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Abstract 

This paper analyses and illustrates the Divisia approach to measuring output and productivity. 

It argues that Divisia index numbers are the ideal to which real world index numbers should 

aspire. Divisia index numbers are consistent with production theory and have a number of 

desirable properties, principally value consistency and aggregation consistency. But they are 

defined in continuous time and so must be approximated in practice by discrete index 

numbers, such as the traditional Laspeyres or Paasche or one of the superlative index 

numbers introduced by Diewert (1976). The alternative approach is to ignore Divisia and start 

with discrete index numbers. The issues involved here are illustrated by examining data from 

the BEA/BLS industry-level integrated production account, 1987-2020. Estimates of 

superlative and other index numbers are presented for this dataset. The sensitivity of real 

GDP growth to the value of the crucial parameter in a superlative index number is tested. The 

extent to which value consistency and aggregation consistency are satisfied for different 

superlative index numbers are analysed. Chaining is a natural consequence of the Divisia 

approach but does not follow so automatically from the use of superlative indices. So I also 

compare chained and unchained versions of these same index numbers. Finally, Europe uses 

a different approach to output measurement to the US, chained Laspeyres versus chained 

Fisher. I look at how different US estimates would be if they employed European 

methodology.  
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1. Introduction1 

 

This paper analyses and illustrates the Divisia approach to measuring output and productivity. 

It argues that Divisia index numbers are the ideal to which real world index numbers should 

aspire. Divisia index numbers are consistent with production theory and have a number of 

desirable properties, principally value consistency and aggregation consistency. But they are 

defined in continuous time and so must be approximated in practice by discrete index 

numbers, such as the traditional Laspeyres or Paasche or one of the superlative index 

numbers introduced by Diewert (1976). The alternative approach is to ignore Divisia and start 

with discrete index numbers. The issues involved here are illustrated by examining data from 

the BEA/BLS industry-level integrated production account, 1987-2020. Estimates of 

superlative and other index numbers are presented for this dataset.  

 

The approach I employ here was previously advocated by Jorgenson and Griliches (1971) in 

a response to a critic of their classic paper on US productivity growth (Griliches and 

Jorgenson 1967). They state:  

“The main advantage of a chain index is in the reduction of errors of approximation as 

the economy moves from one production configuration to another. If weights could be 

changed continuously, errors of this type would be eliminated. This property of 

Divisia indexes, called “invariance” by Richter, characterizes no other index number. 

Discrete chain-linked index numbers reduce errors of approximation to a minimum. 

For this reason chain indexes rather than a single base period should be used in real 

product accounting and productivity measurement.” 

 

Discrete versus continuous index numbers 

In practice Divisia indices cannot be calculated exactly since data are only available at 

discrete intervals rather than continuously. But they can be approximated by chained indices 

of which the most commonly used for volume changes are the annually chained Laspeyres, 

Fisher or Törnqvist. Economic modellers and productivity analysts (following Griliches and 

Jorgenson 1967 and Jorgenson et al. 1987) often use the Törnqvist. National income 

accountants generally use either the chained Laspeyres (mandated by Eurostat (2013) for EU 

 
1 The first version of this paper was presented at the Seventh World KLEMS Conference held at Alliance 
Manchester Business School, 12-13th October, 2022. It is enormously indebted to the work of the late Dale 
Jorgenson extending over decades. I thank Erwin Diewert and my discussant Jon Samuels for comments on the 
conference version of this paper, the latter also for advice and assistance with the BEA/BLS dataset.  
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countries) and also still used by the UK, or the chained Fisher (as in Canada and the US). The 

US shifted its National Income and Product Accounts (NIPA) to a chain-linked Fisher index 

from a fixed base one in 1996. But in Europe (including the UK) it has been customary to 

update the weights every five years or so. In other words, most of Europe has always used a 

form of chain-linking (France was an exception in using a fixed base). In the UK case the 

change from what might be called quinquennial chain-linking to annual chain-linking took 

place in 2003.  

 

The 2008 SNA has a whole chapter (Chapter 15) devoted to price and volume measures 

(European Commission et al. 2009). Unfortunately nowhere does it mention Divisia index 

numbers. Despite this I am arguing that real world price and volume indices are best thought 

of as (more or less good) approximations to the ideal, the Divisia index. This approach 

enables us to link economic theory to the practice of national income accounting without 

having to assume particular functional forms for the underlying relationships like utility 

functions or production functions. The Divisia approach enables one to prove intuitively 

plausible propositions which one would otherwise struggle to establish (Oulton 2021). Large 

changes can be handled as well as small ones.  

 

The alternative approach is to assume that economic behaviour can be explained exactly by 

utility or production functions which take the form of a “quadratic mean of order r”. These 

functional forms are second order approximations to any functions acceptable to economic 

theory. Then there is a superlative index number (dependent on the parameter r) which is 

exact for this particular functional form (Diewert 1976; Mizobuchi and Zelenyuk 2021). 

Furthermore this index number measures large changes correctly as well as small ones. The 

drawbacks to this approach are that the results are dependent on the choice of the parameter r, 

and that the attractive properties of the Divisia index − price index times volume index equals 

value index and consistency in aggregation – are either lost, or compel the choice of a 

particularly value for r. For example setting r = 2 results in the Fisher index which satisfies 

the first of these properties but not the second, consistency in aggregation. Setting r = 0 

results in the Törnqvist index which satisfies neither property. I am not aware of any 

superlative index number which satisfies both properties.  

 

At first sight a discrete approach may seem more realistic in economics. But this is not the 

case. To be sure, agents do not make decisions in continuous time; if for no other reason, they 
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take time off for sleep, weekends and holidays. But neither do they take decisions in 

accordance with the usual discrete time formulation. Superlative index number theory 

assumes optimization. This means that all decisions (what to buy, what to sell) are assumed 

to be made either at the beginning or at the end of the period. But how long is the period? In 

practice this is nowadays either a calendar year or a quarter. But the quarterly and annual 

models are not the same. Which is chosen depends on the availability of data. In reality the 

interval between successive optimizations probably depends on the nature of the decision, 

with decisions about a firm’s investment for example being made less frequently than 

decisions about hours worked. Either way, some at least of the observed data, for example 

sales, are likely to be time averages over the chosen period (whether a year or a quarter). 

Price data is usually collected monthly so annual or quarterly data are averages of monthly 

point-in-time observations. The consequences of all this have not been incorporated into the 

theory.  

 

There is an interesting contrast here between economics and the natural sciences. Since the 

early nineteenth century physicists have been studying the flow of heat in material bodies. In 

the standard heat equation both time and matter are taken to be continuous. But physicists 

have accepted for well over a century that matter is made up of discrete objects called 

molecules, in turn composed of atoms, also discrete objects. (Physicists are also aware of the 

possibility that time too may be fundamentally discrete or quantized but as yet no conclusive 

evidence has been found for this). So the heat equation is at variance with the known facts of 

the world. This has not stopped physicists using it since, at the macroscopic scale where the 

equation is applied, the continuous assumption has yet to produce predictions at variance with 

observation. Because analytical solutions of the heat equation are not always available, 

physicists often solve it using numerical methods which necessarily require making both time 

and matter discrete. So now we have a discrete approximation to a continuous model which is 

in turn an approximation to a (different) discrete reality. The approach advocated here is 

analogous to that of the physicists.  

 

The two approaches 

Many economists, noting the results of Diewert (1976) and others that all superlative index 

numbers are second order approximations to each other and (on certain assumptions) to the 

unknown function generating the data, have concluded that the “index number problem” has 

been solved. However Hill (2006), in an article provocatively titled “Superlative index 
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numbers: not all of them are super”, has used US data to show that the estimated growth rates 

are in practice quite sensitive to the value chosen for the parameter r. Since there seems no a 

priori reason for preferring one value of r over another, and in the absence of any empirical 

evidence on the true value of r, the issue still seems to be up in the air. Hill (2006) used what 

I call here two-year indices, also known as direct indices, (see Section 2 below), not chained 

indices, so an important issue still to be resolved is whether chaining affects his conclusions.  

 

Plan of the paper 

Section 2 reviews the theory of Divisia index numbers and of superlative index numbers. 

Section 3 briefly describes the dataset to be used for the empirical testing, the BEA/BLS 

integrated industry-level production account. Then section 4 presents the results. First of all 

the sensitivity of real GDP growth to the value of the crucial parameter r in a superlative 

index number is tested. Then the extent to which value consistency and aggregation 

consistency are satisfied for different superlative index numbers is analysed. Chaining is a 

natural consequence of the Divisia approach but does not follow so automatically from the 

use of superlative indices. So I also compare chained and unchained versions of these same 

index numbers. Finally, Europe uses a different approach to output measurement to the US, 

chained Laspeyres versus chained Fisher. I look at how different US estimates would be if 

they employed European methodology. Section 5 summarises the conclusions and also points 

to other issues in need of exploration.  

 

 

2. Theory 

 

Divisia indices2 

Divisia indices have one overarching advantage: they are consistent with production theory. 

Let 1( , , )NY Y Y  denote the vector of final demands and 1( , , )KJ J J   the vector of 

primary factor supplies. Then consider an economy whose social production possibility 

frontier can be represented by  

 ( , , ) 0F Y J t   

 
2 Divisia indices were devised by Divisia (1925-1926). They were introduced explicitly into productivity 
analysis by Griliches and Jorgenson (1967). They have been analysed by Richter (1966), Hulten (1973) and 
Balk (2005). Earlier researchers, e.g. Solow (1957), had used discrete chained indices to measure aggregate 
input.  
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Assuming perfect competition and constant returns to scale, Hulten (1978) showed that the 

rate at which the social production possibility frontier is shifting out over time (the aggregate 

TFP growth rate) can be measured by the difference between the growth rate of a Divisia 

index of final demands and the growth rate of a Divisia index of primary factor supplies. 

(Since aggregate final demand equals aggregate value added, the Divisia index of final 

demands equals the Divisia index of value added.) Furthermore this rate is identical to a 

weighted sum of industry-level TFP growth rates, the latter being derived from industry-level 

production functions. The industry-level TFP growth rate is the growth rate of industry output 

minus the growth rate of a Divisia index of intermediate inputs and minus the growth rate of 

a Divisia index of primary inputs into that industry. In symbols:  

 
1

lnln N i i i
i

p Z d TFPd TFP

dt GDP dt

   
 

  (1) 

where iZ  is the gross output of the ith industry, ip  is its price, and GDP is nominal GDP. 

The weight on each industry is its sales divided by nominal GDP, the so-called Domar weight 

first suggested by Domar (1961).  

 

This result, the equality of the two ways of calculating aggregate TFP growth, is called 

Hulten’s Theorem by Gabaix (2011), and is proved by the latter in more general terms (see 

his Appendix B, also Baqaee and Farhi 2019). The point to note here is that whichever way 

we choose to calculate aggregate TFP growth, we will need to calculate Divisia indices of 

outputs and inputs. 3 

 

Divisia indices also possess two further desirable properties. The first property is value 

consistency: the product of a Divisia quantity index and a Divisia price index is the 

expenditure ratio (total value of all commodities or outputs in the second period divided by 

the total value in the first). The second property is aggregation consistency.  

 

Value consistency arises from the definition of Divisia index numbers. Consider the value (V) 

of some aggregate at time t relative to its value in some reference period, say time 0:  

 
3 Footnote 45 of Baqaee and Farhi (2019) compares their second-order approximation approach to measuring 
TFP shocks to the Divisia one (though without using his name). They argue that the two approaches are 
essentially equivalent. They argue that their approach, which uses calibration to estimate some key parameters, 
is necessary for making predictions while the Divisia one can only be used to analyze the past.  
 



9 
 

 1

1

( ) ( )( )

(0) (0) (0)

i N

i ii
i N

i ii

p t q tV t

V p q








 


 (2) 

where ( )i ip q is the price (quantity) of the ith item and all variables are assumed to be 

differentiable functions of time (t). We want to split up the right hand side of (2) into a price 

index and a quantity index:  

 
( )

(0, ) (0, )
(0)

D DV t
P t Q t

V
  (3) 

Here (0, )DP t  is the Divisia price index and (0, )DQ t  is the Divisia quantity index for period t 

relative to period 0. Taking logs and totally differentiating equation (2) with respect to time:  

 
1 1

ˆ ˆ ˆ( ) ( ) ( )
i N i N

i i i ii i
V t w t p w t q

 

 
    (4) 

Here a hat (^) indicates a logarithmic growth rate, i.e. ˆ : ln /X d X dt , and  

 
( ) ( )

( ) : , 1, ,
( )

i i
i

p t q t
w t i N

V t
    

are the value shares.4 Now identify the first summation on the right hand side of (4) with the 

Divisia price index and the second with the Divisia quantity index: 

 
1

ˆ ˆ(0, ) : ( ) ( )
i ND

i ii
P t w t p t




  (5) 

and  

 
1

ˆ ˆ(0, ) : ( ) ( )
i ND

i ii
Q t w t q t




  (6) 

From (4) 

 ˆˆ ˆ( ) (0, ) (0, )D DV t P t Q t   (7) 

Consistent with (3), we normalize by setting the price index and the quantity index equal to 1 

in the reference period 0: (0,0) (0,0) 1.D DP Q   Since the growth rate of the value index 

equals the sum of the growth rates of the price and quantity indices and since the level of the 

value index satisfies value consistency when t = 0, it follows that value consistency must hold 

in all time periods.  

 

The levels of the price index and the quantity index in any time period T can be now found by 

integration:  

 
10

ˆln (0, ) ( ) ( )
T i ND

i ii
P T w t p t dt




   (8) 

 
4 Here and below the symbol “:=” should be read as “is defined to be equal to”.  
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10

ˆln (0, ) ( ) ( )
T i ND

i ii
Q T w t q t dt




   (9) 

 

The solutions for the price and quantity indices are line integrals and it has long been known 

that these are not in general path-independent (in the economics literature, see Hulten 1973). 

That is to say, the level of the index at T relative to 0 depends not just on the prices and 

quantities prevailing in periods 0 and T but also on all the prices and quantities at 

intermediate points on the interval (0, T). So different paths between 0 and T may produce 

different outcomes at T even though prices and quantities at 0 and T are by assumption the 

same for all paths. But taking the economic approach to index numbers, it has also been 

established that in a consumer context, if economic behaviour is rationalizable by a 

homothetic utility function, then a Divisia index of consumer prices is path-independent. In a 

producer context, if there are constant returns to scale, then again a Divisia quantity index of 

output is path-independent. The economic approach assumes optimizing behaviour by 

agents.5  

 

Now consider the second desirable property, aggregation consistency. Aggregation 

consistency means that we can (in principle) calculate a Divisia index in two ways. Either we 

can calculate it directly from the basic elements at the lowest level (e.g. commodities or 

industries), the one-step method. Or we can calculate it in two (or more) steps: first calculate 

an index for each sub-aggregate of interest and then calculate the overall index of these sub-

aggregate indices, the multi-step method. Either method will produce the same answer at the 

aggregate level (e.g. GDP). For example, suppose we have time-series data on real value 

added for N industries. We can calculate a Divisia index of real GDP in one step from data on 

real value added for these N industries. Or we can divide the N industries up into say 

Manufacturing and Services and define Divisia indices for Manufacturing output and 

Services output. Then we can define a two-step index for GDP as a Divisia index of the two 

Divisia indices for Manufacturing and for Services. The second method will produce the 

 

5 See Apostol (1957) for the mathematical background on path-dependence and Hulten (1973) for the economic 
interpretation. Homotheticity of the utility function is not a very attractive assumption given the overwhelming 
evidence for Engel’s Law. Oulton (2008) for time-series data and Oulton (2012) for cross-country data (see also 
Oulton (2015)) develop practical ways to estimate modified Divisia indices (Konüs indices) which hold utility 
constant at some specified level and are also path-independent. These methods could also be applied in the 
producer context if returns to scale are not constant.  
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same result for GDP as the first. Specifically, for this two-sector example the one-step 

quantity index is  

 
1

ˆ ˆ( ) ( ) ( )
i ND

GDP i ii
Q t w t q t




  (10) 

Assuming that Manufacturing comprises the first M industries and Services the remainder 

(industries M + 1 to N), the quantity indices for the two sub-aggregates are  

 
1

ˆ ˆ( ) ( ) ( )
i MD

Manu iM ii
Q t w t q t




  

and  

 
1

ˆ ˆ( ) ( ) ( )
j ND

Serv jS jj M
Q t w t q t



 
  

where the value shares in Manufacturing and Services respectively are defined as 

 
1

( ) ( )
( ) :

( ) ( )
i i

iM i M

i ii

p t q t
w t

p t q t







 

and  

 
1

( ) ( )
( ) :

( ) ( )

j j
jS j N

j jj M

p t q t
w t

p t q t


 




 

(Here the prices and quantities should be understood as those of industry-level value added). 

The growth of the two-step index of real GDP is  

 ,2
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )D D D

GDP step M Manu S ServQ t w t Q t w t Q t    

where the value shares of the two sectors in GDP are  

 1

1

( ) ( )
( ) :

( ) ( )

i M

i ii
M i N

i ii

p t q t
w t

p t q t











 

and  

 1

1

( ) ( )
( ) :

( ) ( )

j N

j jj M
S i N

i ii

p t q t
w t

p t q t



 








 

Using the definitions of the value shares, it is now straightforward to verify that  

 ,2
ˆ ˆ( ) ( )D D

GDP step GDPQ t Q t   

Clearly this argument carries over to price indices and also generalizes to any number of 

sectors. This proves consistency in aggregation.  
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Superlative index numbers 

Diewert (1976) defined a superlative index number as one which is exact for a flexible 

functional form. In turn a flexible functional form is one which approximates to second order 

any linear homogeneous function acceptable to economic theory. A second order 

approximation is one where the approximating function and the other function are equal as 

are their first and second derivatives, at some common point. He developed a family of 

flexible functional forms called quadratic means of order r. In the quantity case this takes the 

form:  

 

1/

/2 /2

1 1

( ) , , , , 0

r
N N

r r
r ij i j ij ji

i j

f q a q q a a i j r
 

 
    
 
  (11) 

(The case r = 0 is handled by taking the limit as r goes to zero which yields the translog 

aggregator function.) Equation (11) can be interpreted as a production possibly frontier with 

primary input supplies and technology held constant. It arises out of an economy in which 

producers act as if they were maximising profits under constant returns to scale with output 

and input prices taken as given. (There is an analogous form for the corresponding price or 

unit cost possibility frontier.) The corresponding (superlative) quantity index for period t 

relative to period s is  

 

1/

/2

, 1

/2

1

1
( / ) ( / )

2

1

( / ) ( / )
( , ; , ) , 0

( / ) ( / )

, 0

s s s s t t t t
i i k k

rN
t s r s s s s
i i i i

s t s t s t i
r N

s t r t t t t
k k k k

k

p q p q p q p qtN
i
s

i i

q q p q p q
Q p p q q r

q q p q p q

q
r

q





    



  
  
   

 
  

 







 (12) 

(The case r = 0 can also be thought of as the limit of the first line on the right hand side as r 

approaches 0.) Here superscripts denote discrete time periods and ( )t tp q  is the price 

(quantity) vector in period t; the numerator contains the budget shares in the earlier period s, 

and the denominator contains the shares in the later period t. This index is exact for the 

flexible functional form (11).6  

 

A number of special cases of (11) and (12) are of interest. First, when 0r   the function 

takes the translog form and the corresponding index number takes the Törnqvist form. 

 
6 See now also Mizobuchi and Zelenyuk (2021) for more on quadratic mean of order r indices.  
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Second, when 2r   the index takes the Fisher “ideal” form (the geometric mean of the 

Paasche and Laspeyres indices). Third, when the off-diagonal coefficients in (11) are all zero, 

the function takes the CES form but this is now not a flexible functional form.  

 

Hill (2006) proved an important property of superlative index numbers: The limit of the 

quantity (price) index number as |r|   is the geometric mean of the largest and smallest 

quantity (price) relatives:  

 

1

2
, ,lim lim min max

t t
s t s t i i
r r s sr r

i i

q q
Q Q

q q 

    
      

    
 (13) 

An analogous expression holds for price indices.  

 

Superlative index numbers do not have the consistency-in-aggregation property. However 

Diewert (1978) showed that the class of superlative index number formulae has an 

approximate consistency-in-aggregation property.  

 

When considering discrete index numbers it is also worth noting that the Laspeyres-Paasche 

pair (either a Laspeyres quantity with a Paasche price index or a Laspeyres price with a 

Paasche quantity index) possess both value and aggregation consistency. Value consistency 

means that  

 , , , , 1

1

( )

( )

N

it its t s t s t s t i
Paas Lasp Lasp Paas N

is isi

p q V t
P Q P Q

V sp q




  


 (14) 

which follows from the definitions of the Laspeyres and Paasche indices. Aggregation 

consistency means that a two-step Laspeyres (Paasche) index is exactly equal to a one-step 

Laspeyres (Paasche) index. This property also follows easily from the definitions. But neither 

Laspeyres nor Paasche are superlative indices.  

 

Chaining and discrete index numbers 

Equations (5) and (6) make clear that Divisia indices use a continuous form of chaining: the 

weights shift continuously over the period studied. Developed countries have gradually 

shifted towards calculating their own discrete price and quantity index numbers in chained 

form; e.g. EU countries and the UK use chained Laspeyres while the US uses chained Fisher 

indices. Economists who prefer an axiomatic to an economic approach to index numbers and 
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are certainly not willing to place Divisia indices at the foundation of economic measurement 

(e.g. Balk 2008 and 2010) are agnostic about the virtues of chaining. And as we have seen 

official statisticians do not base their case for chaining on the Divisia approach.7 So other 

than this, what is the justification for chaining, beyond a rather vague desire “not to let the 

weights get too out of date”? This last argument certainly fails in the case of two-period (or 

direct) symmetric indices like the Fisher which give equal importance to the first and last 

period weights.  

 

Diewert (1976) proved an important result about chained and non-chained superlative indices 

when these take the form of equation (12). Consider the growth of quantities over the period 

(0, 2). From (11) we have  

 
2 1 2

0 0 1
r r r

r r r

f f f

f f f
  (15) 

Because the index numbers rQ  are exact for the functional form (11), it follows from (15) 

that  

 0,2 0,1 1,2
r r rQ Q Q   (16) 

In other words the two-period index number and the chained one produce the same result 

numerically, provided of course that economic agents are indeed maximizing (11).8 In other 

words, superlative index numbers satisfy the circularity test. This result obviously generalizes 

to many time periods:  

 0, 0,1 1,2 2, 1 1,T T T T T
r r r r rQ Q Q Q Q        (17) 

 

Diewert (1976) argued that this fact allowed an empirical test of the theory. If in practice the 

circularity test is failed then either producers are not maximizing or they are maximizing 

something other than ( )rf q . Hence he recommended chaining since the aggregator function 

is unlikely to remain constant over long periods of time. This is because the slope of the 

production possibility frontier, at points where the ratios of quantities produced are equal 

(along a ray from the origin), will change over time if technical progress occurs at different 

 
7 It seems likely that the US adopted annual chain-linking at least in part because of the disruptive effects of the 
rapidly falling price of computers on the national accounts. This meant that moving from an earlier fixed base to 
a later one caused all previously published GDP growth rates to be revised downwards (in the absence of any 
data revisions), which was embarrassing to the Clinton administration; see The Teaching Economist, Issue 11, 
Spring 1996.  
8 Note that just substituting into (16) from the index number formula (12) does not prove the result. One requires 
also maximizing behaviour on the part of producers.  
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rates in different industries or if supplies of primary inputs are not all growing at the same 

rate. In other words the ija  parameters in (11) will in general be changing over time. Only if 

the production possibility frontier at time t is just a radial blow up of its position  at any 

previous point will its slope at a given ratio of outputs be unchanged. That is, if the 

aggregator function now depends on time, now written ( , )rf q t , we require that  

 ( , ) ( ) ( ,0)r rf q t g t f q  (18) 

This is obviously a highly restrictive assumption since it implies that the supplies of each 

primary input are rising at the same rate and that TFP is growing at the same rate in every 

industry.  

 

The non-chained quantity index between any two time periods s and t for a quadratic mean of 

order r is defined by equation (12) but we now write the left hand side more compactly as 

( , )rQ s t . The chained index over the same time period is now written as  

 ( , ) ( , 1) ( 1, 2) ( 2, 1) ( 1, )Ch
r r r r rQ s t Q s s Q s s Q t t Q t t            (19) 

It is then an empirical issue as to how similar are the chained ( ( , ))Ch
rQ s t and the non-chained 

two-period quantity indices ( ( , ))rQ s t  over a given time period (s, t).  

 

One advantage of chaining when using superlative indices is that adding an additional time 

period doesn’t require us to change the past (in the absence of data revisions). Under chaining 

the growth rate over the interval (s, t) is unchanged when we extend the overall period to t + 

1; we just add another link in the chain for the last period. But without chaining the growth 

rate over (s, t) becomes problematic. Should we continue to measure it using the weights of 

just s and t, while using those of s and t + 1 to measure growth over the whole interval (s, t + 

1)? If so, then how should we measure growth from t to t + 1? We have two choices. Either 

we can use the weights of t and t + 1, i.e. ( , 1)rQ t  , or we can use the growth rate implied by 

growth over the two long intervals (s, t) and (s, t + 1), i.e. ( , 1) / ( , )r rQ s t Q s t . The answers 

will not be the same unless (18) is satisfied.9,10 

 
9 Another possibility is to use the GEKS index commonly applied to cross-country or cross-regional data. This 
approach takes a geometric mean of indices over all possible paths between year s and year t, including the 
direct one  ̧which ensures transitivity. However this suffers from the drawback that all the original growth rates 
change when an additional year is added, just as in a cross-section context the relative levels change when an 
additional country or region is added.  
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US versus European methodology 

As stated above, the US NIPAs use a chained Fisher for measuring real GDP growth while 

EU countries and the UK use a chained Laspeyres. The chained Laspeyres has some 

advantages over the chained Fisher since it is both value consistent (when paired with a 

chained Paasche index) and aggregation consistent. However in Europe price indices such as 

the CPI are usually chained Laspeyres not chained Paasche. A more serious drawback, one 

known since at least Bruno and Sachs (1985), is that a Laspeyres index predicts (wrongly) 

that an exogenous worsening in the terms of trade reduces GDP, even when all primary 

inputs remain fully employed; for that matter, an improvement in the terms of trade also 

reduces GDP.11 Nor does chaining help since the error remains and will impact on the 

average growth rate over any interval which includes the period when the terms of trade 

worsened. So even changes in the terms of trade which are reversed over time will lead to a 

systematic overprediction of GDP growth. Nonetheless it is still of interest to see how much 

difference it would make had the US adopted European methodology.  

 

 

3. Data: the BEA-BLS industry-level production account 

 

The idea now is to use actual data to test the extent to which real world indices are consistent 

with the desirable properties of Divisia indices. For this purpose I employ data from the 

BEA-BLS industry-level production account. The advantage of the BEA/BLS dataset for 

index number and productivity research is that it is highly consistent with production theory 

and based on a massive and detailed data-gathering exercise extending over many years.  

 
 

10 Chaining may not be the best solution in all circumstances. The CPI is usually computed on a monthly basis 
and is often subject to “price bounce”: the tendency of prices to first fall then revert to their previous level, 
usually because of sales. It is often found however that quantities do not immediately revert to their original 
level even though prices do. This causes monthly chained indices to be subject to “chain drift”: they do not 
revert to their previous level even though prices and (eventually) quantities are the same as in the pre-sale 
period. The explanation may be a breakdown in the assumptions underlying the economic approach to index 
numbers. Under the latter it is assumed that households consume everything they purchase immediately. In 
reality they may use the opportunity of a sale to stock up on the product, running down their stock gradually 
before purchasing again. Similar problems arise with seasonal, including fashion, goods. See Diewert (2022), 
chapters 7 and 9, for discussion and suggested remedies. But for quarterly and annual data at the industry level 
as used here these problems seem less acute.  
11 The correct answer is that if the import whose price has risen is an intermediate input like energy, then in an 
efficient economy (price = marginal cost) there is no effect on GDP (abstracting from any effects on aggregate 
demand). If there is a positive margin of price over marginal cost, then GDP falls in response to a rise in the 
imported input’s price (Oulton 2021).  
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The data are constructed in accordance with the KLEMS methodology pioneered by 

Jorgenson and his various collaborators: Jorgenson et al. (1987), (2005), (2016) and (2018). 

They give annual gross output, value added, intermediate input, capital input, labour input 

(all in both nominal and real terms), and TFP for 63 industries, classified by NAICS, 

covering the whole economy (including federal, state and local government). The period 

covered is currently 1987-2020.12 Nominal value added in these 63 industries adds up to 

nominal GDP.  

 

Real value added is double deflated. The growth of labour input is the share-weighted growth 

of hours worked for approximately 170 different groups of workers cross-classified by sex, 

eight age groups, six education groups, and employment class (payrolled vs. self-employed). 

The growth of capital input is the share-weighted growth rate of capital services based on 

about 100 types of capital including inventories and land. A full description of the BEA-BLS-

industry-level production account is in Garner et al. (2020) and (2021). Further detail on 

methodology is available from Garner et al. (2018).  

 

The data for 1987-2020 was downloaded from the BEA website (www.bea.gov) in the form 

of a spreadsheet named “BEA-BLS-industry-level-production-account-1987-2020.xlsx”, 

available at https://www.bea.gov/data/special-topics/integrated-industry-level-production-

account-klems. This spreadsheet was released on May 11 2022 and comprises the latest data 

available at the time this research was begun. It states: “This file contains the data underlying 

the BEA/BLS Integrated Industry-level Production Account for the United States. The data 

covers the 1987-2020 period and is updated to reflect the annual update to the input output 

accounts released on September 30, 2021 available here: https://apps.bea.gov/scb/2021/10-

october/1021-industry-annual-update.htm”.  

 

 

4. Results 

 

Before turning to the results, I start with a brief descriptive analysis of the dataset, focusing in 

particular on the extent of structural change between 1987 and 2019. In what follows I ignore 

2020 as being too distorted by the pandemic to add any light. To give an idea of the 

 
12 Extending the data back to 1947 would be highly desirable. At the moment however that cannot be done on a 
fully consistent basis. And the quality of the estimates for years prior to 1987 is lower (Eldridge et al. 2020).  
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importance of each industry and of structural change, Table 1(a) lists the industries, together 

with the share of each industry’s value added in total value added (nominal GDP) in three 

years: 1987, 2000, and 2020. Industries vary widely in importance. In 2019 the smallest 

shares were for industries 21 (Apparel and leather and allied products) (0.04%), 31 (Water 

transportation) (0.06%) and 20 (Textile mills and textile product mills) (0.07%), all in steep 

decline since 1987. The largest were industries 45 (Real estate) (11.13%) and 63 (State and 

local government) (11.74%), both rising since 1987.  

 

Structural change, 1987-2019 

Figure 1 shows the growth of prices in the 63 industries (measured as 100 x the log change in 

price) over 1987-2019. Much the largest fall in prices (almost 300%) occurred in a single 

industry: industry 13 (Computer and electronic products). The largest rise (181%) was in 

industry 44 (Funds, trusts, and other financial vehicles). Figure 2 shows the growth in 

quantities in the same 63 industries over 1987-2019. Quantity growth is more dispersed than 

price growth. The standard deviation of price growth was 62.8% while that of quantity 

growth was 81.3%.  

 

The outcome of price and quantity growth is changes in shares. Figure 3 shows the changes 

in each industry’s value added share between 1987 and 2019. 28 industries experienced 

positive growth in share and 35 negative growth over this period. The maximum change in 

share was +2.1 p.p. while the minimum was -2.1 p.p. The correlation coefficient between the 

shares in 1987 and in 2000 was 0.98 while that for the shares between 1987 and 2019 was 

0.95. So on this measure, changes in shares, structural change was quite limited. The 

proximate reason for this modest change in shares is that price growth and quantity growth 

are negatively correlated: the correlation coefficient is minus 0.61 over 1987-2019. A 

negative correlation between price and quantity growth is often found empirically. It is 

relevant to a study of index numbers since it makes it likely that a Laspeyres (base-weighted) 

quantity index will grow more rapidly than a Paasche (current-weighted) index.  

 

Though structural change appears quite modest at the industry level, a somewhat different 

picture emerges if the 63 industries are aggregated into the 9 official industry groups: see 

Table 1(b). The major changes apparent now over 1987-2019 are a fall of 7 percentage points 

in the Manufacturing share and a corresponding rise in the share of Other Services.  
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Figure1  
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Figure 3 
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How sensitive is the chained index of real GDP growth to the choice of ?r  

We first test how sensitive the estimated growth rate of real GDP is to the choice of the 

parameter r (recall that the official estimates in the US NIPAs assume in effect that 2r  , the 

Fisher case). Estimates of the average annual growth rate of real GDP over the period 1987-

2019 according to the chained superlative index of equations (12) and (19) appear in Table 2, 

for a range of values of r. Here following Hill (2006) the parameter r is allowed to vary from 

-20 to + 20. This may seem an implausibly wide range, given that in practice a value of r of 

either 0 or 2 is usually employed. But as Hill (2006) points out, the size of r is an empirical 

matter and no one has in fact estimated r empirically.13  

 

It turns out (Table 2) that the estimated growth rates are symmetrical around a value of r at or 

close to zero. The estimated growth rates are not very sensitive to the value of r: taking r to 

be +20 yields a growth rate of 2.562% p.a. while the minimum is 2.402% p.a. when 0r  : 

see Figure 4 which also shows a similar picture for the sub-periods 1987-2000 and 2000-

2019. On the other hands the volatility of the annual growth rate rises markedly as |r| rises 

above about 10. From a practical point of view the estimated growth rate in the Törnqvist 

case ( 0)r   is almost identical to the Fisher case ( 2r  ): 2.402 versus 2.404 % p.a. If 

instead of chained Fisher the BEA employed the European method of chained Laspeyres, 

then growth over 1987-2019 would have been estimated as 2.481% p.a. rather than 2.404% 

p.a., a significant but relatively minor difference.  

 

Assuming constant returns to scale suggests that the true estimate of the annual growth rate 

lies between the chained Laspeyres and the chained Paasche, i.e. in the range 2.327 to 

2.481% p.a. Both the Fisher and the Törnqvist satisfy this criterion. On an annual basis the 

chained Fisher lies within the Laspeyres-Paasche spread in every year; the chained Törnqvist 

lies within the spread in all but two years, 2008 and 2020, both years of severe recession.  

 

 
13 Hill (2006) also shows that as | |r   the quadratic mean ceases to be flexible.  
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Figure 4 

 

Source  Table 2.  

 

How closely is value consistency achieved when 2?r    

We know that value consistency is exactly achieved when 2r  , as in the Fisher index used 

officially in the US NIPAs. Here we test the extent of deviations from value consistency for a 

range of values of r. Specifically, we calculate an index of real GDP and an index of the price 

of GDP from the price and quantity data at the 63 industry level, using a range of values of r. 

The value consistency index (VC) is then defined as the ratio of the value index to the product 

of the price index and the quantity index (for a given value of r):  
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 (20) 

Note that the value consistency index is 1 in the reference year 0. Results for value 

consistency using chained indices appear in Table 3. For r lying between -5 and +5 

consistency is high: the deviation from a value of 1 is less than about 1% . By contrast the 

chained Laspeyres shows a steadily increasing divergence from 1 over 1987-2019. By 2019 

this index is only 0.9520.  

 

Aggregation consistency 

We now define the aggregation consistency index as the ratio of the level of the 2-step 

chained quantity index to the level of the 1-step chained quantity index. The first step of the 

2-step index is chained quantity indices for each of 9 industry groups. The second step 

2
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Sensitivity to parameter  r
Chained superlative indices: growth of real GDP, % p.a.
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aggregates these to the GDP level. See Table 1(b) for the definitions of the 9 industry groups 

in terms of the underlying 63 industries. In symbols the aggregation consistency index (AC) 

is defined as  

 
2, (0, )

(0, ) :
(0, )

Ch
r

r Ch
r

Q t
AC t

Q t
  (21) 

where 2, (0, )Ch
rQ t  is the 2-step index with parameter r in year t with reference year 0. Note 

that the index is 1 in the reference year: (0,0) 1.rAC    

 

Table 5 shows the aggregation consistency index for selected values of r. For values of r in 

the interval (-5,+5) deviations from aggregation consistency are very small. Only outside that 

range do they become significant. For example if r = 20 then the minimum value of the index 

is 0.9717 and the maximum is 1.0370.  

 

How much difference does chaining make?  

The impression gained from Hill (2006) is that GDP growth is much more sensitive to the 

value of r than the results in Table 2 or Figure 4 would suggest. But Hill’s results (though 

using different data) are all based on 2-year, not chained, indices. Figure 5 shows 2-year 

indices for 1987-2000, 2000-2019 and for the whole period 1987-2019. The 2-year (non-

chained) indices use only the weights of the first and last years of their period. Qualitatively 

the picture seems very similar to Hill’s.  

 

Table 5 gives a direct comparison between chained and non-chained (2-year) superlative 

indices of real GDP for values of r ranging from -20 to +20. Three time periods are 

considered: 1987-2000, 2000-2019, and the whole period 1987-2019. Figure 6 compares 2-

year and chained superlative indices directly for the whole period.  
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Figure 5 

 

Source  Table 4.  

 

Figure 6 

 

Source  Tables 2 and 4.  

 

The first thing to note is that if r lies between about -1 and +1, then the 2-year and the 

chained indices are very similar, e.g. in the Törnqvist case the estimated growth rates over 

1987-2019 are 2.350% p.a. versus 2.402% p.a. But outside that range, i.e. r < -1 or r > 1, the 

two types of index start to diverge markedly; e.g. using the 2-year Fisher suggests growth 

was 2.893% p.a. compared to 2.404% p.a. for the chained Fisher. For 5r   the 2-year index 
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gives a growth rate of 4.788 compared to 2.415% p.a. on the chained measure. And for r = 

20, the growth rate over 1987-2019 is 5.361 compared to 2.562% p.a. on the chained 

measure.  

 

Table 5 also compares a non-chained Laspeyres with a chained Laspeyres and a non-chained 

Paasche with a chained Paasche. The non-chained Laspeyres, also known as a Lowe index, 

uses the weights only of the first year of a given period; the non-chained Paasche uses the 

weights only of the last year of a given period Without chaining, the Laspeyres shows growth 

at 3.757% p.a. over the whole period, a big difference from the chained measure, 2.481% p.a.  

 

The conclusion is that chaining makes a huge difference to the sensitivity of the estimated 

growth rates to the choice of r. As we have already seen, the chained superlative indices are 

fairly insensitive to the value of r. With chaining, even the Laspeyres index is not very 

different from the Fisher: 2.481 versus 2.404% p.a. over 1987-2019. So if the US had adopted 

the European method it would have made very little difference to the estimated growth rate. 

But use of an unchained Laspeyres (or Lowe) index would give us a fundamentally different 

view of US growth: 3.757% p.a. over 1987-2019 versus 2.404% p.a. according to the chained 

Fisher. This might be thought sufficient justification in itself for shifting from a fixed base (or 

Lowe) index to a chained one. Without chaining, the choice between Fisher and Törnqvist 

also becomes quite consequential: 2.893 versus 2.350% p.a. over 1987-2019.  

 

In summary, the conclusions of Hill (2006) are largely replicated and confirmed for 2-year 

indices. But equally we see that an opposite conclusion applies to chained indices: they are 

fairly insensitive to the value of r.  

 

 

5. Conclusions 

 

Adopting the Divisia framework leads naturally to chaining as we have seen and as was clear 

to Jorgenson and Griliches (1971): see the quote in the introduction. To implement the 

Divisia approach we need to find good discrete approximations, for which superlative index 

numbers suggest themselves. But to calculate a superlative index number we have to assume 

a value for the unknown parameter r in the superlative index number formula. However, 

using data on real value added from the BEA/BLS industry-level production account, we 
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have found that estimates of real GDP growth are not very sensitive to the value chosen for r, 

provided that the estimates are chained; if the estimates are not chained, the results can be 

quite sensitive to the value of r. This is encouraging if we accept chaining since it reduces 

uncertainty about the true growth rate. We also found that with chaining superlative indices 

are very close to both value consistency and aggregation consistency (for 5 5r   ).  

 

In future work it would be desirable to extend the analysis to the other main aggregates, 

namely capital, labour and intermediate input. It would also be desirable to extend the time 

period back before 1987, possibly as far as 1947, if this were to prove possible.  

 

Finally, the estimates presented here rest on the assumption of perfect competition: prices 

equal marginal costs, though some distortions are still encompassed within the framework, 

e.g. the price for the same capital or labour input can differ across industries as in Jorgenson 

et al. (1987). But much of modern macroeconomics is built on the contrary assumption, 

imperfect competition, at least for short run analysis.14 Recently there has been much 

discussion of whether margins are rising; see Basu (2019) for a survey of margin estimates in 

the United States which vary widely though are generally positive. (Macroeconomists of the 

real business cycle school still hold to the perfect competition assumption (price equals 

marginal cost) but they seem to be in the minority.) Extracting estimates of output and 

productivity from the national accounts is a much more challenging task under imperfect 

competition since it requires the estimation of margins which are not directly observed (Basu 

and Fernald 2002). It also raises the possibility that aggregate TFP is affected by movements 

of resources towards or away from firms with high margins (Baqaee and Farhi 2020).  

 

  

 
14 The literature on imperfect competition and productivity goes back to Hall (1988).  
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TABLES  
 
Table 1(a)   
Shares of 63 industries in U.S. nominal GDP, percent  
 
Number Industry  1987 2000 2019 
1 Farms 1.24 0.73 0.55 
2 Forestry, fishing, and related activities 0.35 0.21 0.18 
3 Oil and gas extraction 0.95 0.65 0.81 
4 Mining, except oil and gas 0.38 0.27 0.26 
5 Support activities for mining 0.14 0.13 0.24 
6 Utilities 2.52 1.72 1.48 
7 Construction 4.23 4.40 4.02 
8 Wood products 0.40 0.27 0.18 
9 Nonmetallic mineral products 0.51 0.41 0.29 
10 Primary metals 0.66 0.45 0.29 
11 Fabricated metal products 1.39 1.16 0.73 
12 Machinery 1.40 1.08 0.75 
13 Computer and electronic products 1.98 2.15 1.37 
14 Electrical equipment, appliances, and components 0.72 0.44 0.29 
15 Motor vehicles, bodies and trailers, and parts 1.43 1.31 0.71 
16 Other transportation equipment 1.35 0.68 0.74 
17 Furniture and related products 0.36 0.32 0.14 
18 Miscellaneous manufacturing 0.49 0.56 0.43 
19 Food and beverage and tobacco products 1.82 1.56 1.24 
20 Textile mills and textile product mills 0.42 0.27 0.07 
21 Apparel and leather and allied products 0.46 0.21 0.04 
22 Paper products 0.79 0.59 0.27 
23 Printing and related support activities 0.53 0.42 0.18 
24 Petroleum and coal products 0.43 0.50 0.73 
25 Chemical products 1.84 1.79 1.74 
26 Plastics and rubber products 0.66 0.63 0.37 
27 Wholesale trade 5.74 5.94 5.68 
28 Retail trade 6.94 6.54 5.19 
29 Air transportation 0.49 0.55 0.65 
30 Rail transportation 0.42 0.22 0.19 
31 Water transportation 0.08 0.08 0.06 
32 Truck transportation 0.90 0.94 0.77 
33 Transit and ground passenger transportation 0.15 0.18 0.24 
34 Pipeline transportation 0.13 0.09 0.19 
35 Other transportation and support activities 0.68 0.63 0.61 
36 Warehousing and storage 0.22 0.25 0.34 
37 Publishing industries, except internet (includes software) 0.91 1.11 1.30 
38 Motion picture and sound recording industries 0.55 0.52 0.39 
39 Broadcasting and telecommunications 2.72 2.64 2.09 

40 
Data processing, internet publishing, and other information 
services 0.28 0.23 1.27 

41 Federal Reserve banks, credit intermediation, and related activities 2.93 3.07 3.22 
42 Securities, commodity contracts, and investments 0.83 1.27 1.47 
43 Insurance carriers and related activities 1.64 2.62 2.69 
44 Funds, trusts, and other financial vehicles 0.15 0.15 0.11 
45 Real estate 10.30 10.44 11.13 
46 Rental and leasing services and lessors of intangible assets 1.04 1.30 1.19 
47 Legal services 1.20 1.23 1.26 
48 Computer systems design and related services 0.43 1.09 1.65 
49 Miscellaneous professional, scientific, and technical services 2.86 3.90 4.41 
50 Management of companies and enterprises 1.55 1.63 1.83 
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Table 1(a), continued.   
 
51 Administrative and support services 1.53 2.44 2.74 
52 Waste management and remediation services 0.22 0.25 0.26 
53 Educational services 0.67 0.91 1.22 
54 Ambulatory health care services 2.42 2.75 3.48 
55 Hospitals and nursing and residential care 2.18 2.47 2.99 
56 Social assistance 0.32 0.50 0.64 
57 Performing arts, spectator sports, museums, and related activities 0.32 0.47 0.65 
58 Amusements, gambling, and recreation industries 0.35 0.47 0.43 
59 Accommodation 0.73 0.89 0.82 
60 Food services and drinking places 1.68 1.85 2.17 
61 Other services, except government 2.43 2.67 2.02 
62 Federal  6.86 4.74 4.78 
63 State and local 9.69 10.08 11.74 
 TOTAL (GDP) 100.0 100.0 100.0 
     
 Min 0.08 0.08 0.04 
 Max 10.30 10.44 11.74 
 S.D.  2.11 2.11 2.25 
 
 
Table 1(b) 
Value added shares of 9 industry groups in GDP, percent 
 

Industry 
group  
no 

Industry 
group  
code Industries  Industry group name 1987 2000 2019 

1 
AFFHM 

1-5 
Agriculture, forestry, fishing, hunting,  
and mining 3.06 1.99 2.04 

2 TWU 6, 29-36 Transportation, warehousing, utilities 5.59 4.65 4.54 

3 CONST 7 Construction 4.23 4.40 4.02 

4 MANUF 8-26 Manufacturing 17.63 14.79 10.55 

5 TRADE 27,28 Trade 12.68 12.48 10.87 

6 INFO 37-40 Information 4.46 4.50 5.05 

7 
FIRE 

41-46 
Finance, insurance, real estate, rental  
and leasing 16.89 18.84 19.82 

8 OSERV 47-61 Other services 18.9 23.53 26.58 

9 GOV 62,63 Government  16.55 14.82 16.53 

   TOTAL (GDP) 100.00 100.00 100.00 
 
 
Source  U.S. Bureau of Economic Analysis, BEA/BLS Integrated Industry-level Production Account 
(BEA-BLS-industry-level-production-account-1987-2020.xlsx, released May 11 2022).  
Note  Industry-level shares are industry value added as % of nominal GDP.  
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Table 2  
Chained superlative indices: annual growth rates of real GDP in the U.S., 1987-2019, % p.a. 
 

Value of r Mean Std. Dev. Min Max 
-20 2.547 3.193 -12.009 9.782 
-19 2.542 2.981 -11.111 8.947 
-18 2.537 2.771 -10.165 8.120 
-17 2.531 2.564 -9.180 7.317 
-16 2.525 2.365 -8.169 6.559 
-15 2.518 2.178 -7.151 5.863 
-14 2.510 2.008 -6.149 5.241 
-13 2.500 1.861 -5.187 4.699 
-12 2.489 1.742 -4.290 4.472 
-11 2.477 1.654 -3.476 4.473 
-10 2.465 1.594 -2.759 4.513 
-9 2.453 1.559 -2.142 4.538 
-8 2.442 1.543 -1.695 4.552 
-7 2.432 1.539 -2.062 4.560 
-6 2.423 1.540 -2.362 4.562 
-5 2.416 1.545 -2.599 4.562 
-4 2.411 1.550 -2.780 4.559 
-3 2.407 1.554 -2.914 4.556 
-2 2.404 1.558 -3.008 4.554 
-1 2.402 1.560 -3.068 4.552 
0 2.402 1.560 -3.099 4.551 
1 2.402 1.559 -3.104 4.552 
2 2.404 1.557 -3.083 4.554 
3 2.406 1.554 -3.036 4.557 
4 2.410 1.549 -2.961 4.562 
5 2.415 1.542 -2.854 4.567 
6 2.421 1.534 -2.710 4.573 
7 2.429 1.526 -2.525 4.577 
8 2.438 1.517 -2.290 4.580 
9 2.448 1.510 -2.002 4.580 

10 2.460 1.508 -1.661 4.574 
11 2.473 1.515 -1.613 4.560 
12 2.486 1.538 -2.138 4.534 
13 2.500 1.582 -2.758 4.493 
14 2.512 1.651 -3.472 4.502 
15 2.524 1.748 -4.270 4.538 
16 2.534 1.872 -5.138 4.935 
17 2.542 2.019 -6.054 5.515 
18 2.549 2.185 -6.996 6.165 
19 2.556 2.366 -7.943 6.872 
20 2.562 2.556 -8.876 7.621 

Memo items     
Limit as |r| → ∞ 2.994 10.102. .-22.421 22.829 
Chained Laspeyres 2.481 1.535 -2.692 4.655 
Chained Paasche 2.327 1.583 -3.474 4.453 

  
Source U.S. Bureau of Economic Analysis, BEA/BLS Integrated Industry-level Production Account. (BEA-
BLS-industry-level-production-account-1987-2020.xlsx, released May 11 2022).  
Note Quantities are real value added for 63 industries; weights are shares in aggregate nominal value added 
(nominal GDP). Growth rates calculated as 100 x mean annual log difference over the period. Superlative 
indices calculated from equations (12) and (19). Limit as |r| → ∞ calculated from equation (13).  
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Table 3 
Value consistency index (1987=1):  
Ratio of value index to product of chained price index and chained quantity index 
 

 Value of r Lasp- 

year -20 -5 -2 -1 0 1 2 5 20 -eyres 

1987 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1988 1.0006 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0007 0.9990 

1989 1.0025 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0022 0.9982 

1990 1.0024 1.0002 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0018 0.9974 

1991 1.0064 1.0005 1.0001 1.0001 1.0000 1.0000 1.0000 1.0002 1.0048 0.9967 

1992 1.0088 1.0007 1.0002 1.0001 1.0000 1.0000 1.0000 1.0002 1.0064 0.9959 

1993 1.0052 1.0005 1.0001 1.0001 1.0000 1.0000 1.0000 1.0001 1.0035 0.9951 

1994 1.0095 1.0007 1.0002 1.0001 1.0000 1.0000 1.0000 1.0002 1.0066 0.9939 

1995 0.9980 1.0001 1.0001 1.0001 1.0000 1.0000 1.0000 0.9999 0.9971 0.9917 

1996 0.9865 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 0.9997 0.9883 0.9890 

1997 1.0109 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 0.9997 1.0045 0.9870 

1998 1.0197 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000 0.9999 1.0111 0.9849 

1999 1.0236 1.0003 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000 1.0143 0.9833 

2000 0.9274 0.9969 0.9994 0.9998 1.0000 1.0001 1.0000 0.9986 0.9359 0.9794 

2001 0.9078 0.9958 0.9991 0.9997 1.0000 1.0001 1.0000 0.9982 0.9211 0.9780 

2002 0.9094 0.9960 0.9992 0.9997 1.0000 1.0001 1.0000 0.9982 0.9220 0.9774 

2003 0.8825 0.9946 0.9989 0.9996 1.0000 1.0001 1.0000 0.9977 0.9008 0.9760 

2004 0.8806 0.9944 0.9988 0.9995 1.0000 1.0001 1.0000 0.9977 0.8994 0.9751 

2005 0.8738 0.9939 0.9987 0.9995 1.0000 1.0001 1.0000 0.9975 0.8941 0.9740 

2006 0.8687 0.9936 0.9986 0.9995 1.0000 1.0001 1.0000 0.9974 0.8906 0.9727 

2007 0.8678 0.9936 0.9986 0.9995 1.0000 1.0002 1.0000 0.9974 0.8897 0.9715 

2008 0.9686 0.9997 1.0002 1.0003 1.0003 1.0002 1.0000 0.9987 0.9652 0.9709 

2009 1.0854 1.0056 1.0015 1.0008 1.0003 1.0000 1.0000 1.0013 1.0651 0.9634 

2010 0.9972 1.0027 1.0008 1.0005 1.0002 1.0001 1.0000 1.0004 1.0008 0.9611 

2011 0.9770 1.0016 1.0005 1.0004 1.0002 1.0001 1.0000 1.0000 0.9848 0.9596 

2012 0.9761 1.0015 1.0005 1.0003 1.0002 1.0001 1.0000 1.0000 0.9844 0.9588 

2013 0.9751 1.0014 1.0005 1.0003 1.0002 1.0001 1.0000 1.0000 0.9838 0.9584 

2014 0.9623 1.0010 1.0004 1.0003 1.0002 1.0001 1.0000 0.9999 0.9752 0.9577 

2015 1.2004 1.0154 1.0034 1.0015 1.0004 0.9999 1.0000 1.0047 1.1735 0.9545 

2016 1.2319 1.0169 1.0039 1.0018 1.0005 0.9999 1.0000 1.0050 1.1911 0.9542 

2017 1.2196 1.0162 1.0037 1.0017 1.0005 0.9999 1.0000 1.0048 1.1826 0.9536 

2018 1.2128 1.0158 1.0036 1.0017 1.0005 0.9999 1.0000 1.0047 1.1777 0.9528 

2019 1.2238 1.0163 1.0037 1.0017 1.0005 0.9999 1.0000 1.0049 1.1861 0.9520 
 
Source  U.S. Bureau of Economic Analysis, BEA/BLS Integrated Industry-level Production Account. 
(BEA-BLS-industry-level-production-account-1987-2020.xlsx, released May 11 2022).  
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Table 4 
Aggregation consistency index (1987=1):  
 

 Value of r 

year -20 -5 -2 -1 0 1 2 5 20 

1987 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1988 1.0003 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0002 

1989 1.0005 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0004 

1990 1.0018 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0014 

1991 1.0017 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0013 

1992 1.0020 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0013 

1993 1.0019 1.0002 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0012 

1994 1.0010 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0002 

1995 0.9982 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000 0.9999 0.9973 

1996 0.9973 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000 0.9999 0.9965 

1997 1.0087 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0025 

1998 1.0080 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000 0.9998 1.0018 

1999 1.0050 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9992 

2000 0.9977 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9936 

2001 0.9892 0.9998 1.0000 1.0001 1.0000 1.0000 1.0000 0.9997 0.9890 

2002 0.9866 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9868 

2003 0.9843 0.9995 1.0000 1.0000 1.0001 1.0000 1.0000 0.9997 0.9858 

2004 0.9840 0.9995 1.0000 1.0000 1.0001 1.0001 1.0000 0.9997 0.9856 

2005 0.9839 0.9995 1.0000 1.0000 1.0001 1.0001 1.0000 0.9997 0.9853 

2006 0.9789 0.9993 0.9999 1.0000 1.0001 1.0001 1.0000 0.9995 0.9816 

2007 0.9773 0.9990 0.9999 1.0000 1.0001 1.0001 1.0000 0.9995 0.9802 

2008 1.0558 1.0005 1.0001 1.0001 1.0001 1.0001 1.0000 0.9997 1.0370 

2009 1.0303 0.9981 0.9997 1.0000 1.0000 0.9999 0.9997 0.9981 1.0127 

2010 0.9775 0.9977 0.9996 0.9999 1.0000 1.0000 0.9997 0.9981 0.9764 

2011 0.9784 0.9977 0.9996 0.9999 1.0000 1.0000 0.9998 0.9981 0.9774 

2012 0.9767 0.9976 0.9996 0.9999 1.0000 1.0000 0.9997 0.9981 0.9759 

2013 0.9755 0.9975 0.9996 0.9999 1.0000 1.0000 0.9997 0.9980 0.9750 

2014 0.9695 0.9975 0.9996 0.9999 1.0000 1.0000 0.9998 0.9981 0.9718 

2015 0.9756 0.9976 0.9996 0.9999 0.9999 0.9998 0.9995 0.9975 0.9717 

2016 0.9855 0.9978 0.9997 0.9999 1.0000 0.9998 0.9995 0.9975 0.9773 

2017 0.9853 0.9978 0.9997 0.9999 1.0000 0.9998 0.9995 0.9975 0.9774 

2018 0.9839 0.9977 0.9997 0.9999 1.0000 0.9998 0.9995 0.9975 0.9764 

2019 0.9832 0.9977 0.9997 0.9999 1.0000 0.9998 0.9995 0.9974 0.9756 

Std. Dev.  0.0195 0.0011 0.0002 0.0001 0.0000 0.0001 0.0002 0.0010 0.0148 

Min 0.9695 0.9975 0.9996 0.9999 0.9999 0.9998 0.9995 0.9974 0.9717 

Max 1.0558 1.0005 1.0003 1.0002 1.0001 1.0001 1.0000 1.0000 1.0370 
 
Source  U.S. Bureau of Economic Analysis, BEA/BLS Integrated Industry-level Production Account. 
(BEA-BLS-industry-level-production-account-1987-2020.xlsx, released May 11 2022).  

Note  The aggregation consistency index is the ratio of the 2-step chained quantity index to the 1-
step chained quantity index. First step of the 2-step index is chained quantity indices for each of 9 industry 
groups. The second step aggregates these to the GDP level. See Table 1(b) for the definition of the 9 industry 
groups.  
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Table 5  
Superlative indices: average annual growth rates of real GDP, % p.a.  
2-year indices compared to chained indices 
 

 1987-2000 2000-2019 1987-2019 
Value of r 2-year Chained 2-year Chained 2-year Chained 

-20 7.822 3.298 4.855 2.033 4.932 2.547 
-19 7.819 3.307 4.870 2.018 4.941 2.542 
-18 7.810 3.312 4.883 2.006 4.950 2.537 
-17 7.793 3.314 4.894 1.996 4.961 2.531 
-16 7.768 3.313 4.902 1.986 4.972 2.525 
-15 7.732 3.308 4.904 1.978 4.984 2.518 
-14 7.680 3.302 4.896 1.968 4.997 2.510 
-13 7.609 3.294 4.873 1.958 5.009 2.500 
-12 7.512 3.285 4.829 1.945 5.020 2.489 
-11 7.383 3.275 4.757 1.931 5.027 2.477 
-10 7.211 3.266 4.647 1.917 5.025 2.465 
-9 6.983 3.257 4.489 1.902 5.005 2.453 
-8 6.682 3.248 4.271 1.889 4.952 2.442 
-7 6.287 3.241 3.979 1.878 4.847 2.432 
-6 5.780 3.234 3.605 1.869 4.663 2.423 
-5 5.165 3.227 3.162 1.861 4.365 2.416 
-4 4.501 3.222 2.705 1.856 3.917 2.411 
-3 3.915 3.218 2.322 1.852 3.329 2.407 
-2 3.509 3.215 2.068 1.849 2.769 2.404 
-1 3.291 3.213 1.929 1.848 2.443 2.402 
0 3.220 3.212 1.873 1.847 2.350 2.402 
1 3.277 3.213 1.876 1.848 2.467 2.402 
2 3.484 3.214 1.929 1.849 2.893 2.404 
3 3.889 3.216 2.041 1.852 3.612 2.406 
4 4.494 3.220 2.223 1.856 4.298 2.410 
5 5.192 3.225 2.482 1.861 4.788 2.415 
6 5.843 3.230 2.805 1.868 5.115 2.421 
7 6.378 3.237 3.152 1.876 5.333 2.429 
8 6.793 3.245 3.485 1.885 5.477 2.438 
9 7.108 3.254 3.780 1.897 5.567 2.448 
10 7.344 3.263 4.029 1.910 5.616 2.460 
11 7.520 3.274 4.233 1.925 5.633 2.473 
12 7.650 3.285 4.396 1.940 5.625 2.486 
13 7.743 3.296 4.524 1.955 5.601 2.500 
14 7.808 3.307 4.620 1.969 5.568 2.512 
15 7.852 3.317 4.689 1.981 5.532 2.524 
16 7.880 3.327 4.738 1.991 5.494 2.534 
17 7.895 3.334 4.769 2.000 5.457 2.542 
18 7.900 3.340 4.786 2.008 5.423 2.549 
19 7.899 3.342 4.794 2.018 5.390 2.556 
20 7.892 3.342 4.796 2.028 5.361 2.562 

Memo items       
Laspeyres  4.086 3.294 2.217 1.924 3.757 2.481 
Paasche 2.881 3.134 1.641 1.775 2.029 2.327 

 

Source  U.S. Bureau of Economic Analysis, BEA/BLS Integrated Industry-level Production Account. 
(BEA-BLS-industry-level-production-account-1987-2020.xlsx, released May 11 2022).  
Note  Quantities are real value added for 63 industries; weights are shares in aggregate nominal 
value added (nominal GDP). Growth rates calculated as 100 x mean annual log difference over the stated period. 
Superlative indices calculated from equations (12) and (19). 2-year superlative indices use weights of just the 
first and last years of the period; chained superlative indices use weights of all years of the period. 2-year 
Laspeyres (Paasche) uses only weights of first (last) year of period.  
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