.529∗106 = 1. 8× 10−4 based

on an estimate of 58, 094 ICU beds by the Harvard Global Health Institute.
The implied Infection Fatality Rate (IFR) is given by IFR = ξ · π · η · δ1. Es-

timates of the Imperial College COVID19 Response Team (2020) and the meta-
analysis findings of Meyerowitz-Katz and Merone (2020) put IFR at 0.8%. Meyerowitz-
Katz and Merone (2020) state: “Based on a systematic review and meta-analysis
of published evidence on COVID-19 until July 2020, the IFR of the disease
across populations is 0.68% (0.53%− 0.82%). However, due to very high het-
erogeneity in the meta-analysis, it is difficult to know if this represents a com-
pletely unbiased point estimate. It is likely that, due to age and perhaps under-
lying comorbidities in the population, different places will experience different
IFRs due to the disease. Given issues with mortality recording, it is also likely
that this represents an underestimate of the true IFR figure.” Using this number
and the numbers for ξ, π, and η in Table 2, we derive δ1 = 0.5. We then calibrate
δ2 = 0.5 to capture the fact that, with extreme loads on the public health system,
the probability to die increases to 1 for each patient in need of an ICU bed (see
the reasoning in sub-section 2.1 above).

3.2 Calibration Based on Estimation

We employ daily U.S. data to estimate key relations and use the point estimates
to calibrate the model.

3.2.1 Data

The data series used are daily deaths, daily employment, lockdown measures,
and the derived transmission rate. Appendix C elaborates on data definitions
and sources. Figure 3 plots these four variables.

18



Figure 3

The transmission rate falls rapidly till early April 2020; it then rises some-
what till June 2020 and subsequently fluctuates around a fairly stable level. The
disease is represented by the daily death series, where a big surge starts the
first wave in March 2020 and where the decline starts in late April 2020; a sec-
ond wave peaks in January 2021. Employment falls rapidly to a low of 80% of
its pre-pandemic level in mid April 2020 and recovers, first rapidly and then
slowly, though not all the way to its pre-pandemic level. Policy is shown by
the weighted lockdown stringency index, which rises to a high level by the last
third of March 2020. It subsequently drops in June 2020 and stays constant
except for a rise in part of November 2020.

3.2.2 Dynamics of Transmission and the Reproduction Parameter

We estimate equation 9, as reported in panel a of Table 3

Table 3

The estimates imply the following. When Nt
NSS = 1 i.e., the economy is not

locked and there are no sick or dead, at time t = 0:

β0 = βΛ + βW = 0.339+ 0.376 = 0.715

and soR0 =
β0
γ = 2. 86

Given the estimated rate of decline, Λ = 0.12, in a little less than a month
individuals adjust their behavior to the presence of the disease; subsequently,
when exp (−Λt)� βW we get:

βt = βW − βN

(
1− Nt

NSS

)α

This implies βt drops endogenously below βW as a function of employment,
yielding reproduction parameterRt variation between 1.5 and 0.8.

3.3 Calibration of the Economic Model

Discounting. We posit a 4% annual discount rate (r = 0.04), converted to daily
terms (used by individuals and consequently by the social planner).

The value of φ. As in Glover, Heathcote, Krueger, and Rios-Rull (2020), we
assume that anyone who has any symptoms self-isolates and does not work
(φ = 1).

The endogenous response, lockdowns, and employment.
In order to calibrate other values appearing in sub-section 2.2 we proceed as

follows.
Without restrictions, equation 30 would allow employment to drop very

significantly. This can even reduce employment to levels below what is usually
regarded as essential employment plus work from home. Empirical estimates
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for the U.S. indicate that the minimum employment level under the most strin-
gent lockdown measures was around 0.65− 0.70 of full employment (see Blau,
Koebe, and Meyerhofer (2021) and Gregory, Menzio and Wiczer (2020)). We
therefore calibrate this level of employment to be 0.68 and set g = 0.32.

We postulate that the functions g(Ḋt, t), h(Lt, t) are given by:

g(Ḋt, t) = κtḊt (50)
h(Lt, t) = κtLt (51)

As discussed above, there is an overlap of compliance with lockdown and
the endogenous response, so we use the maximal response. The variables κt
and κt express the idea that both endogenous individual response and compli-
ance with lockdown are modelled with time decay ft. We use the functional
form proposed by Atkeson (2021b, 2022) as follows:

ft = normal_cd f

(
t− µ f

σ f

)
(52)

κt = κ (1− (1− ϕκ) · ft) (53)
κt = κ (1− (1− ϕκ) · ft) (54)

where normal_cd f is the CDF of the normal distribution, κt and κt are the time-
varying parameters of the effects of compliance lockdown and individual re-
sponse on employment, respectively, and the parameters µ f , σ f ,κ, ϕκ , κ and ϕκ

are to be estimated.
The resulting estimating equation is given by:

Nt

Nss
= 1−max(κtLt, κtḊt) + εt (55)

We non-linearly estimate equation 55 using data on Nt
Nss , L, and Ḋt in the

period from March 1, 2020 to February 28, 2021. The results are reported in
Table 3b. We note that LL is calibrated to be the highest share of workers who
did not work during the course of the disease in the U.S. i.e., 0.20.

Employment, Wages, and the Utility Function.
For the planner problem and the simulations we further need to calibrate

θ and A. To do so we use two U.S. data points, as do Eichenbaum et al (2021,
pp.5162-3): the representative person works 28 hours per week reflecting the
average number of hours worked from the Bureau of Labor Statistics 2018 ATUS
and earns an annual income of $58,000, using the 2019 estimate from the U.S.
Bureau of Economic Analysis.

Thus, pre-epidemic, which we call steady-state (SS), when g(Ḋt, t) = 0 we
get, converting weekly hours to daily terms:

nSS =
1
θ

θ = 1/4 (56)
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In the aggregate, no-epidemic steady-state: PSS = 1, and NSS = PSS · nSS =
4.

Using daily income W and daily hours, the hourly wage is:

w =
W
nSS =

58000
365
4

= 39.73 (57)

We use equation (38) and set A = w.
Value of Statistical Life.
The planner objective includes the term PSS · Ḋt ·VSLU , where VSLU is the

value of statistical life. We determine its value and show how it fits in the social
welfare function.

The central estimate in Hall, Jones, and Klenow (2020) for the monetary
value of statistical life lost to COVID19, VSLUSD, is 3.81 million USD, based
on the EPA estimate of 270, 000 USD per year and the authors’ estimate of 14.1
years of remaining life on average. For robustness, we look at two sets of alter-
native values estimates in sub-section 5.3 below.4

To include these values in the social welfare function, we apply an oft-used
methodology (see, for example, Farboodi et el. (2021, p.16)), as follows: denote
the Value of Statistical Life in utility terms by VSLU , so that the event of death
in the model is associated with utility loss of VSLU . Individuals are indifferent
between paying SHAREC of their flow consumption and avoiding the risk ε of
losing VSLU , and not paying SHAREC of their flow consumption and carrying
the ε risk of losing VSLU . Given the no-epidemic steady-state utility, this logic
means that VSLU should satisfy the following indifference condition:

ln ct − θ5 n5
t

5
r

− εVSLU =
ln ((1− SHAREC)c)− θ5 n5

t
5

r
(58)

where

SHAREC =
εVSLUSD × r

CUSD

365

(59)

The representative agent would be willing to pay SHAREC so as not to lose
VSLU with an ε risk of death; the payment, SHAREC, is given by equation 59,
paying εVSLUSD × r each day, where r is the daily discounting rate is r.

Assuming SHAREC � 1 we get− ln (1− SHAREC) ' SHAREC and using
our modelling of C = Y (which we have taken to be 58, 000 USD), we get:

εVSLU =
SHAREC

r
=

εVSLUSD×r
YUSD

365

r

VSLU =
VSLUSD × 365

YUSD (60)

4In Section 2.2 of Appendix B we delineate an elaborate procedure to get such VSL estimates
using a number of data sources, including Greenstone and Nigam (2020), and taking into account
age groups, finding very similar numbers.
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Thus the VSLU value we get is 23, 977 for the baseline VSLUSD value of 3.81
million USD.

4 Results

We present the results for the baseline calibration and explore some variations
in the next section. Section 2 of Online Appendix C delineates the methodology
of the simulations.

The optimizing planner chooses how long to wait till first lockdown (T0),
when to start implementing a cyclical strategy (T1), and when to release com-
pletely (T2), for each instrument, namely for each given k. Optimal timing is
based on probability-weighted scenarios for vaccine arrival over the horizon
(T) of two years. According to the vaccine arrival time distribution that we
assume, the probability that it will take more than two years to introduce the
vaccine is practically 0. In the simulations, vaccine arrival is actually realized
on day 540, at its arrival time in expectation, using the afore-discussed Gumbel
distribution.

We present the results for the benchmarks discussed in sub-section 2.6 above
– no intervention, full lockdown, optimal duration lockdown, and a thresholds
strategy on X – and the cyclical strategies. Table 4 reports the planner’s optimal
timing T0, T1, T2, the resulting values of social welfare loss in terms of utility and
in terms of consumption (both delineated in the table’s notes), loss of annual
GDP (in PDV, per annum terms, evaluated over two years), and the cumulative
number of deaths, per 1 million people.

Figure 4 shows the time evolution of key series for three benchmarks (to
avoid clutter we omit the optimal lockdown case) and three of the cyclical

strategies (k = 4, 5, 8). The series plotted are as follows: flow deaths (
·

Dt),

the endogenous response κt
·

Dt, the effective reproduction parameter Re, the
employment level relative to its pre-epidemic steady state Nt

NSS
, and the flow

(first difference) welfare loss in consumption terms PDV_CL (Wt) , as com-
puted from equations (47)-(48). For clarity of presentation, the series (except
for the endogenous response) are smoothed and what is presented is a 14 days
moving average.

Table 4 and Figure 4

Table 4 and Figure 4 show that the results can be characterized as follows.
The cyclical strategies with low k (k = 3, 4) lock the economy immediately

for 14 days and then implement the cyclical strategy for an extended period of
time. Because open days are relatively few, these strategies keep the epidemic

under control. Flow deaths (
·

Dt) and the stock of cumulative deaths (D) are very
low, and Re is kept at 1 for most of the time – see the k = 4 case in Panel A of
Figure 4. As a consequence, the endogenous response κtḊt is low as well for
most of the time, peaking at 1% of the work force during the initial breakout of
the epidemic until it is contained.
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During the prolonged cyclical phase, with relatively few open days, em-
ployment averages around 85% of its steady state level; GDP loss is around
20%− 21% in PDV per annum terms evaluated over two years. Welfare loss, in
terms of the PDV over the two year period, is around 33− 35 in utility terms
(to be compared to other strategies below) and is around 22%− 23% in annual
consumption terms. In flow terms, the loss is for most of the time around 15%
of steady state consumption.

The cyclical strategies with higher k (= 5, 6, 7, 8) lock the economy immedi-
ately for an extended period of time; the higher the k, the longer the initial
lockdown period. They then implement the cyclical strategy up to vaccine ar-
rival. During the initial lockdown period, starting at T0, Re is below 1, but
when the cyclical regime is in effect, Re is above 1, and the higher the k, the

higher isRe. Flow deaths (
·

Dt) rise; see, for example, the k = 8 case in Panel a of
Figure 4. Consequently, the endogenous response κtḊt rises as well enhancing
the efficacy of cyclical tools and driving the effective reproduction parameter
Re towards 1.

In the case of k = 5, Re converges to just above 1 almost immediately with
the start of the cyclical phase, while for higher k values vaccine arrival occurs
before this convergence has been completed.

Looking at the k = 8 case in Panel a of Figure 4 we see the following: em-
ployment is low, at 80% during the initial lockdown, and then jumps to around
90% at the beginning of the cyclical phase. It gradually declines thereafter, due
to the endogenous response. The loss of GDP and welfare is higher relative to
the low k ones: GDP loss is 24% as compared to 20%− 21% in PDV per annum;
welfare loss is 40 as compared to 33− 35 in PDV terms (over two years), and
26% as compared to 22%− 23% in annual consumption terms. In flow terms,
welfare loss is quite stable at around 20% of steady-state consumption during
the year-long initial lockdown, it then drops with the transition to the cyclical
regime, and subsequently gradually rises to around 16% due to the increase in
the death toll, until vaccine arrival.

The results for three benchmarks, discussed in sub-section 2.6 above, to
which we compare the afore-going cyclical policies, are as follows.5 Note, that
the first two are non-optimizing, extremal benchmarks.

The no policy intervention case has the disease erupt: flow deaths (
·

Dt) and the
stock of cumulative deaths (Dt) are the highest across all the policies examined
here; total deaths are higher by a factor of almost 60 relative to the k = 3 or
k = 5 cases. There is a strong endogenous response and employment falls to
its lower limit, 68% of the steady state level. This endogenous response and
the fast erosion of the Susceptibles pool, St, bring the effective reproduction
number Re to unity in less than three months. GDP loss is relatively low, at
around 10% in PDV per annum terms evaluated over two years, and results
solely from the endogenous precautionary behavior of individuals. In PDV
terms, the cumulative welfare loss is extremely high, at around 69 (compared to

5While here we compare to theoretical benchmarks, note that in Section 6 below we directly
compare the model results to two actual U.S. cases – New York State and Florida

23



33-40 in the cyclical strategies), which amounts to 36% of annual consumption
(compared to 22%− 26% for the cyclical strategies). In flow terms, the welfare
loss surpasses 50% of steady state flow consumption during the initial eruption
and fluctuates between 10% and 30%of steady state consumption thereafter.

The full lockdown case has the disease under control as it entails an immedi-
ate lockdown, remaining in place until vaccine arrival. It leads to a very low
number of deceased, 21 people per million. As it leads to a decline of employ-
ment of 80% of its steady state value, it has a substantial cost, at almost 29%
of annual GDP in PDV terms over two years. This output loss translates to a
welfare loss: in PDV terms the V loss is almost 47, as compared to 33− 40 in
the cyclical strategies, and is 29% in annual consumption terms. In flow terms,
it is around 19% of steady state consumption for most of the time.

The thresholds policy case follows a prevalent policy rationale, though this is
not the policy actually implemented anywhere. The planner optimally chooses
thresholds for lockdown policy in terms of ICU hospitalizations, X, and keeps

the epidemic under control. Flow deaths (
·

Dt) and the stock of cumulative
deaths (D) are relatively low, and Re fluctuates between 0.76 and 1.40 most

of the time. The endogenous response κt
·

Dt is low for much of the time, except
for an initial spike. With the recurring lockdowns, employment fluctuates be-
tween 80% and 100% of its steady state level; GDP loss is around 25% in PDV
per annum terms evaluated over two years. In terms of PDV welfare loss, the V
decline is around 38 in utility terms, compared with 33− 34 in the low k cyclical
strategies, and is 25% in annual consumption terms, compared with 22%− 23%
in the low k cyclical strategies. In flow terms, the social welfare loss fluctuates
between 4% and 20% of steady state flow consumption.

The optimal lockdown case (k = 0) features a long lockdown beginning on day
12 and results in outcomes that lie between the two extremal benchmarks and
the thresholds policy case in terms of social welfare loss (see row (iv) in Table
4). It has a lower death toll relative to the thresholds policy with a higher GDP
loss. It is clearly inferior to the cyclical strategies.

Overall, the emerging picture is that the extremal benchmarks yield high
welfare losses. This is so because policy is either non-existent or non-optimal.
All other strategies have lower welfare losses because they optimally balance
the cost of deaths and economic costs. A policy using thresholds on X achieves
substantial improvement in welfare terms but is still inferior to the low k strate-
gies (with k ≤ 6). The cyclical policies obtain better welfare results within a
narrow range. Hence the different cyclical policies perform the best, within the
set of policies examined, but between them there is relatively little difference.
In Section 6 below, we compare the cyclical strategies with real world results
for two states, New York and Florida.

5 Exploring Planner Policies

While the preceding section presented the baseline results, in this section we
analyze the mechanism, its implications, and robustness. First, we study the
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underlying mechanism, exploring the rationale for the planner optimal deci-
sions (sub-section 5.1). Subsequently, we evaluate the cyclical policies by com-
paring them to the alternative benchmark policies using a plot of the policy
possibilities frontier (5.2). Finally, we study variations in key parameters (5.3).

5.1 The Mechanism

The underlying mechanism is as follows. The progression of the epidemic can
be classified by the effective reproduction number Re, which depends both on
the current reproduction numberRt and on the current fraction of susceptibles
St, i.e., Re = Rt · St, where Rt reflects the current policy intervention regime
and/or the endogenous behavioral response of individuals to the epidemic. A
low Re is achieved (i) following an extensive exposure of the population to the
virus (engendering a low St), (ii) by the endogenous response of individuals
who decrease their activity, thereby reducing Rt, (iii) by imposing stringent
policy restrictions to curb virus spread, thereby lowering Rt. The following
classification is useful:

(i) When Re < 1, the epidemic is suppressed and the number of newly
infected people declines with time.

(ii) When Re = 1, the disease is stable and an outbreak (i.e., a spurt of
disease growth) is no longer possible, though susceptibles still do get infected
at some slowly declining rate.6

(iii) WhenRe > 1, the amount of people who are infected daily grows, some
of whom become ill, hospitalized, and may eventually die. However, this case
is not sustainable over time: the rising daily death toll elicits an endogenous
response from individuals, causing them to be cautious and to restrict their eco-
nomic activity, which in turn reduces the infection transmission rate and thus
reduces Re. Thus the endogenous response provides for a negative feedback
mechanism, which prevents the disease from spiralling out of control.

We can now formulate the outcomes of the optimal planning problem in
these terms. The outcomes presented in the preceding section basically follow
one of two basic paths.

Exogenous containment. This path implies that Re is kept below or around 1
throughout most of the planning period using stringent restrictions, while pre-
serving the pool of the susceptibles intact to a large extent. This path requires
strong suppression measures to be imposed for long periods of time. These
measures either reduce the epidemic or keep it growing at a very slow pace.
The costs in terms of foregone output are relatively high, but the death toll is
low.

Endogenous containment. This path implies that there is a reduction in Re to
around 1 through the endogenous response of individuals, while policy inter-
ventions are loose or short-lived. Since this path involves less prolonged and
delayed interventions, it is cheaper in terms of the loss of output, while the

6There is a decline in the rate of infection since the number of susceptibles St is declining with
each person infected.
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ensuing death toll is inevitably higher (relative to the exogenous containment
path).

These two policy paths reflect planner choices in relation to the fundamen-
tal trade-off between economic costs and death tolls in managing the epidemic.
The resolution of the trade-off, the optimal policy choice, depends on a num-
ber of factors: the extent to which economic activity can be maintained in lock-
downs, the fatality rate of the virus, the scope of the endogenous response of
individuals to death, and the value of statistical life. Importantly, it depends on
the type of policy instruments available to the planner. It turns out that when
cyclical strategies are in the policy toolkit, the fundamental trade-offs can be
softened in a way that allows achieving lower economic costs and/or lower
death tolls, all while waiting for vaccine arrival. The underlying rationale be-
hind the social welfare improvement engendered by the cyclical strategies is
that they average out k working days and (14− k) lockdown days and there-
fore reduce Rt. The approximation of the average Rt, to be denoted Ra, is
given by:7

Ra(k) '
(14− k) · RL + k · RWt

14
(61)

whereRL is the the reproduction number on days of lockdown, given by:

RL =
βW
γ
− βN

γ
(LL)

α (62)

This is so under the assumptions that LL > κtḊt and that the economy has
passed the initial stages of the disease so exp (−Λt)� 1.
RW is the the reproduction number on open days (no lockdown) and is

given by:

RWt =
βW
γ
− βN

γ

(
κtḊt

)α (63)

This is so under the assumption that the economy has passed the initial stages
of the disease so exp (−Λt)� 1.

An effective lockdown policy measure LL, should be set such that RL < 1

i.e. LL >
(

βW−γ
βN

)1/α
.8

Combining equations (61),(62), and (63) yields:

Ra(k, Ḋt) '
βW
γ
− βN

γ

(
k

14
(
κtḊt

)α
)
− βN

γ

(
1− k

14

)
(LL)

α (64)

The last equation shows that the reduction in the reproduction number (the
terms with a minus sign) depends on a weighted average of lockdown mea-
sures and the endogenous response to death flow numbers.

7The true average is not exactly a linear function ofRW andRL (due to the anti-phasing effect
and non-linearities of disease dynamics) and so this is a first order approximation.

8The estimates for the relevant parameters satisfy this condition.
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We now make the connection between the afore-cited concepts: the effective
reproduction parameter, Re, types of containment (exogenous and endogenous),
and the average reproduction parameter,Ra.

The basic classification into containment types is made under the assump-
tion that the death toll is low

(
Ḋt ' 0

)
.

If Ra(k, 0) 6 1, the cyclical strategy is based on exogenous containment, and
the disease is contained as long as the cyclical policy is in effect. This is so be-
cause when Ḋt ' 0 and Ra(k, 0) 6 1, then Re 6 1 holds true throughout, the
disease does not grow, and death rates remain suppressed so that the endoge-
nous response plays no role.

If Ra(k, 0) > 1 , endogenous containment takes place. The disease grows,
triggering an endogenous response that drives Ra(k, Ḋt) down until Re = 1
and the disease is subsequently contained at some fixed level.

Note that all optimal cyclical strategies are based on restricting the size of
the epidemic, so by the time of vaccine arrival, only 1%− 3% of the population
is exposed to the virus. In other words, the policy-maker never relies on the ero-
sion of the Susceptibles pool, St, as a means to drive the effective reproduction
numberRe down.

From the parameters estimated for the U.S., one can see that the low-k strate-
gies (k = 3, 4) are used to achieve exogenous containment, using a very early
lockdown phase followed by an extremely prolonged cyclical stage. Exogenous
containment is possible since the average reproduction parameter Ra implied
by these strategies, even without an endogenous response, is low, and so they
achieve an effective Re below unity. Crucially, they can bring down the infec-
tion while not closing down the economy completely.

The k = 5 strategy is based on endogenous containment, following an initial
lockdown period of just above 3 months. However, the endogenous response
is not quantitatively large: since Ra is only a little over 1, as the disease starts
to grow, the endogenous response immediately bringsRe to 1, keeping the dis-
ease, and death rates, at low levels ever since.

The less stringent strategies (k = 6, 7, 8) are used to achieve endogenous con-
tainment as well. These strategies use much longer initial lockdown periods
(3 – 5 months), before moving to the cyclical phase. After initial suppression,
using the cyclical strategies, the disease grows slowly, and with its rise, the en-
dogenous response brings Re back to 1. These dynamics can be seen in Figure
4 above. In Section 3 of online Appendix C we report the Ra and St values
associated with these different policies.

5.2 The Policy Possibilities Frontier

As discussed above, there are two major ways to deal with the epidemic, ex-
ogenous and endogenous containment. The trade-offs involved are most easily
seen in a two-dimensional graph, that maps the outcome obtained under each
instrument on two axes, the death toll per million people and the value of lost
output in annual GDP terms. One can trace out a policy possibilities frontier
using this graphical representation. Figure 5 presents several variations of this
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frontier.

Figure 5

Panel a of the figure shows the frontier plot using the baseline values, dis-
cussed in Section 3 and presented in Table 4 and Figure 4. Thus it shows the
cyclical strategies as well as the benchmark strategies, discussed in sub-section
2.6. The analysis is conditional on the baseline VSLUSD = 3.81M$. The two ex-
treme benchmarks of full lockdown (labelled ‘lock till vaccine’ arrival) and no
intervention (labelled ‘do nothing’) are represented by two extreme points on
the graph, with huge output or death toll, respectively, well beyond the frontier.
The benchmark optimal duration lockdown policy (labelled ’lockdown only’)
lies above the frontier too, as does the thresholds strategy benchmark. All cycli-
cal strategies are located at the left part of the graph. The figure clearly shows
that the use of cyclical strategies brings about a very substantial improvement
in outcomes relative to the two extremes of no intervention or full lockdown (as
also seen in the values reported in Table 4). Compared to the optimal thresholds
strategy, the cyclical strategies provide significant improvement too.

In the zoomed-in graph, the cyclical strategies trace out two linear frontier
curves, of the two types of containment. The strategies marked in green follow
exogenous containment policies. These are low-k strategies with just a few days
open each fortnight. They trade off a higher cost of lost output for a lower
death toll. They are on the frontier marked in green, nearer the origin. The
other cyclical strategies, marked in red (k = 6, 7, 8), are not as powerful in
suppressing the epidemic, as more open days are allowed every fortnight and
therefore rely on endogenous containment. They are represented by the frontier
schedule in red, further away for the origin.

Notably, the outcome of the k = 5 cyclical strategy, which belongs to the en-
dogenous containment set, is located in the vicinity of the exogenous containment
strategies outcomes. This is so as it achieves a low Ra (1.05) and is superior
to the other endogenous containments strategies. With this exception, under the
baseline calibration, the outcomes achieved by exogenous containment strategies
are superior to the outcomes of endogenous containment strategies. The former
limit the economic activity of agents, using the cyclical strategy so that the dis-
ease does not erupt. The latter strategies rely on the reaction of people to the
death toll in order to limit economic activity. In order to limit the death toll,
these strategies rely on a longer initial lockdown period, which is more costly
in terms of social welfare loss.

5.3 Variations in Key Parameters

We turn to examine robustness of our results and look at variations in key pa-
rameter values. We continue using frontier terminology and plots.

First, we look at variations in the Value of Statistical Life. Varying the plan-
ner’s preferences does not alter the big picture: the planner opts for a low death
toll, and exogenous containment is preferred to endogenous containment. In the
case of the exogenous containment strategies (k = 3, 4) as well as in the case of
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the k = 5 strategy, the planner is near the limit of the possibility to minimize
death, so the optimal planning choice does not change much with the change
in value of VSL. In the case of the endogenous containment cyclical strategies
(k > 5) the change of VSL translates into a movement along the frontier with
an almost constant slope. A rise of VSL causes the planner to lengthen the
initial lockdown period (an increase in T1 − T0), raising the loss of GDP and re-
ducing death. A lower VSL causes the planner to shorten the initial lockdown
period, which translates into a lower GDP loss and a rise in the death toll. We
present the results in full in sub-section 2.2.3 of Appendix B.

Second, the cited trade-offs also depend on the infection fatality rate. Panel
b in Figure 5 and Table 5 present the results with the alternative IFR values of
0.6%. and 1.2%.

Table 5

A lower IFR means a less lethal disease so better outcomes can be achieved
by the planner and thus welfare loss, compared to the baseline, is always lower.
This enables the planner to shorten the initial lockdown period, which, com-
bined with the lower IFR, leads to a lower death toll, lower GDP loss, or both.
A higher IFR means that the disease is more lethal, and thus welfare loss com-
pared to the baseline is higher. This leads the planner to lengthen the initial
lockdown period, and with the higher IFR, there is either a higher death toll, a
higher GDP loss, or both.

The most conspicuous feature of Figure 5d is that low- k strategies fare much
better, whatever the IFR. For all cyclical strategies, a higher IFR, usually trans-
lates into a upward-rightward movement (moving from black to blue points),
with an increase of both death and output loss. A lower IFR usually translates
into a movement downward-leftward (moving from black to green points),
with a decrease in death and output loss.9

We conclude that the finding of low-k, exogenous containment strategies
being superior is robust to the parameter value variations examined.

5.4 Discussion

What is the broader picture emerging from the analysis? Even in the absence
of any restrictions, two mechanisms lead to output loss. The first is the direct
effect generated by infected people who cannot work. The second, and more
significant one, is that individuals self restrict their economic activity in order
to avoid infection. In our analysis output loss without policy intervention was
shown to be significant. This demonstrates the critical role of the endogenous
individual response to the disease and holds true under other active planner
strategies too. To be more specific, under laissez-faire, i.e., no intervention, the
negative feedback mechanism engendered by the endogenous response alone

9The k = 7 strategy with low IFR is an exception. Under the baseline VSLUSD = 3.81M$ and
with lower IFR the planner narrowly prefers the 712 deaths per million and 0.17 output loss, to
the 100 deaths per million and 0.22output loss, which would have made it closer to the other
7− 7 points.
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curbs the spread of the disease; as shown in Figure 4d, Re drops to below 1 in
a month and subsequently converges to 1. After 18 months, only 30% of the
population are infected and the ICU limit is almost never breached. Without
such endogenous response, disease growth would be so rapid that even after
a considerable amount of the population is infected and the susceptible pool
is greatly depleted (such that Re = 1), it takes a while for the disease to slow
down, with a considerable death toll.

At the other extreme, under full lockdown, it is not possible to eliminate the
disease completely. A seed of the disease is always present in the population,
or, alternatively, is imported from the outside.

These findings give perspective on the role of policy. The main aim of policy
is not to “flatten the curve” or prevent an overshoot. These aims are achieved
by the endogenous individual response. Policy cannot eliminate the disease or
avoid its economic costs. Using lockdowns, policy is truly needed in order to
“buy time.” This is the time needed for individuals to adapt to the disease and
for governments and for the pharmaceutical industry to develop vaccines and
treatments. The question, then, is how best to do so. We show that cyclical
lockdown strategies are useful in this context, as they enable the planner to
smooth out the costs over a longer period of time. Doing so they reduce the
total social welfare loss in PDV terms. We have analyzed the dynamics of these
policies in detail, including its two modes of containment and the fact that these
strategies keep Re close to 1. Note that our simulations incorporate vaccine
arrival time as discussed in sub-section 2.5 above and in Appendix B. Iverson,
Karp, and Peri (2021) analyze and emphasize the importance of expected arrival
time in this context.

6 The Cyclical Strategies vs Actual Experience

The cyclical strategies can be compared to actual real world experience. We
do so by simulating optimal plans under the cyclical strategies and compar-
ing them to a policy path based on the experience of the states of New York
and Florida. The choice of these two states is motivated by the fact that both
experienced high levels of the epidemic but very different dynamics.

6.1 Data and Methodology

We use state-level data on daily deaths, daily employment, lockdown measures,
and the derived transmission rate, from the same sources spelled out in Appen-
dix C for the national-level data. NSS is taken to be state-level employment on
March 1, 2020.

We employ the same methodology for the simulation as described above, af-
ter re-estimating the transmission equation and the endogenous response equa-
tion for each state. The equations specifications were adapted to cater for the
state-specific data. For the transmission equation we used α = 1 for both states
and a different specification for βΛ in the Florida equation. The endogenous
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response equation had no time decay term, as none is apparent in the data. See
the specifications delineated in the table. The estimates are reported in Table 6.

Table 6

The fit of the equations is good for the most part; the estimated κ indicates
a lower endogenous response relative to the U.S. as a whole but close to the
post-fatigue value in the U.S. The implication is that in both Florida and New
York, employment was controlled more by the policy response and less by the
endogenous response.

In New York the estimated βt captures well the rapid drop of the reproduc-
tion parameter R0 from its initial value due to strict lockdown, as well as the
subsequent gradual rise to values well above Rt = 1. In Florida, the range of
values for βt, in estimation as in the data, is much narrower; for most of the
time the reproduction parameter is above 1.

6.2 Results

We report the results as we did in Table 4 and Figure 5 above for the whole U.S.
economy. We compare the results to actual data.10

Figure 6 and Table 7

Both Table 7 and Figure 6 refer to the data sample period used for the estima-
tion reported in Table 6. The first panel of the figure looks at the data together
with the cyclical strategies, while the second looks only at the latter set.

There is a substantial difference between the two states and we analyze each
in turn.

New York State. As seen in Figure 6, the actual data point for NYS is very far
from all the cyclical strategy points. In comparison to the cyclical strategies, the
actual data exhibit a far higher death toll and just a slightly lower GDP loss. In
the data the death toll is 2, 346 dead per million and the GDP loss is 0.15. The
cyclical strategies entail a far lower death toll, between 7 and 29 per million,
and a GDP loss of between 0.16 and 0.21, the former number being just a little
above above the data number.

Looking within the cyclical set, both the second panel of Figure 6 and Table
7 show that there is variation, with the strategies using k = 3 and k = 4 being
different from those using k = 5, 6, 7, 8. This panel depicts linear policy possi-
bilities frontier schedules. Table 7 shows that the values of welfare losses vary
across these strategies within a narrow range. The policy differences across the
cyclical strategies are manifested in T1, which values are much higher in the
k = 5, 6, 7, 8 group, so GDP losses and welfare losses are higher. We can call the

10As explained in Table 4 above, GDP loss is given by

VY =

730∫
0

e−rt

(
YSS

NSS (N
SS − N(t)

)
dt
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former group exogenous containment strategies, and the latter group endogenous
containment strategies, using the terms delineated above. Only the exogenous
containment strategies bring the average effective reproduction parameter,Ra,
to values close to unity. The endogenous containment strategies per se are un-
able to do so and do not contain the epidemic, hence the planner resorts to a
very lengthy initial lockdown period (see Table 7). The reasons for this inability
to contain the epidemic are two: the implied RW , derived from the estimated
βW , is relatively high and the estimated endogenous response parameter, κ, is
relatively low.

It is clear that actual policy underperformed and achieved only weak con-
tainment. In particular, note that the use of moderately stringent cyclical tools
implies a dramatic reduction in the death toll and only a slight increase in out-
put costs relative to actual experience. Timing is key here – the optimal use
of the cyclical strategies here involves an immediate initial lockdown, which
proves to be critical in curbing the disease during its exponential growth phase.
Compared to the optimal policy, waiting with the initial lockdown resulted in
death tolls that are higher by a factor of at least 81. It thus appears that lock-
down in New York State started very late and that a significant outbreak was
facilitated.

Florida. This state had a death toll of 1, 230 dead per million and a GDP
decline of 0.08; the cyclical strategies entail once more a far lower death toll,
between 11 and 18 per million, but a bigger loss of GDP, around 0.14 – 0.17. The
cyclical strategies are able to bring the average effective reproduction parameter
Ra to values close to unity and so to contain the epidemic. Only the k = 3
strategy is based on exogenous containment, withRa < 1, with all other cyclical
strategies k = 4, 5, 6, 7, 8 based on endogenous containment. Initial lockdown
duration, T1, is a month and half with k = 3 , 3-4 months for k = 4, 5, and longer
durations for higher k values, with higher GDP losses and welfare losses.

Actual policy in Florida seems to have preferred a lower GDP decline and a
much higher death toll. Using the current set-up this can be viewed from two
perspectives:

(i) Absent cyclical tools, actual policy outcomes are compatible with a strat-
egy based mostly on endogenous containment, such as to lock and then release
until a vaccine is found, without a cyclical phase. For example, a simulation of
locking for 56 days (8 weeks) and then releasing yields a GDP loss of 0.076 and
a death toll of 1, 306 dead per million, very close to the data.

(ii) When cyclical tools are available, and when VSL is at 2.15M$, then an
optimal cyclical strategy can lead to the data outcome. In panel c of Table 7
we show that a planner using k = 10 (which locks only on weekends) will
optimally choose T0 = 49, T1 = 63, T2 = 421, i.e., delay the initial lockdown
for 7 weeks thereby letting the disease erupt, lock for two weeks, and then lock
only on weekends (k = 10). Such a strategy yields a GDP loss of 0.079 and a
death toll of 1, 294 dead per million, similar to the actual data. Note that this
value of statistical life, 2.15M$, is 56% of our baseline value (3.81M$) and is
$152, 000 in annual terms. Such a low value, though still within the range cited
by Hall, Jones, and Klenow (2020) of $100, 000 to $400, 000 per year, may have

32



been underlying the policy actually used in Florida.

7 Conclusions

Looking forward, the COVID19 pandemic is unlikely to be the last one. There
are dozens of coronaviruses (according to CDC data, seven of which can infect
humans); new influenza strains can be as deadly as the ones that have killed
millions in the pandemics of the twentieth century; and Zoonotic infections
(like Ebola, SARS, or zoonotic influenza) have increased significantly over time
(see Jones et al. (2008) and Salyer et al. (2017)). These diseases pose an in-
creasing and critical threat to global health security, with ever growing connec-
tivity and mobility of people, animals, and goods. The June 2021 report of a
high level G20 panel11states that “We are in an age of pandemics.... There is
every likelihood that the next pandemic will come within a decade — arising
from a new influenza strain, another coronavirus, or one of several other dan-
gerous pathogens. Its impact on human health and the global economy could
be even more profound than that of COVID-19.” Meganck and Baric (2021),
May (2021), and references therein, provide detailed elaboration of the key fore-
casted threats.

Our paper has studied the optimal timing patterns of a new, cyclical policy
strategy, consisting of alternating days of opening and lockdown. Given signifi-
cant trade-offs between health outcomes (deaths, breaches of ICU capacity) and
economic outcomes (loss of output and employment), the analysis has shown
that epidemic management policy based on such time restrictions may lead to
significant improvement in terms of social welfare. The comparison was made
relative to four hypothetical benchmark policies, as well as to the experience of
New York State and Florida.

The analysis, which is relevant for any future epidemic, laid down the prin-
ciples for time restrictions policy, as well as a framework for comparative policy
analysis. Exploring this policy seems a promising avenue for future research in
the context of managing epidemics. The analysis clearly shows that such time-
based strategies allow for a nuanced response to observed epidemic dynamics,
without resorting to singling out a particular population group. It is impor-
tant to note that the afore-mentioned advantages of the cyclical strategies over
prevalent policies are likely to be a lower bound of their full benefits. First, in
our model the planner is deliberately constrained in the way cyclical tools are
applied; for example, the planner is not permitted to mix within the set of strate-
gies, or apply them in a staggered way. Giving the planner additional degrees
of freedom, as we do for the benchmark thresholds strategies, should increase
the advantages of the novel instruments over prevalent policies. Second, and
not less significant, our model does not allow us to quantify the additional ben-
efits of cyclical tools, such as the predictability of production that they entail,

11See the report of the High Level Independent Panel on Financing the Global Commons for
Pandemic Preparedness and Response at https://pandemic-financing.org/report/foreword/
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as well as their potential to alleviate part of the negative impact of prolonged
isolation on mental well-being. These issues require a more elaborate analysis
and are left for future research.

It should be noted that we have abstracted from heterogeneity across in-
dividuals and from modelling the coordination of work and leisure decisions.
We have also abstracted from policy such as testing or contact tracing. Such is-
sues have been addressed in the COVID19 context, albeit in different modelling
frameworks, by a number of recent papers. Thus, Berger, Herkenhoff, Huang
and Mongey (2022) examine how testing and targeted quarantine will work
in an efficient reopening, whereby output increases while deaths are reduced.
They use virological and serological testing, and their model features perma-
nently asymptomatic individuals, incomplete information, and a reduced-form
behavioral response. Chari, Kirplani, and Phelan (2021) examine how targeting
of lockdown policies in a world with heterogeneity achieves better outcomes
relative to indiscriminate lockdowns. Glover, Heathcote, Krueger, and Ríos-
Rull (2020) analyze old-age issues and redistribution policy. Fuchs-Schündeln,
Krueger, Kurmann, Lalé, Ludwig, and Popova (2021) look at the heterogeneous
impact of school closures on children during COVID19. Extensions of the analy-
sis along these lines are also left for future research.
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8 Tables and Figures

Figure 1: The Model
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Table 1: Menu of the Cyclical Strategies

Note:
k is the number of open (non-lockdown) days every 14 days.
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Figure 2: Alternative Distributions of Waiting Time till Vaccine Arrival

Note: The parameter of the exponential distribution is set to 1/540, and the
location and scale of Gumbel distribution are set to 565.83 and 44.74, respec-
tively.
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Table 2: Calibration

Parameter Interpretation Range value
a. The Infection Transmission Block (SEIR)

σ latent period duration 3− 5 days 1/3
γ infectious period duration 4− 5 days 1/4

b. The Clinical Block
θP incubation period 5− 6 days 1/5
θM days from symptoms till hospitalization 7 days 1/7
θH days in hospital till ICU 2 days 1/2
θX days in ICU before death 5.5 days 1/5.5
η Prob. to be asymptomatic 20%− 50% 0.5

ξ
Prob.of hospitalization

when symptomatic

#Hospitalized
#In f ected

= [2%− 4%]
0.04

1−0.5 = 0.08

π Prob. of ICU admission 10%− 40% 0.4
IFR Infection Fatality Rate (implied) 0.008

Sources:
1. Panel a: Bar-On et al (2020); He at al (2020); Li et al (2020); Tian et al

(2020);
2. Panel b – Bar-On et al (2020); Huang et al (2020); Richardson et al (2020);

Salje et al (2020).

Notes:
a.. Range relates to number of days, unless noted otherwise.

b. #Hospitalized
#In f ected = #Hospitalized

#Symptomatic ·
#Symptomatic

#In f ected = ξ · (1− η) =⇒ ξ =
#Hospitalized

#In f ected
1−η

c.. IFR = ξ · π · η · δ1
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Figure 3: Key Variables

Notes:
Data sources and definitions are elaborated in Appendix C.
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Table 3
Estimation Results

a. Infection Transmission

βt = βW − βN

(
1− Nt

NSS

)α

+ βΛ exp (−Λt)

March 15, 2020-February 28, 2021

βΛ Λ βW βN α

0.339∗∗∗ 0.12∗∗∗ 0.376∗∗∗ 0.53∗∗∗ 0.69
(0.05) (0.01) (0.05) (0.12) (0.31)

R2 0.74
RMSE 0.0307

n 351

b. The Endogenous Response

Nt

Nss
= 1−max(κtLt, κtḊt) + εt

March 1, 2020-February 28, 2021
κ ϕκ κ ϕκ µ f σ f

0.095∗∗∗ 0.18∗∗∗ 0.42∗∗∗ 0.59∗∗∗ 245∗∗∗ 27.5∗∗∗

(0.0001) (0.01) (0.007) (0.026) (2.36) (2.68)

R2 0.99
RMSE 0.0139

n 365

Notes
a. Tables report point estimates with s.errors in parentheses.
b. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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Table 4: Outcomes of the Different Policy Strategies – Baseline

T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106)

Non-cyclical

(i) No Intervention 540 540 540 68.70 0.361 0.098 2, 482
(ii) Full lockdown 0 540 540 46.75 0.291 0.287 21
(iii) Thresholds n.a. n.a. n.a. 38.35 0.248 0.201 425
(iv) Optimal L (k = 0) 8 487 487 42.24 0.268 0.256 84

Cyclical

(v) k = 3 0 14 499 34.65 0.226 0.211 43
(vi) k = 4 0 14 511 32.95 0.221 0.197 76
(vii) k = 5 0 98 534 33.30 0.218 0.201 42
(viii) k = 6 0 120 540 36.14 0.240 0.194 218
(ix) k = 7 0 296 540 38.68 0.252 0.224 113
(x) k = 8 0 366 540 39.75 0.257 0.236 75

Notes:
a. We use

g = 0.32, VSLUSD = 3.81M$, IFR = 0.8%

b. T0 is the start day of lockdown, T1 start day of the cyclical strategy, and
T2 the release day; the numbers in these columns indicate day number since the
start of the epidemic. The assumption is that vaccine arrival happens on day
540.

c. Welfare loss (utility) – the realized welfare loss when the vaccine actually
arrives on day 540, in PDV terms, i.e., the loss of W, which is defined as follows:

WL
(
nt, Ḋt

)
≡ Ṽ (nss, 0)− Ṽt

(
nt, Ḋt

)
where Ṽt is the planner instantaneous utility and U (nss, 0) = Ṽ (nss, 0) is steady
state utility with no deaths, and

Ṽ
(
nt, Ḋt

)
= ln (w · nt)−

1
5

(
nt

nss ·ωx(Ḋt, t)

)5

− ln ωx(Ḋt, t)−VSLU · Ḋt

d. Welfare loss (consumption terms) – the realized welfare loss when the
vaccine actually arrives on day 540, in PDV terms, in consumption terms as
given by:

PDV_CL (WLt) =

∞∫
t=0

exp (−rt)CL (WLt) dt

where
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CL (WLt) = 1− WL−1
0 (WLt)

nss

See sub-section 2.4 for details.
d. GDP loss – loss in GDP terms computed as:

VY =

730∫
0

e−rt
(

YSS

NSS
(NSS − Nt)

)
dt

e. Cumulative deaths D (per 106) – stock of death per million.
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Figure 4
Six Policy Strategies

a. k = 4, 5, 8
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b. k = 5 and benchmarks

Notes:
a. The series plotted are as follows: the effective reproduction parameterRe,

flow deaths (
·

Dt), the employment level relative to its pre-epidemic steady state
Nt

NSS
, the endogenous response κtDt, and the flow welfare loss in consumption

terms PDV_CL (WLt) , as computed from equations (47)-(48).
b. For all series, except for the endogenous response, we use a smoothed 14

day average.
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Figure 5: The Policy Frontier

a. Cyclical and Benchmark Strategies

Notes:
See notes d and e to Table 4.
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Note:
Second graph is a “zoom-in” on the first graph.
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b. Alternative Values of IFR

Notes:
a. Legend is

color IFR
blue high, 1.2%
black baseline, 0.8%
green low, 0.6%

b. For each IFR value we plot strategies k = 3...8. These are labelled only for
the black points.
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Table 5

Parameter Variations – IFR

value of life: IFR = 0.6%
k k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
T0 0 0 0 0 18 0
T1 14 14 98 113 35 352
T2 498 507 530 540 540 540

WL (utility) 34.44 32.49 32.99 35.26 39.02 39.31
WL (cons) 0.224 0.217 0.215 0.235 0.262 0.254

Output loss 0.210 0.195 0.200 0.192 0.166 0.233
D (per 106) 33 60 32 185 712 73

value of life: IFR = 1.2%
k k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
T0 0 0 0 0 0 0
T1 14 37 99 162 317 380
T2 501 509 540 540 540 540

WL (utility) 35.05 33.37 33.85 37.42 39.56 40.47
WL (cons) 0.230 0.221 0.223 0.247 0.257 0.261
output loss 0.212 0.201 0.204 0.204 0.230 0.240
D (per 106) 62 64 57 217 120 85

Notes: See Table 4.
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Table 6
Estimation Results for New York State and Florida

a. New York State, March 15, 2020 to February 28, 2021.

a. Infection Transmission

βt = βW − βN

(
1− Nt

NSS

)
+ βΛ exp (−Λt)

βΛ Λ βW βN

0.202 0.967∗∗∗ 0.517∗∗∗ 1.519∗∗∗

(0.437) (1.777) (0.0112) (0.0797)

R2 0.559
RMSE 0.0631

n 351

b. The Endogenous Response

Nt

Nss
= 1−max(κLt, κḊt) + εt

κ κ
0.00506∗∗∗ 0.224∗∗∗

(0.000218) (0.00274)

R2 0.998
RMSE 0.0339

n 352

Notes
a. The tables report point estimates with s.errors in parentheses.
b. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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b. Florida, March 27, 2020 to January 31, 2021

a. Infection Transmission

βt = βW − βN

(
1− Nt

NSS

)
+ (βMax − βW) exp (−Λt)

Λ βW βN

0.0912 0.329∗∗∗ 0.496∗∗∗

(0.174) (0.0121) (0.135)

βMax = 0.364

R2 0.971
RMSE 0.0495

n 311

b. The Endogenous Response

Nt

Nss
= 1−max(κLt, κḊt) + εt

κ κ
0.0118∗∗∗ 0.174∗∗∗

(0.000754) (0.00334)

R2 0.999
RMSE 0.0326

n 324

Notes
a. Tables report point estimates with s.errors in parentheses.
b. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
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Figure 6
Policy Possibilities Frontier Plots for New York State and Florida

a. NYS, March 15, 2020 and February 28, 2021.

1. General

2. Zoomed in
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b. Florida, March 27, 2020 to January 31, 2021.

1. General

2. Zoomed in

Notes:
See notes d and e of Table 4.
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Table 7
State Level Outcomes

(at the end of the sample period)

a. New York State - March 15, 2020 and February 28, 2021.
T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106)

LL = 0.22; VSLUSD = 3.81M$; IFR = 0.8%
(i) k = 3 0 14 540 29.45 0.170 0.168 20
(ii) k = 4 3 58 540 28.41 0.165 0.160 33
(iii) k = 5 0 345 540 36.43 0.206 0.210 7
(iv) k = 6 0 449 540 36.74 0.208 0.212 7
(v) k = 7 0 479 540 36.74 0.208 0.212 7
(vi) k = 8 0 500 540 36.74 0.208 0.212 7

b. Florida, March 27, 2020 to January 31, 2021

T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106)
LL = 0.21; VSLUSD = 3.81M$, IFR = 0.8%

(i) k = 3 0 44 449 24.55 0.148 0.146 17
(ii) k = 4 0 105 473 24.30 0.146 0.144 14
(iii) k = 5 0 115 506 23.38 0.141 0.139 15
(iv) k = 6 0 127 540 22.52 0.137 0.133 18
(v) k = 7 0 205 540 24.90 0.149 0.148 13
(vi) k = 8 0 282 540 28.35 0.168 0.169 11

c. Florida, March 27, 2020 to January 31, 2021 , VSL=2.15M$
T0 T1 T2 WL (utility) WL (cons) GDP loss D (per 106)

LL = 0.21; VSLUSD = 2.15M$, IFR = 0.8%
(i) k = 4 49 63 444 23.18 0.142 0.115 469
(ii) k = 6 49 63 454 23.37 0.144 0.100 741
(iii) k = 8 49 63 442 24.63 0.149 0.089 1039
(iv) k = 10 49 63 421 25.99 0.154 0.080 1294

Notes:
1. See Section 7 of the paper.
2. See the notes to Table 4.
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