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Abstract

Macroeconomic outcomes depend on the distribution of markups across firms
and over time, making firm-level markup estimates key for macroeconomic analysis.
Methods to obtain these estimates require data on the prices that firms charge. Firm-
level data with wide coverage, however, primarily comes from financial statements,
which lack information on prices. We use an analytical framework to show that trends
in markups or the dispersion of markups across firms can still be well-measured with
such data. Finding the average level of the markup does require pricing data, and we
propose a consistent estimator for such settings. We validate the analytical results
with simulations of a quantitative macroeconomic model and firm-level administra-
tive production and pricing data. Our analysis supports the use of financial data to
measure trends in aggregate markups.
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1 Introduction

The markup of prices over marginal costs is a key variable in the macro-economy.
Aggregate markups determine the labor and capital share in national income. Dis-
persion in markups across firms affects the efficiency with which resources are
allocated. Variation in markups over the business cycle may explain the trans-
mission of nominal shocks to the real economy. To understand macroeconomic
outcomes, economists must therefore have a comprehensive picture of the distri-
bution of firms’ markups across the economy and over time. Yet neither prices nor
marginal costs are observed in the datasets that macroeconomists have at their
disposal. This is because firm-level data with economy-wide coverage is nearly al-
ways derived from firms’ income statements and balance sheets, which at most
contain information on assets, revenue and costs.

A sprawling literature in macroeconomics and international trade has relied on
markup estimates derived from such financial data, for example to quantify and
test theories of imperfect competition à la Atkeson and Burstein (2008) and Kim-
ball (1995).1 A careful and quantitative assessment of the accuracy of firm-level
markup estimates from financial data is, however, lacking.

This paper assesses the degree to which markups can be recovered from data on
financial statements. We do so using an analytical framework, simulations of a
quantitative macroeconomic model, and an empirical analysis using French firm-
level production and pricing data. We show that the dispersion of markups across
firms and trends in markups over time can be well-estimated with financial data,
as long as firms share a common production technology. Measuring average mark-
ups across firms, however, requires additional data on prices.

All parts of our analysis leverage the fact that for cost-minimizing firms, markups
are equal to the wedge between the elasticity of a firm’s output with respect to a
variable input – that firms set without adjustment costs – and that input’s share
in revenues (Hall 1986, 1988). As inputs’ revenue shares are directly observable in
financial statements, measuring the output elasticity is the main empirical chal-
lenge when estimating firm-level markups. This involves estimating a production
function, which is why this approach to markup estimation is also known as the
“production approach”, as introduced by De Loecker and Warzynski (2012).

In our analytical framework, we characterize the biases that arise from the main
issue when estimating markups using the production approach: financial state-

1This literature has been fueled by the fact that aggregate estimates of the markup have been
rising over time (e.g., De Loecker et al. 2020). These papers study the aggregate cost of markup
(Baqaee and Farhi 2019; Edmond et al. 2023), the role of markups in inequality (Boar and Midrigan
2019), the markup cyclicality (Hong 2017; Burstein et al. 2020), gains from trade (Edmond et al.
2015; Gaubert and Itskhoki 2021), the monetary policy transmission (Baqaee et al. 2021; Chiavari et
al. 2021; Meier and Reinelt 2022), the inflation dynamics (Kouvavas et al. 2021), or, price stickiness
(Wang and Werning 2022; Mongey 2017).

2



ments only detail the revenue that firms earn from their sales, not the quantity that
firms sell. Under imperfect competition, the production function can only be con-
sistently estimated with data on firms’ output (Klette and Griliches 1996). We show
that when revenue is used to estimate the production function, the resultant out-
put elasticities are biased by the average price-elasticity of demand. This elasticity,
in turn, determines the average markup across firms when firms are static profit
maximizers. This means that when revenue data is used to measure markups, the
estimated average of the markups is not informative about the true average. At the
same time, we derive that, as long as firms have heterogeneous price-elasticities
of demand (and thus heterogeneous markups), the dispersion of markups across
firms or trends in markups over time can still be accurately measured. This con-
trasts with the influential claim in Bond et al. (2021) that revenue-based markups
are uninformative about true markups. We explain that their reasoning may hold
on average, in the sense that the average revenue-based markup is usually not in-
formative of the true average markup.2

The remainder of the paper validates our theoretical arguments through a com-
bination of quantitative Monte Carlo simulations and an empirical analysis with
French administrative data that includes information on quantities and prices.
We simulate a rich macroeconomic model of oligopolistic competition à la Atke-
son and Burstein (2008) with endogenously heterogeneous markups. Firms in the
simulations are assumed to differ in their fixed input and productivity, but share
the same translog production function. The simulations enables us to scrutinize
markup estimates when the researcher lacks data on prices in a setting where
the true markup is known. Our results show a strong correlation between true
markups and the various estimated markups. In a perfect scenario where the re-
searcher has data on the firm’s output quantity and uses our preferred method to
estimate the output elasticity of a variable input, we find that markups can be es-
timated with precision. In the practical scenario in which researchers lack data
on prices and quantities, we still find a correlation of 0.93 between estimated and
true markups. We further show that dispersion – both in the cross-section and over
time – is well-estimated, in line with our analytical results.

We then compare estimates of markups based on revenue and quantity from firm-
level data on the universe of French manufacturing firms with at least 20 employ-
ees. The dataset contains balance sheet and income statement data for 2009 to
2019, as well as unit values of the products they sell. This enables us to empiri-
cally correlate markup estimates from data on revenue and from data on quanti-
ties. Our empirical results validate our findings. While we do not know the true
markups in that case, we do have a 0.3 correlation between revenue and quantity-
based markups in our preferred specification, rising to 0.7 in first differences. All

2Bond et al. (2021) claim “This approach uses the revenue elasticity for a flexible input, in place
of the output elasticity” and that the resultant markup is “(..) identically equal to one, and therefore
contains no useful information about markups.”
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sectors are included in this correlation, which means that a positive correlation is
preserved between revenue and quantity-based markups even when output elas-
ticities are highly heterogeneous. We further show that regression coefficients re-
lating estimated markups to profits, labor- and market shares are of the same sign
and order of magnitude, across all specifications.

For aggregate markups in France, we again find that the level is mismeasured when
using revenue data. Trends in aggregate markups, however, are well-estimated. We
further show that these trends are largely robust to different ways of aggregating
markups and to the choice of the firms’ variable input, although it is sensitive to
restricting the sample to public firms.

Overall, we conclude that firm-level estimates of the markup along Hall (1986,
1988)’s methodology are informative of true markups. However, our results do im-
ply that researchers should give careful consideration to the suitability of their data
for the question at hand. When interested in the level of the markup, researchers
need quantity data. When interested in dispersion, such as variation across firms
or trends over time, revenue data is likely to suffice.

Related literature. We contribute to the large and growing literature that uses
firm-level markups to understand the macroeconomic implications of imperfect
competition. This literature relies on estimates of firm-level markups across the
entire economy and long time windows in order to quantify theoretical models.
Recent examples include Baqaee and Farhi (2019) and Edmond et al. (2023), who
study the cost of markup dispersion, Boar and Midrigan (2019), who study the
role of markups in inequality, Hong (2017) and Burstein et al. (2020), who study
markups over the business cycle.3 We show that markup estimates from revenue
data can be used to calibrate parameters relating to markup dispersion or relative
markups across firms, but not the average level of the markup.

Relatedly, there is a growing literature that uses estimates of firm-level markups to
understand trends in markups over time. De Loecker et al. (2020) estimate firm-
level markups based on accounting data for U.S. firms to show that markups have
increased sharply between 1980 and 2015, a result that has been confirmed for
other countries by Díez et al. (2021). This is consistent with evidence from macroe-
conomic data that the labor share in income is falling, to the benefit of the profit
share (e.g. Karabarbounis and Neiman 2014, Barkai 2020)4

3Other work that uses firm-level markup estimates in quantitative macroeconomic analysis fo-
cuses on the gain from trade (Edmond et al. 2015; Gaubert and Itskhoki 2021), monetary policy
transmission (Baqaee et al. 2021; Chiavari et al. 2021; Meier and Reinelt 2022), the inflation dy-
namics (Kouvavas et al. 2021), or, price stickiness (Wang and Werning 2022; Mongey 2017).

4Neiman and Vavra (2023) note that unmeasured inputs would also appear as a rise in profits
from this calculation, and therefore label the residual of national income after labor and capital
payments ‘factorless income’. Gutiérrez and Piton (2020) note that, outside of North America, the
labor share has not declined except in the housing sector.
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Methodologically, our paper relates most closely to work that estimates markups
using the estimator in Hall (1986, 1988), who derives that the markup is equal
to the wedge between a variable input’s output elasticity and the input’s revenue
share.5 Since De Loecker and Warzynski (2012), practitioners obtain that elasticity
from a production function estimation, often using the Ackerberg et al. (2015) pro-
cedure.6 The procedure involves a first-stage regression to purge output of mea-
surement error and transitory productivity shocks, followed by a second stage that
identifies the production function with instrumental variables.

Our paper is particularly related to the recent literature that criticizes the use of
these production function techniques when estimating markups. Bond et al. (2021)
and Doraszelski and Jaumandreu (2021) point out that these techniques typically
assume that firms are price takers – an assumption that is particularly unfortunate
when estimating markups. A primary issue is that for price-taking firms, revenue is
proportional to output, while price-setting firms must reduce prices when raising
output. This means that revenue elasticities differ from output elasticities (e.g.,
Klette and Griliches 1996).7

A particularly strong critique is found in Bond et al. (2021), who claim that there is
no information about true markups in estimates that rely on revenue to estimate
output elasticities. We contribute to this literature by rejecting this claim. We ex-
plain this is only correct on average in the sense that the average revenue-based
markup is usually not informative of the true average markup, while variation in
markups is well-measured. This is important, as the paucity of firm-level price
data means that Bond et al. (2021)’s claim would have seriously limited the possi-
bility for future analysis of markups.

A further issue is that production function estimates may be biased when using
the Ackerberg et al. (2015) two-stage GMM procedure when firms are price set-
ters, even if researchers use data on quantity.8 As pointed out by Doraszelski and
Jaumandreu (2019) and Brand (2019), one of the identifying assumptions in the
procedure by Ackerberg et al. (2015) is that the demand function by firms is not
affected by unobservables other than productivity, which may not be true under

5This estimator is a main alternative to markup estimators based on cost shares of inputs. A
primary advantage is that the estimator poses little structure on the production function, which
cost-share approaches do. One advantage of cost-share approaches is that they may be robust to
non-hicks neutral productivity – as is compellingly shown in Raval (2023a,b).

6Several recent papers deploy markup estimates using the De Loecker and Warzynski (2012)
methodology in specific applications, including Burstein et al. (2020), Meier and Reinelt (2022),
Calligaris et al. (2018), De Ridder (2024), and Pasqualini (2021).

7A broader discussion on the estimation of markups in accounting data is provided in, e.g.,
Traina 2018, Basu 2019, Syverson 2019. Yeh et al. (2022) and Morlacco (2019) note that markup
estimates are biased when firms have monopsony power on the flexible input’s market.

8More generally, our paper builds on a significant literature that estimates production func-
tions. Our analysis, in the spirit of the seminal work by Olley and Pakes (1996) and Levinsohn and
Petrin (2003), uses a proxy regression to control unobservable productivity.
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oligopolistic competition.9 We analyze the bias arising from improperly account-
ing for demand (and therefore markup) heterogeneity in the estimation of the pro-
duction function elasticities and markups.10 We contribute to this literature by
proposing a change to the first stage of the procedure to account for markups, and
by showing that the bias from not controlling for markups in the first-stage regres-
sion is typically small.

Outline. The remainder of this paper proceeds as follows. Section 2 outlines our
analytical framework, while Section 3 introduces the data. Section 4 presents sim-
ulations; the empirical exercise is presented in Section 5. Section 6 discusses the
evolution of aggregate markups in France. Section 7 concludes.

2 Analytical framework

This section presents the analytical framework. We first summarize the derivation
in Hall (1986, 1988) relating markups to a firm’s production function. It then ad-
dresses identification challenges when estimating production functions with com-
monly available datasets when firms have market power. Finally, we use the frame-
work to derive closed-form expressions for biases arising when using revenue to
approximate a firm’s output or amid measurement error.

2.1 From Markups to Production Functions

The seminal papers by Hall (1986, 1988) link the estimation of price-cost margins,
usually called markups or the output wedge, to estimation of production func-
tions. The idea is that markups can be inferred from the wedge between the out-
put elasticity of a variable input and that input’s share in total revenue. An input
is variable if firms choose its use every period to minimize their costs and without
considering intertemporal factors or incurring adjustment costs, while taking the
price of this input as given.

Formally, the output Yit for firm i at time t is given by the production function
Yit = Y (Vit,Kit,Ωit), where Vit is the variable input, purchased at price Wt. The
vector Kit contains all other inputs, while Ωit represents productivity. The first-
order condition for the cost-minimizing firm with respect to Vit is given by: 1

λit
=

∂Yit
∂Vit

1
Wt
, where λit is the Lagrange multiplier of the production function constraint

9The bias arising from a violation of this assumption (in particular on correlations between
markups and demand determinants) is analyzed in Doraszelski and Jaumandreu (2021).

10We also require sufficient variation in input prices for the variable input, to assure that the
input and productivity are not colinear (e.g. Blundell and Bond 2000, Gandhi et al. 2020).
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and is equal to marginal costs. Multiplying both sides by price Pit yields Hall (1986,
1988)’s markup expression,

µit = αit
PitYit
WtVit

, (1)

where µit ≡ Pit/λit is the markup and αit = ∂Yit
∂Vit

Vit
Yit

is the output elasticity of Vit.

The expression yields the familiar result that an input’s output elasticity equals its
revenue share if markups are 1, while revenue shares fall short of the output elas-
ticity when markups exceed 1. It follows that to estimate markups, researchers
need data on revenue and input spending from the income statement, as well as
an estimate of αit, the output elasticity of Vit. Estimating this elasticity under im-
perfect competition is thus a primary challenge in markup estimation.

It is worth noting that for inputs not conforming to the assumptions placed on Vit,
such as adjustment costs for capital or imperfections in the labor market, the right-
hand side of equation (1) is equivalent to the product of the output wedge and
the input wedge, as defined by Hsieh and Klenow (2009).11 When equation (1) is
applied to an input, the interpretation of this measure as the markup is contingent
upon the input indeed being variable. In any case, the variation in this measure
captures the variation in the output wedges, modulated by input wedges when the
input is not variable.12

2.2 Estimating Markups with Revenue Data

We next introduce an analytical framework to analyze the degree to which markups
can be measured along (1) when estimating output elasticity αit using commonly
available datasets. As these markups inform macroeconomic and international
trade theories, it is crucial for data to have economy-wide coverage, preferably
over long time horizons. Datasets meeting this requirement, such as Compustat,
Orbis, and tax-derived datasets, are based on financial statements. Consequently,
information on production quantities is unavailable, and revenue is the sole mea-
sure of output. As firms’ decisions influence prices under imperfect competition,
however, revenue may be a poor approximation for output.

11Specifically, if the input Lit ∈ Kit is subject to a wedges, τit, modeled as a tax following Hsieh
and Klenow (2009), the ratio of this input’s output elasticity, ∂Yit∂Lit

Lit
Yit

and the expenditure share on
that input is equal to µitτit. Morlacco (2019) use this property and import data to identify mark-
downs in the input market for French manufacturing firms.

12Hashemi et al. (2022) note that if firms have constant markups and when output elasticities are
replaced by revenue elasticities, equation (1) measures input wedges rather than output wedges.
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2.2.1 When do Revenue-Based Markups Measure True Markups?

This section discusses the extent to which revenue-based markup estimates accu-
rately measure true markups. We show that the correlation between the estimated
and true markups depends critically on the estimated output elasticity of the vari-
able input. Actual markups are only recovered if the estimate is equal to the out-
put elasticity. If the estimate is equal to the elasticity of revenue with respect to the
variable input, the revenue elasticity, estimates of markups are orthogonal to true
markups. In the intermediate case, where the estimated output elasticity is nei-
ther the revenue elasticity nor the true output elasticity, we show that the resultant
markups correlate positively with true markups.

To derive these results, we introduce a simple demand system. Firms face a de-
mand elasticity dyit

dpit
= −εit, where lower case letters denote the log deviation from

a sample mean. The demand elasticity can be heterogeneous across firms and
over time. Firms that maximize profits period-by-period in the face of this demand
will charge a markup µit = (1 − εit)

−1. This is the standard inverse elasticity rule
that describes how firms set prices in static models of oligopolistic or monopolis-
tic competition. The demand system gives us the elasticity of revenue Rit = PitYit
with respect to Vit as: drit

dvit
= dpit

dyit

dyit
dvit

+ dyit
dvit

= (1− εit)αit.
With the true markups delivered by the demand system, we can now derive the
correlation between these markups and revenue-based estimates of the markup.
These estimates use the Hall equation (1), where the output elasticity αit is re-
placed by the estimated elasticity on revenue data. The literature has developed
techniques to estimate the parameters of a production function with firm-level
data.13 When such techniques use revenue in place of quantity data, the resultant
parameters are biased (see Klette and Griliches 1996). These are then used to com-
pute estimates of the output elasticity with respect to the variable input, α̂it, which
will therefore also be biased. We show this bias is a function of the joint distribu-
tion of inputs and of the elasticities of both demand and output in Section 2.2.2.
As a result of the bias, revenue-based markup estimates read as:

µ̂Rit ≡ α̂it
PitYit
WtVit

=
α̂it
αit

αit
PitYit
WtVit

=
α̂it

αit(1− εit)
=
α̂it
αit

µit. (2)

This equation elucidates the relationship between true and estimated markups,
and true and estimated output elasticities. From the last equality, it is trivial to
see that if α̂it = αit, revenue-based markup estimates equal the true markup. It
follows from the penultimate equality that the revenue-based markup estimates
µ̂Rit can correlate with the true markup µit as long as α̂it is different from the revenue

13For example, see Blundell and Bond (2000), Olley and Pakes (1996), Levinsohn and Petrin
(2003) or Ackerberg et al. (2015).
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elasticityαit(1−εit). In such cases, Cov
[
log µit, log µ̂Rit

]
6= 0. However, if markups are

computed using the revenue elasticity αit(1 − εit) in place of the output elasticity
αit, as in Bond et al. (2021), equation (1) yields

µ̂REit ≡ (1− εit)αit
PitYit
WtVit

= (1− εit)µit =
1− εit
1− εit

= 1.

In other words, the resulting markup would be identically equal to one and would
be orthogonal to the true markup: Cov

[
log µit, log µ̂REit

]
= 0.

To summarize, the bias in markups derived from revenue data depends on the
bias in the estimated output elasticity α̂it. If this estimate is exactly equal to the
revenue elasticity, (1− εit)αit, the resulting markup provides no information about
the true markup in line with Bond et al. (2021). Conversely, if the estimated output
elasticity equals the true output elasticity, αit, the revenue-based markup recovers
the true markup. Next, we demonstrate that estimating a parametric production
function using revenue instead of quantity yields neither the revenue nor the out-
put elasticity, as long as firms have heterogeneous markups.

2.2.2 Estimating Output Elasticity with Revenue Data

We next derive the estimate of the output elasticity, α̂it, that one obtains when
using revenue instead of quantity data. We show that the resulting bias between
the estimated output elasticity and the true elasticity is an omitted variable bias.
Note that the parameters of a production function are consistently estimated with
output and price data, and, therefore, so is the resulting output elasticity.14

To derive the bias we use a simple analytical framework. We consider a set of firms
in a single sector where firms share the same production function. The production
of output Yit is log-linear in a single variable input Vit, while productivity is iden-
tically and independently distributed (i.i.d.) across firms and time. These shocks
are unobserved by the econometrician but observed by the firm. Firms set Vit to
minimize costs and share the same Cobb-Douglas production function

yit = αvit + ωit, (3)

where lower caps denote log-deviations from the mean, and where the param-
eter α is the true output elasticity of vit to be estimated.15 This simple environ-
ment allow us to keep the argument as transparent as possible and to derive clear

14We show that the IV-GMM estimator is consistent and recovers the output elasticity for the
simple analytical framework (Appendix A.1) and in more general cases (Appendix A.4).

15To be precise, xit = logXit − E [logXit] where E [logXit] is the limit of the empirical average
across observations. This normalization allows us to get rid of any constant in the production
function and ensures ωit has mean zero.
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closed-form solutions. Despite its simplicity, the intuitions extend to more general
models that are standard in the literature. In Section 2.2.4, for example, we study
the case of a translog production function where the output elasticity is a func-
tion of input usage and heterogeneous across firms. Appendix A.4 furthermore
extends the results by allowing for multiple inputs (A.4.2), persistence in produc-
tivity (A.4.3), and all of these together (A.4.4).16

Turning to the estimation of α, a least-squares regression of input vit on output yit
will be biased even if firm-level output is observed. This is because the productiv-
ity term ωit affects firm’s input choices and is unobserved to the econometrician,
which means it is part of the residual. The literature on production function esti-
mation, such as Blundell and Bond (2000) or Ackerberg et al. (2015), identify α by
instrumenting vit by its lag vit−1. In our setup, since productivity is i.i.d., the instru-
ment vit−1 is not in the same information set and thus is orthogonal to ωit.17 This
means that the instrument satisfies the exclusion restriction. To meet the instru-
ment relevance condition, we furthermore need vit to be persistent over time. This
might arise through persistence in the input price, Wt. Gandhi et al. (2020) note
that under perfect competition, this is the sole source of instrument relevance,
which means that long time samples are required for identification. We show that
under imperfect competition, the natural setting when estimating markups, it is
much easier to obtain persistence in vit, because a firm’s persistent set of competi-
tors affect its demand for inputs (Appendix A.1). Hence the production function,
and thus output elasticity α, can be identified.

When estimating the production function with revenue data, one obtains a biased
estimate of α. To show this, let us construct an instrumental variable estimator
based on the generalized method of moments (IV-GMM) when revenue is used
in place of quantity. We focus on infinite samples to study the consistency of the
estimator and to abstract from finite-sample variation.18 Hence, E [xit] denotes
the limit in probability of the sample average of a variable xit as the sample size
goes to infinity. With slight abuse of language, we use consistent and unbiased

16In Appendix A.4.3 we note that under productivity with Persistence ρ, the identification of the
production function parameters may only hold locally. In particular, we find that there are exactly
two solutions to the IV-GMM estimator. One solution gives the true value of the parameters, while
the second solution is a biased estimate of the true parameters. This is in line with a recent work by
Ackerberg et al. (2020), which shows independently that the two-stage estimator might have two
solutions, rendering traditional numerical solvers unstable. However, in our simple framework,
we show that if Var[vit−1] is large compared to Var[ωit−1] and Var[vit − ρvit−1] then there exists a
unique solution for α̂ and ρ̂. This means that, if there is enough variation in the data, the parame-
ters of the production function are globally identified.

17When the productivity process is persistent, for instance when it follows an AR(1) process,
vit−1 is still a valid instrument if the moment condition is for vit−1 to be orthogonal to the inno-
vation term of the productivity process. We discuss this in Appendix A.4.3). A similar argument
applies there: vit−1 is not in the same information set than the time t innovation of productivity.

18Appendix A.2 derives the estimator for a finite size sample of firms.
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interchangeably, as these notions coincide in large samples.19 Revenue is quantity
times price, such that rit = yit + pit is revenue in log-deviations from the mean.
Furthermore, inserting production function (3) for yit yields rit = yit + pit = αvit +
ωit+pit,whereα remains the parameter of interest. If a researcher were to use an IV-
GMM estimator that is consistent for quantity, but uses revenue as the dependent
variable instead, that estimator would be:

Definition 1 (Revenue IV-GMM estimator) The estimator is α̂ ∈ R such that mo-
ment E[t̂fpritvit−1] equals zero, where t̂fprit = pit + yit − α̂vit = (α− α̂)vit + pit + ωit.

Note that α̂ is a non-random real number as we are considering an infinite-size
sample – that is, we are reasoning at the limit.20 Solving for α̂ ∈ R such that 0 =

E[t̂fpritvit−1] = (α − α̂)E [vitvit−1] + E [pitvit−1], yields the following unique solution
as long as the lagged variable input is a relevant instrument, that is E [vitvit−1] 6= 0:

α̂ = α+
E [pitvit−1]

E [vitvit−1]
, (4)

The IV-GMM estimator is clearly not a consistent estimate of the true α if prices
and lagged variable inputs are correlated, such that E [pitvit−1] 6= 0. Using rev-
enue rather than quantity to measure output thus creates an omitted variable bias:
the revenue-production function has prices in the residual as first pointed out by
Klette and Griliches (1996) and discussed in De Loecker et al. (2016).

Under perfect competition, the correlation between price and lag input usage is
zero since firms are atomistic price takers – an assumption undesirable in con-
texts when estimating markups. Under imperfect competition, it is probable that
pit will correlate with lagged variable inputs, such that E [pitvit−1] differs from zero.
Note that there are no model-free constraints on either the size or sign of the co-
variance. If firms face persistent aggregate demand shocks and decreasing returns
to scale, for example, positive shocks drive up marginal costs and prices, causing a
positive correlation between prices and lagged variable inputs. Conversely, firms
with downward-sloping demand curves reduce prices to sell additional output,
causing a negative correlation. The estimates of α can therefore be smaller, larger
or equal to the true output elasticity. Equally, the ensuing markup estimates may
overstate, understate or equal true markups.

19By the weak law of large number, under independence of the xit, E [xit] ≡ plim
N→∞

1
N

∑
it xit also

denotes the expected value of xit.
20Formally, α̂ is a random variable which is almost surely equal to a constant. We are labeling

the former as the latter for simplicity.
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2.2.3 Revenue-Based Markup Estimates

We next show that, even when biased, revenue-based markup estimates are still
informative about true markups. The bias in the estimated elasticity in equation
(4) is determined by the demand system and so to show this, we re-introduce a
demand side to our baseline framework. We assume a general invertible demand
system, where a firm’s demand depends on prices of all firms. Formally, the vector
of quantities produced by all firms, {Yit}, is a function of the price vector {Pit} such
that {Yit} = Dt({Pit}). A log-linear approximation yields

pit = −∑jεijtyjt, (5)

where εijt is the cross-elasticity of firm i’s price to firm j’s quantity.We abstract
from aggregate shocks that alter price-quantity relationships across periods, and
hence focus on the bias caused by downward-sloping demand curves.

With this demand system, the revenue elasticity of the variable input, taking other
firms output as given, is drit

dvit
= α(1− εiit). Since we assume that vit is a variable in-

put, we can use it to compute markups along equation (1). As firms share a com-
mon output elasticity α, true markups are given by µit = α(PitYit)/(WtVit). The
estimated elasticity, by substituting the demand system (5) into equation (4) and
using the production function (3), can be written as

α̂ = α

(
1−∑j

E
[
εijt(vjt+

ωjt
α

)vit−1

]
E[vitvit−1]

)
.

The difference between the output elasticity and the estimated elasticity due to the
use of revenue data is equal to one minus the weighted average of demand elastic-
ities and cross-elasticities among the firms sharing the same production function.
Importantly, the estimated elasticity α̂ is, in general, different from the revenue
elasticity α(1 − εiit) which implies that the revenue markup is different from one,
as in equation (2). To see this clearly, note that the estimate a firm-level markup
based on revenue data, µ̂Rit = α̂PitYit

WtVit
is equal to:

µ̂Rit = µit

(
1−∑j

E
[
εijt(vjt+

ωjt
α

)vit−1

]
E[vitvit−1]

)
.

This shows that the revenue-based markup estimates are equal to true markups
up to a constant. Indeed, the second term in parenthesis in the right hand side is
not firm-specific, as the E implies taking an average over i. The true and estimated
revenue markup have then equal variances and the correlation between the rev-
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enue markup and the true markup is equal to one.

The result that revenue and quantity markups perfectly correlate depends on the
Cobb-Douglas assumption that output elasticity is constant. The bias, a constant
in this environment, does not cancel out variation in markups. In Section 2.2.4,
we discuss the case of non-constant output elasticities and show that the insights
remain: variation in the bias does not cancel out variation in markups.

Case I: heterogeneous demand elasticities. While the derivation that revenue-
based estimates of the markup perfectly covary with true markups applies to many
demand systems, this result is only useful if markups are variable across firms. In
our simple demand system where firms set prices to maximize contemporane-
ous profits, firms will have heterogeneous markups if they are subject to hetero-
geneous price elasticities of demand. For this case, it is straightforward to derive
that all dispersion in the markup is preserved, but the mean markup is sufficiently
biased such that no information about the true average remains.

To see this, start from the demand system in equation (5) with the additional as-
sumption that for all pairs of firms i, j with i 6= j, εijt = 0 while εiit 6= 0 and εiit 6= εjjt.
Thus, demand is determined by firms’ own supply, and firms face heterogeneous
demand elasticities. Formally, the demand system is such that pit = −εityit where,
with some abuse of notation, we denote εit ≡ εiit the own price elasticity. When
firms maximize profits, they charge a markup µit = (1−εit)−1 while cost minimiza-
tion yields the familiar µit = αPitYit

WtVit
.

Under these assumptions, the IV-GMM estimator on revenue estimates the aver-
age of revenue elasticities among the firms sharing the same production function.
This is different from each firm’s individual revenue elasticity, because firms have
different demand elasticities: 21

α̂ = E
[
α(1− εit)

vitvit−1
E [vitvit−1]

]
6= ∂rit

∂vit
= α(1− εit) (6)

Turning to the resultant markup estimates along equation (1) and for markups
µit = (1− εit)−1 that maximize profits, we get:

µ̂Rit ≡ α̂
PitYit

P Vt Vit
= E

[
µ−1it

vitvit−1
E[vitvit−1]

]
µit (7)

As in the previous case, the revenue-based markup estimates equal the true mar-
kups up to a constant. For our simple demand system, this constant is equal to the
weighted average of inverse markup among firms sharing the same production

21This assumes that E [εitωitvit−1] = 0. This assumption is satisfied (for example) when, condi-
tional on vit−1, productivity ωit and elasticity εit are orthogonal or, alternatively, when conditional
on εit, ωit and vit−1 are orthogonal. We make this assumption merely to clarify the argument.
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function. Given the assumption that two firms i and j have different markups,
the estimated revenue markup µ̂Rit is different from one. However, the average of
the estimated revenue markup is not informative about the average true markup.
Indeed, the average estimated revenue markup can be written as

E
[
µ̂Rit
]

= E
[
µ−1it

vitvit−1
E[vitvit−1]

]
E [µit] ,

which equals one up to a Jensen’s inequality. Hence revenue markups carry no
information about the true average in this demand system. We conclude that us-
ing revenue data instead of quantity data does not allow to recover the level of
markups but allows to recover the variation in markups, if such variation exists.

Case II: homogenous demand elasticities. There is one case where revenue-based
markup estimates do not contain any useful information about true markups. This
is when firms compete monopolistically and have identical price-elasticities of de-
mand such that pit = −γyit. This assumption is satisfied by constant elasticity of
substitution (CES) preferences with atomistic firms if the aggregate price index is
fixed. In that case, the revenue estimator equals the revenue elasticity with respect
to the variable input α̂ = α(1− γ) = ∂yit

∂vit
(1 + ∂pit

∂yit
) = ∂rit

∂vit
. Both the revenue elasticity

and the true markup are equal across firms, where the latter is equal to (1−γ)−1. It
follows that the revenue-based estimate of the markup is identically equal to one
µ̂Rit = (1 − γ)−1(1 − γ) = 1, as in Bond et al. (2021). When markups are identical
across firms, revenue markups thus do not contain any information on the true
markup.

2.2.4 Beyond Constant Output Elasticities

In the above section, we assume a Cobb-Douglas production function, where the
output elasticity is constant across firms. We next study the more general case
where the output elasticity of the variable input is not constant across firms, but
instead a function of firms’ decisions. This is to show that the result that revenue
markup estimates contain information about true markups is not exclusive to the
Cobb-Douglas constant output elasticity assumption.

To do so, we study the translog production function. The translog production
function nests the Cobb-Douglas case and is quite general, as it is a second-order
approximation of any production function. In our one-input environment, the
translog production function is given by

yit = αvit + βv2it + ωit. (8)
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The output elasticity of the input vit is now given by αit = α + 2βvit, which varies
across firms with the input usage vit. As in the Cobb-Douglas case, we can again
estimate this production function using the IV-GMM approach where vit and v2it
are instrumented by their lags. Appendix A.5 shows that using revenue instead of
quantity again gives inconsistent estimates (α̂, β̂) of the parameters α, β (see page
A11). As in equation (4) for the Cobb-Douglas case, the difference between the
true and the estimated parameters is due to the correlation of the output price pit
and the instruments, here vit−1 and v2it−1.

These estimates gives the estimated output elasticity on revenue α̂it = α̂ + 2β̂vit.
Inserting this into Hall’s equation (1) gives the following revenue markup:

µ̂Rit = (1 + f(vit))µit where f(vit) =
(α̂− α) + 2(β̂ − β)vit

α+ 2βvit
.

The estimated revenue markup is equal to the true markup times a function of
own input usage. Using the above equation to compute the covariance of the (log)
revenue markup with the true markup gives Cov

[
log µit, log µRit

]
= Var [log µit] +

Cov [log µit, log(1 + f(vit))] which can be different from zero. For example, when vit
is orthogonal to the true markup, this covariance is strictly positive, Cov

[
log µit, log µRit

]
>

0.22 Note that vit is not necessary orthogonal to true markups. Estimated rev-
enue markups are not identically equal to one and correlates with the true markup
even in the case of heterogeneous output elasticities. The intuition is that the es-
timated output elasticity on revenue has a correlation structure with the inputs
constrained by the production function assumption. This correlation structure
typically differs from the one of the revenue elasticity which additionally corre-
lates with demand factors. Ultimately, the extent to which revenue markups and
true markups correlate is a quantitative question that we answer with simulations
in Section 4 and empirically in Section 5. In both, we find high and positive corre-
lations between revenue and true markups.

2.3 Markups, Productivity, and Measurement Errors

After studying how the use of revenue instead of quantity data affects the estima-
tion of markup, we now focus on the case where output data is available but im-
perfectly measure.23 Often, output is measured subject to an error which can be

22In Appendix A.5, we show that in the case where vit, its lag, and, their power are orthogonal
to the demand elasticity εit, the estimated parameters on revenue data are such that (α̂, β̂) = (1 −
E [εit])(α, β) implying that f(vit) = −E [εit]. It follows that the revenue markup µRit = (1− E [εit])µit
has a correlation of one with the true markup.

23When output is observed without error and that firms are able to accurately observe their
productivity level when making production decisions, we show in Appendix A.1 that the IV-GMM
estimator is consistent and recover the output elasticity.
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interpreted as measurement errors or productivity shocks that realized after the
firms have made their input choices. Specifically, in this section, we assume that
output is observed as ỹit = αvit + ωit + ηit where ỹit is observed quantity (while yit
is true quantity), ωit is the productivity observed by the firm, and ηit captures mea-
surement error and white noise productivity shocks that firms only observe after
production decisions are made.

Prior work pays specific attention to the measurement error ηit, for three reasons.
First, observed output often contains significant measurement error. In our empir-
ical analysis, for example, we measure output by dividing revenue by unit values,
which are in turn obtained from surveys. Second, the presence of ηit impedes the
estimation of true productivity ωit: even if both the production function and the
observed quantity are known, one can only recover the productivity with measure-
ment error, that is ωit+ηit. Productivity measures are commonly used to discipline
models, understand firm dynamics and firm heterogeneity, or as a direct object
of interest. Third, measurement errors can even inhibit the production function
estimation if ωit follows a non-linear dynamic process.

Below, we discuss the degree to which production function parameters and – con-
sequently – markups, can be estimated when ignoring the presence of measure-
ment error. We also demonstrate how a first-stage purging regression, inspired by
Ackerberg et al. (2015) but adapted for imperfect competition, enables the recov-
ery of the production function, markups, and productivity. We leave the discussion
of the non-linear dynamic processes to Appendix A.3.

Abstracting from Measurement Errors. In the presence of measurement errors
ηit one can still use the standard IV-GMM estimator to estimate the production
function (Blundell and Bond 2000). This is the procedure proposed by Doraszel-
ski and Jaumandreu (2019, 2021). In Appendix A.3 we show that, in our simple
framework, that this procedure yields consistent estimate of the production func-
tion. While the estimator remains unbiased, for a finite size sample, the asymp-
totic variance of the estimator is proportional to E [ω2

it] + E [η2it]. This means that
the estimator’s variance increases in measurement errors’ variance.

The main drawback is that this procedure cannot recover productivity, especially
when the measurement errors are large. To see this, note that productivity is mea-
sured as the difference between output and the product of all inputs and their re-
spective estimated output elasticities. For our simple framework, this is ỹit−αvit =
ωit+ηit. This residual correlates with the true productivity, but the correlation goes
to zero as the ratio of variance of the measurement errors to productivity goes to
infinity, Var[ηit]/Var[ωit]→∞.

In the Appendix A.3, we furthermore discuss that measurement error can also im-
pede consistency of the IV-GMM estimator if ωit is persistent with non-linear au-
toregressive terms (Bond et al. 2021). In our quantitative and empirical analysis
we further explore the performance of abstracting from measurement errors in es-
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timating the production function, markups and the productivity.

Purging Quantity from Measurement Errors. The combination of the loss of di-
rect estimates for true productivity ωit, higher standard errors, and stringent as-
sumptions on the dynamic process of ωit form a case to purge observed output
from measurement error. Ackerberg et al. (2015) do so in a first-stage regression
for the case of perfect competition. We propose a procedure that – deviating min-
imally from theirs– can do so under imperfect competition.

The purging regression aims to separate ηit and ωit, using the fact that firms only
observe ωit when deciding the quantity of inputs that they wish to deploy. The idea
is that the demand for the variable input can therefore be expressed as a function
of productivity: vit = v(ωit,Ξit), where Ξit is a vector of all variables that determine
vit other than productivity. This function is often called the control function as in
Olley and Pakes (1996), Levinsohn and Petrin (2003), or Ackerberg et al. (2015).24

Under the assumption that vit rises monotonically in ωit, the demand function can
be inverted, such that ωit = v−1(vit,Ξit). In our framework, the observed output
can therefore be written as ỹit = αvit + v−1(vit,Ξit) + ηit. The fitted values of a non-
parametric regression of ỹit on vit and Ξit therefore identify ηit, as long as ηit con-
tains all variables that determine the demand for vit.

What variables are included in Ξit under imperfect competition? Inverting the in-
put demand for the variable input, vit, derived from the first-order condition of the
firm’s cost minimization problem gives that ωit = (1 − α)vit −mcit + wt. It follows
that factor prices and log marginal costs also determine input demand and should
be included in Ξit. Using the fact that marginal costs can be expressed in terms of
prices and markups, observed output can be written as25

ỹit = vit − pit + logµit + wt + ηit. (9)

To purge for measurement error, researchers must thus regress observed output
on the variable input, prices, markups, and time-fixed effects forwt. Under perfect
competition, firms are price takers and have log markups of 0.26 Hence, a first-

24Note that Olley and Pakes (1996) and Levinsohn and Petrin (2003) use the control function to
solve the simultaneity bias directly by controlling for productivity using investment or intermediate
input respectively. Ackerberg et al. (2015) instead use the control function to purge measurement
errors in a first stage and then, in a second stage, solve the simultaneity bias using a dynamic panel
estimator a la Blundell and Bond (2000).

25Note that the expression of the marginal cost MCit = Pit/µit in log deviation from its mean
mcit is equal to pit − logµit up to a constant E [logµit], which we include in the first stage.

26In the more general multi-input, non-Cobb-Douglas case, the first-order condition of the cost-
minimization problem is not linear in inputs and cannot be inverted analytically. Nevertheless, the
functional relationship between productivity and inputs, price and markups is well defined and
can be approximated by a polynomial of inputs.
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stage regression of output on vit and time fixed effects is sufficient to purge for
measurement error.27 Under imperfect competition this is not sufficient, as firms
have heterogeneous markups. As noted by Doraszelski and Jaumandreu (2019,
2021), controlling for markups is infeasible as the whole purpose of the exercise is
to estimate these markups. This is the so-called inversion problem.

We propose resolving this by including price and controls for the markup in the
first stage of the procedure. Note that when controlling for markups, we only need
to know that there is a structural relationship between markup and controls; we
do not need to know the parameters that govern this relationship. One potential
control, on which we focus for the remainder of the paper, is market share. We
do so because this is consistent with the recent and growing literature in macroe-
conomics and international trade that builds on the Atkeson and Burstein (2008)
models or includes Kimball (1995) demand, where markups are determined by
market share. When disciplining such models with firm-level markup estimates,
inserting market share in a first stage is thus internally consistent. In our simu-
lations and empirical sections, we therefore include prices and market shares as
controls in the first stage of our baseline two-stage estimator. Note that market
share is not a perfect control for markup and demand conditions in every case. In
many industrial organization models, market share does not control for markups.
For example, the recent empirical industrial organization literature such as Berry
et al. (1995) or Foster et al. (2008) have carefully made that point.

In summary, we propose that researchers use the Blundell and Bond (2000) esti-
mator or a two-step procedure to estimate the production function given by equa-
tion (3) under imperfect competition. In the latter, quantity is first purged from
measurement error in a regression of observed quantity, ỹit, on the variable in-
put vit, the output price pit, controls for the markup µit such as market share, and
time fixed-effects for wt. The fitted values of output, true quantity, are then used
to construct moment E [ω̂itvit−1], a function of α̂. A numerical solver can then find
the α̂ that makes this moment equal to zero. As discussed above, this value is an
asymptotically consistent estimator of the true parameter α.

3 Data

We use administrative data on French manufacturing firms both to quantify our
simulations and to empirically analyse the properties of markup estimates. We
combine two main datasets. The FARE dataset (Fichier Approaché des Résultats
d’Esane) provides a detailed balance sheet and income statement, while the EAP
survey (Enquête Annuelle de Production) provides data on both revenues and the

27As firms are price takers and have a markup of one, the observed output (after substituting the
expression for productivity) under perfect competition reduces to ỹit = vit +wt + ηit− pit. The last
two terms are orthogonal to inputs, vit, and input price wt.
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quantities of products that firms ship, which we use to obtain a proxy for prices.
FARE covers the universe of non-financial French firms and originates from filings
to the tax administration (DGFiP). EAP is based on a product-level statistical sur-
vey by the statistical office (INSEE) which exhaustively covers manufacturing firms
with at least 20 employees or revenue in excess of 5 million euros, and a represen-
tative sample of smaller firms.28

With the exception of prices, we obtain all variables for the production function es-
timation from FARE. These variables are revenue (total sales), the wage bill (mea-
sured as the sum of wages and social security payments), capital (measured by
fixed tangible assets on the balance sheet),29 expenditure on purchased services
and expenditure on purchased materials. Materials are purchases of physical in-
termediate goods and raw materials. Market share is the ratio of the firm’s revenue
over total revenue of all firms in the 5-digit industry in a given year.

We obtain data on prices from EAP. EAP is a product-level dataset detailing a firm’s
revenue and quantity produced across 10-digit industries. We define a product
as the combination of a 10-digit product code and a unit of account.30 We drop
around one-third of firm-products without quantity data. For each combination
of a firm and a product we define a price as the unit value – the ratio of revenue
over the quantity of the product sold. We then standardize this price by dividing it
by the revenue-weighted average price of the product across the entire sample.31

As some firms produce multiple products, we define a firm’s price as the sales-
weighted average of standardized prices across the products that it produces in a
year. We then define quantity as the ratio of revenue over this price.

We drop firms with missing, zero or negative revenue, material purchases, service
purchases, wage bills or capital.32 We restricts the sample to manufacturing firms
and we drop firms without price data in EAP. We also drop firms with fewer than
two employees, as the number of single-employee firms has grown rapidly over
our sample due to a regulatory change. We winsorize the variables at the 1% level
within two-digit industries. Summary statistics are provided in Appendix Table A2.
Appendix Table A3 describes the two-digit sectors in our analysis.

28Smaller firms are re-sampled annually. Because our production function estimation requires
lagged instruments, small firms are typically not included. Our data should therefore be seen as
exhaustive of manufacturing firms with at least 20 employees or 5 million euros in revenue.

29We do not rely on the perpetual inventory method because that would require a guess for the
firm’s initial value of capital. Because our data only cover 11 years, this would lead to a particularly
large measurement error (see, e.g., Collard-Wexler and De Loecker 2020). Data on investments are
furthermore missing from FARE in 2008. For 2009 to 2019, the correlation between balance sheet
capital and estimates of capital from the perpetual inventory method have a correlation of 0.92 to
0.99, depending on the assumed rate of depreciation.

30Examples of units of accounts are kilos or pieces. We combine units and product codes, as
firms that use different units for the same product might produce relatively heterogeneous goods.

31As a robustness check we standardize prices using the revenue-weighted average price at the
8-digit sector level. These firm-level prices have a 0.89 correlation with our baseline prices.

32We calculate market share before restricting the sample.
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4 Simulation

In this section, we estimate production functions and markups in Monte Carlo
simulations using a standard macroeconomic model, to compare markup esti-
mates to true markups in a setting where true markups are known.

The simulated model is based on Atkeson and Burstein (2008), where firms face
double-nested CES demand and compete à la Cournot. The profit-maximizing
markup for firm i in market h at time t is a function of a firm’s market share siht:

µiht =
ε

ε− 1

(
1−

ε
σ − 1

ε− 1
siht

)−1
where ε is the elasticity of substitution within narrow markets, and σ is the elastic-
ity of substitution across markets. Under the assumption that goods are easier to
substitute within markets than across markets (e.g. because goods within a market
are more similar), this yields that markups rise in firms’ market shares.

Firms produce using two inputs, one variable, viht, and one fixed, kiht whose en-
dowment follows an AR(1) process. Firms differ in the quantity of the fixed input
at their disposal and in their productivity which is AR(1). Given the fixed input
and the productivity ωiht, firms choose the variable input to minimize cost. Firms
combine these two inputs using a translog production function:

yiht = ωiht + γαviht + γ(1− α)kiht + γ
α(1− α)

2

φ− 1

φ

(
v2iht + k2iht − 2kihtviht

)
where α, γ and φ are parameters. Firms purchase variable inputs on a common

market at a price that follows an AR(1) process.

Market share, markups, quantity, and input usage are endogenous and determined
in equilibrium. The details of the simulated model derivation and calibration to
our French data are described extensively in Appendix B.

From this model, we perform 200 Monte Carlo simulations. Each simulation, has
1600 firms, the average number of firms in two-sector industries in the EAP data.
We divide these firms into 180 markets, the level at which firms compete, and stim-
ulate the economy for 40 periods.

4.1 Estimation

In this section, we describe the estimation procedure that we use on the simu-
lated data. First, we specify the production function and the productivity process
assumed in all our specifications. Second, we describe our baseline specification
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and a specification following Blundell and Bond (2000). Finally, we describe two
specifications using revenue as a measure of output. In all specifications, we esti-
mate a translog production and an AR(1) process for productivity, such that:

yiht = βvviht + βkkiht + βvvv
2
iht + βkkk

2
iht + βvkkihtviht + ωiht,

ωiht = ρωiht−1 + ξiht

where, kiht is the fixed-factor, viht is the variable input, ωiht is the unobserved pro-
ductivity, ξiht is the innovation on productivity, and the βs and ρ are the parameters
to be estimated. We use the variable input, viht, to compute markups according to
equation (1) from Hall (1988). For this production function, the elasticity of out-
put to the input viht is ∂yiht

∂viht
= βv + 2βvvviht + βvkkiht and varies across firms. The

estimated translog production function is consistent with the one assumed in our
model (equation A5). The true value of βs satisfy the following relations with the
true production parameters (α, γ, η): βv = γα, βk = γ(1−α), βvv = γ α(1−α)

2
φ−1
φ
, βkk =

βvv, βvk = −2βvv. Importantly, we do not impose these theoretical relations among
the βs in our estimation.

Our baseline specification uses observed output ỹiht and consist of two stages.
First, the observed output is purged of measurement errors using a first-stage re-
gression. Specifically, we regress the observed output on a third-order polynomial
of the inputs viht and kiht, a time-fixed effect, price, and market share. According to
the discussion of section 2.3, this first stage consistently estimates the true output.
This corrected output is then used as the dependent variable to build moments
conditions of an IV-GMM estimation using the past value of inputs as instruments.
A numerical solver is then used to find the βs and ρ that equates these moments to
zero. Details are given in Appendix D.

The second specification closely follows Blundell and Bond (2000), which is an
application of Arellano and Bond (1991) and Blundell and Bond (1998). This spec-
ification also uses observed output, however, there is no first stage that corrects for
measurement error. Essentially, this specification uses lagged first-differences as
instruments for equations in levels, in addition to the usual lagged levels as instru-
ments for equations in first-differences. We implement this specification using
the Stata command xtabond2 (Roodman 2009). This is the specification recom-
mended by Doraszelski and Jaumandreu (2019, 2021).

In our main exercise, we deviate from the specifications above by assuming that
revenue is used as a measure of output. We first deviate from our baseline by (i)
using revenue to measure output and (ii) run a first stage without price and mar-
ket share as controls. This specification is similar to Ackerberg et al. (2015) and is
used in many empirical applications that estimate markup using firm-level data
on revenue such as De Loecker et al. (2020). Second, we deviate from the Blundell
and Bond (2000) specification by measuring output through revenue.
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Table 1: Estimated Production Function Parameters
Quantity Revenue

Coefficients True Baseline BB-Q ACF BB-R

βv = αγ 0.32 0.32 0.32 0.32 0.33
(0.011) (0.008) (0.024) (0.011)

βk = (1− α)γ 0.48 0.48 0.48 0.31 0.19
(0.008) (0.028) (0.013) (0.038)

βvv = γ α(1−α)2
φ−1
φ 0.009 0.008 0.009 0.008 0.011

(0.002) (0.001) (0.005) (0.001)

βkk = βvv 0.009 0.009 0.009 -0.003 -0.011
(0.001) (0.005) (0.001) (0.006)

βvk = −2βvv -0.017 -0.017 -0.018 -0.014 -0.017
(0.003) (0.003) (0.005) (0.003)

Avg. elasticity, ∂yiht∂viht
0.309 0.31 0.309 0.307 0.308

(Std. dev.) (0.019) (0.019) (0.019) (0.017) (0.023)

NOTE: The top panel presents production-function estimates. The bottom panel presents average and standard deviation of
the elasticities w.r.t the variable input v, that is, βv+2βvvviht+βvkkiht. “Baseline”: IV-GMM on observed quantity. “BB-Q”
and “BB-R”: dynamic panel estimators. “ACF”: IV-GMM on revenue. See Section 4.1 for details. The regression coefficients
are averages of the coefficients across 200 Monte Carlo simulations. The standard deviation is given in parentheses.

We end up with four specifications: our baseline specification (Baseline hereafter),
the Blundell and Bond (2000) specifications on quantity (BB-Q hereafter), the Acker-
berg et al. (2015) on revenue (ACF hereafter), and, the Blundell and Bond (2000)
specifications on revenue (BB-R hereafter).

4.2 Results

This section presents the Monte Carlo results from the production function and
markup estimations. Section 4.2.1 compares estimates of output elasticities, markups,
and productivity. We discuss how the estimates are affected by the use of revenue
as a measure of quantity and the estimation strategy. Section 4.2.2 shows how the
various markup estimates are correlated among themselves and with profit rate,
materials share and market share.

4.2.1 Elasticity Estimates and Markups

The estimates of the translog production function parameters are presented in
Table 1. Coefficients in the column titled “True” are directly calculated from the
calibrated parameters (α, γ, φ). The two subsequent columns present average esti-
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Table 2: Overview - Markup Estimates
Correlation log µ̂iht Log Markup Moments
with true markup Mean St. Dev. Median IQR

True 1 0.259 0.066 0.213 0.37
(0.0005) (0.0004) (0.0002) (0.0021)

Quantity
Baseline 0.98 0.261 0.067 0.217 0.369

(0.0297) (0.0005) (0.0004) (0.0002) (0.0021)
BB-Q 1.0 0.26 0.065 0.215 0.363

(0.0032) (0.0005) (0.0004) (0.0002) (0.0021)
Revenue
ACF 0.93 0.253 0.078 0.209 0.461

(0.0851) (0.0005) (0.0004) (0.0002) (0.0021)
BB-R 0.98 0.256 0.073 0.202 0.445

(0.0175) (0.0005) (0.0004) (0.0002) (0.0021)

NOTE: The first column presents estimates’ correlations with true markups. Subsequent columns show moments of the
estimated (log) markup distribution. Standard deviation across 200 Monte Carlo simulations are in parentheses. “Baseline”:
IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estimators. “ACF”: IV-GMM on revenue. See Section 4.1
for details.

mates of the production function where output is measured in quantities while the
final two columns present estimates where revenue is used. Standard deviations
across the Monte Carlo simulations are given in parentheses.33

Our preferred specification is presented in the second column “Baseline” which is
a IV-GMM on observed quantity with a first-stage regression as described in sec-
tion 4.1. The estimates show that the baseline specification is able to identify the
parameters of the production successfully. All coefficients are within one tenth of
a decimal point of their true value. The estimates are also similar across each of
the Monte Carlo simulations, as evidenced by the low standard deviations.

The markup estimates are summarized in the second row of Table 2. We calculate
the correlations with the true (log) markup for each of the 200 Monte Carlo sim-
ulations and present the average in the table, with standard deviations in paren-
theses. Results for the baseline specification are closely in line with true markups.
The correlation with true markups is close to one, and the mean, standard devia-
tion, median and interquartile range are estimated to within a tenth of a decimal
point. The slight deviations between true markups and estimated markups are in
line with the modest differences between the true and estimated production func-
tion parameters in Table 1 and may be caused, for example, by the fact that the
first-stage regression approximates the implicit relationship between productivity
and inputs through a third-order polynomial.

33In Appendix C.1, we explore the speed of convergence of our markup estimates. The precision
of our estimates is stable above 500 to 600 firms after which an increase in sample size has a limited
effect. This means that it is feasible to obtain precise estimates of the production function for most
industries.
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Revenue versus Quantity. We next deviate from the preferred specification by
using revenue instead of quantity to measure output. The columns “ACF” of Ta-
ble 1 reports the results, showing an unchanged average estimate for βv but with a
standard deviation twice as large. The coefficients affecting the elasticity of output
to the variable input, βvv and βvk, are unchanged and falls from -0.017 to -0.014
respectively and are almost twice as more noisy. More strongly, the coefficient for
the fixed input, βk, falls from 0.48 to 0.31 and the one for the fixed input squared,
βkk, flips sign. Since the latter are not used to compute the output elasticity of v,
the reduction of this elasticity from 0.31 to 0.307 is quantitatively small. This is
consistent with our theoretical results. In Section 2.2.2 we showed that revenue-
based coefficients can be biased upwards, downwards or be unaffected, depend-
ing on the correlation between prices and inputs. In Section 2.2.3, we showed that
downward sloping demand curves cause the estimated the elasticity to be biased
downward in absence of demand shocks. Our simulated firms are also subject to
aggregate demand shocks, which create a positive correlation between input us-
age and prices under diminishing returns to scale, limiting the impact of the bias
that comes from downward sloping demand.

The bottom panel of Table 2 compares markup estimates based on the revenue
data. Average markups are underestimated, in line with the slight underestima-
tion of the average output elasticity of v. We find that revenue-based markups are
highly informative of true markups, with a point correlation of 0.93 between the
true markup and the revenue-based “ACF” markups. These results again show that
the revenue-based estimates of the production function elasticities are not the rev-
enue elasticities of an input. If they had been, Section 2.2.1 shows that log markups
should equal 0 and be uninformative of true markups. Rather, the revenue-based
elasticities are biased estimates of output elasticities of the inputs.

Alternative Specification. In a second deviation from the baseline specification,
we compare the baseline with results from the Blundell and Bond (2000) estima-
tors. The estimates are provided in Table 1 columns headed by “BB-Q” and “BB-R”
on observed quantity and revenue respectively. For the “BB-Q” specification the
parameters of the production function are accurately estimated. The standard de-
viation across Monte Carlo draws are similar than for the “baseline” specification
with the exception of the parameter on fixed input βk. The precision of these es-
timates, despite them not purging measurement error in a first stage, is likely due
the additional moments conditions required by this specification. When used on
revenue data, the estimated coefficients appear to be relatively more biased than
the “ACF” specification. The implied output elasticity is more variable but has an
average closer to the true value. While the Blundell and Bond (2000) estimator
cannot be used to separate productivity ωit from measurement error ηit, it appears
that the measurement error does not inhibit an accurate estimation of markups.
In fact, the correlation between the estimated markups and true markups in Table
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Table 3: Overview - Productivity Estimates
Correlation ω̂iht Log Productivity Moments
with true pdty Mean St. Dev. Median

True 1 0.02 0.139 0.0
(0.0016) (0.0007) (0.0013)

Quantity
Baseline 1 0.019 0.139 -0.001

(0.003) (0.0173) (0.0008) (0.0183)
BB-Q 0.91 0.022 0.153 0.002

(0.0019) (0.0458) (0.0007) (0.0478)
Revenue
ACF 0.65 -0.136 0.164 -0.167

(0.0064) (0.0277) (0.0015) (0.0291)
BB-R 0.59 -0.347 0.182 -0.401

(0.0121) (0.0661) (0.0037) (0.0701)

NOTE: The first column presents correlations of estimated productivity with true values. The subsequents columns show
moments of the estimated productivity distribution for each specifications. Parentheses give standard deviations across
200 Monte Carlo simulations. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estimators.
“ACF”: IV-GMM on revenue. See Section 4.1 for details.

2 is highest for this estimator, regardless of whether observed quantity (“BB-Q”)
or revenue (“BB-R”) data is used. This results is consistent with the discussion in
Doraszelski and Jaumandreu (2019, 2021).

Productivity Estimates. Finally, we discuss the estimation of productivity for var-
ious specification. In the baseline and “ACF” specification, estimates of productiv-
ity for a firm i in market h at time t is computed as the difference between the ob-
served output net of estimated mearsurement errors and βvviht + βkkiht + βvvv

2
iht +

βkkk
2
iht + βvkkihtviht. In the “BB-Q” and “BB-R”, the measure of productivity also in-

cludes ηit, as there is no first stage to purge it. The results are collected in Table 3.
For the baseline specification the correlation between the estimate and true pro-
ductivity is equal to 1.00 indicating that the first-stage is able to correct for mea-
surement errors accurately.

When we deviate from the baseline using revenue in the “ACF” specification, the
correlation falls to 0.68. This is due to the imperfect first-stage, lacking controls for
price and market share, and revenue bias in the estimation.

The specifications based on Blundell and Bond (2000) performs poorly at recover-
ing the true productivity either with observed quantity and revenue data. Indeed,
as discussed in Section 2.3, the absence of a first-stage does not allows to sepa-
rate the measurement errors η from the productivity. As show in Figure A2 in the
appendix, the correlation between the estimated productivity and the true pro-
ductivity falls as the variance of measurement errors increases.
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Table 4: Correlations across Simulated Specifications
True Baseline ACF BB-Q BB-R True Baseline ACF BB-Q BB-R

Pearson Correlation Spearman Rank Correlation
True 1.00 0.98 0.93 1.00 0.98 1.00 0.96 0.90 0.99 0.97
Baseline 0.98 0.98 0.94 0.98 0.95 0.96 1.00 0.91 0.96 0.92
ACF 0.93 0.94 1.00 0.92 0.90 0.90 0.91 1.00 0.89 0.86
BB-Q 1.00 0.98 0.92 1.00 0.97 0.99 0.96 0.89 1.00 0.96
BB-R 0.98 0.95 0.90 0.97 1.00 0.97 0.92 0.86 0.96 1.00

NOTE: Cells present the pairwise correlation between the log markup in the row and the column header. The reported
correlations are averages over the Monte Carlo simulations. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”:
dynamic panel estimators. “ACF”: IV-GMM on revenue. See Section 4.1 for details.

Figure 1: Binned Scatter Plot for Simulated Quantity and Revenue Markups
Log-Markups Log-Differenced Markups
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NOTE: The figures plot the relationship between quantity-based markups (“baseline”) and revenue-based markups (“ACF”)
in simulated data. Log-markups are used in panel (a), log-differenced markups in panel (b). Regression coefficients for the
linear fit are 0.84 and 0.87, respectively. The scatters are averages across Monte Carlo simulation.

4.2.2 Markup Correlations

In the final analysis on simulated data, we examine how markup estimates corre-
late across specifications and with key variables such as profits rate, material share
and market share. Table 4 presents the correlations of log markups across markup
specifications. The table shows that the correlations between specifications are
generally high, and often of similar magnitudes as the correlation between (log)
markup estimates and the true markup. The correlation between the baseline and
other (log) markups from the two-stage procedure are at least 0.94 for the Pear-
son correlations and 0.92 for the rank correlations. Figure 1 provides a graphical
illustration by means of a binned scatter plot between the baseline and the most
commonly used empirical specification on revenue data, “ACF”, in log on panel
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Table 5: Simulated Relation between Markup Estimates and Other Variables
Quantity Revenue

True Baseline BB-Q ACF BB-R
Profit Rate 0.0197*** 0.0202*** 0.0197*** 0.0216*** 0.0201***

(0.00006) (0.00006) (0.00006) (0.00006) (0.00005)
R-Squared 0.905 0.902 0.896 0.93 0.902

Materials Share -0.0197*** -0.0202*** -0.0197*** -0.0216*** -0.0201***
(0.00006) (0.00006) (0.00006) (0.00006) (0.00005)

R-Squared 0.905 0.902 0.896 0.93 0.902

Market Share (%) 0.0618*** 0.0631*** 0.0618*** 0.0664*** 0.0631***
(0.00008) (0.00009) (0.00009) (0.00008) (0.00006)

R-Squared 0.997 0.992 0.992 0.983 0.993

NOTE: Each entry gives the OLS coefficient with the cursive variable as the dependent variable and the log markup in
the column header as the explanatory variable. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic
panel estimators. “ACF”: IV-GMM on revenue. See Section 4.1 for details. Markups are normalized to have unit standard
deviations. Firm-clustered standard errors in parentheses. *** denotes 1% level significance. All specifications include time-
and firm fixed effects. Regression coefficients, standard errors andR2s are averages across the Monte Carlo simulations.

(a), and in first-difference of log on panel (b). Regression coefficients for the lin-
ear fit are 0.84 and 0.87, respectively. Both panels confirm that quantity-based and
revenue-based markups are tightly linked.

Table 5 then runs a number of canonical regressions on the relationship between
markups and other variables. The idea is to check whether these regressions are
similar for the various markup estimates. For each specifications, we run

xit = χ(ln µ̂it) + ϕi + ψt + εit, (10)

where respectively ϕi and ψt denote firm- and time fixed effects, and where xit
denotes some variable of interest. We estimate this regression using profit rates
(operating profits over sales), material cost share (ratio of variable-input spend-
ing over sales), and market share as dependent variables. We divide markup es-
timates by their standard deviations to ease comparison of columns. The table
confirms that all markup estimates do well at retrieving the OLS coefficient χ from
the true markup. The relationship is typically best estimated using quantity-based
markups, in particular using the Blundell and Bond (2000) estimator.

5 Empirics

This section describes the results from the production function and markup es-
timation on the French EAP-FARE manufacturing data. We start by assessing the
elasticities of quantity and revenue with respect to materials. We then compare
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Table 6: Average Estimated Material-Output Elasticity by Sector and Specification
Quantity Revenue

NACE Baseline BB-Q ACF BB-R
Average across all sectors 0.59 0.45 0.43 0.40

(0.33) (0.26) (0.13) (0.12)

NOTE: The table presents average estimated elasticities of materials on output. “Baseline”: IV-GMM on observed quantity.
“BB-Q” and “BB-R”: dynamic panel estimators. “ACF”: IV-GMM on revenue. See Section 5.1 for details.

the levels and dispersion of markups from various specifications, and assess the
correlation between the various markup estimates. We also look at how estimated
key relationships between markup and profit rate, labor, material or market share
depend on production function specifications.

5.1 Production Function Estimates

In contrast to the single sector in the simulations, the empirical analysis has 18
manufacturing industries at the 2-digit level, as summarized in Table A3. We as-
sume that firms within an industry have the same parameters of the production
function and productivity process which we thus estimate separately by industry.
Specifically, we assume that log output yit is a translog production function of the
log inputs materials mit, the wage bill lit, capital kit and purchased services oit:

yit = ωit + βmmit + βllit + βkkit + βooit +
∑∑

{h,j}∈{m,l,k,o}

βhjhitjit,

where ωit is a productivity shock that follows an AR(1) process ωit = ρωit−1 + ξit. We
assume that materials, mit, correspond to the variable input viht in Section 2. To
estimate markups, we are therefore interested in the output elasticity:

αmit ≡
∂yit
∂mit

= βm + 2βmmmit + βmooit + βmllit + βmkkit.

Note that firms within an industry do not have the same output elasticities, αmit , as
the elasticity depends on the level of each input that the firm uses.

In line with the simulations, we estimate the production function in four specifi-
cations comprised of (i) our baseline specification with a first-stage where quan-
tity is the measure of output (henceafter Baseline), (ii) a specification without a
first-stage following Blundell and Bond (2000) on quantity (henceafter BB-Q), (iii)
a specification with a first-stage on revenue inspired by Ackerberg et al. (2015)
(henceafter ACF), and, (iv) a specification without a first-stage on revenue (hence-
after BB-R).
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Table 7: Overview - Log Markup Estimates
Mean St. Dev. Median 25th Pct. 75th Pct. Observations

Quantity data
Baseline 0.32 0.49 0.31 0.14 0.53 121,096
BB-Q -0.02 0.69 0.09 -0.38 0.45 121,096

Revenue data
ACF 0.11 0.16 0.10 0.00 0.20 121,096
BB-R 0.04 0.24 0.04 -0.11 0.18 121,096

NOTE: “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estimators. “ACF”: IV-GMM on
revenue. See Section 5.1 for details.

Table 6 presents the estimated material elasticities αmit for each of our specifica-
tions across all sectors. Averages within two-digit sectors are given in Table A5.
Standard deviations are given in parentheses. Our baseline specification, which
uses the a first stage and quantity data, yields an average output elasticity of 0.59.
In line with the notion that firms face downward-sloping demand curves, we find
that the revenue-based output elasticity of materials is usually lower than a quantity-
based one. For our baseline specification we find higher average elasticities than
the revenue-based counterpart, “ACF”, in 13 out of 14 industries. On average, the
quantity elasticity exceeds the revenue-based elasticity by 37%. We find some-
what lower output elasticities when using the Blundell and Bond (2000) estimator,
which does not correct for measurement error in a first stage, is used.

5.2 Markups

We next compute markups along the Hall (1986, 1988) equation (1) using the es-
timated firm-level elasticities. In the remaining analysis we focus on the log of
markups. To treat for outliers, we trim the bottom and top of the distribution at
the 1.5% level for each specification and perform the remainder of the analysis on
the selection of firms for which all markup estimates fall within the non-trimmed
sample. This leaves 121,096 firm-year observations. This reduction in sample
size is largely because the single-stage Blundell and Bond (2000) output elastici-
ties have a high variance and are negative for a non-negligible fraction of firms.
Log-markups cannot be calculated for these firms.

5.2.1 Level and Distribution

Summary statistics are provided in Table 7, which combines markup estimates
from all sectors. The average of the log markup of our baseline specification, translog
on quantity with a first stage, is 0.32 and 50% of firms have a log-markup between
0.14 and 0.53. The table shows that markups estimated from revenue data with
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Table 8: Correlations across Specifications
Log Markups Log-Differenced Markups

Baseline ACF BB-Q BB-R Baseline ACF BB-Q BB-R

Pearson Correlations

Baseline 1 0.29 0.22 0.14 1 0.37 0.26 0.32
ACF 0.29 1 0.25 0.77 0.37 1 0.4 0.92
BB-Q 0.22 0.25 1 0.12 0.26 0.4 1 0.35
BB-R 0.14 0.77 0.12 1 0.32 0.92 0.35 1.00

Spearman Rank Correlations

Baseline 1 0.38 0.22 0.19 1 0.68 0.56 0.62
ACF 0.38 1 0.29 0.77 0.68 1 0.61 0.91
BB-Q 0.22 0.29 1 0.14 0.56 0.61 1 0.56
BB-R 0.19 0.77 0.14 1 0.62 0.91 0.56 1.00

Spearman Rank Correlations - Within Sectors

Baseline 1 0.5 0.3 0.36 1 0.68 0.56 0.62
ACF 0.5 1 0.39 0.84 0.68 1 0.61 0.91
BB-Q 0.3 0.39 1 0.31 0.56 0.61 1 0.56
BB-R 0.36 0.84 0.31 1 0.62 0.91 0.56 1.00

NOTE: Pairwise correlation between the markup in the row and the column header. Left panel shows correlation in log while
the right panel is differenced. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estimators.
“ACF”: IV-GMM on revenue. See Section 5.1 for details. All markups are expressed in log. Data for 2009-2019 from EAP-FARE.
Note that the first-differenced correlations are unaffected by sector fixed effects.

a first-stage, the specification labeled “ACF”, are consistently lower than markups
estimated from quantity data. Average revenue-based markups are around 0.11
in log points and close to one in levels, in line with the bias described in Section
2.2. The interquartile range of the “ACF” specification is about half the one of our
baseline. However, as shown in Figure A3, the shape of the distribution is similar
when using revenue instead of quantity.

In the case where no first stage is used, both when revenue (“BB-R”) and when
quantities (“BB-Q”) are used to measure output, markup estimates have much
greater variance. This is because the higher-order coefficients in the production
function estimation are further from zero in these estimations. Given that many
resultant markups are below 1 (or negative in logs), it is likely that the greater dis-
persion in Blundell and Bond (2000) markups is due to estimation error. This sup-
ports the use of a procedure with a first-stage as our baseline estimator.
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5.2.2 Markup Correlations

The correlation between markups from various specifications is presented in Table
8, both in logs and in log first-difference. The top panel presents the Pearson cor-
relations over the entire samples grouping firms that operate in different sectors.
Correlations are generally lower than in the simulations. This is expected, as the
data includes multiple sectors, while the simulation contains a single sector. This
means that mismeasurement of sectors’ average has the ability to lower the cor-
relation across the various estimates. Nevertheless, we find consistently positive
correlations across the specifications. Correlation for growth in markups across
the various specifications, measured through log first-differences, is even higher.
As predicted by our theoretical discussion in Section 2, we find a positive correla-
tion of 0.3 in level and 0.4 in first-difference between our baseline specification on
quantity and our prefered specification on revenue, the “ACF”.

We next calculate Spearman rank correlations, in the middle panel of Table 8. This
tests whether alternative production function estimations preserve the rank of the
markup estimates. The Spearman correlations almost always exceed the Pearson
correlations. Once more, when considering the rank correlation among growth
rate of markups estimates, we find even higher positive correlations. This means
that analyses relying primarily on markup rank rather than on dispersion are more
likely to be robust to flaws in the production function estimation. When we addi-
tionally control for sector fixed effects at the bottom panel of Table 8, the rank
correlations increase. The correlation between our preferred quantity-based and
revenue-based markups rises to 0.5 in levels and 0.7 in growth rates.34

A further illustration of the clear relationship between quantity and revenue-based
markup estimates is provided in Figure 2. It contains a binned scatter plot that
relates these in log-levels (left) and log-differences (right). Both show an excellent
linear fit between both series, with the linear fit approaching a 45-degree line when
markups are analyzed in first-differences.

Next we assess whether relationships between markups and key variables depend
on the markup specification. To do so, we regress these variables on estimated
(log) markup and firm and time fixed-effects as we do on the simulated data (equa-
tion 10). We estimate this regression using a firm’s profit rate (the ratio of operating
profits over sales), labor share (the ratio of its wage bill over sales), material cost
share (the ratio of materials purchased over sales), and market share as dependent
variables. Our aim is not to estimate the causal relationship between these vari-
ables and markups, but rather to see how the correlation between these variables
and markups depends on how markups are estimated.

34Specification based on the estimator without a first-stage as in Blundell and Bond (2000) have
a similar qualitative patterns of correlations with, in general, lower positive numbers. Once, we
control for fixed-effect the correlations among these specifications are higher, pointing toward
greater estimation errors across sectors as the source of the somehow lower positive correlation.
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Figure 2: Binned Scatter Plot - Quantity versus Revenue-Based Markups
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Notes: The figures plot the binned scatter plot between quantity-based markups (baseline) and revenue-based markups
(ACF). Log-markups are used in figure (a), log-diff. markups in figure (b). Regression coefficients for the linear fit are 0.87
and 0.91, respectively.

Results are presented in Table 9. Rows present regression coefficients for an ex-
planatory variable (described in italics), while columns contain results for a spe-
cific markup specification. All estimated relationships in the table run in the ex-
pected direction. Firms with higher markup estimates are more profitable, have
lower labor shares, lower material shares, and greater market shares. This is the
case irrespective of whether revenue or quantity data was used to estimate the pro-
duction function elasticities, and the relationships are all significant at the 1% level
when a two-stage procedure is used. Looking more carefully at the specifications,
we see that estimated βs do differ across specifications, both when considering
specification without a first-stage or when quantity or revenue is used. The esti-
mated βs tend to be smaller for quantity-based markups than for revenue-based
markups. This is in line with the finding in Table 7 that there is more dispersion in
the quantity-based markup estimates; a higher variance of the markup mechani-
cally reduces the estimated βs holding everything else equal. Overall, however, the
results in Table 9 suggest that relationships between markups and key relation-
ships are qualitatively robust to the use of revenue-based markup estimates. This
further supports our derivation in Section 2 that these estimates contain useful
information about a firm’s true markup.

6 Aggregate Markups

Finally, we discuss the robustness of trends in aggregate markups. De Loecker et
al. (2020) show a significant rise in average firm-level markups since the 1980s for
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Figure 3: Trend in Aggregate Markup
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NOTE: Each panel compares the baseline aggregate markup (solid blue) with, respectively from left to right, aggregate
markup computed with revenue-based markup (“ACF”), simple revenue-weighted average of the baseline quantity-based
markup, aggregate markup from a specification using COGS to estimate production functions and markups, and aggrega-
tion of baseline quantity-based markups for firms publicly listed in 2007.
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Table 9: Relation between Markup Estimates and Other Variables
Quantity Revenue

Baseline BB-Q ACF BB-R
Profit rate 0.0406*** 0.0496*** 0.0997*** 0.106***

(0.00188) (0.00182) (0.00362) (0.00297)
R-squared 0.091 0.155 0.456 0.236

Labor share -0.00704*** -0.0146*** -0.0309*** -0.0163***
(0.000877) (0.00115) (0.000692) (0.00122)

R-squared 0.021 0.078 0.096 0.084

Material share -0.0228*** -0.0376*** -0.0627*** -0.0935***
(0.00134) (0.00166) (0.00290) (0.00350)

R-squared 0.071 0.063 0.436 0.187

Market share 0.0106*** -0.000103 0.0275*** 0.00228
(0.00247) (0.00530) (0.00393) (0.00608)

R-squared 0.005 0.007 0.006 0.006

NOTE: Each entry gives the OLS estimate using the cursive variable as the dependent variable and the markup series in the
column header as the regressor. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estima-
tors. “ACF”: IV-GMM on revenue. See Section 5.1 for details. Firm-clustered standard errors in parentheses. *** denotes
significance at 1% level respectively. All regressions include time & firm fixed effects. Observations: 121,096.

U.S. Compustat firms. This influential result has raised several concerns, mostly
about the use of Compustat. There are four main critiques. First, the authors use
revenue to proxy for quantity, which is our main subject of analysis. Second, the
authors measure trends in simple revenue-weighted average markups, rather than
a harmonic or cost-weighted average, which may not represent a welfare-relevant
measure of aggregate markups (Edmond et al. 2015, 2023; Grassi 2017). Third, the
authors use Cost of Goods Sold (COGS) as the variable input, which might be re-
strictive (Traina 2018; Basu 2019). Finally, Compustat only covers publicly listed
firms, which may not represent the entire economy.

While these choices are defensible in the absence of better data, as is the case
for De Loecker et al. (2020), we are able to analyse the quantitative importance
of these critiques for aggregate markup trends in France. As the baseline, we de-
fine the aggregate markup as the sales-weighted harmonic average of our main
quantity-based markup estimates,

(∑
i∈Itsitµ

−1
it

)−1
, where It is the set of sampled

firms at time t, while sit denotes firm i’s share in aggregate sales.35 We then de-
viate from this baseline in four ways: (i) using the revenue-based markups of the
"ACF" specification, (ii) using a simple rather than a harmonic sales-weighted av-
erage, (iii) using the sum of materials and labor expenditure, a proxy for COGS,
to estimate production functions and markups, and (iv) computing the aggregate
markup using our baseline quantity-based markups only for firms that were pub-

35In a broad set of models, this measure is the welfare-relevant measure of the aggregate markup
(Edmond et al. 2023; Grassi 2017; Burstein et al. 2020).
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licly listed in 2007 - which is the final year for which we observe listed status.

Figure 3 shows the resulting time series for aggregate markups, where we investi-
gate trends by normalizing each series to one in 2010. The upper-left panel shows
that quantity-based and revenue-based aggregate markups follow similar dynam-
ics: they exhibit a decline around the Eurocrisis in 2011 and 2012, followed by an
upward trend.In levels they would look different, with aggregate revenue-based
markups averaging 1.08, while aggregate quantity-based markups average 1.45.
The upper-right panel shows similar movements for the simple sales-weighted av-
erage and our baseline aggregate markup.36 The lower-left panel shows that when
markups are derived from the revenue share of COGS, the resultant markups in-
crease around 3 percentage points more over the sample. The average of the COGS
aggregate markup is lower than the baseline at 1.30. The lower-right shows that the
aggregate markup for public firms increases by about 5 percentage points in the
first part of the sample before a jump of around 20 points in the latter part. Note,
however, that our sample contains an average of only 38 public firms per year. The
public-firm aggregate markup averages at 1.81.

We conclude that trends in markups of French firms between 2010 and 2019 are
robust to the use of revenue, the type of aggregation, and the variable input used,
while each of these changes strongly affects the level of the aggregate markup.

7 Conclusion

This paper assesses the validity of the firm-level markup estimation with limited
data that does not contain price or quantity information. Using an analytical frame-
work, we assess the feasibility of estimating markups from widely used data in the
macroeconomics and international trade literature, and derive the biases from not
observing prices and markups when estimating a production function. We con-
firm the analytical insights with simulations from a rich macro model and empiri-
cal data on prices and production for French manufacturing firms.

We find that the use of revenue rather than quantity data to estimate production
functions affects the level of the estimated markups, but has only modest effects
on dispersion. The correlation between markups from quantity and revenue data
ranges from 0.3 to 0.5 in log-levels and 0.7 in log-differences. The correlation be-
tween markup estimates and variables such as market share, profitability and the
labor share is also similar across the use of revenue or quantity data.

Practically, we conclude that if a researcher is faced with imperfect data, then it

36This result is specific to the evolution of markups in France over this period. The difference be-
tween average and aggregate markups is determined by higher moments of the underlying markup
distribution. Over the 2010-2019 period, the standard deviation of our quantity-based markups is
stable across time, hovering around 0.79. However, the simple sales-weighted average markup
evolves around a higher level of 1.79 than the baseline aggregate markup.
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depends on individual applications whether the analysis can proceed. Optimally,
production functions for markups should be estimated with quantity data. Given
the paucity of such data, we show that revenue data can suffice for researchers that
are interested in the dispersion of markups across firms. Conversely, in applica-
tions where researchers are interested in the average level of the markup, revenue
data is not appropriate. Revenue data may be used to estimate trends of markups,
provided the researcher is willing to assume that the production function param-
eters do not change over time.
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‘The Hitchhiker’s Guide to Markup Estimation’

Appendix - For Online Publication Only

A Theory Appendix

In this appendix, we first outline how the output elasticity of Vit is estimated. We
start from the ideal case where a researcher observes prices, such that output can
be measured by quantity (A.1). The main text discusses the case where price is not
observed. We then discussed the small sample properties of the estimator (A.2)
and the case of measurement errors (A.3). We also show that the results of the
main extend to more general frameworks (A.4) with a translog production func-
tion (A.4.1), several inputs (A.4.2), with persistent productivity (A.4.3), and with all
of this together (A.4.4). We generalized our results on markup estimation when
revenue is used in place of quantity in the case of translog production function
(A.5).

A.1 Identification with price and quantity data

We here cover the estimation of α if revenue, prices – and therefore quantities –
are observable. Our estimator for α builds on the two-stage GMM estimator of
Ackerberg et al. (2015) to accommodate imperfect competition. The first stage
purges the quantity of equation (3) of the measurement error and unobserved pro-
ductivity shocks ηit. The second stage estimates the output elasticity α using an
instrumental-variable generalized method of moments (IV-GMM). We first focus
in this section on the second stage – as it performs the actual production func-
tion identification. We then introduce measurement errors and the first stage in
Section A.3.

In the absence of measurement error, the production function simplifies to yit =
αvit + ωit. A least-square regression of input vit on output yit will be biased, as the
unobserved productivity ωit (the residual in the regression) affects firms’ choice of
vit. Following the literature, we can construct an estimator to identify α by instru-
menting vit by vit−1:

Definition 2 The instrumental variable GMM (IV-GMM) estimator α̂ ∈ R is such
that the moment E [ω̂itvit−1] is equal to zero where ω̂it = yit−α̂vit = (α−α̂)vit+ωit.A37

A37In the above definition, the expectation operator E denotes the limit of the empirical average
across observations. We therefore study the asymptotic properties of the GMM estimator, which
allows us to keep the argument as tractable as possible. Appendix A.2 derives the estimator for
finite samples before deducing its asymptotic variance.
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It is straightforward to solve for α̂ in closed form by substituting ω̂it into the mo-
ment condition: (α − α̂)E [vitvit−1] = 0, which uses the fact that that productivity
ωit is orthogonal to vit−1, such that E [ωitvit−1] = 0. It follows that as long as vit−1 is a
relevant instrument for vit, that is E [vitvit−1] differs from zero, the only solution is
that α̂ = α. Our estimator α̂ converges to the true elasticity α.

What ensures that the lagged variable input is a relevant instrument? As we have
assumed – for now – that productivity is not persistent, autocorrelation in vit comes
from other sources.A38 The cost-minimizing firm’s first-order condition for vit sum-
marizes the candidate drivers: vit = (1− α)−1 (ωit +mcit − wt) .
It follows that persistence in vit has to either come from persistence in the in-
put price wt or from log marginal costs mcit. Marginal costs equal Pit/µit, both
of which are determined in equilibrium by the demand system and the strategic
interactions among firms. Hence any persistence in output price or markups will
contribute to persistence in the variable input and thus to identification of the
production function. Persistence in input prices wt is a source of persistence in
variable inputs regardless of the mode of competition, providing a further source
of identification of α (a point previously made by, e.g., Gandhi et al. 2020). We con-
clude that the parameters of the production function in our simple framework are
identified under imperfect competition as long as there is persistent variation in
markups, output prices or input prices.A39

Appendix A.4 generalizes these basic identification results by allowing for translog
production functions, multiple inputs, persistence in productivity, and all of these
combined. In Appendix A.2 we further derive the finite sample properties of the
estimator and its asymptotic variance.

A.2 Finite Sample Estimator and its Asymptotic Variance

In this section, we derive the estimator for a finite sample. We also use this deriva-
tion to compute the asymptotic variance of the GMM estimator. First, let us define
the estimator for a finite sample.

DEFINITION: The GMM estimator is α̂ such that
∑

i,t ω̂itvit−1 = 0 with ω̂it = yit −
α̂vit = (α− α̂)vit + ωit.

Second, to solve for the estimator, we need to find the value of α̂ such that
∑

i,t ω̂itvit−1 =

A38When we generalize our setup in Appendix A.4.3 (where productivity is assumed to be persis-
tent, e.g. a linear AR(1) process with persistence ρ), we show that the necessary condition for iden-
tification is to have autocorrelation in ṽit = vit − ρvit−1. Persistence in productivity itself therefore
does not aid identification.

A39Note that this means that it is more straightforward to estimate the production function un-
der imperfect competition than under perfect competition. Under perfect competition (where
marginal costs equal prices), persistence in the variable input cannot come from the markup. If
output prices are (e.g.) i.i.d., this means that the only source of persistence is the input price.
Gandhi et al. (2020) provide a detailed investigation of this argument.
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(α− α̂)
∑

i,t vitvit−1 +
∑

i,t ωitvit−1 = 0. As long as
∑

i,t vitvit−1 6= 0, the unique α̂ that

solves this equation is α̂ = α +
∑
i,t ωitvit−1∑
i,t vitvit−1

whose limit is α when the sample size

increases, given that E[ωitvit−1] = 0.

Finally, let us derive the asymptotic variance of the GMM estimator. Using the (fi-

nite sample) expression of the estimator, we have
√
n(α̂ − α) =

√
n 1
n

∑
i,t ωitvit−1

1
n

∑
i,t vitvit−1

. By

the (weak) law of large numbers, 1
n

∑
i,t vitvit−1

p−→ E[vitvit−1], and, by the central

limit theorem,
√
n 1
n

∑
i,t ωitvit−1

d−→ N
(
0,E

[
ω2
itv

2
it−1
])

. The Slutsky theorem im-

plies
√
n(α̂− α)

d−→ N
(

0,
E[ω2

itv
2
it−1]

E[vitvit−1]2

)
; that is, Var [α̂] ∼ E[ω2

it]E[v2it−1]√
nE[vitvit−1]2

.

A.3 With measurement errors

As in the baseline framework, assume that firms produce yit using the single vari-
able input vit while being subject to idiosyncratic productivity shocks ωit. Further-
more, assume that the firms’ output is observed subject to measurement error, or
equivalently, that unexpected productivity shocks that occur after input vit is set.
The measurement error is log-additive and denoted by ηit. All firms produce along
ỹit = αvit + ωit + ηit, where ỹit denotes observed output or output inclusive of the
unexpected productivity shocks. We assume that measurement errors at time t
are independent of the past value of the variable input; that is, E [ηitvit−1] = 0. If
the econometrician ignores the presence of these measurement errors, the GMM
estimator is defined as follows:

Definition 3 The GMM estimator is α̂ ∈ R such that the moment E
[
( ̂ωit + ηit)vit−1

]
is equal to zero where ̂ωit + ηit = ỹit − α̂vit = (α− α̂)vit + ωit + ηit.

The GMM estimator is characterized by: E
[
( ̂ωit + ηit)vit−1

]
= (α− α̂)E[vitvit−1] = 0,

where we use the fact that E [ω̂itvit−1] = 0. The GMM estimator α̂ of the variable
input’s output elasticity is equal to α as long as E[vitvit−1] 6= 0. The estimator re-
mains unbiased and identified as the additional measurement error only increases
the variance of the composite error term ωit + ηit in the production function. This
point is known and has been discussed, for example, in Blundell and Bond (2000).

There are three advantages to purging the observed quantity from measurement
errors. The first is that the increase in the variance of the composite error termωit+
ηit in the production function raises the standard errors of the production function
estimation. Indeed, a similar derivation to the one in Appendix A.2 yields that the

asymptotic variance of the estimator is Var [α̂] ∼ E[v2it−1]
nE[vitvit−1]2

(E [ω2
it] + E [η2it]) ,which

increases in measurement error variance.

The second advantage is that purging allows the econometrician to identify true
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productivity ωit, which is relevant in many applications as we discuss in the main
text.

Third, measurement error can also impede the consistency of the IV-GMM esti-
mator if ωit is persistent with non-linear autoregressive terms (Bond et al. 2021).
With persistent productivity, the moment conditions of the IV-GMM estimator
have to be slightly altered to consistently estimate α (see Appendix A.4.3). For
a linear AR(1) process of ωit, the moment conditions are that lagged inputs vit−1
and estimated productivity ω̂it are orthogonal to the innovation of the AR(1) pro-
cess. For non-linear processes (e.g. quadratic, cubic), in the absence of measure-
ment error, the additional moment conditions are that the higher-degree terms
(e.g. ω̂2

it, ω̂
3
it) are orthogonal to the AR(1) innovation. Measurement error, how-

ever, contaminates the productivity estimates ω̂it. This means that moment con-
ditions with, e.g., ω̂2

it, ω̂
3
it contain higher-order moments of the measurement er-

ror. This prevents the moment conditions from holding at the true value of the
output elasticity. For example, a common empirical assumption is that the pro-
ductivity process is well-approximated by ωit = ρ1ωit−1 + ρ2ω

2
it−1 + ξit, where ξit

are white-noise productivity shocks. In the presence of measurement error, the
moment conditions E[vit−1ξ̂it] = 0,E[ω̂it−1ξ̂it] = 0, and E[ω̂2

it−1ξ̂it] = 0, where ω̂it is
defined as before while ξ̂it ≡ ω̂it − ρ̂1ω̂it−1 − ρ̂2ω̂2

it−1, will not suffice to estimate the
production function. The source of the problem is the non-linear moment con-
dition E[ω̂2

it−1ξ̂it] = 0. To see this, consider the value of the moment at α̂ = α:
E[ω̂2ξ̂it] = E[(ωit + ηit + (α− α̂)vit)

2ξ̂it] = E[η2itξ̂it] 6= 0. It follows that the IV-GMM es-
timator does not estimate the production function parameters unless productivity
follows a linear (dynamic) process.

A.4 Extensions

We now show that the identification results of our estimator is robust to several
extensions that are common in practical applications. We study the case of the
translog production function, the case of several inputs, the case of AR(1) produc-
tivity, and the case with all of these extensions together.

A.4.1 Translog Production Function

We first ease the assumption that output is log-linear by replacing the Cobb-Douglas
production function with a translog specification: yit = αvit + βv2it + ωit. The other
assumptions are unchanged. We assume that quantity is observed in this section.
We keep the discussion of unobserved quantity and its implication for markup in
the dedicated Appendix A.5.

Our aim is to identify the parameters α and β, to be able to calculate the size-
dependent output elasticity of the variable input for the calculation of the true
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markup µit = (α + 2βvit)(PitYit)/(WtVit). The least-squares estimation of the pro-
duction function suffers from the same bias as before, which we address by in-
strumenting vit and v2it by their respective lags. Econometrically, estimating the
more sophisticated translog production is therefore simply akin to estimating a
multivariate GMM regression with instrumental variables. Formally, we define the
estimator as:

Definition 4 The GMM estimator is a pair (α̂, β̂) such thatE [ω̂itvit−1] = 0 andE
[
ω̂itv

2
it−1
]

=

0 where ω̂it = yit − α̂vit − β̂v2it = (α− α̂)vit + (β − β̂)v2it + ωit.

It is again straightforward to solve for the estimator (α̂, β̂) in our parsimonious set-
ting. It involves solving the system of linear equations implied by the moment
conditions:

E [ω̂itvit−1] = 0
E
[
ω̂itv

2
it−1
]

= 0
⇐⇒ (α− α̂)E[vitvit−1] + (β − β̂)E[v2itvit−1] = 0

(α− α̂)E[vitv
2
it−1] + (β − β̂)E[v2itv

2
it−1] = 0

.

This system can be rewritten in matrix form with V (B − B̂) = 0 where

B − B̂ =

(
α− α̂
β − β̂

)
and V =

(
E[vitvit−1] E[v2itvit−1]
E[vitv

2
it−1] E[v2itv

2
it−1]

)
.

As long as the determinant of V is not zero, the GMM estimator on translog is
identified and asymptotically consistent such that α̂ = α and β̂ = β. This is the
case as long as vit and its square are not colinear and when the lagged values of vit
and v2it are relevant instruments.

A.4.2 Several Inputs

In the next extension, we assume that firms produce with two inputs, a variable
input vit and another input kit. We assume that the additional input is, in the ter-
minology of the production function literature, dynamic. This means that firms
face adjustment costs and other inter-temporal constraints when setting kit, which
leads firms to choose kit before observing contemporaneous productivity, that is
formally E [ωitkit] = 0. The production function in logs reads yit = αvit + βkit + ωit
and we are interested in estimating the parameters (α,β). Because kit is set before
productivity is observed, we only need to instrument the variable input with its
lag. The estimation is therefore akin to a GMM regression with one endogenous
and one exogenous variable. When quantity is observed, the estimator can be de-
fined as follows:

Definition 5 The GMM estimator is a pair (α̂, β̂) such thatE [ω̂itvit−1] = 0 andE [ω̂itkit] =

0, where ω̂it = yit − α̂vit − β̂kit = (α− α̂)vit + (β − β̂)kit + ωit.
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Solving for the estimator (α̂, β̂) implies solving for the following system of equa-
tions, defined by the moment conditions:

E [ω̂itvit−1] = 0
E [ω̂itkit] = 0

⇐⇒ (α− α̂)E[vitvit−1] + (β − β̂)E[kitvit−1] = 0

(α− α̂)E[vitkit−1] + (β − β̂)E[k2it] = 0
.

This system can be rewritten in matrix form, with V (B − B̂) = 0, where

B − B̂ =

(
α− α̂
β − β̂

)
and V =

(
E[vitvit−1] E[kitvit−1]
E[vitkit−1] E[k2it]

)
.

As long as the determinant of V is not zero, the GMM estimator is identified and
asymptotically consistent such that α̂ = α and β̂ = β.

Using Revenue Instead of Quantity. When revenue, denoted rit in log, is used as
a proxy for quantity, the estimator can be defined as follows:

Definition 6 The GMM estimator is a pair (α̂, β̂) such that E
[
t̂fpritvit−1

]
= 0 and

E
[
t̂fpritkit

]
= 0, where t̂fprit = rit − α̂vit − β̂kit = (α− α̂)vit + (β − β̂)kit + pit + ωit.

The estimator is the solution of the following system of equations.

(α− α̂)E[vitvit−1] + (β − β̂)E[kitvit−1] + E [pitvit−1] = 0

(α− α̂)E[vitkit−1] + (β − β̂)E[k2it] + E [pitkit] = 0

which admits a unique solution if the determinant of V is not zero. If the latter
is satisfied, this unique solution estimator is B̂ = B + V −1P where we denote the
vector P = (E [pitvit−1] ,E [pitkit])

′. As in the simple framework, the bias comes from
the correlation of price with inputs usage. This estimator will be asymptotically
non-consistent if either E [pitvit−1] or E [pitkit] are different from zero.

A.4.3 Persistent Productivity

In this section, we assume that total factor productivity follows a first-order au-
toregressive (AR1) process in logs. We assume that quantity is observed. We leave
the discussion on the case when revenue is used in place of quantity to the general
proof in Appendix A.4.4. The production function is still yit = αvit + ωit, while the
productivity process is ωit = ρωit−1 + ξit. Below we define the GMM estimator (α̂, ρ̂)
using vit−1 and ω̂it−1 as an instrument for vit and ω̂it.
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Definition 7 The GMM estimator is a pair (α̂, ρ̂) such that E
[
ξ̂itvit−1

]
= 0 and

E
[
ξ̂itω̂it−1

]
= 0, where ω̂it = yit − α̂vit = (α − α̂)vit + ωit and ξ̂it = ω̂it − ρ̂ω̂it−1 =

ξit + (α− α̂)(vit − ρvit−1) + (ρ− ρ̂)ωit−1 + (ρ− ρ̂)(α− α̂)vit−1.

The estimator, (α̂, ρ̂), is characterized by the following system of equations defined
by the moment conditions:

E
[
ξ̂itvit−1

]
= 0

E
[
ξ̂itω̂it−1

]
= 0

⇐⇒

(α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

(α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0

In general, the above system of equations admits two solutions. One is the true
solution with α̂ = α and ρ̂ = ρ, while the other solution converges to (α, ρ) as
variation in the data increases. Below we formally discussed this case, but first, to
understand the essence of the argument consider the following proof sketch, when
α̂ and ρ̂ are not too far fromα and ρ, respectively, the terms of the form (α̂−α)(ρ̂−ρ)
are of second order. In this case, the system characterizing the estimator (α̂, ρ̂)

reduced locally to the matrix equation V (B − B̂) = 0 where

B − B̂ =

(
α− α̂
ρ− ρ̂

)
and V =

(
E[(vit − ρvit−1)vit−1] E[ωit−1vit−1]
E[(vit − ρvit−1)ωit−1] E[ω2

it−1]

)
.

As long as the determinant of V is not zero, the GMM estimator is locally identified
and asymptotically consistent.
Below, we show that the GMM estimator is globally identified and asymptotically
consistent as long as there is enough variation in the data. The GMM estimator
with AR(1) productivity (Definition 7) is characterized by the system of equations

 E [ξitvit−1] + (α− α̂)E [(vit − ρvit−1)vit−1] + (ρ− ρ̂)E [ωit−1vit−1] + (α− α̂)(ρ− ρ̂)E
[
v2it−1

]
= 0

E [ξitωit−1] + (α− α̂)E [(vit − ρvit−1)ωit−1] + (ρ− ρ̂)E
[
ω2
it−1

]
+ (α− α̂)(ρ− ρ̂)E [vit−1ωit−1] = 0

⇐⇒
{

g + aX + bY + cXY = 0

h+ dX + eY + fXY = 0,

where X = α − α̂, Y = ρ − ρ̂, and, a = E [(vit − ρvit−1)vit−1], b = E [ωit−1vit−1],
c = E

[
v2it−1

]
, d = E [(vit − ρvit−1)ωit−1], e = E

[
ω2
it−1
]
, f = E [vit−1ωit−1] = b, g =

E [ξitvit−1], h = E [ξitωit−1] . Let us look at the asymptotic where g = 0 and h = 0.
Assuming c 6= 0, we get

{
aX + bY + cXY = 0

dX + eY + fXY = 0
⇐⇒

{
X = 0

Y = 0
or

{
X = − bd−ae

cd−af
Y = bd−ae

ce−bf
if cd− af 6= 0 and ce− bf 6= 0.
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It follows that there are two global solutions for the GMM estimator with AR(1):


α̂ = α

ρ̂ = ρ

or


α̂ = α− bd−ae

cd−af = α−
√

Var[ωit−1]
Var[vit−1]

Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)
Corr(ṽit,ωit−1)−Corr(ṽit,vit−1)Corr(ωit−1,vit−1)

ρ̂ = ρ+ bd−ae
ce−bf = ρ+

√
Var[ṽit]

Var[vit−1]
Corr(ṽit,vit−1)−Corr(ṽit,ωit−1)Corr(ωit−1,vit−1)

1−Corr(ωit−1,vit−1)2

where ṽit ≡ vit − ρvit−1 = 1
1−α (ξit +mcit − ρmcit−1 + wt − ρwt−1).A40

The GMM estimator admits (exactly) two possible solutions. One solution pro-
vides the true value of the parameters, while the second solution is unrelated to the
true parameters. However, if Var[vit−1] is large compared to Var[ωit−1] and Var[ṽit]
(that is, their ratio goes to infinity while keeping fixed the correlation structure),
then there is a unique solution for α̂ and ρ̂. To conclude, if there is enough varia-
tion in the data, the GMM estimator is identified.

A.4.4 Full Proof

In this appendix, we study the production function estimator for an arbitrary num-
ber of inputs, an arbitrary functional form (Cobb-Douglas or Translog), and an
AR(1) productivity process.

Specifically, we assume the output of firm i at time t is such that yit = X ′itβ + ωit,
where β ∈ RN is a vector of parameters to be estimated, and, Xit ∈ RN is a vector
of inputs that can contain monomes and products of several inputs. This formula-
tion nests the Cobb-Douglas and Translog case. For example, a two-inputs, vit,mit

translog production function is modeled by Xit = (vit,mit, v
2
it,m

2
it, vitmit)

′ with pa-
rameters β = (βv, βm, βv2 , βm2 , βvm)′. We further assume that the (log) productivity
ωit follows an AR(1) process, that is, ωit = ρωit−1 + ξit. The GMM-based estimator
that we study here is defined as follows:

Definition 8 The GMM estimator is β̂ ∈ RN and ρ̂ ∈ R such that the moments

E
[
Xit−1ξ̂it

]
and E

[
ω̂it−1ξ̂it

]
are equal to zero where ω̂it = yit−X ′itβ̂ = X ′it(β− β̂)+ωit

and ξ̂it = ω̂it− ρ̂ω̂it−1 = (Xit−ρXit−1)
′(β− β̂) +X ′it−1(β− β̂)(ρ− ρ̂) +ωit−1(ρ− ρ̂) + ξit

In the remainder of this appendix, we study the condition under which the above
estimator admits solutions. To this end, let us study the following system of equa-

A40Note thatCorr(ṽit, ωit−1) = Corr(mcit−ρmcit−1 +wt−ρwt−1, ωit−1). Intuitively, if input price
and marginal cost (= Pit/µit) are uncorrelated with past values of productivity, this correlation will
be equal to zero.
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tions, which defined the estimator and whose unknowns are β̂ and ρ̂:

 E
[
Xit−1ξ̂it

]
= 0

E
[
ω̂it−1ξ̂it

]
= E

[
Xit−1ξ̂it

]′
(β − β̂) + E

[
ωit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1ξ̂it

]
= 0

E
[
ωit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E

[
Xit−1X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E [Xit−1ωit−1] (ρ− ρ̂) = 0

E
[
ωit−1X̃

′
it

]
(β − β̂) + E

[
ωit−1X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E

[
ω2
it−1

]
(ρ− ρ̂) = 0

,

where we use E [Xit−1ξit] = 0 and E [ωit−1ξit] = 0, and, where we denote X̃it =
Xit − ρXit−1. Note that the first line of the above system of equations corresponds
to N equations, while the second line is just a scalar equation. We have N + 1

equations with unknown (β̂, ρ̂) ∈ RN+1. In general, this system of equations has
multiple solutions, as in the case of one input.

Heuristically, when (β̂, ρ̂) is not too far from the true value (β, ρ), the terms in (β −
β̂)(ρ − ρ̂) are of second order. Ignoring these terms leads to the following reduced
system which can be written in matrix form:

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E [Xit−1ωit−1] (ρ− ρ̂) = 0

E
[
ωit−1X̃

′
it

]
(β − β̂) + E

[
ω2
it−1

]
(ρ− ρ̂) = 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

] ( β − β̂
ρ− ρ̂

)
= 0

which admits a unique solution (β̂, ρ̂) = (β, ρ) as long as the (N × N) matrix E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

]
,

 is invertible. We conclude that the GMM estimator is

locally identified and unbiased.

Using Revenue Instead of Quantity. When revenue is used instead of quantity,
the estimator obtained is defined as follows.

Definition 9 The GMM estimator is β̂ ∈ RN and ρ̂ ∈ R such that the moments

E [Xit−1ς̂it] and E
[
t̂fprit−1ς̂it

]
are equal to zero where tfprit ≡ ωit + pit, t̂fprit = rit −

X ′itβ̂ = X ′it(β−β̂)+tfprit and ς̂it = t̂fprit−ρ̂t̂fprit−1 = (Xit−ρXit−1)
′(β−β̂)+X ′it−1(β−

β̂)(ρ− ρ̂) + tfprit−1(ρ− ρ̂) + pit − ρpit−1 + ξit

Using the same notation as above and p̃it = pit − ρpit−1, the system of equations
that characterized the above estimator is given by:

{
E [Xit−1 ς̂it] = 0

E
[
t̂fprit−1 ς̂it

]
= E [Xit−1 ς̂it]

′ (β − β̂) + E
[
tfprit−1 ς̂it

]
= 0

⇐⇒
{

E [Xit−1 ς̂it] = 0

E
[
tfprit−1 ς̂it

]
= 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E

[
Xit−1X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E

[
Xit−1 tfprit−1

]
(ρ− ρ̂) + E [Xit−1p̃it] = 0

E
[
tfprit−1 X̃

′
it

]
(β − β̂) + E

[
tfprit−1X

′
it−1

]
(β − β̂)(ρ− ρ̂) + E

[
tfpr2it−1

]
(ρ− ρ̂) + E [tfprit−1p̃it] = 0

A10



where we use the fact that price at t−1 are unrealated to the innovation ξit and thus
that E

[
tfprit−1 ξit

]
= E [ωit−1ξit]+E [pit−1ξit] = 0. In general, this system of equations

admits multiple solutions, as we show in the case of one input in Appendix A.4.3.
For a heuristic proof, we abstract from the higher order terms in (β− β̂)(ρ− ρ̂) that
we consider small when β̂ and ρ̂ are not too far from their true values. In that case,
the system of equations that characterized the estimator can be written in a matrix

form as W (B − B̂) +R = 0 where B − B̂ =
(
β − β̂, ρ− ρ̂

)′
,

R =

(
E [Xit−1p̃it]

E
[
tfprit−1 p̃it

] ) and,W =

 E
[
Xit−1X̃

′
it

]
E [Xit−1ωit−1]

E
[
ωit−1X̃

′
it

]
E
[
ω2
it−1

]
,

+

(
0 E [Xit−1pit−1]

0 E
[
pit−1 tfprit−1

] )

which as a solution B̂ = B + W−1R. As in the simple framework, the bias is due
to the correlation of price (adjusted for persistence), p̃it, with past input Xit−1 and
tfprit−1 collected in the vector R.

A.5 Revenue Markup and Translog Production Function

We next compare markups from revenue and quantity production functions in a
framework with a translog production function. The main intuition remains valid:
the bias of the estimator on revenue Data is equal to the average demand elasticity
among firms sharing the same production function.

Assume that the production function is yit = αvit + βv2it + ωit, while we maintain
the other assumptions of our baseline framework. Let us study the bias implied
by the use of revenue data in place of quantity data. Following the same logic as
above (especially as in Appendix A.4.2), the coefficients of the production function
estimated on revenue are such that(

α̂

β̂

)
=

(
α

β

)
+ V −1

(
E[pitvit−1]

E[pitv
2
it−1]

)
, with V =

(
E[vitvit−1] E[v2itvit−1]

E[vitv
2
it−1] E[v2itv

2
it−1]

)
.

As in the Cobb-Douglas case, these estimates are biased. The above equation is
the translog equivalent of equation (4) where the correlation of the instruments
(lagged variable inputs and lagged variable inputs squared) with the output price
is the case of the bias.

In the case of a translog production function, the true markup is such that µit =

(α+ 2β log Vit)
PitYit
WtVit

, and, the revenue markup is thus µ̂Rit = α̂+2β̂ log Vit
α+2β log Vit

µit. As pointed
out by Bond et al. (2021) and as in the Cobb-Douglas case, if we assume homo-
geneous inverse demand elasticities among firms in the sample (that is for all i
we have pit = −γyit), the revenue markup is equal to one.A41 However, in general,

A41When pit = −γyit, the vector V −1
(

E[pitvit−1]
E[pitv

2
it−1]

)
= γ

(
α
β

)
and the revenue markup be-
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the revenue markup is different from one and contains information on the true
markup. To see this formally, we assume again that inverse demand elasticities
are heterogeneous among firms, such that for all i by pit = −diityit where there is
at least one pair (i, j) such that diit 6= djjt. As above, the true markup is given by
µit = (1− diit)−1. In this heterogeneous inverse demand elasticity case, we have(

α̂

β̂

)
=
(
I − E [Xit−1X

′
it]
−1 E [diitXit−1X

′
it]
)( α

β

)
,

where Xit is vector (vit, v
2
it−1)

′ and I is the identity matrix. Hence, revenue markups
satisfy

µ̂Rit =

[
1− (α+ 2β log Vit)

−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1)( 1

2 log Vit

)]
(1− diit)−1.

(A1)

This markup is in general different from one for at least some firms. To see that
clearly, let us further assume that the inverse demand elasticities are independent
of the variable input usage and its square, such that, for anyn,m ∈ N, E

[
diitv

n
itv

m
it−1
]

=

E [diit]E
[
vnitv

m
it−1
]
.With these assumptions in place, one can show that α̂ = α(1 −

E [diit]) and β̂ = β(1−E [diit]). The revenue markup is equal to µ̂Rit = (1−E [diit])(1−
diit)

−1 which is different from one since there exist a pair (i, j) such that diit 6= djjt.
As for the Cobb-Douglas case, the bias is determined by an average of the inverse
demand elasticities.
In the translog case, the average revenue markup is E

[
log µ̂Rit

]
= E [log(µit)] +

E
[
log α̂+2β̂ log Vit

α+2β log Vit

]
. Let us assume that the inverse demand elasticities are heteroge-

neous across firms in the sample. From equation (A1), we can see that the average
of the log revenue markup is equal to zero up to a Jensen-like inequality:

E
[
log µ̂Rit

]
=− E [log(1− diit)] + . . .

. . .E

[
log

(
1− (α+ 2β log Vit)

−1

(
α

β

)′ (
E
[
diitXitX

′
it−1

]
E
[
XitX

′
it−1

]−1
)( 1

2 log Vit

))]
.

When the inverse demand elasticities are homogeneous, ∀i, diit = γ, then the aver-
age log revenue markup is exactly zero. The relationship between the average rev-
enue and true markup now depends on the distribution of the variable input log Vit
and the extent of the bias in the production function estimation. Importantly, the
variance of the revenue markup is different from the variance of the true markup
and also depends on the distribution of inputs and the covariance of input and the
true markup. Finally, the correlation between the revenue and the true markup is
no longer equal to one. To gauge the information content of the revenue markup
under translog, we rely on the simulations.

comes µ̂Rit = (1− γ)α+2β log Vit
α+2β log Vit

(1− γ)−1 = 1.
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A.6 Approximation of Demand System

In this appendix, we show how to approximate an invertible demand system such
that Y = D(P ) or P = D−1(Y ). Note that this demand system allows for differ-
entiated goods across firms. Let us define the function Dit(P ) such that Yit =
Dit(P ). Around some equilibrium, (P ∗i0, Y

∗
i0), at the first-order, we have, for all i, t

yit = log Yit − log Y ∗i0 ≈
∑

jt
∂ logDit
∂ logPjt

(logPjt − logP ∗i0) =
∑

jt Jijtpjt, where the matrix
whose element are Jijt is the Jacobian of the log of the demand D. Inverting this
system of equations yields that for all i, pit =

∑
jt dijtyjt, where dijt are the elements

of the inverse of the Jacobian matrix of the (log) demandD. For this case, when the
demand is specified by Y = D(P ), we need to assume that the Jacobian of logD is
invertible.

pit = logPit − logP ∗i0 ≈
∑

jt
∂ logD−1

it

∂ log Yjt
(log Yjt − log Y ∗i0) =

∑
jt dijtyjt, where, here, the

dijt are the elements of the Jacobian matrix of the (log) inverse demand D−1.

These formulations are useful when deriving the markup of firms of static oligopolis-
tic Cournot or Bertrand competition. Under Bertrand (that is when firms take
other firm’s prices as given), the profit of firm i at time t can be written as Πit =
PitYit − Cit(Yit) = PitDit(P )− Cit(Dit(P )), where Cit(Yit) is the total cost of produc-
ing Yit units. Under Bertrand, firms maximize their profit by setting their price Pit,
while taking others’ price as given. The first-order condition of this profit max-

imization problem yields that the markup is µit ≡ Pit
∂Cit
∂Yit

=

(
1 +

(
∂ logDit
∂ logPit

)−1)−1
.

Similarly, under Cournot competition, the profit of firm i at time t can be written
as Πit = PitYit − Cit(Yit) = D−1it (Y )Yit − Cit(Yit). Under Cournot, firms choose their
quantity, taking other firm’s quantity as given, which implies that the markup is

µit ≡ Pit
∂Cit
∂Yit

=
(

1 +
∂ logD−1

it

∂ log Yit

)−1
. To conclude, in most static oligopolistic competition

models the firm-level markup can be written as µit = (1 + εiit)
−1 where εiit is either

equal to
(
∂ logDit
∂ logPit

)−1
or ∂ logD−1

it

∂ log Yit
.

B Derivation and Parametrization of the Simulated Model

B.1 Model and Parametrization

We analyze a single sector, defined as a collection of firms that have the same struc-
tural production function parameters and that face the same input prices.

Demand. We choose a market structure where firms have heterogeneous markups
that are determined by a combination of structural parameters and their market
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share. Following Atkeson and Burstein (2008), we implement this by assuming
that firms compete in a double-nested CES demand system. The sector consists
of a continuum of markets, where a market is defined as a finite number of firms
that compete oligopolistically with one another. In this setup, the demand faced
by market h, Yht, satisfies at sector price index Pht:

Pht = Y
− 1
σ

ht D
1
σ
t with Yht =

[
Nh∑
i=1

Y
ε−1
ε

iht

] ε
ε−1

, (A2)

where σ denotes the elasticity of substitution across market-level goods, Dt is the
exogenous aggregate demand, and market-level output Yht is the aggregate of firm-
level output across the Nh firms that operate in h. Yiht denotes the output of firm i

and ε denotes the elasticity of substitution across firm-level goods within a market.
Following Atkeson and Burstein (2008), we assume that ε > σ, reflecting that it is
easier to substitute goods across firms than across markets. The inverse demand
function for firm i is:

Piht =

(
Yiht
Yht

)− 1
ε

Pht, (A3)

where Piht is the price of firm and Pht satisfies the market-level inverse demand
(equation A2). Under Cournot competition, firm i in market h maximizes profit
by choosing its quantity taking other firms quantity as given subject to the inverse
demand given by the above equation (A3). The quantity-setting firm internalizes
that Yht increases and Pht decreases when it raises its own quantities according to
equation (A2). The resultant profit-maximizing markup reads as

µiht =
ε

ε− 1

(
1−

ε
σ − 1

ε− 1
siht

)−1
with siht =

PihtYiht
PhtYht

, (A4)

where siht is the market share defined as the firm’s share in market revenue.A42 The
firm’s markup ranges from ε/(ε−1) for a firm whose market share approaches zero
to σ/(σ − 1) for a monopolist.

Technology. Firms produce using a variable input Viht and a fixed inputKiht, with
log-inputs respectively denoted by viht and kiht. The production function for log
output yiht is translog:

yiht = ωit + γαviht + γ(1− α)kiht + γ
α(1− α)

2

φ− 1

φ

(
v2iht + k2iht − 2kihtviht

)
, (A5)

A42Bertrand competition yields a similar expression (see Atkeson and Burstein 2008, Grassi 2017,
and Burstein et al. 2020 for detailed discussions).
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Table A1: Parameter Calibration for Simulation
Parameters Value Description

α 0.4 Share of variable input
γ 0.8 Returns to scale
φ 1.1 Elasticity of substitution
σ 1.1 Demand elasticity across markets
ε 10 Demand elasticity across firms in a market
N , Nh 180, 8 Number of markets and firms per market
ρw, σw 0.87 , 0.06 AR(1) persistence and std. dev. of Wt

ρD, σD 0.78 , 0.19 AR(1) persistence and std. dev. of P−σt Yt
ρω, σω 0.70 , 0.10 AR(1) persistence and std. dev. of firm-level ωit
ρk, σk 0.66 , 0.66 AR(1) persistence and std. dev. of firm-level kit
σ̃η 0.095 std. dev. meas. error on output

where ωit is the log of (hicks-neutral) total factor productivity, γ measures the de-
gree of returns to scale, α determines the weight of the variable input in the pro-
duction function, while φ approximates the elasticity of substitution between the
flexible and the fixed input. When φ = 1, this production function nests the Cobb
and Douglas (1928) specification. Our log production function (A5) is motivated
by an approximation around φ = 1 of the constant elasticity of substitution pro-

duction function Yiht = eωiht(αV
φ−1
φ

iht + (1− α)K
φ−1
φ

iht )
φ
φ−1

γ (see Appendix B.2).

Equilibrium. We consider an equilibrium given an exogenous sequence for vari-
able input prices Wt, aggregate demand Dt, productivities ωiht and fixed factors
kiht. The equilibrium is defined as a sequence of markups µiht, prices Piht, out-
put Yiht, log marginal costs mciht, market shares siht, log variable inputs viht, and,
market-level output Yht and price Pht such that price is equal to markup times
marginal cost, the demand is satisfies (equations A2 and A3), quantities are set
to maximize profit (equations A4), and the variable input is chosen to minimize
cost (equations A6 and A7 in Appendix B.2).

Calibration. We perform 200 Monte Carlo simulations. In each simulation, we
model the behavior of 1600 firms, which is the average number of firms in two-
sector industries in the EAP data. We divide these firms into 180 markets, the level
at which firms compete, and simulate the economy for 40 periods.

There are 13 parameters, each of which we calibrate externally. The parameters
are summarized in Table A1. In calibrating the model, we are constrained by the
fact that the true values of many parameters (such as those of the production func-
tion and the productivity process) are in fact the object of interest in our empirical
analysis. Our approach is therefore to assume reasonable values in line with the
literature as an example of a possible quantification.
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There are two sources of firm heterogeneity: the firm’s log-endowment of the fixed
input kiht and the firm’s log-total factor productivity ωit. Both evolve exogenously
through log-linear AR(1) processes with persistence ρk and ρω, respectively, and
are subject to innovations ξk ∼ N(0, σk) and ξω ∼ N(0, σω). Both sources of firm
heterogeneity are similar in that firms with either higher productivities or higher
values for the exogenous fixed input have, ceteris paribus, greater output. They are
different in that the fixed input is observable, while productivity is not. To calibrate
the persistence and volatility of the fixed factor, we run autoregressive regressions
on log capital in the data. We find a persistence parameter ρk of 0.66 and a volatility
of shocks σk of 0.66.A43 We set ρω to 0.6, in line with Decker et al. (2020), and set
productivity volatility σω to 0.1.

There are two aggregate shocks: aggregate demandDt and the variable input price
Wt. We assume both series follow a log-linear AR(1) process with persistence ρD
and ρW , respectively, and shocks ξD ∼ N(0, σD) and ξW ∼ N(0, σW ). Fluctua-
tions in aggregate demand ensure that the relationship between output and mar-
ket share varies over time. Fluctuations in the variable input’s price ensure that
firms’ lagged productivity and lagged variable inputs are not co-linear after con-
ditioning on the fixed inputs, which is needed to be able to separately identify the
productivity process and the production function parameters, as discussed in Sec-
tion 2. To calibrate the process for the variable inputs price, we estimate an AR(1)
process for the price index of intermediate inputs from sector-level manufactur-
ing data in EU-KLEMS. We run simple AR(1) regressions for the log of the index,
and find an autoregressive coefficient ρW of 0.87 at the two-digit sector level when
controlling for industry- and year fixed effects. Residuals have a standard devia-
tion σW of 0.06.A44 For aggregate demand Dt we estimate a similar autoregressive
process, using the detrended sector-level nominal value added as the dependent
variable.A45 We find a high degree of persistence in aggregate demand, with a ρD of
0.78, while the residuals have a standard deviation of 0.19.A46

When calibrating the production function, we think of purchased materials as viht
and a composite of all other factors as kiht. We calibrate α to 0.4 to match the
average ratio of material purchases over revenue in EAP-FARE, which is 0.38. We
calibrate returns-to-scale parameter γ to 0.8 in order to have modest decreasing
returns to scale, in line with the estimate by Basu and Fernald (1997). We assume
an elasticity of substitution φ of 1.1, as purchased materials include intermediate
inputs from other firms, which can substitute for in-house production.

We introduce measurement error in observed quantity ỹiht, denoted by ηiht, after
computing the equilibrium. We assume that ηiht ∼ N(0, σyσ̃η), where σy is the stan-

A43Appendix Table A4 presents the AR(1) estimates for capital.
A44Appendix Table A4 presents AR(1) coefficients for various specifications, finding a narrow

range of 0.86 to 0.90 for the coefficient and 0.042 to 0.046 for the standard deviation of shocks.
A45We detrend Dt using nominal GDP to account both for increases in prices and real output to

obtain a stationary nominal series. Results are similar when detrending with the GDP deflator.
A46Appendix Table A4 presents the AR(1) estimates for aggregate demand.
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dard deviation of true output across all firm-years in the sector, and σ̃η is a scalar
that determines the magnitude of measurement error relative to the standard de-
viation of true output. We calibrate σ̃η to 0.095, in line with the relative variance of
output and fitted values of a regression of quantity on prices, market share, time
fixed effects and a third-degree polynomial in the firms’ inputs in EAP.

B.2 Equilibrium Condition of the Simulated Model

In this appendix, we first derive the translog production function (equation A5)
as an approximation of a CES production function with homogeneity of degree γ

that is Yiht = Ωiht(α[Viht]
φ−1
φ + (1 − α)[Kiht]

φ−1
φ )

φ
φ−1

γ . We then derived the condition
of firms’ cost minimization problem under the translog production function.

Translog derivation. The function implies the translog production function (A5)
up to a first-order approximation around φ = 1. To see this, let us rearrange terms

ln yiht = ωiht +
φ

φ− 1
γ ln

[
α[Viht]

φ−1
φ + (1− α)[Kiht]

φ−1
φ

]
= ωiht +

φ

φ− 1
γ ln

α[Viht]φ−1
φ

1 +
(1− α)
α

[
Kiht

Viht

]φ−1
φ




= ωiht +
φ

φ− 1
γ ln

[
α[Viht]

φ−1
φ

]
+

φ

φ− 1
γ ln

1 +
1− α
α

(
Kiht

Viht

)φ−1
φ

 = ωiht + γviht +
φ

φ− 1
γ ln

α + (1− α)
(
Kiht

Viht

)φ−1
φ

 .

where we move the α back into the log term for the last equality. Rewriting the

final term yields φ
φ−1γ ln

[
1 + (1− α)

((
Kiht
Viht

)φ−1
φ − 1

)]
and let us define f(x) =

γ
x

ln [1 + (1− α) (Bx − 1)] , where B = Kiht/Viht and x = (φ − 1)/φ, such that our
approximation is around x→ 0. Taking a second-order approximation yields

f(x) =
γ

x
ln [1 + (1− α) ((exp (x ln B)− 1)] ≈ γ

x
ln
[
1 + (1− α)

(
x ln B− x2[ ln B]2

2

)]
≈γ
x

[
(1− α)

(
x ln B− x2[ ln B]2

2

)
− (1− α)2

2

(
x ln B− x2[ ln B]2

2

)2
]

≈γ
x

[
(1− α)x ln B + α

1− α
2

x2[ln B]2
]
.

Where we remove higher order terms given that we are approximating the func-
tion up to a second order. Hence, the first-order approximation of the general-

ized CES production function reads yiht = ωiht + γ ln Viht + γ(1− α) ln
(
Kiht
Viht

)
+

γα 1−α
2

φ−1
φ

[
ln
(
Kiht
Viht

)]2
. After rearranging terms and denoting by small cap letters

the log of a variable, x ≡ ln X, we have the translog production function (A5) with
homogeneity of degree γ: yiht = ωiht+γαviht+γ(1− α)kiht+γα

1−α
2

φ−1
φ

(v2iht + k2iht − 2kihtviht) .
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Variable input demand. We next derive the demand for the variable input for
the translog production function. The firms’ cost minimization problem involves
minimizing costs WtViht subject to the production function (A5). Note that the

output elasticity of the variable input is ∂yiht
∂viht

= γα
(

1 + [1− α]φ−1
φ

[viht − kiht]
)
,

such that the first-order condition of the cost minimization problem is: Wt =

λiht
Yiht
Viht

γα
(

1 + [1− α]φ−1
φ

ln
[
Viht
Kiht

])
where λiht is the Lagrange multiplier which can

rewritten as

Viht =

(
MCiht
Wt

)
γα

(
1 + [1− α]

φ− 1

φ
ln
[
Viht
Kiht

])
Yiht, (A6)

Marginal costs. As firms face an exogenous sequence of the fixed input Kiht,
marginal costs can be derived from the production function (A5) and optimal de-
mand for the variable input (A6). Inserting the latter into the former, we get yiht =

ωiht+γα ln
[(

MCiht
Wt

)
γα
(

1− [1− α]φ−1
φ

ln
[
Kiht
Viht

])
Yiht

]
+γ(1− α)kiht+γα

1−α
2

φ−1
φ

[
ln
(
Kiht
Viht

)]2
.

Isolating log marginal costs on the left-hand side, we can express the log marginal
costs mciht ≡ ln MCihtas:

mciht = ln
[
Wt

γ
Y

1−αγ
αγ

iht Ω
− 1
αγ

iht K
α−1
α

iht

]
− ln

(
1 + [1− α]

φ− 1

φ
ln
[
Viht
Kiht

])
+

1− α
2

φ− 1

φ

(
ln
[
Viht
Kiht

])2

.

(A7)

C Simulation Appendix

C.1 Convergence

In this appendix, we explore the speed with which our estimates of the markups
converge to their true values in sample size. So far we simulate 1600 firms, which
is the average number of firms per sector in France. Many sectors, however, have
fewer firms than that. To assess whether markups can be reliably estimated in
smaller sections we repeat the production function and markup estimates for each
specification for samples of 150 to 1600 firms per year, in increments of 50. The re-
sults are presented in Figure A1. The figures plot mean estimates of the average
log markup across the Monte Carlo simulations, against the number of firms in-
cluded in a year of a simulation. Shaded areas indicate the range of estimates of
average log markups of 90% of the simulations. As expected, increasing the num-
ber of firms raises the precision of the estimates. Importantly, it appears that the
increase in precision is largest when increasing the sample to around 500 to 600
firms, after which an increase in sample size has limited effect. As sectors in ad-
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Figure A1: Effect of Sample Size on Average (log) Markup Estimate
(a) Baseline (b) ACF
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(c) BB-Q (d) BB-R
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NOTE: Vertical axes present the average log markup estimate, horizontal axes present the number of firms per year in the
estimation. Solid lines present the mean estimate of the average log markup across the 200 Monte Carlo simulations, while
the shaded areas give 90% confidence intervals. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic
panel estimators. “ACF”: IV-GMM on revenue. See Section 4.1 for details.

ministrative datasets typically contain more firms than that, it therefore appears
feasible to estimate markups accurately with the right data.

D Implementation of the Estimation

In this appendix, we describe how we implement the production function esti-
mation. Let us assume that the observed output of firm i at time t is such that
ỹit = X ′itβ + ωit + ηit, where β ∈ RN is a vector of parameters to be estimated,
and, Xit ∈ RN is a vector of inputs that can contain monomes and products of
several inputs. This formulation nests the Cobb-Douglas and Translog case. We
assume further that ηit is a measurement error shock, such that actual output is
yit = ỹit − ηit = X ′itβ + ωit. The total factor productivity, ωit, follows a Markov pro-
cess. We assume that we have access to a sample of observed output ỹit and input
usage Xit. Here we assume that we additionally observe price pit and controls for
markups sit.

The first stage consists of purging the observed output from measurement errors.
As explained in Section 2.3, we do so by running a regression of measure output
ỹit on time fixed effet, a polynomial of inputs usage of some order (second or third
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in practice), price pit, and the additional controls sit.A47 We then compute an es-
timate of the measurement errors η̂it as the difference of observed output ỹit and
the fitted value ŷit. As explained in the main text, we obtain true output by taking
the difference of observed output and η̂it.

The estimator of the parameters β̂ is delivered by a numerical algorithm that makes
moments equal to zero. By default, the initial values are the results of OLS es-
timates of output (purge from measurement errors), yit, on the input usage Xit.
These moments are computed as follows. For a given guess of parameters β̂, we
compute ω̂it = yit − β̂Xit. We then estimate the Markov process, in the case of
AR(1), we obtain ρ̂ by an OLS regression. The estimates of the innovation of the
AR(1) process is given by ξ̂it = ω̂it − ρ̂ω̂it−1. The set of instruments Zit is chosen
from the vector of input usage Xit or its lag for dynamic and static input respec-
tively (see Appendix A.4.2 for an example). Finally, we compute the moments as∑

i,t ξ̂itZit. Sometimes we also normalized this moments by
√∑

i,t Z
′
itZit

√∑
i,t ξ̂

2
it.

We implement this algorithm in a Python toolbox, available from our websites, that
allows for many options, including a translog specification, a squared term in the
lag of productivity, normalization of the moments, various choices of numerical
solver, etc...

E Additional Tables and Figures

Table A2: Summary Statistics
Variable Mean St. Dev. Median 10th Pct. 90th Pct. Observations
Revenue 16,911 66,723 3,045 544 31,346 175,538
Quantity 14,845 62,121 1,891 236 27,458 175,538
Wage Bill 3,346 12,865 830 194 6,505 175,538
Capital 8,343 35,803 869 114 13,635 175,538
Purchased Materials 7,561 29,763 1,017 116 13,730 175,538
Purchased Services 4,253 22,880 755 120 7,388 175,538
Standardized Price 9.45 89.29 1.23 0.77 6.25 175,538

NOTE: Nominal values are in thousands of 2010 euros, deflated using EU-KLEMS deflators. Revenue is deflated with the
gross output deflator, purchased inputs are deflated using the intermediate input deflator. Wages and capital tock are
deflated using the GDP deflator. The data contains 26,143 unique firms across 206 (19) sectors at the five (two) digit level.

A47When price and quantity are not observed, revenue is used in place of observed output and
we do not include the extras controls pit and sit in the first-stage regression.

A20



Table A3: Sectors (two-digit) in the EAP-FARE Dataset
Manufacturing of ... NACE code Observations
... textiles 13 6,716
... wearing apparel 14 5,200
... leather and related products 15 2,256
... wood and products of wood and cork, except furniture 16 9,599
... paper and paper products 17 6,511
... printing and reproduction of recorded media 18 8,589
... chemicals and chemical products 20 8,498
... rubber and plastic products 22 17,939
... other non-metallic mineral products 23 13,850
... basic metals 24 4,471
... fabricated metal products, except machinery and equipment 25 26,693
... computer, electronic and optical products 26 6,401
... electrical equipment 27 7,575
... machinery and equipment n.e.c. 28 16,738
... motor vehicles, trailers and semi-trailers 29 5,493
... other transport equipment 30 889
... furniture 31 10,844
... other 32 5,094

Figure A2: Variance of Measurement Error and Productivity Correlations
Quantity Revenue
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NOTE: Correlation between the true and estimated productivity under different calibrations of ση , the fraction of observed
output due to measurement error. Reported correlations are averages of the correlations across Monte Carlo simulations.
The vertical line represents the calibration. Panel (a) blue solid: “Baseline”. Panel (a) and (b) red-dashed: “BB-Q” and “BB-
R”. Panel (b) blue solid: “ACF”. “Baseline”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estimators.
“ACF”: IV-GMM on revenue. See Section 4.1 for details.
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Table A4:

Estimation of AR(1) process for intermediate input prices
(1) (2) (3) (4)

Auto-regressive coefficient (ρW ) 0.900*** 0.871*** 0.865*** 0.868***
(0.009) (0.011) (0.014) (0.014)

St. Dev. of shocks (σW ) 0.046 0.042 0.042 0.045

Controls None Year F.E. Year F.E. & Ind. F.E. Time Pol. & Ind. F.E.
Observations 798 798 798 798
R-squared 0.922 0.936 0.918 0.908

NOTE: Results from auto-regressions for intermediate input price indices (log) at the two-digit level. Data from EU-KLEMS
for France, 1995-2016. Standard errors in parentheses. *, ** and *** denote statistical significance at the 10, 5 and 1% level,
respectively. Time Pol. refers to the inclusion of a third-degree polynomial for time as a control.

Estimation of AR(1) process for detrended nominal value added
(1) (2) (3) (4)

Auto-regressive coefficient (ρD) 0.999*** 1.001*** 0.677*** 0.708***
(0.00479) (0.00412) (0.0285) (0.0257)

St. Dev. of shocks (σD) 0.166 0.140 0.419 0.390

Controls None Year F.E. Year F.E. & Ind. F.E. Time Pol. & Ind. F.E.
Observations 798 798 798 798
R-squared 0.982 0.987 0.709 0.608

NOTE: Results from auto-regressions for nominal sector-level value added (log) at the two-digit level, detrended with nom-
inal GDP. Data from EU-KLEMS for France, 1995-2016. Standard errors in parentheses. *, ** and *** denote statistical sig-
nificance at the 10, 5 and 1% level, respectively. Time Pol. refers to the inclusion of a third-degree polynomial for time as a
control.

Estimation of AR(1) process for fixed input using capital
(1) (2) (3) (4)

Auto-regressive coefficient (ρk) 0.988*** 0.656*** 0.656*** 0.651***
(0.000) (0.008) (008) (0.002)

St. Dev. of shocks (σk) 0.215 0.215 0.662 11.79

Controls None Year F.E. Year F.E. & Firm F.E. Ind-Year F.E. & Firm. F.E.
Observations 160,124 160,124 160,124 160,124
R-squared 0.987 0.490 0.490 0.493

NOTE: Results from auto-regressions for French firms using EAP-FARE data for 2009-2019. Data on 27,857 firms. Standard
errors in parentheses are clustered by firm. *, ** and *** denote statistical significance at the 10, 5 and 1% level, respectively.
Industry fixed effects are at the 5-digit level.
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Table A5: Estimated Material-Output Elasticity for Various Specification by Sector

(NACE) All 13 14 15 16 17 22 23 24 25 26 28 29 32 33

Baseline
0.59 0.55 0.7 0.44 0.6 0.55 0.62 0.5 0.66 0.47 1.14 0.92 0.55 0.57 0.27

(0.33) (0.18) (0.21) (0.12) (0.14) (0.15) (0.15) (0.12) (0.2) (0.2) (0.47) (0.59) (0.23) (0.21) (0.09)

BB-Q
0.45 0.18 0.5 0.43 0.81 0.3 0.29 0.42 0.6 0.44 0.48 0.63 0.83 0.23 0.27

(0.26) (0.1) (0.12) (0.11) (0.3) (0.14) (0.06) (0.22) (0.16) (0.23) (0.17) (0.21) (0.18) (0.1) (0.16)

ACF
0.43 0.45 0.4 0.38 0.5 0.47 0.47 0.42 0.46 0.4 0.41 0.46 0.53 0.35 0.32

(0.13) (0.12) (0.1) (0.12) (0.12) (0.1) (0.11) (0.13) (0.17) (0.12) (0.1) (0.11) (0.13) (0.1) (0.1)

BB-R
0.4 0.46 0.31 0.33 0.48 0.43 0.46 0.44 0.46 0.34 0.34 0.37 0.54 0.32 0.31

(0.12) (0.1) (0.05) (0.07) (0.12) (0.1) (0.1) (0.11) (0.14) (0.09) (0.07) (0.05) (0.11) (0.08) (0.09)

NOTE: Estimated elasticities of materials on output from the estimation of translog production functions. The headers,
“Baseline”, “BB-Q”, “ACF” and “BB-R”, refers to different specifications. “Baseline”: IV-GMM on observed quantity. “BB-Q”
and “BB-R”: dynamic panel estimators. “ACF”: IV-GMM on revenue. See Section 5.1 for details. Translog specifications
have heterogeneous elasticities within industries, with standard deviations presented in brackets. Industry codes refer to
two-digit NACE codes. Industry names are provided in Table A3.

Figure A3: Distribution of Estimated (Log) Markup
Baseline vs ACF BB-Q vs BB-R
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NOTE: Kernel estimate of the distribution of log markups for the specifications “Baseline”, “BB-Q”, “ACF” and “BB-R”. “Base-
line”: IV-GMM on observed quantity. “BB-Q” and “BB-R”: dynamic panel estimators. “ACF”: IV-GMM on revenue. See
Section 5.1 for details.
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Figure A4: Aggregate Markups - Sector Level
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NOTE: The figures plot the aggregate markup based on quantity data (blue-solid) and revenue data (green-dashed). The
plots are an index where the aggregate markup in each year is divided by the level in 2010. Aggregate markups are the
harmonic average of firm-level markups, weighted by sales share. two-digit NACE code in brackets.
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Figure A1: Aggregate Markups - Sector Level (Continued)
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NOTE: The figures plot the aggregate markup based on quantity data (blue-solid) and revenue data (green-dashed). The
plots are an index where the aggregate markup in each year is divided by the level in 2010. Aggregate markups are the
harmonic average of firm-level markups, weighted by sales share. Two-digit NACE code in brackets.
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