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1 Introduction

Inflation is back and with it the return of central banks to conventional monetary policy and a

renewed attention of investors to bond markets. This paper offers a structural interpretation

of yield curve dynamics over the business cycle—the ‘leading indicator’ properties of the

yield curve—that have been observed in times of conventional policy. In the data, the

levels of nominal interest rates and inflation are typically negatively correlated with future

output, while the long-short spread and expected excess returns (risk premia) are positively

correlated with future output. That is, ahead of an expansion, nominal interest rates and

inflation are low, while the yield curve is steep and expected excess returns on long-term

bonds over short-term bonds are high. Accounting for this lead-lag dynamics of the yield

curve is the main contribution of the paper. Importantly, though, the proposed mechanism

is consistent, in general equilibrium, with other standard yield curve moments: the average

yield and volatility curves; the decomposition of the term structure into level, slope, and

curvature factors; a single factor driving excess returns on bonds of different maturities; and

the statistical properties of these reduced-form factors and their correlations with macro

variables.

In the model, the central bank follows a conventional monetary policy by controlling the

interest rate on the shortest maturity in accordance with a Taylor rule. Preferences have

the Epstein and Zin (1989) form and the state space consists of four shocks (risk factors):

a mean-reversing shock to the current level of productivity, common in RBC models; a

persistent shock to the expected future growth rate of productivity a-lá Bansal and Yaron

(2004); a Taylor rule shock; and a volatility shock. Risk prices depend endogenously on

these processes. Interestingly, the correlations of expected excess returns with output growth

at various leads and lags in the data suggest a dual role of the volatility shock: a positive

volatility shock temporarily increases both the conditional variance and the conditional mean

of future output growth. Consequently, volatility can be welfare neutral. The model is

agnostic about the sources of this dual role and simply allows for it in the joined process



for the shocks, a generalization of the consumption-volatility process of Bansal and Yaron

(2004). The model has a mapping into the Duffie and Kan (1996) affine term structure

model, whereby the reduced-form parameters of the Duffie and Kan (1996) setup depend on

the structural parameters of the model. Most results can be derived analytically, providing

a clear insight into the mechanism. For reasons discussed below, the model also allows for

the presence of hand-to-mouth agents and nominal price rigidities in goods markets. The

equilibrium bond prices, however, are not particularly sensitive to such frictions.

Starting with a flexible-price version of the parameterized model, in which hand-to-mouth

agents do not play any role and the endogenous comovement between output and inflation

is induced only by the Taylor rule, the notable properties of the equilibrium are as follows:

(a) only the expected growth factor has a price of risk substantially different from zero; (b)

the time variation in the risk premium attached to this factor is driven by the volatility

factor, which itself has a price of risk close to zero due to its near welfare neutrality; and (c)

the pricing kernel depends essentially only on expected inflation and the Epstein-Zin part

pricing risk to lifetime utilities, with the intertemporal smoothing motive almost absent.1

These properties make the model consistent with the standard yield curve moments and,

at the same time, offer a simple interpretation of the yield curve lead-lag dynamics: Low

levels of nominal interest rates and a steeper yield curve observed in the data ahead of an

economic expansion reflect news about higher future output growth, which is only weakly

transmitted into the real interest rate by intertemporal smoothing, but which the Taylor

rule transmits into lower inflation. If the positive news about output growth is contained in

the volatility factor, a steeper yield curve also reflects higher expected excess returns due to

elevated uncertainty about the (persistent) future growth path.

In more detail, to carry a significant price of risk, a shock has to be either persistent

or large in size (have a large conditional variance). The expected growth factor has a per-

sistent effect on bond investors’ expected consumption and lifetime utilities and thus has a

1Features (a) and (b) echo the properties of the reduced-form model of Cochrane and Piazzesi (2008). In
accordance with Cochrane and Piazzesi (2008), the priced factor is correlated with the reduced-form level
factor, while the factor driving movements in risk premia is correlated with the reduced-form slope factor.
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significant price of risk. Its riskiness for nominal bonds comes from a negative covariance

with inflation: lower expected future consumption growth is correlated with higher expected

inflation. However, for this mechanism to generate positive term premia in equilibrium, the

Epstein-Zin elasticity of intertemporal substitution of the stand-in investor has to be suffi-

ciently high. This is different from models in which the joint consumption-inflation process

is exogenous (or at least contains some sources of exogenous covariance).2 There are two

reasons for this. First, if the elasticity was low, the persistent decline in expected future

consumption growth would significantly reduce the real interest rate through the intertem-

poral smoothing motive. This would increase bond prices, making long-term nominal bonds

a hedge, despite the inflation effect. Second, low elasticity of intertemporal substitution

would break the negative covariance between consumption growth and inflation, which is

endogenously induced by the Taylor rule.3 The lead-lag dynamics of the yield curve im-

pose an additional constraint on the elasticity of intertemporal substitution to be high, by

requiring a subdued response of the real interest rate to growth news.4 Bond prices in the

model thus predominantly reflect attitudes to risk, not intertemporal smoothing motives,

interacting with monetary policy following a Taylor rule.

High elasticity of intertemporal substitution is not unusual in structural models of the

yield curve. For instance, Eraker (2008) and Bansal and Shaliastovich (2013), who assume an

exogenous consumption-inflation process, require the elasticity of intertemporal substitution

to be around five and two, respectively.5 The endogeneity of the consumption-inflation

process in this paper, as well as matching the lead-lag dynamics (not typically taken into

account by the literature), requires the elasticity to be even higher, between eight and ten.

The real pricing kernel then effectively depends only on the Epstein-Zin part pricing risk to

2E.g., Piazzesi and Schneider (2006), Bansal and Shaliastovich (2013), and Creal and Wu (2020).
3Essentially, these adverse effects of low elasticity of intertemporal substitution on the yield curve are

different manifestations of the insights of Campbell (1986) and Backus, Gregory, and Zin (1989).
4Low elasticity of intertemporal substitution would generate a large enough increase in the real inter-

est rate ahead of future output growth that would make nominal interest rates and future output growth,
counterfactually, positively correlated and the term spread (excess returns) and future output growth, coun-
terfactually, negatively correlated.

5This is higher than the median of the estimates in the literature, obtained typically from the responses
of consumption growth to the real rate (Havranek, 2015).
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lifetime utilities. This part is sufficiently volatile to satisfy the Hansen-Jagannathan bound

without requiring unrealistically volatile consumption.

The high elasticity of intertemporal substitution inferred from the yield curve, however,

appears to fly in the face of the literature represented by, e.g., Kaplan, Moll, and Violante

(2018). This literature points out that consumption of many households is irresponsive to

changes in interest rates but responds strongly to changes in current income. To check the

robustness of the results against such empirical evidence, the model allows for the pres-

ence of hand-to-mouth households, as well as for sticky prices, which provide an additional

source of endogenous comovement between output and inflation that determines bond prices.

Although nominal price rigidities and hand-to-mouth agents improve the quantitative prop-

erties of the model in relation to the data, they do not materially change the equilibrium

pricing kernel and, thus, the basic results. This is because the New-Keynesian Philips Curve

(NKPC) transmits, in a quantitatively meaningful way, only temporary shocks. While the

impact of such shocks on macro variables is sizable, it is short-lived and its overall effect

on equilibrium risk prices is small. The size of the hand-to-mouth population, in line with

other macro models, amplifies the transmission of policy shocks. But for empirically relevant

fractions of such households in the population, the resulting amplification does not overturn

the main results.

Affine term structure models (Duffie and Kan, 1996; Dai and Singleton, 2000) have a long

tradition in the study of monetary policy.6 The term structure of interest rates has been also

studied within structural monetary models by, e.g., Gürkaynak, Sack, and Swanson (2005),

Gallmeyer, Hollifield, and Zin (2005), Hördahl, Tristani, and Vestin (2008), and Doh (2011),

as well as Rudebusch and Swanson (2012), and Kung (2015).7 Relative to this literature, the

6See, e.g., Ang and Piazzesi (2003), Rudebusch, Swanson, and Wu (2006), Ang, Bekaert, and Wei
(2008), Wright (2011), Chernov and Mueller (2012), Abrahams, Adrian, Crump, Moench, and Yu (2016),
Creal and Wu (2017), and Backus, Chernov, Zin, and Zviadadze (2021). Gürkaynak and Wright (2012) pro-
vide a review of the literature.

7Predecessors to the above models either derive the pricing kernel from preferences but take the
inflation-output (consumption) process as given (e.g., Piazzesi and Schneider, 2006; Wachter, 2006; Eraker,
2008; Bansal and Shaliastovich, 2013), or derive the processes for output and inflation from a structural
model but take the pricing kernel from an affine term structure model (e.g., Hördahl, Tristani, and Vestin,
2006; Rudebusch and Wu, 2008). Recent examples of the former approach are Creal and Wu (2020) and
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contribution of the paper is to take into account the lead-lag dynamics as empirical moments

to be explained. In relation to the reduced-form affine term structure models, the model—

of course—cannot compete with that literature in terms of its empirical performance. For

instance, the results suggest that the model misses factors behind movements in risk premia

that are unrelated to the average business cycle.8

Finally, a large literature studies the real effects of uncertainty shocks (Bloom, 2014,

provides a review). This paper is not concerned with the channels of transmission from

uncertainty to real activity. While in the model (under sticky prices) output responds en-

dogenously to volatility, most of the interaction between volatility and output comes from

the exogenous process, which, in the asset pricing tradition (e.g., Bansal and Yaron, 2004;

Backus, Routledge, and Zin, 2010), is inferred from asset prices. This reveals that certain

types of volatility shocks are related to the average business cycle and precede output.9

The paper is structured as follows. Section 2 lists basic stylized facts about the nominal

yield curve. Section 3 describes the model and explains the mechanism. Section 4 reports

quantitative findings. Section 5 concludes. Online material contains an Appendix.

2 Stylized facts about the term structure

This section lists selected stylized facts about the nominal yield curve and its relationship

to the macroeconomy that inform the construction and calibration of the model in the

next sections. Most of the stylized facts are well known, a few less so. Where relevant, I

note examples of studies that have previously documented various versions of these empirical

regularities, possibly in different samples. Before proceeding, some notation and terminology

Gomez-Cram and Yaron (2021). Gallmeyer, Hollifield, Palomino, and Zin (2007) and Song (2017) solve
for inflation, given a process for output; van Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-Ramirez
(2012) do the opposite. Piazzesi and Schneider (2006) take into account the lead-lag correlations between
output and inflation as a part of the estimated exogenous output-inflation process.

8Creal and Wu (2020) point out shocks to the rate of time preference.
9Although, by its very nature, the model has no time-varying idiosynscratic uncertainty (for examples

see Werning, 2015; Ravn and Sterk, 2017; Den Haan, Rendahl, and Reigler, 2018), the volatility factor is a
source of movements in the second moments of the pricing kernel, resembling time-varying precautionary
saving.
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are introduced.

To start, one period in both the data and the model refers to a quarter. It is con-

venient to work with continuously compounded yields, returns, and growth rates. These

variables are then reported in percent per annum. Let q
(n)
t be the period-t price of a zero-

coupon default-free bond that matures and pays one dollar in n periods. Continuously

compounded yields can be inferred from a discounting formula q
(n)
t = exp(−ni

(n)
t ), implying

i
(n)
t = (−1/n) log q

(n)
t . Realized return on holding a n-period bond for one period is defined

as r
(n)
t+1 ≡ log q

(n−1)
t+1 − log q

(n)
t . Excess return is then computed as r

(n)
X,t+1 ≡ r

(n)
t+1 − it, where

it = i
(1)
t is the short rate. Expected excess return is given by Etr

(n)
X,t+1, where the expectation

operator is with respect to information up to and including period t. Expected excess return

quantifies the risk compensation, required ex-ante, for holding the n-period bond for one

period and is estimated from standard forecasting regressions.

The focus is on the period of conventional monetary policy 1961-2008. The stylized facts

are presented for the period as a whole in order to capture the large long-run swings in

inflation and interest rates and a sufficient number of business cycles. Nonetheless, splitting

the sample into the two commonly studied regimes, 1961-1979 and 1985-2008, produces

qualitatively similar facts. The period of the zero-lower bound and quantitative easing is

excluded as this period represents a major departure from conventional monetary policy

and, as such, requires separate attention and different modeling approach. The maturities

included are 3 months and 1 to 7 years (the stylized facts are similar for the period 1971-

2008, for which the maturities are available up to 10 years).10 The stylized facts taken into

account are as follows:

1. Average yield and volatility curves. The yield curve slopes up on average; see the top-

left panel of Figure 1. The volatility curve is fairly flat—the volatility at the long end

10The data for yields of maturities of one year and above come from the Federal Reserve Board database
on the nominal yield curve (the Gürkaynak-Sack-Wright dataset), with the 3-month T-bill rate taken from
FRED. To compute realized returns, the required bond prices are obtained from the cross-sectional, date-
specific, Nelson and Siegel (1987) curve that comes with the Gürkaynak-Sack-Wright dataset. The dataset
is at daily frequency. Yields and log bond prices are converted to quarterly frequency by simple averaging
(returns are then computed from the bond prices at quarterly frequency). Data for all other variables come
from FRED.
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is almost as high as the volatility at the short end; see the top-right panel of Figure 1.

2. Level, slope, and return factors. Two principal components (PCs) account for over 99%

of the total variance of yields across maturities, with the 1st PC accounting for about

97% and the 2nd PC for a little over 2.5%. The 1st PC works like a ‘level factor’, shifting

all yields more or less in parallel; the 2nd PC works like a ‘slope factor’, increasing

the spread between the long and short rates (e.g., Litterman and Scheinkman, 1991;

Piazzesi, 2006).11 See the bottom-left panel of Figure 1. A single PC accounts for

essentially all variance (99%) of excess returns across maturities. The effect of this

‘return factor’ on excess returns increases with maturity (e.g., Cochrane and Piazzesi,

2008). See the bottom-right panel of Figure 1.

3. Properties of the level factor. The level factor is close to random walk and is unrelated

to the variation in excess returns (e.g., Duffee, 2012). The upper panel of Table 1

shows the estimate of a VAR(1) matrix for the first five PCs of yields. It shows

that the level factor is highly persistent, with statistically insignificant interactions

with the other PCs.12 (Granger causality tests, not reported, confirm that the level

factor neither forecasts nor is forecastable by any other PCs.) The lower panel shows

that forecasting excess returns with the level factor has R2 approximately equal to

zero.13 The level factor, however, is strongly positively correlated with inflation (e.g.,

Ang and Piazzesi, 2003); in the sample considered here, the correlation is 0.71.14

4. Properties of the slope and return factors. The slope factor is statistically related to the

return factor (e.g, Fama and Bliss, 1987; Campbell and Shiller, 1991). The results of

the forecasting regressions for the return factor (the lower panel of Table 1) report R2

11A 3rd PC, accounting for 0.2% of the total variance, works like a ‘curvature factor’, changing the shape
of the yield curve.

12The persistence in the VAR is moreover likely underestimated due to a small sample bias
(Nicholls and Pope, 1988; Shaman and Stine, 1988).

13In the forecasting regressions, the dependent variable is the return factor, the independent variables are
a constant and the PCs of yields specified in the table.

14I take as the reference inflation rate the 1st PC (96% of the variance) of year-on-year inflation rates of
the following price indexes: CPI, CPI less food and energy, PCE price index, PCE price index excluding
food and energy, and the GDP deflator.
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equal to 0.08 when the slope factor is used as a regressor, with a statistically significant

coefficient. If I let the return holding period be the more conventional one year, the

R2 raises to the typical value of about 0.2. As a direct consequence, the slope factor

and expected (fitted) excess returns are closely related.15

5. Yield curve and the business cycle. Yields exhibit a negative lead with respect to the

growth rate of real GDP, whereas the slope of the yield curve and expected excess

returns exhibit a positive lead (e.g., King and Watson, 1996; Estrella and Mishkin,

1998; Ang, Piazzesi, and Wei, 2006; Backus et al., 2010).16 Specifically, Figure 2 plots

corr(xt+j , gt), j = −6, ..., 0, ...6, where x is the variable of interest and g is the con-

tinuously compounded growth rate of real GDP, either quarter-on-quarter or centered

year-on-year. The figure shows that the short rate has a strong negative lead, the long

(7-year) rate has a weak negative lead, and the inflation rate has a negative lead similar

to that of the short rate. Also, interest rates and inflation are negatively correlated

with output growth contemporaneously.17 The negative lead in yields occurs due to

the level factor; the slope factor exhibits a positive lead, similar to that of the expected

excess return.18,19

15Including the 3rd PC raises the adjusted R2 of the quarterly return regression from 0.08 to 0.11; including
also the 4th PC brings no further improvements in the fit. Including as a regressor the growth rate of real
GDP, to allow for unspanned macro risk (Ludvigson and Ng, 2009), did not significantly change the results
in the sample considered here (not reported in the table).

16Kydland, Rupert, and Šustek (2016) demonstrate that the negative lead of nominal interest rates is
crucial for understanding the leading business cycle behavior of residential investment when house purchases
are financed with mortgages.

17As before, the inflation rate is the 1st PC of the inflation rates for various indexes. Wang and Wen
(2007) document such inflation dynamics for a number of countries.

18The expected excess return on the long bond is obtained from a Fama and Bliss (1987) forecasting
regression (i.e., from regressing excess return on the 7-year bond on a constant and the 7YR-3M spread).
Essentially the same result is obtained if the slope factor is used as a regressor instead of the spread, or if
the return factor capturing excess returns across maturities is used as the left-hand side variable.

19Some authors argue that risk premia should be counter-cyclical (e.g., Ludvigson and Ng, 2009). When
the correlations are computed with respect to the HP-filtered cyclical component of the level of real GDP, the
contemporaneous correlation for the expected excess return is -0.44, with correlations at leads -6 to -1 being
0.38, 0.31, 0.19, 0.04, -0.11, -0.30, while those at lags 1 to 6 being -0.53 -0.56 -0.54 -0.52 -0.48 -0.38. Risk
premia in the sample are thus negatively correlated with current and past levels of output, in accordance
with Ludvigson and Ng (2009).
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3 The model

To avoid having to introduce new notation and equations, it is convenient to present the

model in its full form that allows for sticky prices and hand-to-mouth agents. It is based

on a stripped-down version of a two-agent New-Keynesian model studied by Bilbiie (2019).

The flexible-price version used for the headline results is a special case of the general setup

and this is pointed out where relevant. In the flexible-price version, hand-to-mouth agents

play no role, as will become clear below.

The model has a convenient log-normal form that allows a straightforward, easy-to-

interpret, mapping into the Duffie and Kan (1996) affine term structure model. The New-

Keynesian part is standard. The less standard features are the Epstein-Zin preferences and

the state space. A fraction 1−λ of households are referred to as ‘bond investors’; the remain-

ing fraction λ are referred to as ‘hand-to-mouth’ households who are excluded from financial

markets.20 Within the two types, agents are identical. The only input into production is

labor. Profits (dividends) of monopolistically competitive firms are split between the two

types in a fixed proportion. That is, there is no trade in the claims on profits between the

two types. In this sense the claims represent illiquid assets, such as unincorporated business,

making the hand-to-mouth agents the ‘rich’ hand-to-mouths of Kaplan and Violante (2014).

Where applicable, the notation from Section 2 carries over and interest rates, inflation

rates, growth rates, and rates of return are, as before, continuously compounded. I adopt

the convention that hats denote percentage or percentage point deviations from steady state

and variables without a time subscript denote the steady state. The model allows for a

deterministic trend. ‘Steady state’ therefore refers to a balanced growth path. Up to a

constant, ŷt = log yt−gt, ĉBt = log cBt−gt, ĉHt = log cHt−gt, and ŵt = logwt−gt, where yt

is output, cBt is consumption of the bond investor, cHt is consumption of the hand-to-mouth

household, wt is the real wage rate, and g is the growth rate of the deterministic trend,

driven by productivity. The variables can be rewritten in terms of their growth rates as

20Other terminology used in the literature is ‘savers’ v.s. ‘spenders’, ‘unconstrained’ v.s. ‘constrained’, or
‘participants’ v.s. ‘nonparticipants’.

9



gy,t+1 = log yt+1 − log yt = g + (ŷt+1 − ŷt) and similarly for the growth rates of cBt, cHt, and

wt. The steady state of labor, inflation, and interest rates is a constant. To economize on

space, throughout the paper the details of various derivations are relegated to the Appendix.

3.1 Preferences, technology, monetary policy

Bond investors have Epstein and Zin (1989) preferences

Ut = [(1− β) cρBt + βμt (Ut+1)
ρ]

1/ρ
, (1)

where β ∈ (0, 1) is a discount factor, Ut is the lifetime utility from period t on, and μt (Ut+1)

is period-t certainty equivalent of stochastic lifetime utilities from t + 1 on. Further, ρ ≤
1 controls the elasticity of intertemporal substitution, given by 1/(1 − ρ). The certainty

equivalent is based on expected utility

μt (Ut+1) =
[
Et(U

α
t+1)

]1/α
, (2)

where Et is the expectation operator based on period-t state variables. The parameter α ≤ 1

controls the coefficient of relative risk aversion, given by 1 − α. Implicitly, labor supply of

bond investors is assumed to be inelastic.21

Nominal zero-coupon bonds of different maturities are available in zero net supply. The

real pricing kernel is equal to the representative investor’s stochastic discount factor

mt+1 = β

(
cB,t+1

cBt

)ρ−1(
Ut+1

μt (Ut+1)

)α−ρ

. (3)

The nominal pricing kernel is given by m$
t+1 ≡ mt+1 exp(−πt+1), where πt+1 is a continuously

compounded inflation rate between t and t + 1. In the real pricing kernel, if α = ρ, mt+1

21This assumption simplifies the equilibrium pricing kernel, facilitating more straightforward insights into
the results. An economic justification for this assumption could be the observation that most adjustments
in aggregate employment and hours worked in the data occur in the lower half of the income distribution
that likely characterizes hand-to-mouth households.
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becomes the standard marginal rate of intertemporal substitution for CRRA time-additive

preferences. In that case, only consumption growth between t to t + 1 affects asset prices.

If α �= ρ, the pricing kernel also depends on lifetime consumption streams, embedded in

the lifetime utilities. A common assumption in the literature, which is also imposed here,

is (α − ρ) < 0. In this case, a higher Ut+1 is considered a good news by the investor and

reduces the pricing kernel. In addition, it is assumed that α < 0. The budget constraint of

the bond investor is given by

bt+1 + cBt =
1 + it−1

1 + πt

bt + wtlB +
1− ε

1− λ
dt,

where bt+1 denotes holdings of a one-period nominal bond between periods t and t+1, wtlB

is labor income, dt is aggregate dividends, and (1− ε) is the share of the dividends claimed

by bond investors. As bonds are in zero net supply and bond investors are all alike, bonds

are not traded in equilibrium. Bonds of longer maturities can be priced by arbitrage, once

the equilibrium nominal pricing kernel is determined. Leaving long-term bonds out of the

budget constraint is thus inconsequential for the equilibrium.22

The per-period utility function of the hand-to-mouth household takes the standard form

in the New-Keynesian literature, log cHt − ω(l1+η
Ht )/(1 + η). Here, lHt is labor, ω ≥ 0 is a

weight on disutility from labor, and η ≥ 0 is the Frish elasticity. Like in the case of the

bond investor, this utility function could be embedded in the Epstein-Zin form. However, as

the decision problem of the hand-to-mouth household is static, such a formulation would be

inconsequential for the equilibrium.23 The budget constraint of the hand-to-mouth household

is

cHt = wtlHt +
ε

λ
dt

22In other words, long-term bonds are redundant assets in this economy. The one-period bond is included
since, as described below, its interest rate is set by the central bank in relation to inflation and, thus, the
bond pins down the nominal side of the economy.

23The per-period utility function of the bond investor embedded in equation (1) has the same form as that
of the hand-to-mouth household, but with a general elasticity of intertemporal substitution of consumption
and the weight on disutility from labor equal to zero.
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and the optimal labor supply is characterized by the first-order condition logwt = log cHt +

η log lHt.

Goods market clearing requires yt = (1 − λ)cBt + λcHt. Output is given by the pro-

duction function log yt = gt + zt + log lt, where zt is a log-deviation of productivity from

the deterministic trend and lt is aggregate labor. Dividends are determined as a residual

from output, once labor is paid: dt = yt − wtlt. The business sector has the usual setup

with sticky prices, leading to the standard NKPC. When log-linearized around a zero infla-

tion steady state (a common assumption) the NKPC takes the well-known convenient form,

πt = βEtπt+1 +Φυ̂t, where υ̂t = ŵt− zt is the log-deviation of the marginal cost from steady

state and Φ ≡ (1 − ζ)(1 − βζ)/ζ , with ζ being the Calvo parameter (see, e.g., Gaĺı, 2015,

Chapter 3).24 Substituting for υ̂t yields the NKPC in terms of output

πt = βEtπt+1 + Ω(ŷt − zt), (4)

where

Ω =
Φ

ε

[
w

z
+ η

cH
zlH

+ ε
(
1− w

z

)]
.

This is derived by combining the first-order condition for labor, the hand-to-mouth agent’s

budget constraint, the production function, and the equation for dividends (see the Appendix

for the derivation).25 When prices are flexible, ζ = 0, Φ = Ω = ∞, and ŷt = zt.

24Log-linearizing the NKPC eliminates the upward pricing effect due to precautionary price setting
(Fernandez-Villaverde, Guerron-Quintana, Kuester, and Rubio-Ramirez, 2015). This effect, however, is
muted in the present model due to the volatility shock also affecting the conditional mean of productiv-
ity growth, not just its variance. To keep the analysis simple, I proceed with the log-linear version. Log-
linearizing the NKPC around the zero inflation steady state reduces the stochastic discount factor in the
NKPC only to β. Given that β is the same across agents, it renders irrelevant any discussion regarding which
agent’s stochastic discount factor should be used to discount profits. In the calibrated model, the quarterly
steady-state inflation rate π is close to zero, equal to 0.00975.

25When the steady state is normalized so that w = z = 1 and bond investors are eliminated from the
model (λ = 1), then ε = 1 (all dividends go to the hand-to-mouth agent) and cH = y = lH . Consequently, Ω
boils down to the standard expression in a representative-agent New-Keynesian model, Ω = Φ(1 + η). As in
Bilbiie (2019), I normalize the steady state so that cB = cH , lB = lH , z = 1, and y = 1. Further, w = 0.65,
which reflects the labor share in NIPA and is consistent with the preference parameter ω = 0.65.
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The model is closed with a Taylor rule

it = i+ νπ(πt − π∗) + νy(Etgy,t+1 − g) + ξt, (5)

where π∗ is an inflation target and ξt is a shock. The standard restrictions on the parameters

apply: νπ > 1 and νy > 0.26

3.2 Exogenous processes

Two shocks, the productivity shock (zt) and the Taylor rule shock (ξt), have already been

introduced and are standard in the macro literature. There are two additional shocks, st and

vt, taken from the finance literature, whose role is explained below. The following stationary

Gaussian processes are adopted for the four shocks

⎛
⎜⎜⎜⎜⎝

zt+1

st+1

ξt+1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
xt+1

=

⎛
⎜⎜⎜⎜⎝

φz 1 0

0 φs 0

0 0 φξ

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎝

zt

st

ξt

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
xt

+

⎛
⎜⎜⎜⎜⎝

az

as

0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
a

(vt − v) + v
1/2
t Bωt+1, (6)

vt+1 = v + θ(vt − v) + bωt+1. (7)

Here, φz, φs, φξ, θ ∈ [0, 1), v > 0, and az, as ≥ 0. Further, B ≥ 0 is a 3 × 4 matrix with

positive entries only at B11, B22, and B33, and b ≥ 0 is a 1 × 4 vector with a positive entry

only at b4. Consequently, Bb� = 0. Finally, ωt ∼ N(0, I) is a 4×1 vector of innovations. At

a certain point in the derivations below (at the point of evaluating the real pricing kernel,

which depends on consumption growth), it will be convenient to work with the state space

26Specifying the Taylor rule in terms of the output growth rate leads to a better fit of the model to macro
and yield curve data than a specification in levels. Whether the current or expected growth rate is used has
minuscule effects on the results, but the specification in terms of the expected growth rate is more convenient
in terms of the state space. As in both the calibrated model and the data inflation is persistent, including
into the Taylor rule also Etπt+1 has only small effects on the results. As in other models with Taylor rules,
including πt is necessary for determinacy under flexible prices.
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(6)-(7) written as

⎛
⎜⎜⎜⎜⎝

Δzt+1

Δst+1

Δξt+1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Δxt+1

=

⎛
⎜⎜⎜⎜⎝

φz − 1 1 0

0 φs − 1 0

0 0 φξ − 1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ad

⎛
⎜⎜⎜⎜⎝

zt

st

ξt

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
xt

+

⎛
⎜⎜⎜⎜⎝

az

as

0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
a

(vt − v) + v
1/2
t Bωt+1, (8)

Δvt+1 = θd(vt − v) + bωt+1, (9)

which is obtained by simply subtracting xt and vt from both sides of equations (6) and (7),

respectively. Here, θd ≡ θ − 1. The joint process (6)-(7), or equivalently (8)-(9), belongs in

the class of stochastic volatility in the mean processes and conforms with the setup of the

Duffie and Kan (1996) affine term structure model.

The shock vt affects the conditional volatility of xt+1 (or equivalently Δxt+1), through

B, as well as its conditional mean, through a. The shock is thus both a volatility shock

and a news shock about future productivity. This specification is motivated by the Stylized

Fact 5. In the model, vt makes the second moments of the pricing kernel time varying and

thus generates time-varying risk premia. The parameter a controls the extent to which the

time-variation in risk premia, and thus expected excess returns, precedes the time variation

in productivity growth, and thus in output growth. The lead-lag dynamics and risk premia,

however, are not independent phenomena, and risk premia in equilibrium also depend on

the parameter a.27,28

The shock st is a shock to the conditional mean of zt+1 (or equivalently Δzt+1). As

such, it is a pure news shock about future productivity, similar to the shock to consumption

and dividends in Bansal and Yaron (2004). In contrast, zt is a mean reversing shock to the

27Strictly speaking, vt must be greater than zero and thus cannot be Gausian. However, as in Piazzesi
(2006), it is possible to choose its variance so that the probability of vt being zero or negative is low enough
and think of the Gausian assumption as a convenient approximation. In the numerical experiments, the
incidence of vt ≤ 0 is under 0.1%.

28The implicit assumption in the above processes—that vt affects the conditional variance of all elements
in xt+1—is adopted for parsimony. In a more general model, there could be a separate volatility variable for
each element of xt+1.
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current productivity level, typical for RBC models. Unlike the st shock, which can generate

persistent changes in the growth rate, it leads to a growth rate that is dominated by purely

temporary changes.29

3.3 Equilibrium

This section describes the conditions characterizing the equilibrium, with the actual solutions

reported and discussed in the next section.

3.3.1 Sharing rules

As bond investors are all alike, in equilibrium bt = 0 and bond investors consume their entire

income. The budget constraints of the two types, the equation for dividends, the production

function, and the first-order condition for labor yield ‘sharing rules’ (consumption claims on

output) for the two agents. See the Appendix. For bond investors:

ĉBt = zt +

[
1− w

z

λ

1− λ

(
1− ε

ε
(1 + η)− 1− λ

λ
η

)]
︸ ︷︷ ︸

ΦB

(ŷt − zt), (10)

which relates the bond investor’s consumption to aggregate output in a way that depends

on the fraction λ of hand-to-mouth agents in the population. The larger is λ, the smaller is

ΦB. This property reflects the aspect of sticky-price models that dividends and labor income

move in opposite directions in response to shocks that affect ŷt− zt (e.g., Gaĺı, 2015). When

λ is large, the given share of aggregate dividends, 1− ε, accruing to bond investors is divided

among a smaller measure of them 1− λ, thus providing each of them with a stronger hedge

against labor income fluctuations. The overall effect of λ on ĉBt, however, depends also on

the endogenous ŷt, which in equilibrium is also affected by λ.

29The Bansal and Yaron (2004) process is a special case of (8)-(9), with φz = 1, φs close to one, and
az = as = 0. The specification used here can approximate their process arbitrarily well by letting φz → 1. I
opt for the current specification as the lead-lag patterns in Figure 2 constitute dynamics for which the exact
Bansal and Yaron (2004) process is too restrictive.
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The sharing rule for hand-to-mouth agents is

ĉHt = zt +

[
1 +

w

z

(
1− ε

ε
(1 + η)− 1− λ

λ
η

)]
︸ ︷︷ ︸

ΦH

(ŷt − zt), (11)

where ΦH depends positively on λ. For a given ε, a sufficiently large λ makes consumption

of hand-to-mouth households more volatile than consumption of bond investors.30 Observe

that under flexible prices (i.e., ŷt = zt), the sharing rules are reduced to ĉBt = ĉHt = zt.

3.3.2 A system in output and inflation

Bond investors satisfy the Euler equation for the one-period nominal bond. Two conditions

then characterize equilibrium processes for output and inflation. One condition is the NKPC

(4), the other is a combination of the Taylor rule and the Euler equation for the one-period

bond, exp(−it) = Et[mt+1 exp(−πt+1)], with mt+1 given by (3) and ĉBt given by (10). This

condition will be referred to as the ‘bond market equilibrium condition’, as it relates bond

investors to the central bank. Hand-to-mouths affect the equilibrium through λ affecting

the sharing rule for ĉBt and thus the pricing kernel. Assuming for the moment that it,

logmt+1, and πt+1 are jointly normally distributed (verified later on), we can expand the

Euler equation and write the bond market equilibrium condition as

i+ νπ(πt − π∗) + νy(Etgy,t+1 − g) + ξt = −Et logmt+1 + Etπt+1 +m
(2)
t , (12)

where m
(2)
t ≡ −0.5 vart logmt+1 − 0.5 vart πt+1 + covt(logmt+1, πt+1) subsumes the second

moments of the nominal pricing kernel. It is shown below that logmt+1 is linear in ĉBt and

thus, by (10), in ŷt.

Given the log-linear/log-normal form of the model, we can consider equilibrium functions

of the state space

ŷt = y + y�x xt + yvvt, (13)

30Bilbiie (2019) refers to this feature as ‘cyclical inequality’.
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πt = π + π�
x xt + πvvt, (14)

where (y, y�x , yv, π, π
�
x , πv) are endogenous coefficients, commensurate to the state variables.

The functions (13) and (14) solve the two functional equations (4) and (12) and the equilib-

rium coefficients are obtained by the method of undetermined coefficients.

The rest of this section describes how the pricing kernel is transformed into the Duffie and Kan

(1996) form, which provides a convenient form for solving for the equilibrium yield curve

and establishes a close connection with affine term structure models.

3.3.3 The real pricing kernel and the value function

The Epstein-Zin pricing kernel depends on endogenous lifetime utilities. Starting with (3),

the real pricing kernel can be expressed in a log form

logmt+1 = log β+(ρ−1)gc,t+1+(α−ρ) {(gc,t+1 + log ut+1)− logμt [exp(gc,t+1)ut+1]} , (15)

where ut+1 ≡ Ut+1/cB,t+1 is a scaled lifetime utility, which is constant on the balanced growth

path. Further, logμt [exp(gc,t+1)ut+1] = α−1 logEt [expα(gc,t+1 + log ut+1)], which follows

from the homogeneity of degree one of the certainty equivalent (2); see the Appendix. If

ρ = 1, the standard margin depending on short-term consumption growth is eliminated from

the pricing kernel; if α = ρ, the part depending on lifetime utilities is eliminated.

The rest of this subsection evaluates gc,t+1 and ut+1 in the pricing kernel (15) to make

the kernel depend only on state variables and innovations. The coefficients of the resulting

pricing kernel are functions of the coefficients of the output process (y, y�x , yv).

Given the linear relationship (10) between ĉBt and ŷt, the growth rate gc,t+1 can be written

as gc,t+1 = g + ΦB(gy,t+1 − g) + (1 − ΦB)Δzt+1, which, using (13), can be further expanded

as gc,t+1 = g + ΦB(y
�
x Δxt+1 + yvΔvt+1) + (1− ΦB)Δzt+1 or

gc,t+1 = g + c�xΔxt+1 + cvΔvt+1, (16)
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where

c�x ≡ ΦBy
�
x + (1− ΦB)e

�
z , and cv ≡ ΦByv. (17)

Further, e�z ≡ [1 0 0], and Δxt+1 and Δvt+1 are given by (8) and (9), respectively.

The log utilities in the pricing kernel (15) must satisfy the recursive equation (1). Adopt-

ing the Hansen, Heaton, and Li (2008) approximation

log ut ≈ κ0 + κ1α
−1 logEt [expα(gc,t+1 + log ut+1)] . (18)

Here κ0 ≡ ρ−1 log [(1− β) + β exp(ρμ)]− κ1μ and κ1 ≡ [β exp(ρμ)]/[(1− β) + β exp(ρμ)] ∈
(0, 1) works like a discount factor. Further, μ ≡ log(exp(g)u) is the steady-state value of

the log certainty equivalent, with u denoting a steady-state (balanced growth path) scaled

utility.31 The functional equation (18), which by (16) and (17) depends on (y, y�x , yv), admits

a linear solution

log ut = u+ u�
x xt + uvvt, (19)

where (u, u�
x , uv) are endogenous coefficients that solve (18) and depend on (y, y�x , yv); see

the next section for the solution.

3.3.4 The Duffie-Kan pricing kernel

The value function (19), the equation for consumption growth (16), and the stochastic pro-

cesses (8) and (9) allow to express the real pricing kernel (15) only in terms of the state

variables and innovations

logmt+1 = δ + δ�x xt + δvvt + λ�
x v

1/2
t ωt+1 + λ�

v ωt+1, (20)

where (δ, δ�x , δv) are factor loadings and (λ�
x , λ

�
v ) are prices of risk, commensurate to the state

variables and shocks (see the Appendix for derivation). The factor loadings and prices of

risk, reported in the next section, depend on (y, y�x , yv). Equation (20) takes the form of the

31See the Appendix for details.
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pricing kernel in the Duffie and Kan (1996) affine term structure model. The key difference

is that here the factor loadings and prices of risk are not free parameters, but depend on the

deep parameters of the model.

The equilibrium nominal pricing kernel is: logm$
t+1 = logmt+1 − (π + π�

x xt+1 + πvvt+1),

where (π, π�
x , πv) are the equilibrium coefficients of the inflation process. It also preserves

the Duffie and Kan (1996) form

logm$
t+1 = δ$ + δ$�x xt + δ$vvt + λ$�

x v
1/2
t ωt+1 + λ$�

v ωt+1, (21)

where the coefficients are

δ$ = δ − π + π�
x av − πv(1− θ)v,

δ$�x = δ�x − π�
x A,

δ$v = δv − π�
x a− πvθ,

λ$�
x = λ�

x − π�
x B,

λ$�
v = λ�

v − πvb.

Note that as logmt+1, πt, yt are linear functions of the normally distributed factors, they are

normally distributed too, confirming the earlier conjecture.

3.4 Inspecting the coefficients

Before moving on to the quantitative results, I list the coefficients of the processes for lifetime

utility, the real pricing kernel, inflation, and output and point out their most important

properties to provide insight into the quantitative findings. The coefficients of each of these

processes have a recursive structure. First, the loadings on xt are determined, independently

of the constant and the loading on vt. Second, the loading on vt is determined. It depends
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on the loadings on xt but not on the constant. Finally, the constant is determined and it

depends on both the loadings on xt and vt. The loadings on xt are related only to conditional

expectations; the loadings on vt reflect both conditional expectations and conditional second

moments. I only discuss the loadings on xt and vt, which affect the dynamics, relegating

constants to footnotes.

3.4.1 Lifetime utility

Lifetime utility is used to evaluate the real pricing kernel. Recall that log ut is the log of

lifetime utility scaled by current consumption. It can therefore either increase or decline,

in response to a positive consumption shock, depending on whether the shock affects more

the lifetime utility or current consumption. Positive mean reversing shocks to the level of

consumption reduce log ut, whereas the opposite is true for persistent positive shocks to

the consumption growth rate. For the following set of expressions, take (y, y�x , yv) as given.

These expressions characterize the solution to the bond market equilibrium condition (12);

or to the flexible-price version of the model, i.e., the special case of y�x = [1 0 0] and yv = 0.

Before proceeding, recall that (α − ρ) < 0 and α < 0, and that c�x and cv are related to

y�x and yv through (17) and, through ΦB, depend on the fraction of hand-to-mouths in the

population.

The coefficients of the value function are given by

u�
x = κ1c

�
xAd(I − κ1A)

−1,

uv =
κ1

1− κ1θ

[
(cx + ux)

�a+ cvθd +
α

2
(cx + ux)

�BB�(cx + ux)
]
.

The coefficient u�
x is an infinite discounted sum of expected future consumption, conditional

on a unit of xt. Thus, even shocks that affect only future consumption (not current consump-

tion) affect u�
x . In uv, the linear part within the square brackets captures expected lifetime

utility from consumption from next period on, while the quadratic part reflects uncertainty

about lifetime utility from consumption from next period on, both being conditional on a
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unit of vt. The linear part is present in uv due to vt being a news shock about future pro-

ductivity (and due to a general equilibrium effect of vt on consumption, the cv term, in the

version with the NKPC). The quadratic part is present due to vt being a volatility shock.

Observe that the two parts can potentially offset each other (as α < 0), making uv equal

to zero. Volatility in the model is thus potentially a ‘welfare-neutral’ risk factor. Observe

also that u�
x and uv increase in absolute value with the persistence of the respective shocks,

summarized by the eigenvalues of A and the size of θ.32,33

3.4.2 Real pricing kernel

The real pricing kernel enters the bond market equilibrium condition (12). Its coefficients

depend on the coefficients of lifetime utility and are given by

δ = log β + (ρ− 1)(g − c�x av − cvθdv)− (α− ρ)
α

2
(cv + uv)

2bb�,

δ�x = (ρ− 1)c�xAd,

δv = (ρ− 1)(c�x a+ cvθd)− (α− ρ)
α

2
(cx + ux)

�BB�(cx + ux),

λ�
x = (ρ− 1)c�xB + (α− ρ)(cx + ux)

�B,

λ�
v = (ρ− 1)cvb+ (α− ρ)(cv + uv)b.

The pricing kernel has two parts: the standard part depending on short-term consumption

growth, the terms pre-multiplied by (ρ − 1), and a part depending on lifetime utilities, the

terms pre-multiplied by (α − ρ).34 To focus on the second part, consider the limiting case

of ρ = 1 (infinite elasticity of substitution), so that the short-term part drops out. Under

32The coefficient u has no effect on equilibrium allocations and prices; it only affects welfare and is given

by u = κ0

1−κ1
+ κ1

1−κ1

[
g − (cx + ux)

�av − cvθdv + (1− θ)uvv +
α
2 (cv + uv)

2
bb�

]
.

33The expression cx + ux reflects the scaling of the lifetime utility at t+ 1; that is,
cB,t+1

cBt

Ut+1

cB,t+1
. Similarly

for the expression cv + uv. See the Appendix for details.
34The second part, under the restriction (α − ρ) < 0, is sometimes referred to in the literature as the

‘preference for an early resolution of uncertainty’. The standard pricing kernel for a time-additive CRRA
utility function and constant volatility results under α = ρ and b = cv = a = 0.
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this restriction, δ�x is eliminated from the pricing kernel. The quadratic terms in the factor

loadings δ and δv are related to the certainty equivalent (pertaining to its constant and time-

varying margins, respectively). If vt increases, the certainty equivalent, under the restriction

α < 0, unambiguously declines, reducing δv.
35 The prices of risk, λ�

x and λ�
v , determine the

impact of the innovations to xt+1 and vt+1, respectively, on the pricing kernel.

Because of the dependence of the risk prices on u�
x and uv, the more persistent is a given

shock, the larger is its price, in absolute value. In addition, the risk prices are scaled by the

variance of the respective innovations (B and b). The larger is the conditional variance of a

given shock, the larger is its price.

3.4.3 Inflation and implications for term premia and the lead-lag dynamics

The coefficients of the inflation process, obtained from the equilibrium equation (12), using

the real pricing kernel (20), for a given (y, y�x , yv), are:

π�
x = −(νyy

�
x Ad + e�ξ + δ�x )(νπI − A)−1, (22)

πv =
1

νπ − θ

(
−νy(y

�
x a + yvθd)− δv + π�

x a−
1

2
λ�
x λx − 1

2
π�
x BB�πx + λ�

xB
�πx

)
, (23)

where e�ξ ≡ [0 0 1]. The effect summarized by π�
x is standard (e.g., Cochrane, 2011). It is a

solution to the expectations part (i.e., m
(2)
t = 0) of the difference equation in inflation (12),

conditional on xt. Note that νy > 0 translates positive shocks to output growth (captured by

y�x Ad) to negative shocks to inflation. In contrast, δ�x does the opposite, unless ρ = 1. The

horse race between these two effects plays an important role in the determination of term

premia and would not arise in settings with exogenous inflation (e.g., Piazzesi and Schneider,

2006; Bansal and Shaliastovich, 2013).

In πv, the linear terms are expectations terms similar to those in πx. They come from

the effect of vt on output growth in the Taylor rule (the first term) and on the conditional

mean of the nominal pricing kernel (the second and third term). The quadratic terms result

35When risk increases, the agent is willing to accept lower certain income.
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from the effect of vt on the second moments of the nominal pricing kernel (the terms in m
(2)
t

in equation (12)). The variance term of the real pricing kernel, λ�
x λx, reduces inflation when

uncertainty rises. This effect on inflation can be interpreted as the effect of precautionary

saving, similar to Den Haan et al. (2018).36 The term λ�
xB

�πx reflects covariance between

inflation and the real pricing kernel, induced by variation in xt. If the elements, corresponding

to a given element of xt, in both λ�
x and πx are negative, then the covariance is positive.

This corresponds to a situation of low inflation when the marginal value of real income is

low (good times for the investor), so that a given nominal payoff in such a state translates

into a high real payoff. This covariance plays an important role in the determination of term

premia derived below.37

The second moments of the pricing kernel impose restrictions on term premia and the

lead-lag dynamics of nominal interest rates and inflation in relation to output growth. Ob-

serve that the three quadratic terms in πv can be rewritten as −0.5(λx−B�πx)
�(λx−B�πx).

Their joint effect on inflation is thus unambiguously non-positive but the magnitude depends

on the counteracting effects of the variance and covariance terms (precautionary savings v.s.

term premia effects). The larger is the relative contribution of πx to the covariance term, the

smaller is the joint effect of the second moments on inflation. In the limit, it can be zero.

This creates the following potential tension: the larger is the contribution of the negative

covariance between output growth and inflation to term premia, the more likely is the nega-

tive lead of inflation (and nominal interest rates) due to the expectations part of the pricing

kernel (the news shock role of vt), rather than its second moments (the volatility shock role

of vt).
38

36If a real one-period bond was priced by the real pricing kernel, the real interest rate would be given by
rt = −δ− δ�x xt − δvvt − 0.5λ�

v λv − 0.5λ�
x λxvt. When vt increases, the last term reduces the real rate, in line

with the precautionary saving interpretation of the effect.
37The third quadratic term in πv, π

�
x BB�πx, is a Jensen’s inequality term. This term is typically small.

38Lastly, π = (νπ−1)−1
{−i+ νππ

∗ + νy(y
�
x a+ yvθd)v − δ − [π�

x a− (1 − θ)πv]v − 1
2λ

�
v λv − 1

2bb
�π2

v + λ�
v b

�πv

}
.
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3.4.4 Output

To solve the NKPC, take (π, π�
x , πv) as given. Solving equation (4) for the output process

yields

y�x =
1

Ω
π�
x (I − βA) + e�z , (24)

yv =
1

Ω

[
πv(1− βθ)− βπ�

x a
]
. (25)

Observe again the recursive structure: y�x depends only on π�
x , whereas yv depends on both

πv and π�
x .

39 As the NKPC does not depend on the share of hand-to-mouth agents in the

economy, these agents affect the coefficients of the output process only in general equilibrium,

through π�
x and πv. Observe from (24) that the more persistent is a given shock, the closer

the corresponding element of (I − βA) is to zero and thus, for a given π�
x , the smaller is

the transmission of the shock to output through the NKPC. For highly persistent shocks,

the model with the NKPC behaves almost like a flexible-price model. In (25), the situation

regarding the effect of the persistence of vt is more involved, as the general equilibrium effect

of vt on output operates through both πv and π�
x . Thus, even for θ close to one, vt can

propagate through the NKPC due to the second term in (25). Under flexible prices, Ω = ∞
and y�x = e�z = [1 0 0], yv = 0.

3.4.5 The system of equilibrium coefficients

Substituting for the coefficients of the value function and the real pricing kernel, the joint

system of the equilibrium coefficients (22)-(25), pinned down by the functional equations (4)

and (12), is linear in the unknowns and recursive. Observe that equations (22) and (24) can

be solved for π�
x and y�x . Given this solution, equations (23) and (25) can then be solved

for πv and yv. (The coefficients π and y are obtained in the last step.) The response of

the economy to the volatility shock thus depends on how the economy responds to the xt

shocks.40

39The constant is given by y = Ω−1
[
π(1 − β) + βπ�

x av − βπvv(1 − θ)
]
.

40This recursive property of the equilibrium is a direct consequence of the log-normality assumption for
the shocks (i.e., only first and second moments matter) and the conditional variance of the shocks depending
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The rigidities in the real economy affect the equilibrium coefficients in two ways. First,

the fraction of the hand-to-mouth households (λ) enters the coefficients (22) and (23) of

the inflation process through the sharing rule entering the real pricing kernel. Second, the

Calvo parameter (ζ) enters the coefficients (24) and (25) of the output process. The effects

of the rigidities are, however, interlinked: if prices are flexible (yt = zt), the fraction of

hand-to-mouths in the population has no effect on the pricing kernel, as follows from (10).

3.5 Yield curve and risk premia

The yield curve for zero-coupon bonds can be derived from a set of no-arbitrage conditions.

Assume that the log price of a n-maturity bond is linear in the state space

− log q
(n)
t = γ(n) + γ(n)�

x xt + γ(n)
v vt. (26)

Using the relationship between bond prices and interest rates, − log q
(n)
t = ni

(n)
t , interest

rates are given by

i
(n)
t =

1

n

(
γ(n) + γ(n)�

x xt + γ(n)
v vt

)
, (27)

where i
(1)
t = it is the short rate.

Bond prices have to satisfy the no-arbitrage condition q
(n)
t = Et(m

$
t+1q

(n−1)
t+1 ), starting

with q
(0)
t+1 = 1. Recall that logm$

t+1 = logmt+1 − πt+1, so that one could also write q
(n)
t =

Et[mt+1q
(n−1)
t+1 exp(−πt+1)] and think of the no-arbitrage condition in terms of the real pricing

kernel and a real payoff. Substituting the guess (26) in both sides of the no-arbitrage

condition gives a recursive system

γ(n)�
x = −δ$�x + γ(n−1)�

x A, (28)

γ(n)
v = − (

δ$v − γ(n−1)�
x a

)− 1

2

(
λ$�
x − γ(n−1)�

x B
) (

λ$�
x − γ(n−1)�

x B
)�

+ γ(n−1)
v θ, (29)

only on vt, not xt. Making the conditional variance depend on xt leads to a quadratic system with multiple
solutions.
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γ(n) = − [
δ$ + γ(n−1)�

x av − γ(n−1)
v (1− θ)v

]− 1

2

(
λ$�
v − γ(n−1)

v b
) (

λ$�
v − γ(n−1)

v b
)�

+ γ(n−1),

(30)

where in each equation the respective recursive coefficient at (n− 1) is listed as last on the

right-hand side. The system can be solved from the initial conditions γ = 0, γ�
x = 0, and

γv = 0 (i.e., q
(0)
t = 1). Observe that, here again, γ

(n)�
x is determined first, followed by γ

(n)
v ,

and finally by γ(n).

3.5.1 The economic interpretation of the yield curve coefficients

To gain economic insight into the implications of the recursive system (28)-(30) for the yield

curve, consider first equation (28). Substituting for δ$�x and solving the equation forward by

recursive substitutions gives a closed-form solution

γ(n)�
x = −(ρ− 1)c�xAdΠn + π�

x AΠn, (31)

where Πn = (I − A)−1(I − An+1), which depends positively on the persistence of the xt

process. The loading γ
(n)�
x is a pure expectations hypothesis term (corresponding to the

solution to a sequence of simple Fisher equations), where c�xAdΠn is expected consumption

growth between t and t+n and π�
x AΠn is expected inflation between t and t+n, conditional

on a unit of xt. Higher expected consumption growth or inflation thus increase the nominal

interest rate on the n-period bond, consistent with the Fisher relationship (recall that ρ ≤ 1).

In the expression (29) for γ
(n)
v , the linear terms after the equality sign are expectations

terms. In addition to expectations about consumption growth and inflation (embedded in

γ
(n−1)�
x and −δ$v), the terms include expectations about the certainty equivalent (see the

expression for δv derived in Section 3.4.2). As in the case of xt, higher expected consumption

growth or inflation increase the interest rate (through both γ
(n−1)�
x and −δ$v), in line with the

Fisher relationship. The effect of the certainty equivalent is also positive. When vt increases,

the agent is willing to accept a lower certain price today for the bond, increasing the interest

rate.
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The quadratic term in (29) comprises of a variance term for the nominal pricing ker-

nel, −0.5λ$�
x λ$

x, Jensen’s inequality term, −0.5γ
(n−1)�
x BB�γ(n−1)

x , and a risk premium term,

λ$�
x B�γ(n−1)

x , which is the covariance between the price of risk and the yield of a (n − 1)-

period bond. The term premium on the entire bond is determined by a sequence of these

terms in recursive forward substitutions of equation (29). Observe that all three quadratic

terms pertain to xt, even though they are a part of the coefficient loading onto vt in the

interest rate equation (27). The response of the n-period yield to vt working through the

second moments thus depends on the properties of the response of the (n− 1)-period yield

and the nominal pricing kernel to xt. If a given element of xt has its corresponding element

in λ$�
x negative, then for the risk premium associated with this factor to be positive, we need

the respective element in γ
(n−1)
x to be also negative. That is, the yield must be low (the

nominal bond price must be high) in ‘good times’ for the investor, when the marginal value

of nominal income is low.

Finally, note that the parameter a, which controls the lead-lag relationship between

volatility and productivity growth, shows up in the expectations part of γ
(n)
v , as well as in the

term premium part of γ(n) (through both γ
(n−1)
v and the presence of uv in λ$�

v ). It thus affects

not only the responses of interest rates to vt due to the expectations hypothesis but also

steady-state term premia. The lead-lag dynamics and term premia are thus interconnected.

3.5.2 Term premia and intertemporal substitution

From (31) follows that the yield is low (the price is high) when a given element of xt is

associated with either low expected consumption growth or low expected inflation. Thus, to

get a positive risk premium, we need these expectations to prevail in times when the same

xt implies a low marginal value of nominal income (good times for the investor). From the

expression for λ�
x follows that this is the case when either current consumption growth or

expected future consumption growth are high. The latter effect, however, is inconsistent

with a low yield brought about by low expected consumption growth due to the same xt.

From λ$�
x = λ�

x − π�
x B follows that a low marginal value of nominal income also occurs
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when the xt implies high current inflation. However, to the extent that inflation is positively

autocorrelated, high current inflation is inconsistent with a low yield brought about by low

expected inflation due to the same xt.

A combination of γ
(n−1)
x and λ$�

x that does work is if the effect of expected consumption

growth on γ
(n−1)
x is attenuated by ρ sufficiently close to one—see equation (31)—and γ

(n−1)
x

thus predominantly reflects inflation expectations. Then, if πx is negative and u�
x is positive

and sufficiently large, we could have both γ
(n−1)
x and λ$�

x negative (the former due to a

negative πx, the latter through the presence of a sufficiently large u�
x in λ�

x ; see Subsection

3.4.2 and recall that α < 0). From the solution for u�
x in Section 3.4.1 follows that u�

x is

positive and large for persistent shocks to consumption growth. From equation (22) and

the solution for δ�x in Section 3.4.2 follows that πx is negative if the respective element of

xt increases expected output growth, the Taylor rule weight on output growth is positive,

and ρ, again, is sufficiently close to one. ρ sufficiently close to one is thus necessary for both

γ
(n−1)
x and πx being negative. Like u�

x , both γ
(n−1)
x and πx increase in absolute value with

the persistence of the shock.

In sum, the above combination describes a situation when the yield is low (the bond price

is high) due to low inflation expectations (showing up in γ
(n−1)
x ) and, at the same time, the

marginal value of income is low due to high expected future consumption growth (showing

up in λ�
x ), with these expectations not being significantly reflected in bond prices (due to a

high ρ; i.e., not showing up in γ
(n−1)
x ).41

3.5.3 Time variation in expected excess returns

The above principles that determine term premia also determine expected excess returns.

Following the definition from Section 2, one-period excess return on a n-period bond is

given by r
(n)
X,t+1 ≡ (log q

(n−1)
t+1 − log q

(n)
t ) − it. Using the equilibrium functions for log q

(n−1)
t+1 ,

log q
(n)
t , and it derived above, and taking expectations, gives the expected excess return on

41This result does not mean that the expectations part of interest rates only reflects inflation expectations.
It only states that such an effect has to sufficiently dominate the intertemporal substitution effect, reflecting
expectations about consumption growth due to the same factor.
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the n-period bond

Etr
(n)
X,t+1 = ν(n−1) +

(
γ(n−1)�
x Bλ$

x −
1

2
γ(n−1)�
x BB�γ(n−1)

x

)
vt, (32)

where ν(n−1) ≡ γ
(n−1)
v bλ$

v − 0.5γ
(n−1)
v bb�γ(n−1)�

v ; see the Appendix for derivation. The first

term in the parentheses is the covariance term determining term premia, discussed above,

while the second term is the Jensen’s inequality term, which is small. The covariance term

clearly affects the extent to which Etr
(n)
X,t+1 responds to vt. In contrast, the covariance

term γ
(n−1)
v bλ$

v, contained in ν(n−1), affects the mean (steady-state) excess return, but not

its variation. It also affects the mean of term premia; see equation (30). The parameter

a controls the lead-lag relationship between volatility and productivity growth, and thus

between expected excess returns and output growth. However, it also affects steady-state

expected excess returns through the terms in ν(n−1).

4 Quantitative analysis

Having explained the mechanism, this section: i) evaluates if the model is quantitatively

consistent with the stylized facts summarised in Section 2 and ii) shows that the resulting

asset pricing structure coexists with a large fraction of the population behaving like hand-

to-mouths in an environment with nominal price rigidities.

4.1 Calibration

As a benchmark, consider the solution to the bond market equilibrium condition (12), given

y�x = [1 0 0] and yv = 0. This is a flexible-price version of the model, denoted by M1. Recall

that hand-to-mouth agents do not affect the pricing kernel under flexible prices.

The following parameters are shared across the flexible- and sticky-price specifications:

g = 2/400, i = 5.55/400, and π∗ = 3.9/400. They are chosen to be consistent with the

sample averages, 1961-2008. Further, ω = 0.65 is chosen on the grounds of the average labor
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share in NIPA.42 Conditional on M1, the remaining 15 parameters are pinned down by

minimizing the distance between the model and the data of 15 equally weighted calibration

targets, listed in Table 2. The parameters thus calibrated are: β, ρ, α (preferences), νπ, νy

(Taylor rule), and φz, φs, φξ, az, as, θ, B11, B22, B33, b4 (stochastic processes). The resulting

parameter values are reported in the first column of Table 2. The largest discrepancy between

the model and data moments is in the volatility of the expected excess return on the long

bond. This is discussed in further detail in Section 4.3.

A noteworthy feature of the resulting parameterization is that ρ = 0.9, as anticipated by

the discussion in Section 3.5. This implies the elasticity of intertemporal substitution equal

to 10. The risk aversion parameter is −28.43 The Taylor rule parameters are within the

bounds found in the literature. The Taylor rule shock is highly persistent, thus resembling

the inflation target shock of, e.g., Ireland (2007), rather than a transitory policy disturbance

(the role of transitory policy shocks is explored later).44 The shock to the conditional mean of

productivity growth is also highly persistent, in line with Bansal and Yaron (2004). However,

the persistence of the volatility shock (0.8) is much lower than in their model, where it takes

a value close to one. This is because, unlike in their paper, the calibration here takes into

account the lead-lag pattern of expected excess returns. To capture this dynamics, the

autocorrelation of the volatility shock cannot be too high. The persistence of the shock to

the level of productivity is a little lower but close to the RBC literature. Both elements

of a are positive, with az being two orders of magnitude larger than as. Finally, while

the volatility shock is substantially less persistent than the other shocks, it has the largest

conditional standard deviation.

In the version with sticky prices (M2), λ = 0.41, ε = 0.478, and η = 1, which are

42As already noted in Section 3.1, following Bilbiie (2019), I normalize the steady state so that cB = cH ,
lB = lH , z = 1, and y = 1. Under this normalization, w = ω = 0.65. Finally, the normalization for v is
v = 1.

43Values of α similar to the one here are not unusual for Epstein-Zin preferences. For instance, in
Bansal and Shaliastovich (2013), α = −20; in Piazzesi and Schneider (2006), α = −59. The value of ρ
has already been discussed in the context of the literature in the Introduction.

44An inflation target shock is isomorphic to the shock in the Taylor rule (5) and can be expressed in terms
of that shock as π∗

t = −(νπ − 1)−1ξt. A high persistence of a Taylor rule shock is typical for the term
structure papers noted in the Introduction.
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chosen to reproduce Table 1 in Bilbiie (2020), the Kaplan et al. (2018) case. Recall that the

parameters of the hand-to-mouth population affect the part of the pricing kernel related to

shocks other than zt. The Calvo parameter is chosen to make Ω in the NKPC (4) achieve

the standard value in the literature. This yields the value of the Calvo parameter close to

0.7, which is also standard. The remaining parameters are calibrated following the same

strategy as for M1. The resulting values are reported in the second column of Table 2 and

are in general similar to M1, with the exception of B11.

4.2 Properties of the equilibrium pricing kernel

Table 3 reports the quantitative properties of the equilibrium pricing kernel, and its deter-

minants, to connect the quantitative results with the discussion in the previous sections and

help interpret the results that follow. Starting with M1, there are only small differences

between the real and nominal pricing kernels in terms of risk prices, with the resulting nom-

inal risk prices being determined predominantly by the real kernel. Further, the only factor

that is significantly priced is st and the time-variation in the risk premium attached to this

factor is driven by another factor, vt, which itself has a price of risk equal to zero. Including

the variance of expected excess returns among the calibration moments drives λ$
v down to

zero, thus making vt close to welfare neutral, with λv being almost zero (more on this in the

next section). Such a parsimonious asset pricing structure is akin to the reduced-form model

of Cochrane and Piazzesi (2008). Also, in accordance with their paper, the priced factor is

closely related to the reduced-form level factor, as shown in Table 4, while the factor driving

the time-variation in risk premia is correlated with the reduced-form slope factor.45

The significant price of risk of st is due to the large value of this factor’s corresponding

element in u�
x , reflecting the fact that this shock persistently shifts the expected future

growth rate of output. Observe also that the loading on st in the equilibrium inflation

process is negative, as required for a positive term premium attached to st.

45Unlike in Cochrane and Piazzesi (2008), the factor driving risk premia here is spanned by the yield curve
(yields have nonzero loadings on this factor).
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Turning to M2, the presence of the NKPC does not have a material effect on the pricing

kernel. If anything, it strengthens the result that only st is priced by reducing the conditional

variance of zt required to match the data, thus reducing the price of risk of zt. Further, despite

the nominal rigidities, the Taylor rule shock is not significantly priced. Referring back to

Section 3.4, this is because the NKPC transmits into output, in a quantitatively meaningful

way, only shocks that are temporary. However, in order to match the yield curve moments

listed Table 2, the Taylor rule shock has to be persistent.

Anticipating the findings below, observe that the equilibrium loading on vt in the infla-

tion process is larger (in absolute value) in M2 than in M1. Consequently, in M2, volatility

accounts for some short-run movements in output at the expense of the decline in the con-

ditional standard deviation of the temporary shock zt, which in M2 is five times smaller

than in M1. The effect of volatility on output working through sticky prices is negative, in

line with the uncertainty literature noted in the Introduction. The shock thus first reduces

output through nominal price rigidities, before spilling over into future productivity, as cap-

tured by the parameter a. While this has only marginal implications for the pricing kernel,

it improves the model’s ability to account for the observed lead-lag patterns of inflation and

interest rates.

Finally, the resulting pricing kernel satisfies the Hansen-Jagannathan bound. The Sharpe

ratio in the data is 0.29 for the 1-year bond and 0.13 for the 7-year bond. The ratio of the

unconditional standard deviation of the pricing kernel to the mean is 0.46 in M1 and 0.45

in M2.

4.3 The model and the stylized facts

Stylized Facts 1. Figure 3 is the model counterpart to Figure 1. As in the data, the average

yield curve is upward sloping and concave, with the term premium on mid and long bonds

almost the same as in the data. The volatility curve shares with its empirical counterpart

the key property that volatility is fairly flat across maturities. To the naked eye, there are
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no differences between M1 and M2 and the figure only contains plots for one model.

Stylized Facts 2. Figure 3 also shows that the loadings on the three most important PCs

of yields are almost the same as in the data. Again, to the naked eye, there are no differences

between M1 and M2. The loadings on the single most important PC of excess returns in

Figure 3 are, as in the data, upward sloping, but the value at the long end is lower than

in the data. The loadings are again essentially the same for M1 and M2. The PCs in the

model also account for similar magnitudes of the total variance of yields across maturities

as in the data (Table 4).

Stylized facts 3 and 4. Similarly to the data, the first PC of yields in the model is highly

persistent and, as already reported in Table 2, strongly positively correlated with inflation.

A direct consequence of the structure of the pricing kernel reported in Table 3 is that the

time-variation in risk premia is related to the slope factor (the second PC of yields). As

reported in Table 4, the correlation between vt and the slope factor is around 0.7 in both

M1 and M2. The level factor (the first PC of yields) is unrelated to movements in risk

premia. Its correlation with vt is weak in both M1 and M2.

Stylized facts 5. Figure 4 is the model counterpart to Figure 2. As in the data, the short

rate and inflation are similarly negatively correlated with output growth, with the strongest

negative correlation occurring at a quarter lead. In contrast, the slope factor and the ex-

pected excess return on the long bond are positively correlated with output growth, with

the strongest positive correlation occurring at a quarter lead. These correlations, however,

are stronger than in the data. As in the data, the level factor has a negative lead. However,

the stronger positive correlations of risk premia than in the data imply that the long rate

is roughly uncorrelated with the business cycle in the model, instead of exhibiting weak

negative correlations observed in the data. The tight comovement of the slope factor and

expected excess returns with output growth indicates that the parsimonious asset pricing

structure misses factors driving the slope of the yield curve and risk premia unrelated to the

business cycle. The endogenous response of output to volatility in M2 makes the lead-lag

dynamics more pronounced than in M1, thus bringing the model closer to the data.
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Volatility of expected excess returns. As already noted in Section 4.1, the model is unable

to match the volatility of expected excess returns on the long bond, while being consistent

with the other 14 calibration targets. In the model, the (annualized) standard deviation of

the expected excess return is 0.82%, whereas in the data it is around 4%. The explanation

is as follows. First, the adopted calibration strategy drives λ$
v down to zero by essentially

choosing as so that vt is close to welfare neutral. Equation (32) would suggest that in such

a case the variance of vt can be chosen to exactly match the variance of Etr
(n)
X,t+1 without

affecting steady-state risk premia through the ν(n−1) term. However, there is a second

constraint on the variance of vt. As vt is tied to zt+1 through the spillover vector a in

the stochastic process, increasing the variance of vt affects the properties of output growth.

The empirical properties of output growth thus place further restrictions on the stochastic

properties of vt. This supports the earlier conjecture that the model misses factors driving

the slope of the yield curve and expected excess returns that are unrelated to the business

cycle. In other words, the stochastic properties of output growth imply that the specific

volatility factor considered in the model accounts for 25% of the variance of expected excess

returns, leaving 75% to factors unrelated to the business cycle. This is different from models

such as Bansal and Yaron (2004) and Bansal and Shaliastovich (2013), where the volatility

factor follows an autonomous process.46

Principal components and the structural shocks. A final result to note, reported in Table

4, is the relationship between the three reduced-form PCs of yields, frequently used as risk

factors in affine term structure models, and the structural shocks in the model. While all

four shocks are to some extent correlated with all three PCs of yields, the strength of the

relationship is markedly different for different shocks. The level factor is strongly related to

zt, st, and ξt. The slope factor is related to vt and vt is also strongly correlated with the

quantitatively small curvature factor.

46It would also appear that it is possible to increase the variance of expected excess returns by increas-
ing λ$�

x , for instance by increasing the absolute value of α. However, this makes the average yield curve
counterfactually too steep by increasing the average term premia.
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4.4 Hand-to-mouths and intertemporal substitution

Table 5 explores the effect of hand-to-mouth agents on the pricing kernel. Recall, that

the share λ of hand-to-mouths in the population has a direct effect on consumption of

bond investors through ΦB in the sharing rule (10) and general equilibrium effects working

through the equilibrium responses of output to shocks other than zt, provided nominal prices

are sticky. As the NKPC transmits only temporary shocks, whereas the yield-curve moments

used in the calibration require the Taylor rule shock to be highly persistent, resembling an

inflation target shock, for the purpose of this exercise I add a purely temporary shock μt in

the Taylor rule. Its persistence is set equal to 0.7 and the conditional standard deviation to

0.0025.

Kaplan and Violante (2014) report a fraction of rich hand-to-mouth households in the

population between 30% and 50%. The baseline λ = 0.41 is based on Bilbiie (2020), the

Kaplan et al. (2018) case in his terminology. In this case, consumption of hand-to-mouths

responds 2.2 times as much to the temporary policy shock as consumption of bond investors.

Table 5 explores values from 0.21, which (given the value of ε) maximizes the hedge for

the hand-to-mouths, to 0.91, a value well above any reasonable estimates in the literature.

The table reports the loadings on the shocks in the equilibrium consumption process of the

hand-to-mouths, the equilibrium nominal pricing kernel, and the steady-state risk premium

on the 7-year bond. In line with the macro literature, the higher is λ, the stronger is

the response of consumption of hand-to-mouths to the temporary shock. The response

increases exponentially. However, unless the value of λ substantially exceeds the estimates

in Kaplan and Violante (2014), the effects on the pricing kernel are small. The same (to

a lesser extent) applies to vt, the other temporary shock that is transmitted through the

NKPC in a quantitatively significant way.47

Finally, Figure 5 explores the consequences of a lower elasticity of intertemporal substi-

tution of bond investors. Four values of ρ are considered: ρ = 0.88 (the baseline value),

47The loadings on the temporary policy shock in the output and inflation processes vary from -1.68 and
-1.44, respectively, for λ = 0.21 to -10.81 and -9.25 for λ = 0.91.
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and three alternative values, ρ = 0.6, 0.5, 0.3. The baseline value corresponds to the elas-

ticity of intertemporal substitution equal to 8.33; the alternative values to 2.5, 2, and 1.43,

respectively. The figure demonstrates the effects of ρ on the average yield curve and on the

cross-correlations of expected excess returns (on the 7-year bond), inflation, and the short

rate with output growth at various leads and lags. Lower values of ρ lead to counterfactually

positive cross-correlations of the short rate with future output growth, despite generally neg-

ative cross-correlations of the inflation rate with future output growth. This is because the

real interest rate becomes strongly positively correlated with future output growth due to a

strong intertemporal substitution effect: high expected future income growth induces bond

investors to borrow, thus increasing the real rate in equilibrium. This, consequently, makes

nominal bonds a hedge and leads to negative risk premia and a downward sloping average

yield curve. Further, the long-short spread and expected excess returns become negatively

correlated with future output growth. As discussed in Section 3.5, a negative correlation

between inflation and output growth is not sufficient for positive term premia, as the cases

of ρ = 0.5 and ρ = 0.3 demonstrate.

5 Conclusions

The paper shows that a parsimonious pricing kernel goes a long way accounting for key

stylized facts of the term structure, including its leading indicator properties over the business

cycle. The joint macro and nominal yield curve data suggest that the stand-in bond investor

cares mainly about hedging consumption-inflation risk, rather than intertemporal smoothing.

That is, the data imply a high elasticity of intertemporal substitution but a low appetite for

risk. Furthermore, the riskiness of only one factor—the conditional mean of output growth—

is substantially priced by the equilibrium pricing kernel. The riskiness of this factor is time-

varying due to time-varying volatility, but shocks to volatility are approximately welfare-

neutral, thus themselves not contributing to risk premia. The negative covariance, induced

in equilibrium by the Taylor rule, between inflation and nominal interest rates on one hand
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and the priced factor on the other makes nominal bonds risky. The equilibrium pricing kernel

implies that low levels of interest rates observed in the data ahead of an economic expansion

reflect news about higher future output growth, resulting in lower inflation. If the positive

news is contained in the volatility factor, the associated increase in the long-short spread (a

steeper yield curve) also reflects elevated uncertainty about the future growth path, leading

to higher term premia. It is this dual role of the volatility factor that makes it approximately

welfare neutral, thus carrying a zero price of risk.

The nominal nonneutrality embedded in the New-Keynesian Phillips Curve, as well as

the size of the hand-to-mouth population, have quantitatively negligible effects on this basic

result. This is because these rigidities, even if leading to sizable macro outcomes, have only

short-term effects on consumption of bond investors and thus small effects on their lifetime

utilities underpinning the equilibrium prices of risk.

Compared with the multiple sources of risk in many other term structure models, the

structural model explored here may seem too simplistic. An advantage of its parsimony is

that the mechanism is transparent and the model provides a simple bird’s eye interpretation

of the joint macro and yield curve data, as summarized by the stylized facts. The lead-lag

dynamics discipline the extent to which the model can account for the empirical volatility

of expected excess returns. It suggests that about one quarter of the volatility of expected

excess returns is tied to the business cycle. The remaining sources of the time variation in

risk premia would appear unrelated to the average business cycle. Such extensions are left

for future work.
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Gaĺı, J., 2015. Monetary Policy, Inflation, and the Business Cycle: An Introduction to the
New Keynesian Framework and Its Applications, 3rd Edition. Princeton University Press,
Princeton.

Gallmeyer, M. F., Hollifield, B., Palomino, F., Zin, S. E., 2007. Arbitrage-free bond pric-
ing with dynamic macroeconomic models. Fereral Reserve Bank of St. Louis Review
July/August, 305–326.

Gallmeyer, M. F., Hollifield, B., Zin, S. E., 2005. Taylor rules, McCallum rules and the term
structure of interest rates. Journal of Monetary Economics 52, 921–50.

Gomez-Cram, R., Yaron, A., 2021. How important are inflation expectations for the nominal
yield curve. Review of Financial Studies 34, 985–1045.

Gürkaynak, R., Sack, B., Swanson, E., 2005. The sensitivity of long-term interest rates to eco-
nomic news: Evidence and implications for macroeconomic models. American Economic
Review 95, 425–36.

Gürkaynak, R., Wright, J. H., 2012. Macroeconomics and the term structure. Journal of
Economic Literature 50, 331–67.

Hansen, L. P., Heaton, J. C., Li, N., 2008. Consumption strikes back? Measuring long-run
risk. Journal of Political Economy 116, 260–302.

Havranek, M., 2015. Measuring intertemporal substitution: The importance of method
choices and selective reporting. Journal of the European Economic Association 13, 1180–
1204.
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Figure 1: Top panel: U.S. average yield and volatility curves for 1961-2008. Bottom
panel: loadings on the PCs of yields and excess returns. For yields, the contribution of
the PCs is: 1st PC = 97.2%, 2nd PC = 2.6%, 3rd PC = 0.2%. For excess returns, the
first PC accounts for 99% of the total variance.
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Table 1: Time series and forecasting properties of principal components of yields

VAR(1) matrix

(t)
PC1 PC2 PC3 PC4 PC5

PC1 0.98 -0.11 -0.58 0.92 0.67
PC2 0.01 0.89 -0.58 -0.02 -0.85

(t+ 1) PC3 0.00 -0.01 0.71 0.20 -0.41
PC4 0.00 0.00 0.02 0.78 0.19
PC5 0.00 0.00 -0.01 0.09 0.64

Forecasting regressions

specification (1) (2) (3) (4)
regressors PC1 PC2 PC2 PC3 PC2 PC3 PC4 PC5
coefficients 0.11 5.63 5.63 14.15 5.63 14.15 15.19 -1.83
adj. R2 0.001 0.08 0.11 0.10

Notes: The VAR(1) matrix is for a regression of a vector of the first five principal compo-

nents of yields in period t+1 on the same vector in period t. In the forecasting regressions,

the dependent variable is the first principal component of excess returns (the return fac-

tor), the independent variables are a constant and the principal components of yields

specified in the table. The holding period is one quarter. In both tables, numbers in

bold represent statistically significant estimates at 5% confidence level. PC1 is the first

principal component of yields, PC2 is the second principal component of yields, and so

on. The period is 1961-2008.
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Figure 2: Yield curve and the business cycle. Cross-correlations with the growth
rate of real GDP, 1961-2008. Bars are for a quarter-on-quarter growth rate of real
GDP, the solid line is for a centered year-on-year growth rate. The correlations are
corr(xt+j , gt), j = −6, ..., 0, ...6, where x is the variable of interest and g is the growth
rate of real GDP.
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Table 2: Calibration

M1 M2

High street
λ 0.41
ε 0.478
η 1
ζ 0.77

M1 M2 Data M1 M2

Preferences Targets
β 0.9945 0.9948 std(gt) 3.3 3.56 3.56
ρ 0.9 0.88 acorr(gt) 0.3 0.4 0.37
α -28 -29 std(it) 2.72 2.74 2.86
Taylor rule acorr(it) 0.96 0.90 0.90

νπ 1.64 1.64 std(i
(28)
t ) 2.44 2.18 2.18

νy 0.85 0.85 acorr(i
(28)
t ) 0.98 0.99 0.99

Stochastic processes std(Etr
(28)
X,t+1) 4.08 0.82 0.81

φz 0.886 0.886 acorr(Etr
(28)
X,t+1) 0.88 0.80 0.80

φs 0.999 0.999 std(πt) 2.80 3.12 3.41
φμ 0.999 0.999 corr(πt, gt) -0.26 -0.3 -0.27
az 0.014 0.014 corr(πt, PC1t) 0.71 0.81 0.79

as 4.0257e−4 4.0922e−4 corr(Etr
(28)
X,t+1, gt+1) 0.30 0.42 0.58

θ 0.8 0.8 E(it) 5.55 5.55 5.55

B11 0.0053 0.001 E(i
(4)
t ) 6.03 5.90 5.90

B22 0.002 0.002 E(i
(28)
t ) 6.80 7.08 7.08

B33 2.32e−4 2.32e−4

b4 0.23 0.23

Notes. Model nomenclature: M1 = flexible prices, M2 = sticky prices. Parameters that are

shared across the models: g = 2/400, i = 5.55/400, π∗ = 3.9/400, which are chosen to be

consistent with the sample averages, 1961-2008; and ω = 0.65, which reflects the average labor

share in NIPA. Conditional on these parameters (and the parameters of the high street in

model M2), the parameters in the table are determined by minimizing the distance between

the model and the data of the 15 equally weighted calibration targets, which are the averages

for 1961-2008. For the long bond, N = 28 stands for a 7-year bond (28 quarters).
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Table 3: Equilibrium pricing kernel

M1 y�x yv u�x uv
[1 0 0] 0 [-0.99 7.26 0] 4.6e−4

δ�x δv λ�
x λ�

v

[0.011 -0.10 0] -0.09 [-0.002 -0.42 0 0] [0 0 0 -0.003]

π�
x πv δ$�x δ$v λ$�

x λ$�
v

[0.11 -0.99 -1.56] -0.013 [-0.09 0.78 1.56] -0.08 [-0.003 -0.42 3.6e−4 0] [0 0 0 0]

M2 y�x yv u�x uv
[1.05 -0.47 -0.03] -0.018 [-1.03 7.30 0.002] 0.0123

δ�x δv λ�
x λ�

v

[0.014 -0.12 0] -0.09 [−3.4e−4 -0.42 1.3e−4 0] [0 0 0 -0.004]

π�
x πv δ$�x δ$v λ$�

x λ$�
v

[0.12 -1.02 -1.56] -0.017 [-0.09 0.78 1.56] -0.07 [−4.6e−4 -0.42 4.9e−4 0] [0 0 0 0]

Notes. Model nomenclature: M1 = flexible prices; M2 = sticky prices. The order of the factors in

the above vectors is: zt, st, ξt, vt, with volatility, where applicable, reported separately. The nominal

pricing kernel is related to the real pricing kernel as: δ$�x = δ�x − π�
x A, and δ$v = δv − π�

x a − πvθ for

the factor loadings; and as λ$�
x = λ�

x − π�
x B and λ$�

v = λ�
v − πvb for the prices of risk. The standard

deviations of the shocks are: in M1, B11 = 0.0053, B22 = 0.002, B33 = 0.000232, b4 = 0.23; in M2,

B11 = 0.001, B22 = 0.002, B33 = 0.000232, b4 = 0.23.
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Figure 3: Model results: average yield and volatility curves and loadings on principal
components. The results are nearly identical for the flexible (M1) and sticky price (M2)
specifications. Only one set of curves is therefore plotted as separate plots for the two
specifications would be almost indistinguishable.
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Figure 4: Model results: yield curve and the business cycle. Cross-correlations with
the growth rate of output. The correlations are corr(xt+j , gt), j = −6, ..., 0, ...6, where
x is the variable of interest and g is the growth rate of output.
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Table 4: Principal components and structural shocks

Data M1 M2

PCs of yields
share var(PC1) 97.2% 95.7% 95.1%
share var(PC2) 2.6% 4.1% 4.7%
share var(PC3) 0.2% 0.2% 0.2%

corr(PC1, z) 0.67 0.66
corr(PC1, s) 0.62 0.60
corr(PC1, ξ) -0.91 -0.91
corr(PC1, v) -0.12 -0.16

corr(PC2, z) 0.18 0.22
corr(PC2, s) 0.30 0.31
corr(PC2, ξ) -0.28 -0.29
corr(PC2, v) 0.70 0.73

corr(PC3, z) 0.03 0.04
corr(PC3, s) 0.25 0.27
corr(PC3, ξ) -0.30 -0.29
corr(PC3, v) -0.71 -0.66

Notes. Model nomenclature: M1 = flexible prices; M2 = sticky prices.
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Figure 5: Consequences of the elasticity of intertemporal substitution (1/(1 − ρ)). The
cross-correlations are with respect to the growth rate of output.

51


	1 Introduction 
	2 Stylized facts about the term structure 
	3 The model 
	3.1 Preferences, technology, monetary policy 
	3.2 Exogenous processes 
	3.3 Equilibrium 
	3.3.1 Sharing rules
	3.3.2 A system in output and inflation
	3.3.3 The real pricing kernel and the value function
	3.3.4 The Duffie-Kan pricing kernel

	3.4 Inspecting the coefficients 
	3.4.1 Lifetime utility 
	3.4.2 Real pricing kernel 
	3.4.3 Inflation and implications for term premia and the lead-lag dynamics
	3.4.4 Output
	3.4.5 The system of equilibrium coefficients

	3.5 Yield curve and risk premia 
	3.5.1 The economic interpretation of the yield curve coefficients
	3.5.2 Term premia and intertemporal substitution
	3.5.3 Time variation in expected excess returns


	4 Quantitative analysis 
	4.1 Calibration 
	4.2 Properties of the equilibrium pricing kernel 
	4.3 The model and the stylized facts
	4.4 Hand-to-mouths and intertemporal substitution 

	5 Conclusions

