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Abstract

We analyze the ups and downs in economic growth in recent decades by constructing

a model with recurrent bubbles, crashes, and endogenous growth that can be easily taken

to the data for structural estimation. Infinitely lived households expect future bubbles,

which crowds out investment and reduces economic growth. For realized bubbles crowd in

investment, their overall impact on economic growth and welfare crucially depends on both

the level of financial development and the frequency of bubbles. We examine the US economic

data through the lens of our model and identify bubbly episodes. Counterfactual simulations

suggest that 1) the IT and housing bubbles not only caused economic booms but also lifted

U.S. GDP by almost 2 percentage points permanently; and 2) the U.S. economy could have

grown even faster in the long run if people had believed that asset bubbles would never arise.

1 Introduction

A decade after the Great Recession, economic observers seem to agree on a few points. First,

an asset price bubble emerged in the years leading up to the crisis. Second, the implosion of
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this bubble triggered a financial crisis, resulting in severe contraction (Brunnermeier and Oehmke,

2013). Third, the pre-Covid recovery has been lackluster, with GDP growing about 1 percentage

point slower after the crisis. The U.S. experience is far from unique. Recent empirical studies

find that these features are common to other financial crises, and moreover these bubble-driven

financial crises are not extremely rare but repeat over time with an interval of a few decades in

many cases (Kindleberger, 2001; Cerra and Saxena, 2008; Blanchard et al., 2015; Jorda et al., 2015).

Motivated by these empirical findings, we construct a model with recurrent bubbles, crashes, and

endogenous growth that can account for the aforementioned features and that can be taken to the

data for structural estimation.

In order to estimate when the economy had a bubble and when it did not, we employ a regime

switching model, and introduce two regimes: a “fundamental regime” and a “bubbly regime.”

The fundamental regime is characterized by the absence of bubbles (bubbleless economy), in

which investors are unable to obtain funds as they wish because of financial frictions. When

the economy switches to the bubbly regime, asset bubbles increase liquidity, mitigating financial

frictions. Under this setting, we show that there exists a recurrent-bubble equilibrium in which

asset bubbles emerge and collapse recurrently as the economy switches back and forth between

the two regimes.

Theoretically, asset bubbles produce two competing effects in our framework. First, bubbles

mitigate the investor’s lack of funding problem once they appear, speeding up capital accumula-

tion, which in our endogenous growth model speeds up economic growth. This is the so-called

crowding-in effect of realized bubbles.1 Second, there is a novel crowding-out effect generated

by expectations of future bubbles. Households in our model are long-lived and experience the

emergence and the collapse of bubbles recurrently. Importantly, they fully anticipate these dy-

namics. Therefore, even if bubbles are absent today, households expect their emergence in the

future. Likewise, when bubbles exist, households rationally anticipate their future collapse and

re-emergence. These expectations about future bubbles affect households’ decisions and, crucially,

are a drag on economic growth. The underlying mechanism is a wealth effect. That is, households

will be wealthier when bubbles arise in the future. With this anticipation, households increase

both consumption and leisure in both regimes, which crowds out investment and reduces economic

growth today.

We show that the crowding-out effect of future bubbles is quantitatively important. If bubbles

do not appear frequently and the economy’s financial market is severely under-developed, the

standard crowding-in effect of realized bubbles could still dominate. On the other hand, if the

financial market is relatively developed, the crowding-out effect of future bubbles can dominate.

In this case, recurrent bubbles reduce average growth and welfare over the long run. Importantly,

1There is a crowding-out effect of realized bubbles too. But we do not emphasize it in our paper for two reasons.
First, it is not new but already discussed in the literature; see Kocherlakota (2009), Farhi and Tirole (2012), and
Hirano and Yanagawa (2017) for example. Second, it is quantitatively small in our model.
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if bubbles emerge more frequently, the crowding-out effect becomes stronger. Therefore, high-

frequency bubbles can be undesirable even in financially under-developed economies.

Empirically, we estimate the model using the U.S. data for the period 1984-2017. We identify

bubbles by exploiting the model’s robust predictions that both GDP growth and the stock-market-

to-GDP ratio are high when bubbles exist. Using these observables, we find that at least two

bubbly episodes are very likely in our sample: the first one from around 1997 to 2001, and the

second one from around 2006 to the onset of the Great Recession. Both the asset market and GDP

growth were strong in these periods, which our model attributes to the emergence of bubbles. But

not all the booms are estimated to be bubbly. For example, our model attributes the strong GDP

growth in the mid-1990s to favorable productivity shocks, for the stock market was not strong

enough to justify the existence of bubbles. By the same token, a strong stock market alone does

not necessarily imply a bubble in our estimation. This is the case in 1986 and early 1987 where

the stock market was booming but growth was lackluster.

A counterfactual simulation reveals that the U.S. economy significantly benefited from the

realized bubbles for two reasons. First, it directly enjoyed bubble-driven output booms. Second,

investment booms during the bubbly episodes permanently raised the output level even after

bubbles had gone. We estimate that the two bubbly episodes combined permanently raised the

level of U.S. GDP by about 2 percentage points. However, another counterfactual simulation

suggests that the U.S. economy could have grown even faster. That is, if the economy were in

a different equilibrium in which bubbles never arose and were never expected to emerge, GDP

growth would be higher than the actual on average. This is because the crowding-out effect of

future bubbles is absent.

The rest of the paper proceeds as follows. Next, we highlight the contributions of our paper

to the existing literature. Then we describe the baseline model in Section 2. Section 3 provides

analytical solutions to a special case and discusses them intuitively. In Section 4, we calibrate

the baseline model for quantitative exercises in subsequent sections. Section 5 discusses both

the crowding-in and the crowding-out effects of recurrent bubbles. Section 6 discusses empirical

findings. Section 7 concludes.

Related Work in the Literature

This paper is related to the seminal work on asset price bubbles in an infinite horizon economy;

e.g., Bewley (1980), Scheinkman and Weiss (1986), Woodford (1990), Kocherlakota (1992, 2009),

and Kiyotaki and Moore (2019). They consider either deterministic bubbles, which are expected to

survive forever, or the stochastic bubbles developed by Weil (1987), which are expected to collapse

but once they do, their re-emergence is not expected at all.2 In contrast, we consider recurrent

2The same applies to the landmark papers on rational bubbles in an overlapping generations model; e.g.,
Samuelson (1958), Shell, Sidrauski, and Stiglitz (1969, Section 3), Townsend (1980), Tirole (1985), Diba and
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bubbly episodes in an infinite horizon economy. Infinitely lived households rationally expect that

bubbles will repeatedly emerge and collapse in the future. These expectations of future bubbles

will affect household’s decisions, even when bubbles are absent today.3

Our work is also related to the recent papers emphasizing the downside of asset bubbles. This is

interesting research because, as Barlevy (2018) emphasizes, there is a concern that the theoretical

literature on bubbles traditionally emphasizes their upside disproportionately and as a result does

not address the types of issues policymakers care most about.4 Specifically, Allen et al. (2021)

and Biswas et al. (2020) show that stagnation in output occurs after the bursting of bubbles

in models without growth. The stagnation in output makes the welfare impact of bubbles non-

trivial even if bubbles raise the output level when they are present. Their arguments, however,

hinge on mechanisms that are not necessarily related to bubbles; namely, Allen et al. (2021)

introduce default costs exogenously associated with the collapse of bubbles, and Biswas et al.

(2020) introduce downward nominal wage rigidities. Our model abstracts from such mechanisms

or other frictions, including nominal price rigidities or fire-sale externalities. An interesting cost

still emerges endogenously, just because infinitely lived households anticipate future bubbles.

Our paper is also related to the news shock literature (Beaudry and Portier, 2006; Jaimovich

and Rebelo, 2009; Schmitt-Grohe and Uribe, 2012) and a recent paper by Schaal and Taschereau-

Dumouchel (2021), in which expectations play a key role in generating business cycles. There are

two crucial differences from our paper. First, in the news shock literature, expectations about

future fundamentals, typically productivity level, are the key driver. In contrast, expectations

about non-fundamentals, i.e., asset bubbles, are important in our model. Second, in the news

Grossman (1988), Farhi and Tirole (2012), and Martin and Ventura (2012). Martin and Ventura consider recurrent
bubbly episodes, but agents in their model live for only two periods, and in addition, everyone supplies one unit
of labor inelastically in the young period and consumes only in the old period. No one can create bubbles when
they are old. These assumptions make expectations about future bubbles irrelevant to labor supply, consumption,
and investment in the young period, as well as to the welfare. It does not matter whether the emergence of future
bubbles is expected or not. In this sense, their bubble model is essentially the same as Weil (1987)’s stochastic-
bubble model.

3Following Weil (1987), we assume that bubbles will collapse all at once when it comes to a crash moment. This
assumption is strong if it is taken literally, but is convenient to capture large nonlinear effects of bubble-driven
financial crises. For example, in the 1980s asset price bubble in Japan, stock prices rose by more than 3 times
between 1985 and 1989, and the urban land price rose by almost four times between 1985 and 1990. They are
gigantic asset price increases in a short period of time. The crash is equally gigantic. Stock prices fell by 60
percent by 1992, and the urban land price fell by 80 percent by 1999 (Okina et al., 2001). Such large asset price
movements will have large nonlinear effects to the economy, a point emphasized by studies on financial crises such as
Mendoza (2010), Brunnermeier and Sannikov (2014), He and Krishnamurthy (2013), Gertler and Kiyotaki (2015),
and Gertler et al. (2020). In order to capture such large nonlinear effects associated with large asset market crashes,
we assume complete collapses as in Weil (1987). A similar assumption is made by Gertler and Kiyotaki (2015) and
Gertler et al. (2020); a bank run in their models is the entire collapse of the banking sector, with which they capture
large nonlinear macroeconomic effects of the run. See Gali (2014) and Miao et al. (2015) for a local analysis around
the bubbly steady state with a standard linearization method. The local analysis may be suitable to analyze the
bubble economy without a large crash. But it would not be suitable to analyze the economy experiencing large
asset market crashes, for their effects would be non-linear.

4The classic argument is that bubbles improve welfare because they help consumption smoothing. See Samuelson
(1958), Bewley (1980), Scheinkman and Weiss (1986), Farhi and Tirole (2012), and Hirano and Yanagawa (2017).
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shock literature, both positive and negative news are equally likely. Because their unconditional

means are zero, the presence of the news shocks has no impact on the model’s deterministic steady

state. In contrast, economic agents in our model correctly anticipate how bubbles will evolve from

now on; in the fundamental regime, they expect a new bubbly episode to begin, and in the bubbly

regime, they anticipate the crash. These regime-dependent expectations about asset bubbles have

significant impacts on the regime-dependent steady states.5

Our empirical contribution is related to the growing body of work on quantitative models with

endogenous growth. Comin and Gertler (2006) is a seminal contribution, who propose a model

with endogenous productivity that can account for medium cycle properties of the U.S. data.

More specifically, they demonstrate that an otherwise standard macroeconomic model with both

research and development (R&D) and adoption stages reproduces the procyclical movements in

technological change and R&D, while delivering reasonable business cycles. Guerron-Quintana and

Jinnai (2019) examine the causes of the post-war U.S. recessions through the lens of an estimated

dynamic stochastic general equilibrium model with both financial frictions and endogenous growth.

They find that adverse financial shocks are important to account for the severity of the Great

Recession, but the same shocks could not account for persistently low growth after the turmoil.

The reason is simple; the data counterpart of the financial shocks lacks the persistence (Stock

and Watson, 2012), and many financial indicators temporarily deteriorated but have recovered

after the bankruptcy of Lehman Brothers (Guerron-Quintana and Jinnai, 2019). In contrast, the

current paper introduces asset bubbles as a new element and accounts for the growth slowdown

over the past decade intuitively. Namely, to the extent that the 2000s were a period with asset

price bubbles, the collapse of these bubbles led inevitably to slower growth. Furthermore, growth

will remain depressed until a new bubbly episode begins, which has not occurred yet according to

our estimates.6

In a similar line of thinking, Anzoategui et al. (2019) propose and estimate an endogenous

growth model with nominal frictions. The authors find that the slowdown in productivity in

the 2010s resulted from a contraction in demand. This decrease in consumption triggered a

reduction in R&D and hence the decline in productivity. Anzoategui et al. (2019), Comin and

Gertler (2006), and Guerron-Quintana and Jinnai (2019) reach their conclusions based on models

linearized around a unique steady state. As we show in the next sections, our model is more

complex due to regime switching that affects steady states and growth rates. Morevoer, the

solution and estimation techniques adopted in this paper are novel in the endogenous growth

5Finding regime-dependent steady states is difficult in general. But in our model, endogenous growth simplifies
the task. Namely, once we detrend the model using the endogenous state variable, the equilibrium conditions
depend only on the exogenous state variables, and we can find the regime-dependent steady states in the detrended
model easily. See the appendix for details.

6Hysteresis is another literature studying the growth slowdown. Blanchard et al. (2015) and Jorda et al. (2015)
document this phenomenon not only for the U.S. but for other countries. Gali (2016) studies hysteresis in labor
markets and the design of monetary policy. We view our work as complementary to this literature.
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literature and bubble literature. The regime switching feature in turn relates our contribution to

the work on the solution and estimation of models with Markov regimes extensively reviewed by

Hamilton (2016).

2 Model

Our model description consists of regimes, firms, and households.

2.1 Regimes

Let zt ∈ {b, f} denote a realization of the regime, where b and f denote the bubbly and fundamental

regimes, respectively. Their defining characteristics are the existence or lack of bubbly assets. They

are intrinsically useless, contributing neither to production nor to households’ utility directly.7 In

the fundamental regime, there are no bubbly assets in the economy. When the regime switches to

a bubbly one, M units of (a new vintage of) bubbly assets are created and given to households in

a lump-sum way. There is no bubble creation in other contingencies. Bubbly assets last without

depreciation as long as the economy stays in the bubbly regime. They physically disappear at once

when the regime switches back to the fundamental one.8,9 We assume that zt follows a Markov

process satisfying

Pr (zt = f |zt−1 = f) = 1− σf

and

Pr (zt = b|zt−1 = b) = 1− σb.

Here, σf and σb are bounded between 0 and 1.

2.2 Firms

Competitive firms produce output from capital and labor services denoted by KSDt and LDt ,

respectively. The production function is

Yt = At
(
KSDt

)α (
LDt
)1−α

,

7We consider pure bubbles following the literature. Modeling bubbles attached to real assets is perhaps more
realistic, but it is technically difficult (Santos and Woodford, 1997). An interesting paper by Pham et al. (2019)
takes a step toward it.

8Alternatively, we can assume that the prices of the bubbly assets become zero all at once. They are isomorphic.
9As in Weil (1987), we assume complete collapses in order to capture large non-linear effects associated with

large asset market crashes. In the appendix, we examine an alternative assumption, replacing the fundamental
regime with a low-bubble regime in which a small fraction of bubbly assets survive from the previous regime.
This model behaves quite differently from our baseline model, because when the economy moves to the low-bubble
regime, the demand for the surviving bubbly assets shoots up, pushing up their prices and hence mitigating the
impact of the crash.
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where At is the technology level which agents in the economy take as given. Firms maximize

profits defined as Yt − rtKSDt − wtLDt by choosing KSDt and LDt , where rt is the rental price of

capital and wt is the wage rate. The production technology is freely available to potential entrants.

Firms make zero profits in the equilibrium.

We assume that, while all the economic agents in the model take it as given, the technology

level At is actually endogenous:

At = Ā (Kt)
1−α eat .

at is an exogenous productivity shock and Ā is a scale parameter. Following Arrow (1962),

Sheshinski (1967), and Romer (1986), we interpret the dependency of At on Kt as learning-by-

doing; namely, knowledge is a by-product of investment, and in addition, it is a public good

that anyone can access at zero cost. With this assumption, the long-run tendency for capital to

experience diminishing returns is eliminated. The long-run growth is sustained by both capital

and knowledge accumulation. Moreover, the growth rate is endogenous and influenced by not only

the state of the economy but also actions taken by economic agents. This implication is crucial

for our study, because we are interested in factors causing ups and downs in economic growth.

2.3 Households

The economy is populated by a continuum of households, with measure one. All households behave

identically. Each household has a unit measure of members who are identical at the beginning of

each period. During the period, members are separated from each other, and each member receives

a shock that determines her role in the period. A member will be an investor with probability

π ∈ [0, 1] and will be a saver/worker with probability 1−π. These shocks are i.i.d. among members

and across time.

A period is divided into four stages: household’s decisions, production, investment, and con-

sumption. In the household’s decision stage, all members of a household are together and pool

their assets: nt units of capital and m̃t units of bubbly assets. Aggregate shocks realize. The head

of the household decides the capacity utilization rate ut, i.e., how intensively to use the capital it

owns. Because all the members of the household are identical in this stage, the household head

evenly divides the assets among the members. The household head also gives contingency plans

to each member as follows. If the member becomes an investor, he or she spends it units of fi-

nal goods to invest, and brings home the following items before the consumption stage: xit units

of final goods, nit+1 units of capital, and m̃i
t+1 units of bubbly assets. Likewise, if the member

becomes a saver, he or she supplies lt units of labor, and brings home the following items before

the consumption stage: xst units of final goods, nst+1 units of capital, and m̃s
t+1 units of bubbly

assets. After receiving these instructions, members go to the market and remain separated from

each other until the consumption stage.

At the beginning of the second stage, each member receives the shock determining her role in
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the period. Markets open and competitive firms produce final goods. Compensation for productive

factors is paid to their owners. A fraction of capital depreciates. Following Greenwood et al. (1988),

we assume that a higher utilization rate causes a faster depreciation of the capital stock either

because wear and tear increase with use or because less time can be devoted to maintenance.

Specifically, the depreciation rate δ (ut) is given by

δ (ut) = δ0 +
δ1

1 + ζ
u1+ζ
t

where ζ > 0.

Investors seek finance to undertake investment projects in the third stage. Financing comes

through different channels: own resources, selling of new and existing capital, and, if in the bubbly

regime, selling of bubbly assets. Investors have access to a linear technology that transforms any

amount of final goods into the same amount of new capital. Asset markets close at the end of this

stage. Members of the household meet again in the consumption stage. An investor consumes cit

units of final goods and a saver consumes cst units of final goods. After consumption, members’

identities are lost. They start a new period as identical members.

The instructions must meet a set of constraints. First, they have to satisfy the intratemporal

budget constraints. For an investor, it is

xit + it + qt
(
nit+1 − it − (1− δ (ut))nt

)︸ ︷︷ ︸
net capital purchase

+ 1{zt=b}p̃t
(
m̃i
t+1 − m̃t

)︸ ︷︷ ︸
net bubble purchase

= utrtnt, (1)

and for a saver, it is

xst + qt
(
nst+1 − (1− δ (ut))nt

)
+ 1{zt=b}p̃t

(
m̃s
t+1 − m̃t

)
= utrtnt + wtlt. (2)

Here, qt and p̃t denote prices of capital and bubbly assets, respectively. 1 is an indicator function

to be discussed momentarily. In addition, the instructions must satisfy a feasibility constraint in

the consumption stage given by

πxit + (1− π)xst = πcit + (1− π) cst . (3)

In the fundamental regime, there are neither spot nor future markets for bubbly assets, and

in addition, future bubbles cannot be used as collateral for loans.10 The indicator function in the

budget constraints (1) and (2) captures this idea; the bubbly assets are worthless in the funda-

10Tirole made an identical assumption regarding rent creation (see Tirole, 1985, pp 1508). He wrote “An
important feature of rent creation is that most rents are not capitalized before their “creation.” For example a
painting to be created by a 21st century master cannot be sold in advance by the painter’s forebears. Similarly
patents cannot be granted for future inventions.” Our assumption regarding bubble creation is the same; we assume
that bubble creation is exogenous, and bubbles cannot be capitalized before their creation.

8



mental regime, because they are intrinsically useless and no one can sell them in the fundamental

regime. We also impose the following restrictions:

1{zt=f}m̃
i
t+1 = 1{zt=f}m̃

s
t+1 = 0, (4)

meaning that no one can purchase bubbly assets in the fundamental regime because there are no

markets for bubbly assets.

Following Kiyotaki and Moore (2019), we assume that an investor can issue new equity on, at

most, a fraction φ of investment. In addition, she can sell, at most, a fraction φ of existing capital

in the market too. Effectively, these constraints introduce a lower bound to the capital holdings

at the end of the period:

nit+1 ≥ (1− φ) (it + (1− δ (ut))nt) . (5)

A similar constraint applies to nst+1, but we omit it because it does not bind in equilibrium. We

also omit non-negativity constraints for ut, c
i
t, it, n

i
t+1, xst , c

s
t , lt, n

s
t+1, and m̃s

t+1 for the same

reason. However, there are two exceptions

m̃i
t+1 ≥ 0 (6)

and

xit ≥ 0, (7)

which mean that the investor can’t short sell bubbly assets and must bring a non-negative amount

of consumption back to the household.

The household’s problem is summarized as follows. A sequence of ut, x
i
t, c

i
t, it, n

i
t+1, m̃i

t+1, xst ,

cst , lt, n
s
t+1, and m̃s

t+1 is chosen to maximize the utility

E0

[
∞∑
t=0

βt

edt

(
π log

(
cit
)

+ (1− π) [log (cst) + η (1− lt)]
)]

(8)

subject to (1), (2), (3), (4), (5), (6), (7), and the laws of motion for assets given by

nt+1 = πnit+1 + (1− π)nst+1 (9)

and

m̃t+1 = πm̃i
t+1 + (1− π) m̃s

t+1 + 1{zt=f,zt+1=b}M

for all t ≥ 0. dt is a preference shock temporarily influencing the household’s patience. While it is

a stylized demand-side shock to the economy, its effects resemble the effects of shocks originating

from the financial sector in many ways (Fisher, 2014; Smets and Wouters, 2007). The initial

portfolio is {n0, m̃0} =
{
K0,1{zt=b}M

}
where Kt denotes the capital stock in the economy in
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period t.

2.4 Market Clearing

Competitive equilibrium is defined in a standard way; all agents optimize given prices, and the

market clearing conditions are satisfied for capital

nt+1 = Kt+1,

labor services

LDt = (1− π) lt,

capital services

KSDt = utKt,

and final goods

πcit + (1− π) cst + πit = Yt

for all t. If it is the bubbly regime (zt = b), the market clearing condition for the bubbly assets

πm̃i
t+1 + (1− π) m̃s

t+1 = M

is also satisfied. The law of motion for aggregate capital stock is

Kt+1 = (1− δ (ut))Kt + πit,

which automatically holds by Walras’ law.

2.5 Solving the Household’s Problem

The financial constraint (5) does not bind if φ is sufficiently large. In this case, the price of capital

is equal to one, and the price of bubbly assets is equal to zero, as we show in Section A.1 in the

appendix. The household’s problem becomes standard; it chooses a sequence of ut, c
i
t, c

s
t , lt, and

nt+1 to maximize the utility subject to

πcit + (1− π) cst + nt+1 = [utrt + (1− δ (ut))]nt + wt (1− π) lt.

The first order conditions are also standard. We show them in Section A.1 in the appendix.

If φ is small, the financial constraint (5) binds. The price of capital exceeds one, because capital

not only is used as a production factor but also provides liquidity to its owners. For capital creation

is profitable, investors will increase it as much as possible, implying that the following feasibility
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constraint for investment holds in equilibrium;

(1− φqt) it︸ ︷︷ ︸
minimum cost to conduct it

= utrtnt + φqt (1− δ (ut))nt + 1{zt=b}p̃tm̃t︸ ︷︷ ︸
maximum liquidity an investor can attain

. (10)

We derive this equation in Section A.2 in the appendix. The left-hand side is the minimum cost

investors have to finance in order to conduct it. This cost is smaller than it, because a part of

the costs can be covered by selling newly created capital. The right-hand side is the maximum

liquidity an investor can attain.

Combining (1), (2), (3), (9), and 1{zt=b}p̃tm̃
i
t+1 = 0, we obtain the budget constraint at the

household level:

πcit + (1− π) cst + πit + qt [nt+1 − (1− δ (ut))nt] + 1{zt=b}p̃t
[
(1− π) m̃s

t+1 − m̃t

]
= utrtnt + πqtit + (1− π)wtlt. (11)

Substituting (10) into (11), we obtain

πcit + (1− π) cst + qtnt+1 + 1{zt=b}p̃t (1− π) m̃s
t+1 (12)

= utrtnt + (1− π)wtlt + (1− δ (ut)) qtnt + 1{zt=b}p̃tm̃t

+ λtπ
[
utrtnt + φqt (1− δ (ut))nt + 1{zt=b}p̃tm̃t

]︸ ︷︷ ︸
maximum liquidity an investor can attain

,

where

λt ≡
qt − 1

1− φqt
.

This is an important equation. The left-hand side is the gross spending, consisting of consumption

and gross asset purchases. The first line in the right-hand side is the gross income, consisting of

dividends, labor income, and the market value of the portfolio. The second line in the right-hand

side is the total profit from capital creation. The reason is the following.

An investor can create 1/ (1− φqt) units of capital from a unit of liquidity. A fraction

φ of the investment is sold, and the rest is added to the investor’s portfolio, which is worth

(1− φ) qt/ (1− φqt). Finally, subtracting the costs of the investment from it, we find

(1− φ) qt
1− φqt

− 1 =
qt − 1

1− φqt
= λt.

Hence, λt measures how much value an investor can create from a unit of liquidity. Finally, because

investors as a group have π
[
utrtnt + φqt (1− δ (ut))nt + 1{zt=b}p̃tm̃t

]
units of liquidity, the second

line in the right-hand side is the total profit from capital creation at the household level.

The household’s problem is now simplified. It chooses a sequence of ut, c
i
t, c

s
t , lt, nt+1, and

11



m̃s
t+1 to maximize the utility (8) subject to the budget constraint (12), the law of motion of bubbly

assets

m̃t+1 = (1− π) m̃s
t+1 + 1{zt=f,zt+1=b}M,

and the absence of the bubbly-asset market in the fundamental regime

1{zt=f}m̃
s
t+1 = 0.

The first-order conditions are

cit = cst ,

η
cst

1− lt
= wt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
β

edt+1−dt

(
cst
cst+1

)
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

(13)

and

1{zt=b}p̃t = 1{zt=b}Et

[
β

edt+1−dt

(
cst
cst+1

)
(1 + πλt+1) p̃t+11{zt+1=b}

]
. (14)

The first equation states that the marginal utility from consumption has to be equalized across

members of the household. The second equation states that the marginal rate of substitution

between leisure and consumption has to be equal to the wage. The third equation states that the

marginal benefit of raising the capacity utilization rate (the rental rate of capital) has to be equal

to its opportunity cost (the value of the depreciated capital at the margin). The fourth equation is

the Euler equation for capital, in which λt appears because capital is not only a production factor

but also a means of providing liquidity to investors. The fifth equation is the Euler equation for

the bubbly assets. The left-hand side of this equation is strictly positive only if there is a chance

that the bubbly assets in period t will be traded at a strictly positive price in the next period. In

other words, it is the resalability of bubbly assets that justifies their positive prices.

On the optimal feasible plan, the transversality conditions must be satisfied too, which are

given by

lim
t→∞

E0

[
βt

edt

(
1

cst

)
qtKt+1

]
= 0

for the capital stock and

lim
t→∞

1{z0=b}E0

[
βt

edt

(
1

cst

)
p̃t1{zt=b}M

]
= 0

for bubbly assets. We show in Section E in the appendix that they are satisfied along the balanced

12



growth path.11

3 Analytical Solutions in a Simplified Model

Before the quantitative analysis of the full model, we study a special case in which analytical

solutions are available. With the analytical solutions, we can clearly see what the crowding-in

effect of realized bubbles and the crowding-out effect of future bubbles are, and how they appear

in our setting. To this end, we make the following simplifying assumptions. First, the capital

share α is equal to one. Second, the capacity utilization rate ut is fixed at one. Third, capital fully

depreciates every period. Fourth, both productivity and preference shocks are kept constant.

Finally, we consider only one bubbly episode. That is, we assume that the economy initially

stays in the fundamental regime, from which the economy will transition to the bubbly regime at

a positive probability σf and people correctly recognize this possibility. Once the bubble emerges,

it may persist for a while, and then may burst with a positive probability σb. After the bursting,

no bubbles arise, i.e., the economy will stay in the fundamental regime forever. People correctly

recognize it too.

3.1 Capital Growth

We derive the growth rate of capital accumulation before, during, and after the bubbly episode

first—derivations are presented in detail in Section D in the appendix. Let’s start with the economy

after the bubbly episode. The Euler equation for capital, equation (13) above, is written as

q∗f = β
r

g∗f

(
1 + π

q∗f − 1

1− φq∗f

)
, (15)

where g∗f is the growth rate of capital (gt ≡ Kt+1/Kt) and r is the rental rate, which is constant

in this simplified model. The subscript “f” indicates that the variable is determined in the

fundamental regime, and the asterisk indicates that it is determined in the fundamental regime

after the bubbly episode but not before. Because both Kt+1 = πit and nt = Kt hold, the feasibility

constraint for investment, equation (10), is written as

(
1− φq∗f

)
g∗f = πr. (16)

11Kocherlakota (1992) explicitly derived the economic conditions for which asset bubbles can arise in infinite
horizon economies in a manner fully consistent way with the transversality condition. He showed in an endowment
economy that if bubbles exist at any date, then everyone faces borrowing constraints that bind currently or at some
point in the future. Furthermore, the economy needs to grow as fast as bubbles, so that agents can always afford
to buy the bubbly asset. As in Kocherlakota (1992), in our model, on the balanced growth path with positive
bubbles, the liquidity constraint and the short-sale constraint bind, and the economy grows at the same rate as the
bubbles. The transversality condition is satisfied. See Kocherlakota (1992) for a more general discussion

13



We solve equations (15) and (16) for q∗f and g∗f , obtaining

q∗f =
β (1− π)

π (1− β) + βφ
(17)

and

g∗f = r

[
1− (1− β) (1− π)

1− β + βφ

]
.

The price of capital decreases with φ, because capital is less valuable as a source of liquidity if the

financial constraint is loose. The growth rate of capital increases with φ, because investors obtain

more liquidity.

Next, we consider the economy during the bubbly episode. The Euler equation for capital is

written as

qb =
r

gb

[
(1− σb) β

(
1 + π

qb − 1

1− φqb

)
+ σbβ

(
ĉb
ĉ∗f

)(
1 + π

q∗f − 1

1− φq∗f

)]
, (18)

where the subscript “b” indicates that the variable is determined in the bubbly regime, and ĉb

and ĉ∗f are aggregate consumption relative to the capital stock (ct ≡ Yt − πit and ĉt ≡ ct/Kt)

in the bubbly regime and in the fundamental regime after the bubbly episode, respectively. The

feasibility constraint for investment is written as

(1− φqb) gb = π (r +mb) , (19)

where mb is the size of the bubble relative to the capital stock (mt ≡ p̃t1{zt=b}M/Kt) in the bubbly

regime. Finally, the Euler equation for the bubbly assets, equation (14), is written as

mb = (1− σb)︸ ︷︷ ︸
bubble’s survival probability

β

1 + π
qb − 1

1− φqb︸ ︷︷ ︸
liquidity services

mb. (20)

We assume that bubbles grow at the same pace as the economy as long as they persist.12

We solve equations (18), (19), and (20) for endogenous variables. Assuming that mb > 0,13 we

12Focusing on the stationary bubble is a standard practice in the literature. As discussed in the previous studies
(Tirole, 1985; Farhi and Tirole, 2012; Hirano and Yanagawa, 2017), there are multiple equilibria with bubbles in
this class of models. Specifically, there is a continuum of asymptotically bubbleless equilibria, in each of which the
bubble starts at a smaller size than the stationary one, then shrinking relative to the economy. Its size relative to
the economy converges to zero even if the economy is staying in the bubbly regime. The stationary bubble is the
largest bubble that can be sustained in equilibrium; if the bubble starts at a larger size, it grows faster than the
economy, and eventually becomes too large to be sustained.

13{mb, qb, gb} =
{

0, q∗f , g
∗
f

}
solve equations (18), (19), and (20) too. The bubbleless equilibrium exists because

bubbly assets are intrinsically useless. Needless to say, we are interested in a bubbly equilibrium now.
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find

mb =
rβ

βπ + 1− β + σbβ (φ− π)

[
2− π − 1

β
− (φ+ σb (1− π))

]
.

From this equation, it is clear that for positive bubbles to exist, φ + σb (1− π) < 2 − π − 1
β

has

to be satisfied. Let us discuss this condition intuitively. First, the financial constraint has to be

tight (low φ); otherwise, liquidity services are low, and bubbles have to offer high capital gain

to be held, eventually becoming too large to be sustained. Second, bubbles cannot be too risky;

otherwise, they have to compensate for the risk by capital gain, eventually becoming too large to

be sustained. The bursting probability σb has to be smaller than σ̄b ≡ 1
1−π

[
2− π − 1

β
− φ
]

for mb

to be positive. We assume that this condition is satisfied throughout this section.

We can rewrite the existence condition using the structure of the economy. Namely, mb is

strictly positive if and only if

(1− σb) g∗f︸︷︷︸
growth rate

>
r

q∗f︸︷︷︸
interest rate

.

If bubbles are deterministic (σb = 0), there can be a bubbly equilibrium if and only if the growth

rate is greater than the interest rate in the bubbleless economy. The condition is harder to be

satisfied if bubbles are risky, because risky bubbles have to offer high capital gain to exist and

hence are easier to explode.

Combining equations (16) and (19), we find that capital growth during the bubbly episode is

given by

gb︸︷︷︸
bubbly growth

=

1 +
mb

r︸︷︷︸
crowding-in effect


1 +

−φ
1− φqb

(
q∗f − qb

)
︸ ︷︷ ︸

crowding-out effect

 g∗f︸︷︷︸
growth after bursting

.

This equation shows that realized bubbles have two effects on growth. First, realized bubbles

crowd investment in because they provide liquidity to investors. This effect is strong if the financial

constraint is tight; i.e., mb decreases with φ (the proof is in Section D.3 in the appendix). Second,

realized bubbles crowd demand away from capital and reduce its price (as proved in Section D.4

the appendix). Low capital price is harmful to investment because it decreases investors’ wealth

and increases 1 − φq, which is the “down payment” investors have to pay to conduct a unit of

investment. The crowding-out effect, however, is weak if φ is small, because investors do not rely

on capital to obtain liquidity much. Hence, bubbles enhance growth if the financial constraint

is tight, because the crowding-in effect is large, while the crowding-out effect is moderate. We

summarize the result in the following proposition. The proof is in Section D.5 in the appendix.

Proposition 1 In the simple model described above, suppose that the economy is now in the bubbly
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regime; i.e., the economy has a stochastic bubble. Then, there exists a value of φ below which the

crowding-in effect dominates the crowding-out effect. Asset bubbles are growth-enhancing in this

parameter region. If φ is larger than the threshold value, the crowding-out effect dominates and

asset bubbles are growth-reducing.

Finally, we consider the fundamental regime before the bubbly episode starts. The feasibility

constraint for investment is written as

(1− φqf ) gf = πr. (21)

Combining equations (16) and (21), we find that the growth rate of capital in the fundamental

regime before the bubbly episode is written as

gf︸︷︷︸
growth before emergence

=

1 +
−φ

1− φqf
(
q∗f − qf

)
︸ ︷︷ ︸

crowding-out effect

 g∗f︸︷︷︸
growth after bursting

.

There is the crowding-out effect alone. We obtain the following proposition.

Proposition 2 In the simple model described above, suppose that the economy is now in the

fundamental regime before the bubbly episode. Bubbles are expected to arise at a positive probability.

Then, the growth rate of capital is lower than the one in the fundamental regime after the bubbly

episode in which no future bubbles are expected. Moreover, the growth rate of capital before the

bubbly episode is reduced if the bubbly episode arises at a higher probability.

Proof. In the fundamental regime before the bubbly episode, the Euler equation for capital is

written as

qf =
r

gf

[
(1− σf ) β

(
1 + π

qf − 1

1− φqf

)
+ σfβ

(
ĉf
ĉb

)(
1 + π

qb − 1

1− φqb

)]
, (22)

where ĉf satisfies ĉf = r − gf . We solve equations (21) and (22) for qf and gf , obtaining

qf =
(1− π) β + σf (1− π)

(
−β + 1

1−σb
r
ĉb

)
π (1− β) + βφ+ σf

(
β (π − φ) + φ

1−σb
r
ĉb

) . (23)

Taking a derivative, we obtain

∂qf
∂σf

=

 1− π

π (1− β) + βφ+ σf

(
β (π − φ) + φ

1−σb
r
ĉb

)
2

βπ

(1− σb) (1− φ)
(σb − σ̄b) ,
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which is negative because we assume that σb is smaller than σ̄b. Hence, qf decreases with σf ,

and so does gf = πr
1−φqf

. In addition, as is clear from equations (17) and (23), qf converges to q∗f
as σf converges to zero. Because we assume that σf is positive, qf is smaller than q∗f , and so is

gf = πr
1−φqf

than g∗f = πr
1−φq∗f

.

The top panel of Figure 1 illustrates the growth rate of capital before, during, and after the

bubbly episode, displaying time along the horizontal axis. The crowding-in effect dominates the

crowding-out effect of the realized bubble in this example, raising capital growth during the bubbly

episode. Importantly, capital growth before the bubbly episode is lower than the one after the

bubbly episode, and this result is robust to the parameter values. Intuitively, it is caused by the

wealth effect of the future bubbles. Asset bubbles will increase wealth once they emerge in the

future. Expecting their emergence, people increase consumption even before the bubbly episode

begins, which crowds demand away from capital and reduces its price, thereby reducing the speed

of capital accumulation. A bubble that has not been realized yet will have an impact on the

current economy through expectations.

3.2 Stock Market to GDP Ratio

We discuss the stock market to GDP ratio next, for this is an important variable for our empirical

investigation. The stock market value is defined as follows;

stockt ≡ φ [qtKt+1] + p̃t1{zt=b}M.

In Section B in the appendix, we discuss micro-foundations of the financial frictions following

Kiyotaki and Moore (2019). The microstructure allows us to define the stock market value clearly,

leading us to this definition. Not all of the capital stock is publicly traded in our model,14 but the

fraction of capital traded in the stock market increases with financial development measured by φ.

This implication is consistent with the empirical literature (Sahay et al., 2015). In contrast, asset

bubbles are traded in the stock market, because they are attached to the equity issued by final

goods firms. This is an interpretation of intrinsically useless assets proposed by Tirole (1985).15

Specifically, we assume that a new final goods firm is established when the economy switches

to the bubbly regime, and it issues M units of equity and distributes them to the households

exogenously.16 The firm’s equity is intrinsically useless because it makes zero profits every period

from production, but nonetheless serves as a bubbly asset and is traded in the stock market.

The bottom panel of Figure 1 illustrates the stock market to GDP ratio before, during, and

after the bubbly episode. It rises when the bubble emerges, and collapses when the bubble bursts.

14This is due to the lack of the commitment power with which investors can issue equity. Please see the appendix
for detail.

15He wrote “In reality some of these “useless” pieces of paper are likely to pertain to [...] that of some firms
producing with a constant returns to scale technology that is freely available” (see Tirole, 1985, pp. 1502).

16We assume that it exits exogenously when the economy switches to the fundamental regime.
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Figure 1: Dynamics in Simple Model

This result is robust to the parameter values. We analytically prove it in Section D.7 in the

appendix, and summarize it as a proposition.

Proposition 3 In the simple model described above, the stock market to GDP ratio rises when

the bubble emerges, and collapses when the bubble bursts.

3.3 Comovement Problem in the Simple Model

While the simple model’s tractability is useful to obtain analytical solutions, it has an empirically-

relevant limitation; it is unable to generate a boom when the bubble emerges, or a recession when

the bubble bursts. We prove it in Section D.8 in the appendix. The intuition is simple. Because we

set α = 1, Yt/Kt is constant and output is predetermined. Because the supply is predetermined,

an increase in investment must be offset by a decrease in consumption to satisfy the goods market

clearing condition. The simple model suffers from a co-movement problem for this reason.

To overcome this problem, we need mechanisms to change output in the short run.17 Our

baseline model has both endogenous labor supply and variable capacity utilization rate for this

purpose, both of which are standard in the business cycle literature. They play crucial roles to

overcome the comovement problem as we see in Section 5.

17Hirano and Yanagawa (2017) change productivity in the short run. There are both productive and unproductive
investors in their model. Hence, shifting resources between the two groups acts like a productivity shock. A similar
mechanism is advanced by Ajello (2014).
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Parameter Value Calibration Target
β 0.99 Exogenously Chosen
α 0.33 Capital Share=0.33
ζ 0.33 Comin and Gertler (2006)
π 0.06 Shi (2015)
δ0 0.001 Frictionless Growth g4 = 1.02

δ1u
1+ζ 0.065 Frictionless Depreciation δ (u) = 0.05
η 2.67 Frictionless Hours l = 0.27
Āuα 0.49 Equilibrium Condition
u 1 Normalization

Table 1: Parameters and Calibration Targets

4 Calibration

Table 1 summarizes the parameter values used for the quantitative analysis. We set the discount

factor at β = 0.99, the capital share at α = 0.33, and the elasticity of δ′ (ut) at ζ = 0.33, following

Comin and Gertler (2006). The probability of having an investment opportunity is set at π = 0.06,

following Shi (2015).

The rest of the parameters are calibrated in the model. We assume that if the financial

constraint is sufficiently loose and does not bind, the growth rate of the economy would be 2% per

year, hours worked would be 27% of the available time, and the depreciation rate would be 5%

per quarter along the balanced growth path. We then solve for the three parameters δ0, δ1u
1+ζ ,

and η jointly. We find the value of Āuα from the equilibrium condition. We set u = 1, which is

just a normalization.

One may find that the target depreciation rate (5% per quarter) is high, but remember that

this is the depreciation rate in an extreme situation in which the financial constraint never binds.

Previous studies in the literature assume that the financial constraint is relevant. If we follow

Kiyotaki and Moore (2012) and set it at φ = 0.19, the implied depreciation rate in the bubbleless

equilibrium is 2.4% per quarter. However, we are agnostic about the value of φ at this point. We

show comparative statics with respect to this parameter in the following section.

5 Comparative Statics

In this section, we discuss the implications of recurrent bubbles in the calibrated model. To focus

on their role, we shut down the supply and demand shocks at = dt = 0 for all t ≥ 0 throughout

this section.
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5.1 Growth Implications

The blue line in Figure 2 shows the growth rate of capital if the economy is always in the funda-

mental regime. Relaxing the financial constraint (horizontal axis) raises the growth rate of capital

if it is initially tight. But interestingly, relaxing the financial constraint decreases the growth rate

of capital if it is initially loose. For this result, endogenous capacity utilization rate is important.

Capital is relatively cheap in an economy with an advanced financial system as shown in Figure

3. Low capital price induces households to choose a high utilization rate because the opportunity

cost to do so is low, reducing both net investment and capital growth.

The green diamonds in Figure 2 show the growth rate of capital if the economy has a stochastic

bubble. We assume that the probability of the bursting is 1.5% per quarter, but the results are

robust to other choices. The stochastic bubble raises the growth rate of capital except for a small

parameter region near the existence threshold. This result is consistent with Proposition 1 in

Section 3.

Finally, the red circles and crosses in Figure 2 show the regime-dependent growth rate of

capital in the recurrent-bubble equilibrium. We assume that the probabilities of regime switches

are 1.5% per quarter in both directions, but the results are robust to other choices. We see both

the crowding-in effect of realized bubbles and the crowding-out effect of future bubbles. Because

of the crowding-in effect of realized bubbles, capital accumulation is faster in the bubbly regime

than in the fundamental regime. In addition, because of the crowding-out effect of future bubbles,

capital accumulation is slower in the recurrent-bubble equilibrium than in the stochastic-bubble

equilibrium, conditional on being in the same regime (red circle versus green diamond for the

bubbly regime, and red cross versus green asterisk for the fundamental regime).

Figure 3 shows the same effects in detail. In the recurrent-bubble equilibrium, people invest

more, consume more, work harder, and use capital more intensively in the bubbly regime than

in the fundamental regime. Intuitively, the bubbly regime is a favorable time for investment,

and households, recognizing it, optimally allocate both time and resources not only across time

but also across regimes. This is the crowding-in effect of realized bubbles. In addition, people

consume more, work less (spend more time on leisure), and invest less in the recurrent-bubble

equilibrium than in the stochastic-bubble equilibrium, conditional on being in the same regime.

People understand that future bubbles will make them wealthier, and this optimistic expectation

makes them lazy now, loosely speaking. This is the crowding-out effect of future bubbles.18

18In reality, the wealth created by bubbles is unequally distributed in the economy. For example, housing price
booms will benefit home owners disproportionately. Based on this observation, one may argue that the crowding-
out effect of future bubbles is relevant to a small group of people and hence its impact to the macroeconomy is
limited. We have two counterarguments to this claim. First, even though ex post direct beneficiaries are limited,
ex ante optimism may be widespread, because it is hard to tell in advance exactly in which markets, in which
assets, and in what forms bubbles appear and develop. Second, the potential beneficiaries may be more productive
and wealthier on average, and if so, their decisions will have large macroeconomic impacts even though they are
relatively small in population.
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Figure 2: Recurrent Bubbles and Economic Growth

Because the two effects offset each other, it is not obvious if recurrent bubbles raise the long-

run growth. The red triangles in Figure 2 show that in economies with underdeveloped financial

systems, recurrent-bubbles are beneficial to economic growth in the long run.19 But in economies

with advanced financial systems, recurrent bubbles are harmful to the long-run growth. In both

cases, the growth in the recurrent-bubble equilibrium is bumpy, because it is disrupted by the

occasional bursting and emergence of bubbles.

5.2 Welfare Implications

The welfare impact of recurrent bubbles can be different from their growth impact for at least

two reasons. First, there are other variables affecting utility, specifically, leisure and consumption.

Second, volatility matters for utility too. This section takes these factors into account and evaluates

the welfare impact of recurrent bubbles.

Figure 4 plots the welfare levels derived from the utility function.20 It resembles Figure 2, sug-

19The long-run growth is given by

ḡ = g

σb
σf+σb

f g

σf
σf+σb

b

where gb and gf denote capital growth in the bubbly and fundamental regimes, respectively.
20We rewrite the utility function (8) in the recursive form and detrend it, obtaining

V̂t = (1− β) {log [ĉt] + (1− π) η log [1− lt]}+ β log [gt] + βEt

[
V̂t+1

]
.
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Figure 3: Recurrent Bubbles and Macroeconomic Variables
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gesting the importance of economic growth as a determinant of welfare. Recurrent bubbles improve

the welfare if financial systems are underdeveloped, but the opposite is true if financial systems are

developed. Interestingly, the bubbly-regime welfare in the stochastic-bubble equilibrium (green

diamonds) is higher than the bubbly-regime welfare in the recurrent-bubble equilibrium (red cir-

cles) even though people in the former equilibrium will have fewer bubbly episodes in the future

(in fact, none). This observation highlights that the stochastic bubble is special; the bubble exists

from the beginning, but periods before the bubbly episode starts are abstracted away from the

analysis. Therefore, it inevitably emphasizes the crowding-in effect of realized bubbles. This is a

part of the reason why bubbles tend to be welfare-improving in the literature. In contrast, the

analysis with the recurrent bubbles considers periods before bubbly episodes start too. As a result,

it gives us a more balanced view to bubbles, for the crowding-out effect of future bubbles naturally

emerges and offsets the crowding-in effect.

The tradeoff between the crowding-in effect of realized bubbles and the crowding-out effect of

future bubbles becomes even more transparent by analyzing the welfare impact of high-frequency

bubbles.21 Specifically, we change the frequency of bubbles (σf ) while keeping the other param-

eters, including the probability of the bursting, constant. Results are shown in Figure 5. Blue

signs show the welfare gains of high-frequency bubbles, and pink signs show the welfare gains of

low-frequency bubbles relative to the benchmark calibration.22

We see a shape like a flounder. The fact that its belly is blue and its back is pink implies that

the welfare maximizing frequency of bubbles decreases with the level of financial development.

The intuition is simply put. If the economy’s financial system is severely underdeveloped, high-

frequency bubbles are preferred because they can mitigate the liquidity shortage. But as the

financial system gradually develops, the liquidity shortage becomes less important, and instead,

the crowding-out effect of future bubbles emerges as a new problem. Low-frequency bubbles are

preferred in this situation, because the crowding-out effect of future bubbles is weak if bubbles

emerge less frequently (see Proposition 2 in Section 3).

V̂t is defined as V̂t ≡ Vt − logKt, where Vt is the continuation utility value. We calculate the regime-dependent
welfare levels by solving the following equations:(

V̂f
V̂b

)
=

(
(1− β) {log [ĉf ] + (1− π) η log [1− lf ]}+ β log [gf ]
(1− β) {log [ĉb] + (1− π) η log [1− lb]}+ β log [gb]

)
+

(
1− σf σf
σb 1− σb

)(
βV̂f
βV̂b

)
,

where the subscripts f and b denote the fundamental and bubbly regimes, respectively. We calculate the uncondi-
tional welfare level in the recurrent-bubble equilibrium by

¯̂
V ≡ σb

σb + σf
V̂f +

σf
σb + σf

V̂b.

We plot V̂f , V̂b, and
¯̂
V in Figure 4. Without loss of generality, we subtract the welfare level in an economy in which

the financial constraint is too loose to bind when we plot them.
21The authors thank Jean Tirole for the discussion that led us to this exercise.
22We plot

¯̂
V (σf )− ¯̂

V (1.5%) in Figure 5, where
¯̂
V (σf ) is the unconditional welfare level in the recurrent-bubble

equilibrium given σf .
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5.3 Comovement

Remember that the simple model discussed in Section 3 had the comovement problem. This

section shows that our baseline model is able to overcome it. Analytically, output growth in the

recurrent-bubble equilibrium is given by

Yt
Yt−1

=
Ŷt

Ŷt−1

Kt

Kt−1

=
Ŷt

Ŷt−1

gt−1 =



gf , if {zt−1, zt} = {f, f},
Ŷb
Ŷf
gf , if {zt−1, zt} = {f, b},

gb, if {zt−1, zt} = {b, b},
Ŷf

Ŷb
gb, if {zt−1, zt} = {b, f},

where Ŷt is output to capital ratio (Ŷt ≡ Yt/Kt), and subscripts b and f indicate that the variables

are determined in the bubbly and fundamental regimes respectively. As shown in Figure 3, Ŷb

is larger than Ŷf , because both labor supply and the capacity utilization rate are higher in the

bubbly regime than in the fundamental regime. As a result, output growth rises when bubbles

emerge (in period t with {zt−1, zt} = {f, b}), and plunges when bubbles burst (in period t with

{zt−1, zt} = {b, f}). Similar arguments hold for both consumption and investment. Therefore, the

economy has a recession when a bubble bursts, and a boom when a bubble emerges.

The stock market value moves in the same way. As shown in Figure 3, the stock market value

to capital, stockt/Kt, is larger in the bubbly regime than in the fundamental regime. Applying

the same argument as we did to output growth, we see that the stock market value drops when a

bubble bursts, and rises when a bubble emerges. This is an important observation for our empirical

investigation we discuss below.

6 Taking the Model to the Data

In this section, we revisit the recent U.S. economic data through the lens of our model. We are

particularly interested in identifying when the economy had a bubble and when it did not.

6.1 Data

We use quarterly U.S. data on GDP growth and the stock-market-to-GDP ratio for the period

1984.Q1-2017.Q4 to estimate the likelihood of bubbles as well as the paths of productivity and

preference shocks in our model, which is discussed at length in the appendix. We choose these

observables because our model has robust predictions about them. That is, not only is GDP

growth high but also the stock market booms when bubbles exist as we discussed in the previous

sections.

Figure 6 shows the observables. It is clear from the 10-year rolling-window average (red line)
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that GDP growth is slowly declining, going from 0.7% (2.8% in annual terms) in the 1990s, to

0.87% (3.5%) in 2005, to less than 0.4% (1.6%) after the Great Recession. Three boom episodes in

the stock market-to-GDP ratio are also clear: before Black Monday in 1987, the IT bubble in the

late 1990s, and before the Great Recession.23 Our identification strategy exploits the connection

between these two variables to uncover the presence of bubbles in the data.

For example, during the years leading up to the Great Recession, GDP growth was high,

averaging 3% per year (black circles), and the stock-market-to-GDP ratio expanded aggressively.

We observe the opposite during the post-crisis years: lackluster growth of 1.6% per year (black

diamonds) and a sharp contraction in the stock market. These observations suggest that the

economy was in the bubbly regime before 2007, but the bubble crashed in 2008, and since then,

the economy has not had a new bubble. But this is only one possibility. It is also possible that

the ups and downs in GDP growth and the stock market had nothing to do with bubbles but

were driven by real factors, namely, productivity and preference shocks. The estimation exercise

is informative, for it tells us the likeliest account in light of the data.

23Stock-market-to-GDP ratio is de-trended.
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6.2 Method

The model is estimated using Bayesian methods (Fernandez-Villaverde et al., 2016) and a non-

linear filter (Kim and Nelson, 1999). We assume that the economy is in the bubbly equilibrium

(see the appendix for details on the solution and estimation of the model).24 We impose the

condition that the productivity and preference shocks follow an AR(1) process, and estimate the

persistence, ρi, and standard deviation, SDi, of these stochastic processes (i ∈{productivity (a),

preference (d)}). Except for φ, σf , and σb, all parameter values are those calibrated and reported

in Table 1. We set both σf and σb at 1.5% as in the previous section. Recall that we treated φ

as a free parameter in the previous section to inspect the model’s mechanisms. In this section, we

choose φ = 0.19 as in Kiyotaki and Moore (2012).

We also estimate the regime-dependent average capital growth. Specifically, we assume that it

is determined by the sum of the model’s implied capital growth (µmg,z) and a constant (µ̄g,z), and

estimate µg,z = µmg,z + µ̄g,z for z ∈ {f, b}. The reason is the following. Our model predicts that

capital growth is high in the bubbly regime. Once calibrated, it has a quantitative prediction too,

but it may not match the “data counterpart,” which would be calculated from the data only if we

perfectly knew when bubbles existed in the U.S. economy. Moreover, we do not want to use them

as calibration targets, because that exercise needs to take an a priori stance on the timing of the

regime switch before estimating it. To work around this issue, we estimate the regimes and the

regime-dependent average capital growth at the same time. A similar strategy is imposed on the

regime-dependent average stock-market-to-GDP ratio.

6.3 Priors and Posteriors

Table 2 presents both the priors and posteriors (mode and 90% credible bands). We impose

standard beta and inverse-gamma priors for parameters regarding the productivity and preference

shocks (see Fernandez-Villaverde et al. (2015) for priors on persistence parameters and Fernandez-

Villaverde et al. (2016) for priors on volatility parameters). We use normal priors for the means

of capital growth and the stock-market-to-GDP ratio in the fundamental and bubbly regimes,

{µg,f , µstock/GDP,f , µg,b, µstock/GDP,b}, respectively. The choice of their prior means is guided by the

model’s robust predictions that both capital growth and stock-market-to-GDP ratio are high in

the bubbly regime.

The priors and posteriors are different, which points to the informativeness of the data. Impor-

tantly, the posterior modes indicate that both capital growth and the stock-market-to-GDP ratio

are higher in the bubbly regime. For example, the average capital growth is estimated to be about

52 basis points higher in annual terms in the bubbly regime. In terms of the structural shocks,

24Our model falls within the class of MS-DSGE models discussed in Farmer et al. (2009). We find a minimum-
state-variable equilibrium. The absence of endogenous state variables greatly simplifies the solution method, as
otherwise we would have to rely on the methods in Farmer et al. (2011).
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Parameter Prior Posterior
µg,f N(0.5, 0.1) 0.65

[0.56,0.75]

µstock/GDP,f N(0.0, 1) −1.67
[−2.95,−0.45]

µg,b N(0.75, 0.1) 0.78
[0.63,0.93]

µstock/GDP,b N(10, 1) 10.25
[8.81,11.87]

ρd B(0.15, 0.05) 0.50
[0.40,0.58]

SDd IG(6, 1) 0.08
[0.07,0.09]

ρa B(0.75, 0.05) 0.89
[0.85,0.92]

SDa IG(6, 1) 0.01
[0.01,0.02]

Table 2: Estimated Parameters

the preference disturbance is volatile but lacks persistence. The productivity shock is relatively

persistent and stable.25 Interestingly, the estimated persistence of productivity shock (ρa) is lower

than the typical number in the literature (≈ 0.95). This is because both the endogenous growth

mechanism and the regime switching add persistence to the model.

6.4 Impulse Response Functions

Figure 7 plots impulse response functions to both productivity and preference shocks. Responses

to one-standard-deviation shocks are plotted. The two shocks cause distinct dynamics on the

observables. A positive productivity shock (a rise in at) raises GDP growth temporarily but has

a mild impact on the stock-market-to-GDP ratio. This is because the shock raises both GDP

and the stock market value simultaneously. In contrast, a positive preference shock (a rise in dt)

raises the stock market-to-GDP ratio by making people effectively patient, but its impact on GDP

growth is weak in the short run.26 Becoming patient, households increase investment, which raises

GDP growth in subsequent periods. Impulse response functions are modestly regime-dependent.27

In the appendix, we report the responses of other variables.

6.5 Estimated Regimes and Shocks

Figure 8 presents the estimated probability of the bubbly regime. The economy spent most of

the time in the fundamental regime before 1997, with a brief exception prior to 1987 which was

25We tried alternative means and standard deviations for the priors. Our results are robust to these variations.
This is not surprising given how tightly estimated the parameters are.

26After the shock, households end up putting large weights to the utility flows in the distant future relative to
those in the near future because the preference shock is mean reverting.

27We do not consider the effect of regime switch in Figure 7. For example, the solid blue line is plotted under
the assumption that zt = b for 1 ≤ t ≤ 8.
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Figure 7: Impulse Response Functions

abruptly terminated by Black Monday. Relatively strong economic growth during the first 10

years or so of the sample was mainly driven by real shocks plotted in Figure 9. This result

is not surprising given the moderate stock-market-to-GDP ratio observed in the data in this

period. During the second half of the 1990s, a combination of positive productivity shocks and

the emergence of the bubble raised both GDP growth and stock market value. This bubble started

around 1997 and ended in the second quarter of 2001 according to our estimate. Because of this

timing, we call it the “IT bubble.”28

After the IT bubble crash, the probability of the bubbly regime rose up again in 2006, raising

both GDP growth and the stock market. By mid 2006, the probability exceeded 50%, and between

2007 and mid 2008, it came close to 100%. We call it the “housing bubble” because of its timing.

Importantly, robust growth in this period is mainly driven by the bubble; notice that productivity

shocks are unfavorable in this period. This is different from the economic boom in the mid 1990s,

which was driven by favorable real shocks. The Great Recession was caused by the collapse of

the housing bubble and highly unfavorable real shocks. Particularly large and adverse preference

shocks were observed in 2008. We think that they reflect adverse financial shocks that we do not

model explicitly in this paper.29

The return to the fundamental regime mixed with adverse productivity shocks explains the

28Strictly speaking, our one-sector model has no reason to connect this bubble to the information technology
sector. We nonetheless use this term for convenience. The same applies to the “housing bubble.”

29See Guerron-Quintana and Jinnai (2019) for more discussion on the financial shock and the Great Recession.
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lackluster performance of the U.S. economy during the last decade. In the final part of the sample,

our approach assigns some probability that the economy experienced a new bubble. In the data,

growth was relatively strong in 2014, and so was the stock market in the midst of ultra-loose

monetary policies around the world. But as the Fed moved to normalize its monetary policy

in 2015, both the stock market and GDP growth cooled down. Our model concludes that the

evidence is not strong enough to judge that a bubble was present. The chance was less than 50%

according to our estimate.

As we can see, the estimation exercise delivers bubbly regimes that are consistent with the

historical narrative. But we can say more about the quantitative predictions of our theory. For

instance, one implication of the model is that the labor market is strong during the bubbly regime

because of the crowding-in effect (Figure 3). Consistent with this prediction, employment in the

data had peaks of 1.7 pp and 2.5 pp above trend in the late 1990s and before the Great Recession,

respectively. A similar validation is possible if one considers the dynamics of capacity utilization,

which is above average during bubbles both in the theory and data.

It seems natural to ask whether the estimated regimes coincide with other relevant economic

shifts in the US. To answer this question, we compare our results to three classes of regimes

reported in the literature. First, the estimated regimes in Figure 8 are different from those in

Sims and Zha (2006), who fit U.S. data to a regime-switching VAR with drifting coefficients and

variances. They report the existence of four distinct regimes: the Greenspan state prevailing

during the 1990s and early 2000s; the second most common regime emerges in the early 1960s and

parts of the 1970s; the last two regimes correspond to sporadic events such as 9/11. Our estimates

are not similar to those estimated to account for the Great Moderation, with a high volatility

regime prior to 1984 and a calmer one post-1984 (Stock and Watson, 2002). Finally, our estimates

bear little resemblance to recession regimes (Chauvet and Piger, 2008). See Hamilton (2016) for

an extensive review of regime switching in macroeconomics.

Before moving to the counterfactual exercises, we want to stress that our findings are robust to

alternative calibration and identification strategies. They include 1) using the liquidity parameter

φ to match the means of GDP growth and the credit-to-GDP ratio in and out of the Great

Recession, with the caveat that we impose the dates when bubbles exist a priori; 2) a longer

sample; 3) using credit market data or the Shiller-Case house price index in lieu of the stock

market data; 4) a third regime featuring high growth and a high credit-to-GDP ratio driven by

non-bubble forces; and 5) GDP growth and the consumption-to-investment ratio as observables.

See the appendix for details.

6.6 Counterfactual Simulations

How important were bubbles for the U.S. economy? We answer this question by two counterfactual

simulations. The first one is the “no-bubble-by-chance” simulation, in which the probability of
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the economy being in the bubbly regime was artificially set at zero. But the economy is still in the

recurrent-bubble equilibrium; it is only the realization of the regime that we change. The dashed

red line in Figure 10 shows the trend of log GDP under this counterfactual scenario.30 The solid

blue line shows the GDP trend in the benchmark scenario. The bubble has both short-run and

middle-run impacts on the economy. The short-run impact is the economic boom directly caused

by the realized bubble, i.e., a “plateau” made by the solid blue line and the dashed red line in

the middle of each panel. According to our estimate, the short-run impact is already sizable; by

about 6 to 7 percentage points more goods and services were produced during the bubbly booms.

The medium-run impact is visually subtle but economically important. Notice that the solid

blue line is higher than the dashed red line even after the bubble is gone. This is because the

solid blue line has a steeper slope than the dashed red line during bubbly episodes, which is a

graphical confirmation that capital growth is higher in the bubbly regime than in the fundamental

regime. As for the IT bubble, the GDP trend is about 1.2 percentage point higher in the baseline

scenario in the years after the bubble burst. As for the housing bubble, it is about 60 basis points.

Combined, the two bubbles permanently raised the level of U.S. GDP by about 2 percentage points

than in the scenario in which bubbles did not realize by chance.

Our second exercise is the “no-chance-of-bubble” simulation, by which we mean that the econ-

omy is in the fundamental equilibrium. Hence, bubbles were neither realized nor expected to do

so. The trend line under this scenario corresponds to the dotted black line in Figure 10. Clearly,

the economy would have grown at the fastest pace in this scenario. This is because of the absence

of the crowding-out effect of future bubbles; had people not expected bubbles to emerge, they

would have consumed less, worked more, and invested more, all of which would have contributed

to higher growth. So our model suggests that realized bubbles are better than no realization, but

if we could move to a different equilibrium in which bubbles are not expected by economic agents,

that would be better.31

7 Conclusions

We have developed a model with recurrent bubbles, crashes, and endogenous growth in an infinite

horizon economy. Theoretically, we have shown that there is a novel crowding-out effect of future

bubbles because infinitely lived households anticipate bubbles to emerge in the future. Empirically,

we estimate the model using the U.S. data for the period 1984-2017 and find that at least two

bubbly episodes are very likely in the sample. The U.S. economy benefited from these bubbles,

30It is normalized to 0 in 1997 in the upper panel and in 2005 in the lower panel. To facilitate the comparison
across simulations, we shut down the structural shocks. Its impact on the result is minor because responses to
structural shocks are only mildly regime-dependent (see Figure 7).

31The economy in the fundamental equilibrium would have grown faster in the long run even if either the IT or
the housing bubble had never burst. This is possible because in the recurrent-bubble equilibrium, the crowding-out
effects of both the realized bubble and future bubbles offset the crowding-in effect of the realized bubble.
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Figure 10: Counterfactual Simulations

but our model suggests that it would have grown faster in the long run if they had been in a

different equilibrium in which bubbles never arose and were never expected to emerge.

One direction for our future research would be examining government policies. Various forms of

“leaning-against-the-bubble” policies are particularly interesting to study, which both economists

and policymakers have been discussing for many years (Barlevy, 2018). It would be fruitful

to examine how the effects of such policies depend on the nature of recurrent bubbles such as

frequency and duration. Because our model can be estimated, we can quantitatively assess the

costs and benefits of the policies based on the estimated structural model too.
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Appendices

NOT FOR PUBLICATION

A Household’s Problem

A.1 With Loose Financial Constraints

This section solves the household problem when financial constraints are loose. The financial

constraint does not bind. We first show that the price of capital is equal to one in the equilibrium.

Suppose instead that it is greater than one. Then, the household can increase the utility by

increasing it by ∆, and increasing both xit and cit by (qt − 1) ∆ for sufficiently small ∆ > 0. This

is a contradiction to an equilibrium condition requiring that the household maximizes the utility

subject to the constraints.

Next, we show that the price of bubbly assets is equal to zero in the equilibrium. Suppose

otherwise. Then, the Euler equation for bubbly assets,

p̃t = Et

[
β

edt+1−dt

(
cit
cit+1

)
p̃t+11{zt+1=b}

]
,

holds with a positive p̃t in some t in the bubbly regime. To simplify the argument, we assume

without loss of generality that at = dt = 0 holds for all t ≥ 0. Multiplying M to both sides and

dividing them by Kt, we obtain

1 = (1− σb) β

(
ĉib,t
ĉib,t+1

)(
mb,t+1

mb,t

)
,

where ĉib,t is the investor’s consumption relative to the capital stock (ĉit ≡ cit/Kt) in the bubbly

regime, andmb,t is the market value of the bubbly assets relative to the capital stock
(
mt ≡ p̃t1{zt=b}M/Kt

)
in the bubbly regime. To satisfy this equation,

(
mb,t
ĉib,t

)
has to grow exponentially at the rate

(1− σb)−1 β−1. But then, the transversality condition regarding bubbly assets is violated because

Et

[
βj
(

1

cit+j

)
p̃t+j1{zt+j=b}M

]
= (1− σb)j βj

(
mb,t+j

ĉib,t+j

)

does not converge to zero. This is a contradiction to an equilibrium condition requiring that the

household maximizes the utility subject to the constraints.

Because qt = 1 and p̃t = 0 hold if φ is large, the household’s problem becomes standard. It
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chooses a sequence of ut, c
i
t, c

s
t , lt, and nt+1 to maximize the utility

E0

[
∞∑
t=0

βt

edt

(
π log

(
cit
)

+ (1− π) [log (cst) + η (1− lt)]
)]

subject to

πcit + (1− π) cst + nt+1 = [utrt + (1− δ (ut))]nt + wt (1− π) lt.

The first-order conditions are

cit = cst ,

η
cst

1− lt
= wt,

rt − δ′ (ut) = 0,

and

1 = Et

[
β

edt+1−dt

(
cit
cit+1

)
(ut+1rt+1 + 1− δ (ut+1))

]
.

A.2 With Tight Financial Constraint

This section considers the household’s problem when financial constraints are tight. We derive

the feasibility constraint for investment,

(1− φqt) it = utrtnt + φqt (1− δ (ut))nt + 1{zt=b}p̃tm̃t.

We first show that xit = 0 if qt > 1. Suppose that xit > 0 holds even though qt > 1. Then, the

household can increase the utility by increasing it by ∆, increasing nit+1 by (1− φ) ∆, decreasing xit

by (1− φqt) ∆, decreasing nst+1 by π
1−π (1− φ) ∆, increasing xst by π

1−π (1− φ) qt∆, and increasing

both cit and cst by π (qt − 1) ∆ for sufficiently small ∆ > 0. This is a contradiction to an equilibrium

condition requiring that the household maximizes the utility subject to the constraints.

Similarly, suppose that 1{zt=b}p̃tm̃
i
t+1 > 0 holds in some t even though qt > 1. Then, the

household can increase the utility by increasing it by ∆, increasing nit+1 by (1− φ) ∆, decreasing

m̃i
t+1 by 1

p̃t
(1− φqt) ∆, decreasing nst+1 by π

1−π (1− φ) ∆, increasing m̃s
t+1 by π

1−π
1
p̃t

(1− φqt) ∆, and

increasing both xst and cst by π
1−π (qt − 1) ∆ for sufficiently small ∆ > 0. This is a contradiction

to an equilibrium condition requiring that the household maximizes the utility subject to the

constraints.

With these observations, we can rewrite the investor’s budget constraint

xit + it + qt
(
nit+1 − it − (1− δ (ut))nt

)
+ 1{zt=b}p̃t

(
m̃i
t+1 − m̃t

)
= utrtnt

and obtain the feasibility constraint for investment.
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B Full Model

This section presents the full model.

B.1 Micro-Foundations of Financial Frictions

We describe micro-foundations of financial frictions. Because they are related to the household,

we describe its problem in detail.

The economy is populated by a continuum of households, with measure one. All households

behave identically. Each household has a unit measure of members who are identical at the

beginning of each period. During the period, members are separated from each other, and each

member receives a shock that determines her role in the period. A member will be an investor

with probability π ∈ [0, 1] and will be a saver/worker with probability 1 − π. These shocks are

i.i.d. among members and across time.

A period is divided into three stages. In the first stage, all members of a household are together

and pool their assets, which are holdings of capital and, if it is the bubbly regime, holdings of

bubbly assets. Aggregate shocks to exogenous state variables are realized. The household decides

how intensively to use the capital it owns (i.e., the capacity utilization rate). Because all the

members of the household are identical in this stage, the household head evenly divides the assets

among the members. The household head also gives contingency plans to each member, describing

the actions she should take if she becomes an investor or a saver/worker.

At the beginning of the second stage, each member receives the shock determining her role in the

period. Markets open and competitive firms produce final goods. Compensation for productive

factors is paid to their owners. A fraction of capital depreciates. Investors seek financing to

undertake investment projects. They have the technology to transform any amount of final goods

into the same amount of new capital.

Following Kiyotaki and Moore (2019), we assume that investors face a borrowing constraint

due to their lack of commitment power. Namely, an investor who produces new capital cannot

fully precommit to work with it even though her specific skill will be needed for capital to provide

services. As a result, an investor can only issue new equity up to a fraction θ of her investment.

Specifically, the inequality constraint

issuet ≤ θit (24)

must be satisfied, where it denotes the amount of new capital produced by an investor and issuet

denotes the amount of equity issued by the same investor. The rest of the new capital cannot be

sold due to the lack of the commitment power. It must be held privately.

Although unsalable, we assume that investors can still use privately held capital as collateral

to borrow short-term funds. Specifically, investors can choose the amount of borrowing loanit, but
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it has to satisfy the inequality constraint

loanit ≤ φ̃t (1− δ (ut))np,t (25)

where np,t is the amount of privately held capital the investor has and φ̃t is a time-varying param-

eter. If loanit is negative, the investor is a lender. As we explain momentarily, loans are repaid

from the household’s budget in the consumption stage.

Investors have equity issued by other households in their portfolio. They can sell it in the stock

market, but there is a limit in this activity. Specifically, following Kiyotaki and Moore (2019), we

assume that investors can sell a fraction φ < 1 of her holdings of other households’ equity before

the investment opportunity disappears. This is equivalent to introducing transaction costs that

are zero for the first fraction φ of equity sold, and then infinite. Let ne,t and nie,t+1 denote the

investor’s holding of other households’ equity at the beginning and at the end of the investment

stage, respectively. The resalability constraint is given by

nie,t+1 ≥ (1− φ) (1− δ (ut))ne,t. (26)

Finally, investors have bubbly assets in their portfolio if the economy is in the bubbly regime.

They can sell them freely in the bubbly regime. In the fundamental regime, there are neither spot

nor future markets for bubbly assets. Without markets, no one can purchase bubbly assets, which

is formally stated as follows:

1{zt=f}m̃
i
t+1 = 1{zt=f}m̃

s
t+1 = 0. (27)

Our assumptions about asset tradings lead to the following flow budget constraint of investors:

xit + it + qt
(
nie,t+1 − (1− δ (ut))ne,t

)︸ ︷︷ ︸
net equity purchase

+ 1{zt=b}p̃t
(
m̃i
t+1 − m̃t

)︸ ︷︷ ︸
net bubble purchase︸ ︷︷ ︸

spending

= utrt (ne,t + np,t)︸ ︷︷ ︸
dividend

+ qt (issuet)︸ ︷︷ ︸
equity finance

+ loanit︸ ︷︷ ︸
income + borrowing

,

(28)

The saver’s flow budget constraint is similar to the investor’s:

xst + qt
(
nse,t+1 − (1− δ (ut))ne,t

)
+ 1{zt=b}p̃t

(
m̃s
t+1 − m̃t

)︸ ︷︷ ︸
spending

= utrt (ne,t + np,t) + wtlt + loanst︸ ︷︷ ︸
income + lending

.

(29)

Here, xst , n
s
e,t+1, m̃s

t+1, and loanst are saver’s counterparts of xit, n
i
e,t+1, m̃i

t+1, and loanit in equation

(28). Savers also face the same constraints regarding asset tradings as investors. But we omit

them because they do not bind in equilibrium.

The members of the household get together in the consumption stage. The short-term loans
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are paid back from the household’s budget. In a symmetric equilibrium,

πloanit + (1− π) loanst = 0

holds. Then, consumption takes place. The household’s resource constraint at this point is

πxit + (1− π)xst = πcit + (1− π) cst . (30)

After consumption, members’ identities are lost. They start a new period as identical members.

The household’s portfolio at the beginning of period t+ 1 consists of holdings of other households’

equity given by

ne,t+1 = πnie,t+1 + (1− π)nse,t+1, (31)

privately held capital given by

np,t+1 = (1− δ (ut))np,t + π (it − issuet) , (32)

and bubbly assets given by

m̃t+1 = πm̃i
t+1 + (1− π) m̃s

t+1 + 1{zt=f,zt+1=b}M. (33)

The household’s problem is summarized as follows. It chooses a sequence of ut, x
i
t, c

i
t, it, n

i
e,t+1,

m̃i
t+1, loanit, issuet, x

s
t , c

s
t , lt, n

s
e,t+1, m̃s

t+1, and loanst to maximize the utility function

E0

[
∞∑
t=0

βt

edt

(
π log

(
cit
)

+ (1− π) [log (cst) + η (1− lt)]
)]

subject to the constraints (24), (25), (26), (27), (28), (29), (30), (31), (32), and (33). The initial

portfolio {ne,0, np,0, m̃0} is given. Except for loanit and loanst , the control variables must be non-

negative.

B.2 Market Clearing Conditions

We have introduced new assets, i.e., equity and privately held capital. There is no market for the

privately held capital because no one can sell them due to the lack of commitment power. Equity

market clearing condition is given by

ne,t+1 = (1− δ (ut))ne,t + π (issuet) .

Market clearing conditions for labor services, capital services, and final goods are the same as in

the baseline model, and so is the market clearing condition for the bubbly assets in the bubbly
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regime. In addition, the consistency condition

ne,t + np,t = Kt

is satisfied for all t.

B.3 Simplifying Assumptions

Because the aforementioned problem is hard to analyze in the general form, we make a simplifying

assumption following Kiyotaki and Moore (2019) and Del Negro et al. (2017). Specifically, we

assume that φ̃t = φqt always holds. It can be justified in several ways. For example, if lenders can

convert a unit of uncommitted capital into φ units of general capital that can be easily used by

anyone and hence sold in the equity market, φ̃t = φqt holds.

With this assumption, the household no longer has to keep track of these two assets separately,

but the total capital it owns, nt ≡ ne,t+np,t, becomes the relevant state variable for the household.

This is because the other households’ equity and the household’s privately held capital become

perfect substitutes for the household, paying the same return per unit and providing the same

amount of liquidity per period. qt is not only the equity price but also the household’s subjective

valuation of privately held capital. Finally, following Kiyotaki and Moore (2012), we assume that

θ = φ holds to simplify the analysis.

The full model is now effectively the same as the original model. But the distinction between

ne,t and np,t is still important for the measurement of the stock market value.

B.4 Stock Market Value

Following Tirole (1985), we interpret that bubbly assets are pertain to some of firms producing

with a constant returns to scale technology that is freely available. In our model, they are final

goods firms. The stock market value is defined as the total market value of equity and bubbles.

We assume that ne,0 = φK0 holds in period 0, which implies that ne,t+1 = φKt+1 holds for t ≥ 0

too.32 The stock market value is then given by

stockt = φ [qtKt+1] + p̃t1{zt=b}M.

This is identical to the stock market value we gave in the main text.

We close this section by discussing a caveat. Our assumption about uncommitted capital is

slightly different from Kiyotaki and Moore (2019). That is, while we assume that investors use it

as collateral to borrow funds, they assume that investors gain additional commitment power to the

32issuet = φit is optimal if qt > 1 holds. If qt = 1 holds, any level of equity issuance between 0 and φit is optimal,
and we assume that they choose issuet = φit.
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uncommitted old capital every period and sell it in the equity market up to a certain limit. Our

model behaves identically under their assumption except for the stock market value. Specifically,

the equity-to-capital ratio has history dependence under their assumption, and we have to keep

track of this ratio as an endogenous state variable in the estimation. This is technically demanding

for our study, because our model has regime switches. Our assumption that investors borrow short-

term funds avoids this issue because it makes the equity-to-capital ratio constant, simplifying the

analysis.

C Model Summary

C.1 Fundamental Equilibrium With Loose Financial Constraints

When financial constraints are sufficiently loose, the equilibrium conditions are summarized as

follows:

Yt = ĀeatuαtKt ((1− π) lt)
1−α ,

η
ct

1− lt
= wt,

δ′ (ut) = rt,

1 = Et

[
β

edt+1−dt

(
ct
ct+1

)
(ut+1rt+1 + 1− δ (ut+1))

]
,

rt = α
Yt
utKt

,

wt = (1− α)
Yt

(1− π) lt
,

and

ct +Kt+1 − (1− δ (ut))Kt = Yt.

Detrending variables by Kt, we obtain

Ŷt = Āeatuαt ((1− π) lt)
1−α ,

η
ĉt

1− lt
= ŵt,

δ′ (ut) = rt,

1 = Et

[
β

edt+1−dt

(
ĉt
ĉt+1

1

gt

)
(ut+1rt+1 + 1− δ (ut+1))

]
,

rt = α
Ŷt
ut
,
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ŵt = (1− α)
Ŷt

(1− π) lt
,

and

ĉt + gt − (1− δ (ut)) = Ŷt

where variables with a hat denote the original variables divided by Kt, for example, Ŷt ≡ Yt/Kt.

C.2 Fundamental Equilibrium With Tight Financial Constraints

Suppose that the financial constraints are sufficiently tight that they are always binding. In

addition, suppose that the economy is in the fundamental equilibrium. The equilibrium conditions

are summarized as follows:

Yt = ĀeatuαtKt ((1− π) lt)
1−α ,

η
ct

1− lt
= wt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
β

edt+1−dt

(
ct
ct+1

)
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

rt = α
Yt
utKt

,

wt = (1− α)
Yt

(1− π) lt
,

Yt = ct + π
[utrt + φqt (1− δ (ut))]Kt

1− φqt
,

Kt+1 = (1− δ (ut))Kt + π
[utrt + φqt (1− δ (ut))]Kt

1− φqt
,

and

λt =
qt − 1

1− φqt
.

Detrending variables by Kt, we obtain

Ŷt = Āeatuαt ((1− π) lt)
1−α ,

η
ĉt

1− lt
= ŵt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
β

edt+1−dt

(
ĉt
ĉt+1

1

gt

)
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,
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rt = α
Ŷt
ut
,

ŵt = (1− α)
Ŷt

(1− π) lt
,

Ŷt = ĉt + π
utrt + φqt (1− δ (ut))

1− φqt
,

gt = 1− δ (ut) + π
utrt + φqt (1− δ (ut))

1− φqt
,

and

λt =
qt − 1

1− φqt
.

C.3 Recurrent-Bubble Equilibrium

Suppose that the economy is in the recurrent-bubble equilibrium. The equilibrium conditions are

summarized as follows:

Yt = ĀeatuαtKt ((1− π) lt)
1−α ,

η
ct

1− lt
= wt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
β

edt+1−dt

(
ct
ct+1

)
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

1{zt=b}p̃t = 1{zt=b}Et

[
β

edt+1−dt

(
ct
ct+1

)
(1 + πλt+1) p̃t+11{zt+1=b}

]
,

rt = α
Yt
utKt

,

wt = (1− α)
Yt

(1− π) lt
,

Yt = ct + π
[utrt + φqt (1− δ (ut))]Kt + p̃t1{zt=b}M

1− φqt
,

Kt+1 = (1− δ (ut))Kt + π
[utrt + φqt (1− δ (ut))]Kt + p̃t1{zt=b}M

1− φqt
,

and

λt =
qt − 1

1− φqt
.

Detrending variables by Kt, we obtain

Ŷt = Āeatuαt ((1− π) lt)
1−α ,
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η
ĉt

1− lt
= ŵt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
β

edt+1−dt

(
ĉt
ĉt+1

1

gt

)
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

mt = 1{zt=b}Et

[
β

edt+1−dt

(
ĉt
ĉt+1

1

gt

)
(1 + πλt+1)mt+1gt

]
,

rt = α
Ŷt
ut
,

ŵt = (1− α)
Ŷt

(1− π) lt
,

Ŷt = ĉt + π
utrt + φqt (1− δ (ut)) +mt

1− φqt
,

gt = 1− δ (ut) + π
utrt + φqt (1− δ (ut)) +mt

1− φqt
,

and

λt =
qt − 1

1− φqt
where mt ≡ p̃t1{zt=b}M/Kt. It is important that the system of equations summarized above

does not have endogenous state variables. The endogenous variables in the system are therefore

determined by exogenous state variables {zt, at, dt}.
It is convenient to make the regime-dependence explicit:

Ŷf,t = Āeat (uf,t)
α ((1− π) lf,t)

1−α , (34)

Ŷb,t = Āeat (ub,t)
α ((1− π) lb,t)

1−α , (35)

η
ĉf,t

1− lf,t
= ŵf,t, (36)

η
ĉb,t

1− lb,t
= ŵb,t, (37)

rf,t − δ′ (uf,t) qf,t + πλf,t (rf,t − φqf,tδ′ (uf,t)) = 0, (38)

rb,t − δ′ (ub,t) qb,t + πλb,t (rb,t − φqb,tδ′ (ub,t)) = 0, (39)
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qf,t = Et

[
(1− σf )

β

edt+1−dt

(
ĉf,t
ĉf,t+1

1

gf,t

)
(
uf,t+1rf,t+1 + (1− δ (uf,t+1)) qf,t+1 + πλf,t+1 (uf,t+1rf,t+1 + φqf,t+1 (1− δ (uf,t+1)))

)
+ σf

β

edt+1−dt

(
ĉf,t
ĉb,t+1

1

gf,t

)
(
ub,t+1rb,t+1 + (1− δ (ub,t+1)) qb,t+1 + πλb,t+1 (ub,t+1rb,t+1 + φqb,t+1 (1− δ (ub,t+1)))

)]
, (40)

qb,t = Et

[
(1− σb)

β

edt+1−dt

(
ĉb,t
ĉb,t+1

1

gb,t

)
(
ub,t+1rb,t+1 + (1− δ (ub,t+1)) qb,t+1 + πλb,t+1 (ub,t+1rb,t+1 + φqb,t+1 (1− δ (ub,t+1)))

)
+ σb

β

edt+1−dt

(
ĉb,t
ĉf,t+1

1

gb,t

)
(
uf,t+1rf,t+1 + (1− δ (uf,t+1)) qf,t+1 + πλf,t+1 (uf,t+1rf,t+1 + φqf,t+1 (1− δ (uf,t+1)))

)]
, (41)

mf,t = 0, (42)

mb,t = Et

[
(1− σb)

β

edt+1−dt

(
ĉb,t
ĉb,t+1

1

gb,t

)
(1 + πλb,t+1)mb,t+1gb,t

+ σb
β

edt+1−dt

(
ĉb,t
ĉf,t+1

1

gb,t

)
(1 + πλf,t+1)mf,t+1gb,t

]
, (43)

rf,t = α
Ŷf,t
uf,t

, (44)

rb,t = α
Ŷb,t
ub,t

, (45)

ŵf,t = (1− α)
Ŷf,t

(1− π) lf,t
, (46)

ŵb,t = (1− α)
Ŷb,t

(1− π) lb,t
, (47)

Ŷf,t = ĉf,t + π
uf,trf,t + φqf,t (1− δ (uf,t)) +mf,t

1− φqf,t
, (48)
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Ŷb,t = ĉb,t + π
ub,trb,t + φqb,t (1− δ (ub,t)) +mb,t

1− φqb,t
, (49)

gf,t = 1− δ (uf,t) + π
uf,trf,t + φqf,t (1− δ (uf,t)) +mf,t

1− φqf,t
, (50)

gb,t = 1− δ (ub,t) + π
ub,trb,t + φqb,t (1− δ (ub,t)) +mb,t

1− φqb,t
, (51)

λf,t =
qf,t − 1

1− φqf,t
, (52)

and

λb,t =
qb,t − 1

1− φqb,t
(53)

where subscripts f and b denote realizations of the variables in fundamental and bubbly regimes,

respectively; for instance, Ŷf,t is the realization of Ŷt in the fundamental regime. The regime-

dependent steady states are obtained as the solutions of the system of non-linear equations (34)

to (53) under the assumption that both at and dt are constant at zero. To capture the effects of

at and dt, we linearize the equations (34) to (53) around the regime-dependent steady states and

obtain the impulse response functions.

D Solving the Simple Model

This section shows how to solve the simple model considered in the paper.

D.1 After Bubbly Episode

The Euler equation for capital, equation (40), is written as

q∗f = β
r

g∗f

(
1 + π

q∗f − 1

1− φq∗f

)
. (54)

The feasibility constraint for investment, equation (50), is written as

g∗f = π
r

1− φq∗f
. (55)

Substituting (55) into (54) and rearranging terms, we obtain

q∗f =
β (1− π)

π (1− β) + βφ
. (56)
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Substituting it into (55) and rearranging terms, we obtain

g∗f = r

[
1− (1− β) (1− π)

1− β + βφ

]
. (57)

D.2 During Bubbly Episode

The Euler equation for bubbly assets, equation (43), is written as

mb = (1− σb) β
(

1 + π
qb − 1

1− φqb

)
mb. (58)

The Euler equation for capital, equation (41), is written as

qb =
r

gb

[
(1− σb) β

(
1 + π

qb − 1

1− φqb

)
+ σbβ

(
ĉb
ĉ∗f

)(
1 + π

q∗f − 1

1− φq∗f

)]
. (59)

From equations (48), (50), and Ŷf = r, we obtain ĉ∗f = r − g∗f . Similarly, from equations (49),

(51), and Ŷb = r, we obtain ĉb = r − gb. The feasibility constraint for investment, equation (51),

is written as

gb = π
r +mb

1− φqb
. (60)

We solve equations (58), (59), and (60) for mb, qb, and gb. {mb, qb, gb} =
{

0, q∗f , g
∗
f

}
solve

these equations. But we are not interested in this bubbleless equilibrium now. So we assume that

mb 6= 0 holds.

Dividing both sides of (58) by mb and rearranging terms, we obtain

qb =
(1− π) β + (σb − σ̄b) β(1−π)2

1−φ

π (1− β) + βφ+ (σb − σ̄b) β(φ−π)(1−π)
1−φ

, (61)

where σ̄b ≡ 1
1−π

[
2− π − 1

β
− φ
]
. Using (54) and (58), we simplify (59) as follows;

qb =
r

gb

[
1 + σb

(
ĉb
ĉ∗f

)
q∗fg
∗
f

r

]
.

Substituting ĉb = r − gb and (60) into this equation and rearranging terms, we obtain

qbπ
(

1 +
mb

r

)
= 1− φqb + σb

(
q∗fg
∗
f

ĉ∗f

)(
1− φqb − π

(
1 +

mb

r

))
.
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Substituting ĉ∗f = r − g∗f , (56), and (57) into this equation and rearranging terms, we obtain

mb =
rβ

βπ + 1− β + σbβ (φ− π)

[
2− π − 1

β
− (φ+ σb (1− π))

]
. (62)

Substituting (61) and (62) into (60) and rearranging terms, we obtain

gb = r

[
1− (1− β) (1− π)

1− β + βφ+ (σb − σ̄b) β(1−π)(φ−π)
1−φ

]
. (63)

D.3 Crowding-In Effect of Realized Bubble

We show that the size of the bubble relative to the capital stock, mb, decreases with the level of

the financial development, φ. Given the analytical solution (62), we can directly prove it by taking

a derivative. Namely, we have

∂mb

∂φ
= −

(
1

βπ + 1− β + σbβ (φ− π)

)2

rβ (1− σb) [1− β (1− π) (1− σb)] < 0.

D.4 Crowding-Out Effect of Realized Bubble

We show that the price of capital during the bubbly episode, qb, is smaller than the price of capital

after the bubbly episode, q∗f . It can be shown in two steps. First, notice that qb converges to q∗f
as σb converges to σ̄b, namely, limσb↗σ̄b qb = q∗f . This is obvious from the analytical solutions (56)

and (61). Second, taking a derivative of qb with respect to σb, we obtain

∂qb
∂σb

=

(
1− π

π (1− β) + βφ+ (σb − σ̄b) β(φ−π)(1−π)
1−φ

)2
βπ

1− φ
> 0.

Hence, qb is increasing in σb and converges to q∗f as σb converges to σ̄b. Because we assume that

σb is less than σ̄b, qb is smaller than q∗f .

D.5 Proposition 1

We show Proposition 1. From equations (57) and (63), it is obvious that gb converges to g∗f as σb

converges to σ̄b, namely, limσb↗σ̄b gb = g∗f . In addition, gb decreases with σb if and only if φ < π,

which is obvious from the analytical solution (63). Because we assume that σb is less than σ̄b, gb

is larger than g∗f if and only if φ < π.
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D.6 Before Bubbly Episode

The Euler equation for capital, equation (40), is written as

qf =
r

gf

[
(1− σf ) β

(
1 + π

qf − 1

1− φqf

)
+ σfβ

(
ĉf
ĉb

)(
1 + π

qb − 1

1− φqb

)]
. (64)

The feasibility constraint for investment, equation (50), is written as

gf = π
r

1− φqf
. (65)

We solve equations (64) and (65) for qf and gf . Using (58), we can simplify (64) as follows;

qf =
r

gf

[
(1− σf ) β

(
1 + π

qf − 1

1− φqf

)
+ σf

(
ĉf
ĉb

)
1

1− σb

]
.

Substituting ĉf = r − gf and (65) into this equation and rearranging terms, we obtain

qf =
(1− π) β + σf (1− π)

(
−β + 1

1−σb
r
ĉb

)
π (1− β) + βφ+ σf

(
β (π − φ) + φ

1−σb
r
ĉb

) .
Given qf , capital growth gf is determined by equation (65).

D.7 Proposition 3

We show Proposition 3. The stock market to GDP ratio before, during, and after the bubbly

episode is, respectively, given by

stockt
4Yt

=


φqfgf

4r
, if zτ = f and for all τ ≤ t,

φqbgb+mb
4r

= φβ(1−π)−(σb−σ̄b)β(1−π)2

4(1−β(1−φ)+(σb−σ̄b)β(1−π)(φ−π)1−φ )
, if zt = b,

φq∗fg
∗
f

4r
= φβ(1−π)

4(1−β(1−φ))
, otherwise.

The stock market to GDP ratio during the bubbly episode decreases with σb because

∂

∂σb

(
φqbgb +mb

4r

)
= −1

4

(
β (1− π)

1− β (1− φ) + (σb − σ̄b) β(1−π)(φ−π)
1−φ

)2(
1− β
β

+
φ (1− π)

1− φ

)
< 0.

In addition, the ratio during the bubbly episode converges to the one after the bubbly episode as

σb converges to σ̄b, namely,

lim
σb↗σ̄b

(
φqbgb +mb

4r

)
=
φq∗fg

∗
f

4r
.
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Because we assume that σb is smaller than σ̄b, the stock market to GDP ratio during the bubbly

episode is larger than the one after the bubbly episode. In addition, the stock market to GDP

ratio after the bubbly episode is larger than the one before the bubbly episode because Proposition

2 implies that both qf < q∗f and gf < g∗f hold. Therefore, the stock market to GDP ratio during

the bubbly episode is larger than the one before the bubbly episode too.

D.8 Comovement Problem

This section shows that the simple model suffers from a comovement problem. Investment growth

is given by

it
it−1

=
Kt+1

Kt

= gt =


gf , if zτ = f and for all τ ≤ t,

gb, if zt = b,

g∗f , otherwise.

Similarly, consumption growth is given by

ct
ct−1

=
ĉt
ĉt−1

Kt

Kt−1

=
r − gt
r − gt−1

gt−1 =



gf , if zτ = f and for all τ ≤ t,(
1 +

gf−gb
r−gf

)
gf , if {zt−1, zt} = {f, b},

gb, if {zt−1, zt} = {b, b},(
1 +

gb−g∗f
r−gb

)
gb, if {zt−1, zt} = {b, f},

g∗f , otherwise.

If gf < gb holds, investment growth rises from gf to gb when the bubble emerges (in period t with

{zt−1, zt} = {f, b}) but consumption growth drops. Similarly, if gb > g∗f holds, investment growth

drops from gb to g∗f when the bubble bursts (in period t with {zt−1, zt} = {b, f}) but consumption

growth rises. Clearly, it is impossible to have comovement between investment and consumption.

E Transversality Conditions

We show that the transversality conditions are satisfied along the balanced growth path. Let’s

assume without loss of generality that at = dt = 0 for all t ≥ 0. Then, we have

(
1

cit

)
qtKt+1 =

(
1

ĉit

)
qtgt =


(

1
ĉif

)
qfgf , if zt = f,(

1
ĉib

)
qbgb, if zt = b.

54



Similarly, we have

(
1

cit

)
p̃t1{zt=b}M =

(
1

ĉit

)
mt =

0, if zt = f,(
1
ĉib

)
mb, if zt = b.

The transversality conditions are satisfied because

0 ≤ lim
t→∞

E0

[
βt
(

1

cit

)
qtKt+1

]
≤ lim

t→∞
βt ×

[
max

{(
1

ĉif

)
qfgf ,

(
1

ĉib

)
qbgb

}]
= 0

and

0 ≤ lim
t→∞

1{z0=b}E0

[
βt
(

1

cit

)
p̃t1{zt=b}M

]
≤ lim

t→∞
βt
(

1

ĉib

)
mb = 0.

F Partial-Collapse Model

This section examines an alternative assumption replacing the fundamental regime with a low-

bubble regime in which a small fraction of bubbly assets survive from the previous regime. This

model has two bubbly regimes with different amounts of bubbly assets. We call them high-

bubble (H) and low-bubble (L) regimes respectively, in each of which M and (1− δM)M units

of bubbly assets exist respectively. A fraction δM ∈ (0, 1) of randomly chosen bubbly assets

physically disappears when the regime switches to the low-bubble one, and δMM units of a new

vintage of bubbly assets are created when the regime switches to the other direction. We omit the

productivity and preference shocks to simplify the analysis.

Green circles and crosses in Figure 11 show the regime-dependent capital growth in this model.

We set the depreciation rate of the bubbly asset at δM = 0.999. Therefore, nearly all the bubbly

assets disappear when the regime switches to the low-bubble regime. Nonetheless, the regime-

dependent capital growth in the partial-collapse model does not resemble its counterpart in the

original model plotted in red circles and crosses in the same figure. Specifically, the distance

between green circles and crosses is a lot shorter than the distance between red circles and crosses.

Figure 12 explains why. It plots the regime-dependent bubble size relative to the capital stock.

Importantly, a sizable bubble exists in the low-bubble regime. The mechanism is simple; even if

most of the bubbly assets lose value (physically disappear in the model), the rest of the bubbly

assets appreciate because liquid assets become scarce and demand for the remaining bubbly assets

rises. This general equilibrium effect stabilizes the impact of the collapse. Our benchmark model

is different in this respect; because we consider the entire collapse of bubbles, the supply of bubbly

assets is zero in the fundamental regime, and therefore, the aforementioned general equilibrium

effect is absent. As a consequence, the entire collapse of bubbles has a much stronger impact on

growth.

55



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025
growth

e
x
is

te
n

c
e

 t
h

re
s
h

o
ld

Figure 11: Partial Collapse v.s. Entire Collapse (Capital Growth)
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Figure 12: Partial Collapse v.s. Entire Collapse (Bubble Size)
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Figure 13: Partial Collapse v.s. Entire Collapse (Depreciation and Growth)

Figure 13 plot the regime-dependent capital growth in this alternative model as a function

of δM . We set φ = 0.15, but the result is robust to other values of φ. At δM = 1, we plot the

regime-dependent capital growth in our benchmark model. We see no sign of “convergence” from

the model with multiple partial collapses to the benchmark model as δM approaches 1. There

is a discrete jump at δM = 1. This is the same type of non-linearity that Brunnermeier and

Sannikov (2014), He and Krishnamurthy (2013), and Gertler and Kiyotaki (2015) emphasize as

an important factor to account for the financial crisis.

G Data

In this section, we explain the observables used to estimate the model. The data consist of

quarterly GDP growth and the stock-market-to-GDP ratio for the period 1984.Q1-2017.Q4. The

data come from the St. Louis Fed’s FRED database. For the stock-market-to-GDP ratio, we

use the quarterly not seasonally adjusted Wilshire 5000 Full Cap Price Index series. The raw

unfiltered series was used to compute GDP growth. We pre-filtered the stock market-to-GDP

ratio series with the HP filter to remove the trend in the data that is not present in our model; see

the main text for a discussion of the properties of the filtered series. This approach is reasonable

because we are interested in understanding how the fluctuations around this trend are influenced

by the presence or the absence of bubbles. Furthermore, this de-trending approach is standard in
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policy institutions such as the Federal Reserve System when it analyzes the evolution of credit in

the economy (Bassett et al. (2015)). The Bank of Japan takes a similar approach too. The Bank

constructs the “heat map” from several financial indicators, including stock market value, on which

abnormal deviations of a variable from the trend are read as a sign of over-heating. Please see the

Financial System Report, a biannual publication of the Bank surveying the financial system.33

H Solution Method

The solution and estimation of the model requires a series of steps that we describe next.

1. We de-trend the model’s equilibrium conditions by the stock of capital, resulting in a sta-

tionary model. It is easy to see that given the structural shocks and the regime today, the

model is entirely forward looking (equations (34) to (53) in Section C.3).

2. Let Xf
t and Y f

t denote the vectors containing the states and controls in the fundamental

regime. Similarly, Xb
t and Y b

t denote the vectors containing the states and controls in the

bubbly regime. Then the de-trended model can be written as

EtΓf (X
f
t , Y

f
t , X

f
t+1, Y

f
t+1, X

b
t+1, Y

b
t+1) = 0.

EtΓb(X
b
t , Y

b
t , X

f
t+1, Y

f
t+1, X

b
t+1, Y

b
t+1) = 0.

That is, we stack the model’s equilibrium equations conditional on being in the fundamental

and the bubbly regimes. Note that the notation makes clear that the economy may switch to

a different regime tomorrow. The functional equations describing the equilibrium conditions

are captured by Γf (·) and Γb(·).

3. We compute the steady state (w/o structural shocks) of each regime (Xf , Y f , Xb, Y b) by

shutting down the structural shocks but preserving the regime switches. In other words, we

look for Xf , Y f , Xb, Y b that solve the system:

Γf (X
f , Y f , Xf , Y f , Xb, Y b) = 0.

Γb(X
b, Y b, Xf , Y f , Xb, Y b) = 0.

In doing so, our method respects the probability of switching from the fundamental steady

state to the bubbly steady state and vice versa.

4. We perturb the model around the steady states and solve the resulting system to obtain the

laws of motion for the endogenous states and controls. For simulations and estimation, we

use a first-order perturbation approach (Schmitt-Grohe and Uribe, 2004).

33https://www.boj.or.jp/en/research/brp/fsr/index.htm/.
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5. It can be shown that the first-order approximation of the model can be written compactly

as follows:

Xt = ΛxXt−1 + ΩxΞx,t.

Here, Xt = [Xf , Y f , Xb, Y b]′ and Ξx,t contains the structural innovations at time t.

6. We supplement the transition equation in the previous point with a measurement equation

of the form:

Yt = ΛyXt + ΩΞy,t.

The matrix Λy makes the necessary transformations to make the model’s variables compatible

with the observables in the data collected in vector Yt. We allow for classical measurement

errors as captured by Yt.

7. To compute the likelihood of the model, we use the nonlinear filter discussed in chapter 5 in

Kim and Nelson (1999).

8. The Bayesian estimation is implemented following Fernandez-Villaverde et al. (2016).

I Impulse Responses

This section discusses the impulse response functions of variables not discussed in the paper. Table

3 reports responses to a one-standard-deviation innovation to a productivity shock (SDa = 0.01)

and a preference shock (SDb = 0.08). Their auto-correlations are 0.9 and 0.5, respectively. We

report contemporaneous responses on impact of the shock alone, because they are sufficient to

summarize the impulse responses for the variables reported in the table. This is because all the

variables in the table are determined by the exogenous state variables {zt, at, dt} alone.

A positive productivity shock (a rise in at) increases output, consumption, investment, and

hours worked simultaneously. In contrast, a positive preference shock (a rise in dt) increases

investment but decreases consumption. Remember that the preference shock decreases the level

of the subjective discount factor on impact but it is mean reverting. Hence, after the shock,

households end up putting large weights to the utility flows in the distant future relative to those

in the near future. Therefore, households become effectively more patient than before, hence

increasing investment and decreasing consumption. Asset prices also increase because of the

discount factor channel.

Comparing responses across regimes, we see larger responses in the bubbly regime than in the

fundamental regime. Bubbles amplify the impact of the shocks because the bubble size positively

responds to the shocks, supplying more liquidity to the economy. But the regime-dependence is

relatively mild.
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Bubbly Regime Fundamental Regime
Productivity Preference Productivity Preference

output-to-capital 1.18% -0.00% 1.10% -0.05%
consumption-to-capital 1.06% -0.28% 1.03% -0.26%
investment-to-capital 1.55% 0.84% 1.38% 0.87%

hours 0.09% 0.21% 0.05% 0.16%
utilization 0.36% -0.42% 0.21% -0.47%

capital price 0.77% 0.62% 0.95% 0.67%
bubble-to-capital 1.83% 0.79% - -

capital growth 0.05% 0.06% 0.04% 0.04%

Table 3: Effects of Productivity and Preference Shocks

J Alternative Identification Strategies

In this section, we show the impact of alternative identification strategies on our empirical results.

For our first check, we use quarterly U.S. data on GDP growth and the credit-to-GDP ratio. Similar

to the stock market value, the credit-to-GDP ratio in the model is higher during bubbly episodes

than during the fundamental ones. Figure 14 presents the estimated probability of the economy

being in the bubbly regime. It shows that the economy spent more time in the fundamental regime

prior to the 2000s. This means that during the first 15 years of the sample, growth was driven

by exogenous productivity shocks (not shown), not a surprise given the moderate credit-to-GDP

ratio in the data.

The economy starts the 2000s in the fundamental regime, but as credit expands rapidly, the

probability of being in the bubbly regime rises. By mid-2005, the bubble is becoming more likely,

with a smoothed probability above 50%. Between 2007 and early 2009, our exercise reveals that

the bubble was in full swing. Importantly, growth is bubble-driven in this period, which is an

interesting contrast to the productivity-driven growth in the 1990s. At its peak, credit in the

data is explained by a combination of bubbles and a favorable productivity shock. The bubble

disappears in the early 2010s.

During the initial phase of the Great Recession, credit is in correction territory but still high

compared to the 1990s. As a consequence, our approach identifies this stage of the crisis as the

result of a sharp decline in investment demand due to an exogenous shock to preferences. But

as the contraction in credit continued and the economy grew at lackluster rates, the fundamental

regime becomes more likely to the point where it is the prevalent regime since 2011. It is worth

noting that our estimate of the bubbly episode lasts longer than other researchers have found

(Jorda et al., 2015). This is due to the evolution of aggregate credit, peaking at the end of 2008

and slowly retrenching afterward, the latter of which Ivashina and Scharfstein (2010) attribute to

the extensive use of existing lines of credit during 2009 and 2010. Ideally, we would use newly

issued credit rather than total credit to better capture the narrative behind the crisis. However,
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Figure 14: Probability of Bubbly Regime

to the best of our knowledge, such data are not available at the frequency and length required for

our purpose.

It is worth noticing that a similar bubble regime would emerge if we used the Case-Shiller

house price index. The main difference is that the bubble would collapse around the first quarter

of 2008. The reason is that the credit-to-GDP ratio’s dynamic tracks closely that of the Shiller-

Case-to-GDP ratio except for the early collapse of the housing index.

For the financial constraints of φ = 0.19 considered in the main text, the average growth rates

and credit-to-GDP are off the values in the data seen during the bubbly episode in the 2000s. One

possibility, used in the paper, is to introduce a constant and estimate it to offset the difference.

Alternatively, one can change the financial constraints to match the average growth rate during

the presumptive bubbly period, with the caveat that we impose the dates when the bubble exists

a priori. Figure 15 shows the estimated path of the probability of the fundamental (upper panel)

and bubbly (lower panel) regimes under this specification. Clearly, the paths are consistent with

those reported in the paper.

In the main text, we estimate the regimes using the sample 1984.Q1-2017.Q4. One can extend

the sample to include the pre-Great Moderation era 1960.Q1-1983.Q4 but this brings a complica-

tion. Growth was strong during that period and credit-to-GDP was above average. Through the

lens of our benchmark model, this points to a bubble. However, most economic observers would
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Figure 15: Regime Probabilities with Tighter Liquidity
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Figure 16: Regime Probabilities Extended Sample

agree that there was no bubble during those years. To cope with this issue, we add a third regime

that allows for high growth and average credit. Figure 16 shows the probabilities of each regime

from this alternative model. As one can see, the main message remains. The high growth/high

credit of the 2000s was most likely associated with the occurrence of a bubble in the economy. We

also see that the economy spent most of the 1960s and 1970s in the third regime.
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