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COVID19: Erroneous Modelling and Its Policy Implications

1 Introduction

Since March 2020 there has been a rapidly expanding research effort ded-
icated to COVID19 analysis across disciplines, inter alia, in Economics. A
typical analysis posits an economy, which is subject to a model of COVID19
epidemiological dynamics. One type of economic analysis describes a plan-
ner problem that seeks to derive optimal policy. The latter trades off the
costs of public health outcomes, such as breach of ICU capacity and death,
with the economic costs of suppression policy, including declines in pro-
duction. It leads to the modelling of the well-known concept of “flattening
the curve” policy. Other papers model the decentralized economy and the
optimal decisions of agents, emphasizing individual epidemic-related be-
havior as well as externalities. In both cases the dynamics of the disease
and its features are at the core of the analysis.

This paper makes two contributions: one is to place this analysis on
the foundations of an epidemiological analysis of SARS-CoV-2 properties,
particularly, its transmission timescales. The main elements of the ensuing
model are two blocks: an infection transmission block, where the number
of new cases is determined; and a clinical block, which characterizes the
development of symptoms, hospitalization, ICU admission and recovery
or death. The former block derives from an epidemiologically-grounded
analysis and defines epidemiological dynamics; the latter block models the
dynamics within the health system. We offer a complete model of these
two different dynamics, including the relevant parameterizations.

The second contribution is to show that there is often serious misspecifi-
cation of the model, due to errors in the set-up and in the parameterization,
at odds with the epidemiological evidence. The underlying cause for the
misspecification is the failure to make the distinction between the epidemi-
ological and clinical aspects of COVID19. Due to the erroneous modelling
structure, wrong values are assigned to key parameters of disease dynam-
ics and important parameters are omitted. These errors have significant
consequences for optimal economic planning related to COVID19. In par-
ticular, they are manifested in erroneously characterizing a relatively slow-
moving disease, thereby distorting the policymaker decisions where the
price of wrong policy is human life and substantial output loss. Moreover,
the scale of the disease is under-estimated.

The analysis points economic researchers at the correct way to model
the dynamics of the disease. The analysis may also be useful for other
epidemics beyond COVID19, as much of the discussion is pertinent to other
forms of infectious diseases. Note, in this context, that the set of epidemics
since 1980 is quite large and includes, inter alia, HIV/AIDS, SARS, H5N1,

2



Ebola, H7N9, H1N1, Dengue fever, and Zika. We see the analysis here
as complementary to work on the importance of the correct modelling of
population heterogeneity, such as Ellison (2020), and the work on the value
of different kinds of testing as in Berger, Herkenhoff, Huang, and Mongey
(2020).

The paper proceeds as follows: Section 2 very briefly presents the parts
of the epidemiological and economics literatures relevant for the current
discussion. Section 3 discusses the epidemiological models, both the pre-
ferred model (including the appropriate parameterization), and widely-
used models, which are the subject of the current critique. Section 4 ex-
amines the empirical fit of these models. Section 5 discusses the epidemic
dynamics implied by each model. Section 6 analyzes policy implications of
using the different models, and the costs involved when employing erro-
neous ones. Section 7 concludes.

2 Literature

This paper relates to two literatures.
One is the Epidemiology literature, which has modelled epidemic dy-

namics using a compartmental approach. The approach was pioneered by
the seminal work of Kermack and McKendrick (1927). The ensuing family
of models identifies epidemiological states and considers the flow rates be-
tween compartments containing individuals in each disease state. In this
paper we explore three variants of this model. For reviews of this approach
and its underlying rationale, see Champredon, Dushoff, and Earn (2018).

The other is the Economics literature on COVID19. Avery et al (2020)
discuss its connections with the afore-cited Epidemiology literature. Many
papers have been making use of epidemiological models and are thus sub-
ject to the current analysis. These include models in Macroeconomics, Inter-
national Economics, Public Economics, and Labor Economics. Within this
burgeoning literature, we briefly mention those papers which have exam-
ined optimal lockdown policy using the concept of a social planner. They
study the health-related losses due to the pandemic and the economic con-
sequences of public health policy. In this framework an objective function
is defined, with values taking into account economic losses and the value of
statistical life. Thus, tradeoffs are measured and alternative policies can be
evaluated. The planner constraints include, inter alia, the disease dynamics
typically examined within the SIR epidemiological model. Prominent con-
tributions include Abel and Panageas (2020), Acemoglu, Chernozhukov,
Werning, and Whinston (2020), Alvarez, Argente, and Lippi (2020), and
Jones, Philippon, and Venkateswaran (2020). Depending on the exact for-
mulation, we show below how erroneous use might lead to work with
misspecified models, with substantial consequences for policy. Two key

3



properties of disease dynamics, its scale and speed, are at the center of mis-
specification.

3 Modelling the Epidemic

This section presents three models of the epidemic. We first present our
preferred specification, which relies on up-to-date epidemiological evidence
(sub-section 3.1). We then present two alternative specifications, prevalent
in the afore-cited Economics literature (sub-section 3.2).

3.1 The SEIR Model

We analyze the dynamics of the epidemic in two complementary blocks –
infection transmission and clinical progression. The former block is charac-
terized by the SEIR-Erlang model and reflects the epidemiological proper-
ties of COVID19. The clinical block characterizes the development of symp-
toms, hospitalization, ICU admission, and recovery or death and is needed
to describe the dynamics within the public health system. The virtue of us-
ing these two blocks becomes clear in the following sections, in particular
in the course of the discussion of erroneous modelling.

3.1.1 The SEIR-Erlang Block

Before contacting the disease for the first time, a person is Susceptible (S).
Once a person gets infected, disease progression is split into distinct com-
partments – Exposed (E), Infectious (I), and Resolved (R). We denote by
β the infections transmission rate, σ, the transition rate from E to I, and γ,
the transition rate from I to R. An infected individual spends some time in
each compartment before moving on to the next one. The person is infec-
tious only when in the I compartment, but not when residing in the preced-
ing E compartment. The time durations spent in the E and I compartments
are known as the latent and infectious periods, respectively. Once people
move to the Resolved stage, they no longer participate in disease transmis-
sion. Graphically, this model is presented in panel a of Figure 1. We provide
references below to the durations noted in the figure.

Figure 1

Note that with Poisson transition rates between compartments, the res-
idence times in each of them are distributed exponentially, and thus have
zero mode. Exponential distributions capture the mean but not the mode of
the biologically accurate distributions of residence times, because in reality
what most people spend in each stage is close to the mean of the distribu-
tion, rather than zero. Therefore, we split the E and I compartments into
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two sub-compartments and double the rate of transition. Now, the latent
and infectious periods are the sum of the time spent in the E1 and E2 or
I1 and I2 sub-compartments, respectively. Their distribution is the sum of
exponentially distributed random variables, a special case of the Gamma
distribution, known as the Erlang distribution. The means of Erlang dis-
tributions remain 1/σ and 1/γ, but the modes are now near the means, as
they should be. In the remainder of the paper we shall refer to this model
as the SEIR model, without noting the number of sub-compartments.

The following equations describe this block. Throughout, all stock vari-
ables are expressed as a fraction of the population.

Ṡ(t) = −β · (I1(t) + I2(t)) · S(t) (1)
Ė1(t) = β · (I1(t) + I2(t)) · S(t)− 2σE1(t) (2)
Ė2(t) = 2σE1(t)− 2σE2(t) (3)
İ1(t) = 2σE2(t)− 2γI1(t) (4)
İ2(t) = 2γI1(t)− 2γI2(t) (5)
Ṙ(t) = 2γI2(t) (6)

An important parameter is the reproduction number Rt, which is the
average number of people infected by a person, and is given by:

Rt =
β(t)

γ
(7)

We omit the time subscript when time-variability is not essential for the
issue at hand. Otherwise, we use Rt for the reproduction number at date t
and denote the basic reproduction number by R0 at the initial stage, when
S(0) = 1. Our formulation will allow forRt to be affected by policy.

3.1.2 The Clinical Block

The clinical block describes the progression of the infected through the
healthcare system, depending on the development and severity of symp-
toms.

We postulate the following. Once infected, a person enters an incuba-
tion period, a P state, during which there are no symptoms. This period
lasts for 1/θP on average.1 Following the incubation period, a person ei-
ther remains asymptomatic (O) or develops symptoms (M). Denote the
share of asymptomatic cases by η. The others (1− η ) develop symptoms,
and with probability ξ are hospitalized (H). A given share π of patients

1Note that the incubation period is governed by θP and is different from the latent period
which is governed by σ. In fact, recent epidemiological evidence indicates that the average
incubation period can be twice as long as the average latent period (Bar-On et al. (2020)).
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become critically ill, that is develop conditions requiring transition to ICU
(denoted X). Once critically ill, a fraction δ(·) dies. We specify the death
probability in this critical state X as:

δ(X(t), X) = δ1 + δ2 ·
I(X(t) > X) ·

(
X(t)− X

)
X(t)

(8)

where X denotes ICU capacity and I is the indicator function. At any stage,
a person may recover (C). The clinical block is represented graphically in
panel b of Figure 1.

The analytical description of the symptomatic branch is:

Ṗ(t) = β · (I1(t) + I2(t)) · S(t)− θP · P(t) (9)
Ṁ(t) = (1− η) · θP · P(t)− θM ·M(t) (10)
Ḣ(t) = ξ · θM ·M(t)− θH · H(t) (11)
Ẋ(t) = π · θH · H(t)− θX · X(t) (12)
Ḋ(t) = δ(X(t), X) · θX · X(t) (13)

The parameters θP, θM, θH, and θX denote the average time that passes
between the stages of infection, symptoms onset, hospitalization, ICU ad-
mission, and death, respectively.

3.1.3 The Connection to Economic Analysis

We posit that the number of people who can work daily, N(t), is given by:

N(t) = l · ρ · (1− D(t)− X(t)− H(t)− φM(t)) (14)

where 0 < l < 1 is the steady state employment-population ratio, 0 < ρ ≤
1 is the fraction able to work given any policy restrictions, and 0 ≤ φ ≤ 1 is
the fraction of people with symptoms who do not work.

3.1.4 Parameterization

The parameterization of this model needs to be both epidemiologically-
and clinically-based. In Table 1 we present the relevant values for the two
blocks, where we rely on sources in the epidemiological and medical liter-
atures published in Science, Nature, the Lancet, and JAMA, as detailed in
the table’s notes.

Table 1

Note that:
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(i) When we discuss policy interventions below, the transmission rate
βt = γ · Rt will depend on the regime – either lockdown, to be denoted
γ · RL, or out of lockdown, work, to be denoted γ · RW .

(ii) The implied Infection Fatality Rate (IFR) is 0.8%, 2 consistent with
the estimates of the Imperial College COVID19 Response Team (2020).

Additionally, based on Bar-On et al (2020), we set δ1 = 0.5. In the U.S.
economy, ICU capacity is X = 1. 8× 10−4, based on an estimate of approx-
imately 58, 100 ICU beds by the Harvard Global Health Institute.3 Finally,
we set δ2 = 0.5 to capture the fact that with extreme loads on the public
health system, the probability to die increases to 1 for each patient in need
of an ICU bed.

3.2 Alternative Specifications

The overwhelming majority of Economics papers on COVID19 model both
clinical outcomes and infection dynamics within a single block. We proceed
by presenting the SIR model and its calibration, and a modification (SIRD),
designed to better capture the dynamic path to death. Panel c of Figure 1
provides a graphical illustration.

3.2.1 The Widely-Used SIR Model

Economists modelling the dynamics of COVID19 have been using in many
cases versions of the SIR model with the following structure.

Ṡ(t) = −β · I(t) · S(t) (15)
İ(t) = β · I(t) · S(t)− γI(t) (16)

Ṙ(t) = γI(t) (17)

Whenever numbers of deceased and recovered are needed the follow-
ing equations are used:

Ḋ(t) = µṘ(t) (18)
Ċ(t) = (1− µ) Ṙ(t) (19)

where D is deceased, C is recovered and µ is the infection fatality rate.
A prevalent calibration is given by:

1/γ = 18 =⇒ γ = 1/18

2This rate is given by IFR = ξ · π · η · δ1
3See https://globalepidemics.org/our-data/hospital-capacity/
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This is derived as follows:
a. The duration of the disease till death is taken to be 18 days.4

b. The latter is also taken to be the duration of the Infectious stage, and
given by 1/γ. The infection transmission rate β is then pinned down by a
given value ofR and the length of the infectious stage, 1/γ.

The key point here is that the SIR model misses the clinical block. It
confounds time to death (from the onset of infection) with the length of the
Infectious period. Below we show that this mis-specification has profound
implications for the speed and scale of the disease.

3.2.2 The SIRD Model

Some modelers modify the SIR model, to take into account the fact that the
time from infection until a person is no longer infectious is relatively short
(7 days on average), though it takes longer till one recovers or dies. They
thus replace equation (17) by:

Ṙ(t) = γI(t)− θ · R(t) (20)

where θ defines the duration of the resolving stage R. Replacing equations
(18)-(19), one gets:

Ḋ(t) = µ · θ · R(t) (21)
Ċ(t) = (1− µ) · θ · R(t) (22)

This model is denoted SIRD and is usually calibrated with γ = 1/7.

4 Empirical Fit

In this section we use data on COVID 19 in NYC to examine the empirical
fit of the afore-going models, or lack thereof. At the heart of the analysis
is the derivation of estimates of two values for the reproduction number
Rt, one during the early outbreak (denoted by R0) and the other during
lockdown (denoted by RL). At the stage of the initial exponential growth,
it can be shown (see Wallinga and Lipsitch (2007)) that there is a link be-
tween the rate of exponential growth λ and the reproduction number R0.
In particular, Wallinga and Lipsitch (2007) show the explicit expression for
R0 using different formulations of the epidemiological model.

For the case of the SIR model and SIRD:

R0 = 1+
λ

γ
(23)

4Our preferred value, given in Table 1 above, is 19.5 days, which is not very different
from the value here.
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For the SEIR model with m, n sub-compartments it is given by (using
equation 4 in Wearing et al (2005)):

R0 =
λ( λ

σm+1)
m

γ

(
1−

(
λ

γn + 1
)−n

) (24)

R0 is used in the early stages of the outbreak when the entire population
is susceptible i.e., S(0) = 1. At later stages, as the amount of susceptibles
declines, the effective reproduction numberRe is given by

Re = S(t) · Rt (25)

We use data on daily death in NYC5. It contains 236 days from the first
death in mid March 2020 to the end of October 2020, and is the sum of con-
firmed and probable deaths from COVID19. This death count is smoothed
using a 7-day centered moving average.

In what follows we use the following procedure. First we estimate the
growth rate λ from these data. We then derive the value ofR0 (RL) in each
model using equations (23)-(24) for the initial outbreak (lockdown) period.

We run a Poisson (log-linear) regression to retrieve λ:

log (daily death count) = const+ λt (26)

The exponential growth rate λ is estimated between March 14 and April 2 to
be 0.20 with a 95% confidence interval of [0.18, 0.22]. Under SEIR, these
values correspond to R0 = 2.76 [2.53, 3.00], under SIRD to R0 = 2.40
[2.26, 2.50],6and under SIR to the substantially higher value of R0 = 4.50
which does not conform most estimates.7

The exponential decline rate λ is estimated between April 12 and May 5 to
be −0.059 with a 95% confidence interval of [−0.060,−0.058].At the begin-
ning of lockdown, time T0 shown in panel a of Figure 2, we postulate8 that
10% of the population are already infected, so S(T0) = 0.9, and thus RL =

5Data page:
https://www1.nyc.gov/site/doh/covid/covid-19-data.page
Data:
https://github.com/nychealth/coronavirus-data/blob/master/archive/probable-

confirmed-dod.csv
6The SIRD estimates are in line with the Jones and Villaverde (2020) estimates produced

from the same dataset. Their estimates are somewhat attenuated, as they use the HP filter
to further smooth the data.

7As external validation of these estimates, Rt values computed from the site
http://metrics.covid19-analysis.org/ for NY county in the state of NY, in the same period,
start at around 2.50. This website and the associatedRt analysis was developed by Xihong
Lin’s Group in the Department of Biostatistics at the Harvard Chan School of Public Health.

8Our postulated assumptions are later confirmed by the simulation results reported be-
low.
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Re/0.9. Under SEIR, these λ values correspond to RL = 0.76 [0.76, 0.77]
and under SIRD to RL = 0.65[0.64, 0.66]. However such a decline is too
steep to be matched by the SIR model; there is no positive RL that can ac-
count for the observed exponential decline in fatalities during lockdown,
within this model.

Figure 2

How well does the SEIR model fit the data? We use simulation of the
model with lockdown policy so as to generate a death series and com-
pare it to the NYC data.9 In the simulation we use the values derived
above: R0 = 2.7 at the outbreak, before March 23, and RL = 0.7 during
lockdown, lasting to April 20.10 In the period after lockdown, we use a
value of the reproduction parameter which is lower than the initial value
and higher than the lockdown value, RW = 1.1.11At the release of lock-
down, time T1 (see panel a in Figure 2), we postulate that 15% of the popu-
lation had been infected, so S(T1) = 0.85.12This value of RW generates an
effectiveRe = 0.85 ∗RW = 0.94 leading to a slow decline of the daily death
series, as seen in the data. Panel b of Figure 2 shows an excellent fit of the
resulting simulated series with the data series (correlation of 0.999).Thus,
the correctly-specified SEIR model fits NYC fatality data extremely well.
The SIR specification fails to do so in a fundamental way, not producing
a simulated dynamic path, as its time-scales are unable to generate a path
similar to the data.13

5 Disease Dynamics

We now turn to discuss the dynamics of the epidemic that are implied by
the three models. This discussion does not depend on the particular em-
pirical findings of the preceding section and applies universally. It uses
simulation, relying on the epidemiological parameters discussed for each
model in Section 3 and the initial value of the reproduction parameter, R0,

9We keep using the ICU capacity constraint for the U.S., as in Table 1. The same source
gives a somewhat higher capacity for NYC alone, but we prefer to take the more conserva-
tive estimate. In any event, both estimates produce very similar results.

10Stay-at-home orders went into effect on March 22, 2020. The policy was extended until
May 15, 2020

11Recall that we have defined, in sub-section 3.1.4, two regimes – lockdown RL and out
of lockdown, workRW . The latter reflects changes in behavior relative toR0.

12Our assumptions about cumulative infection rates are consistent with the findings of
seroprevalence tests reported in Stadlbauer et al (2020), taking into account the timescales
of seroconversion, discussed by Kai-Wang To et al (2020).

13Under the SIRD specification, the NYC death data are also well captured; using the
corresponding reproduction numbers and dates, the correlation is 0.999.
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at 2.50.14 Note that this analysis focuses on the basic, unmitigated proper-
ties of the disease as implied by the different specifications. In contrast, in
real world data, one observes a disease, which is subject to suppression
measures.

Figure 3 illustrates the development of the disease, as measured by the
stock of infectious and exposed people (panel a) and the critically ill (panel
b), under the three models. The SEIR model is shown by the red line (dash-
dotted); the SIR model by the black line (dashed); and the SIRD model by
the blue line (dotted). A table presents the numerical values of the parame-
ters and indicators which describe these dynamics.

Figure 3

The key difference between the models lies in the implied transmission
rate β, as seen in the fourth row of the table. Specifications that assume a
long infectious period have to posit a low transmission rate β in order to
match the particular value ofR0 used, while specifications that assume the
epidemiologically-grounded short infectious period, posit a relatively high
β.

We draw from Figure 3 the following key lessons:
a. Slow disease in the widely-used SIR. A specification with a very long

infectious period – the SIR model with γ = 1/18 – implies a much lower
transmission rate β and therefore much slower disease progression; it im-
plies a growth rate of 8% and doubling time of 8.3 days. As a result, the
epidemic is spread out in time and it takes almost 330 days for it to die out.

b. Faster dynamics in SEIR and SIRD. By contrast, specifications with
a relatively short infectious period, the SEIR model and the SIRD model,
imply much faster dynamics. The epidemic starts aggressively with growth
rates of 18%− 21% , and cases rise very fast (doubling every 3.2− 3.9 days).
The epidemic also dies off quickly; the entire episode ends twice as fast as
under the SIR model specification.

c. Scale of the disease. In the SEIR model, a higher level of disease is
reached. At the peak, the number of infectious/exposed people reaches
over 27% of the population (a difference of 3.5% relative to the other mod-
els, or 11.6 million people in the case of the entire U.S. economy). This can
be seen in the higher peak of the red lines in E + I in Figure 3 and in the
numbers presented in its table.

d. Dynamics of ICU demand. Panel b of Figure 3 shows that with a
slow moving disease, implied by a long infectious period, ICU capacity
is breached on day 82, and peak demand exceeds capacity by a factor of 7,
whereas in the epidemiological-grounded SEIR model it is breached much
earlier, on day 41, and peak demand exceeds capacity by a factor of 14.

14While the values are close, this approach is different from the one used in the preceding
Section 4, which had derivedR0 from data for NYC on disease growth.
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e. Role of the latent period. Ignoring the short latent period (E), as in
SIR and SIRD, has moderate effects on epidemic dynamics. In SIRD, rel-
ative to the SEIR model, the epidemic develops somewhat faster at the be-
ginning, because there is no delay between the moment a person becomes
infected and the moment he or she starts spreading the disease.

f. Implications for initial conditions. Under equal initial conditions, it
takes much more time for the epidemic to gain pace under the SIR model
than under SEIR. One can try to ‘circumvent’ this problem by assuming a
higher initial seed of the infection. Panel c of Figure 3 compares the SEIR
model with initial seed of 10−4 and the SIR model with initial seed of 10−2.
It shows that assuming a higher initial seed does place SIR on the same
timescale as SEIR in terms of the length of the entire episode and timing of
the peak. However, two problems remain. First, at peak, the implied num-
ber of infectious individuals is still way lower under SIR, which distorts
the problem of a policymaker constrained by a number of hospital/ICU
beds. Second, assuming a seed of 1% of the population implies, in terms of
the U.S. economy, that the epidemic has started when over 3.3 million peo-
ple were infected. This is a highly implausible assumption, given actual
data on the path of known cases and on deaths.

The separation of the infection generation block from the clinical block
lies at the heart of the differences between the prevalent SIR parameteri-
zation and the benchmark SEIR model. Targeting two separate timescales
with one parameter (γ) has important implications. The SIRD model pre-
sented in sub-section 3.2.2 alleviates the problem somewhat by adding a
parameter θ thus enabling separate targeting ofR0 and duration-till-death.
However, as shown below, it still engenders problems when coming to for-
mulate policy.

6 Erroneous Modelling: Implications for Optimal Pol-
icy

A key aim of this paper is to show the implications of the modelling of the
disease for policy responses and to highlight how erroneous modelling is
costly. To do so, we use an optimizing planner model of the kind used in the
papers cited in Section 2. We simulate optimal policy undertaken when the
planner uses each of the three models discussed above, but actual disease
dynamics are given by the afore-cited SEIR model.

The planner problem. The planner minimizes the following loss function:

min V
T0,T1

=

∞∫
t=0

e−rt
(

Y (t)
N (t)

(Nss − N (t)) + χḊ (t)
)

dt (27)

The loss function is minimized in PDV terms (r is the discount rate) over
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the infinite horizon, where at finite point TV (which we set at 540 days) a
vaccine is found and the pool of susceptibles drops to zero, so that the
disease stops growing. The loss function includes both lost output Y, due
to a decline in employment N relative to steady state Nss, and the value
of lost life (with parameter χ). The latter is affected by the breach of ICU
modelled in equation (8) above. To work within a realistic but simple set-
up, we let the planner decide on when to start (T0) and stop (T1) a full
lockdown.

Parameter Values. We use the parameterization of Table 1 and start with
R0=2.50 as we did in Section 5. Following the review of estimates in the
literature in Karin et al (2020), we use RL = 0.80 for the lockdown period
andRW = 1.50 after 2 weeks in lockdown.

Referring to the U.S. economy, we use ρ = 0.65 for the fraction of
workers able to work in a lockdown, following Kaplan, Moll, and Violante
(2020),15 and χ = 85.7 for the value of lost life.16

Rationale of the Simulation. To highlight the costs of basing policy on a
mis-specified model, we proceed as follows. We assume that the disease
always behaves according to the epidemiologically-based SEIR model of
sub-section 3.1.1 above. But the planner uses one of the three models dis-
cussed above, i.e., the correct one or one of the two erroneous ones, when
deriving the optimal intervention timings T0 and T1.

In particular, we use the two specifications discussed above: (1) SIR
with γ = 1/18, and (2) SIRD with γ = 1/7. For each model, we simulate
optimal policy while the disease in fact behaves according to SEIR, and
record ensuing deaths and ICU breaches. This exercise illustrates the price
of deriving policy based on erroneous assumptions.

Results. For each model, we present both the planned outcome and
the realized outcome obtained by applying the policy to the actual disease;
Figure 4 reports the results.

Figure 4

First, we see that the optimal timing using the SEIR model of the actual
disease, is to lock on day 37 for 47 days. This epidemiologically-correct
timing implies two waves of the epidemic, whereby deaths are minimized.

15This value is reinforced by the findings in Dingel and Neiman (2020) about remote
work. We set φ = 0.

16We compute the value of life as follows:

χ =
expected years remaining · value of statistical life

Y
POP

=
14 ∗ 400, 000

65, 351
= 85.7

The resulting value conforms the high end of the estimates discussed in Hall, Jones, and
Klenow (2020) and the value suggested by Greenstone and Nigam (2020).
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This is so as the planner accurately spreads the burden on ICU so that ca-
pacity is breached in the first wave and fully utilized in the second (see the
black solid lines in panels a and b of Figure 4).

Optimal timing is very different when the planner assumes a slowly
moving disease using the SIR model with γ = 1/18. Looking at the top
row of panel c of the figure, one sees that the planner locks immediately for
only 14 days, the minimal time necessary to bring RW down to 1.5.17 The
planner builds on a slow-moving disease that will not massively breach
ICU capacity and not cause many deaths (see planned dynamics shown
in the dashed lines of panel a of Figure 4). However, in reality, the dis-
ease is much faster (SEIR is much faster than SIR, as shown above), and
it erupts immediately after release, breaching ICU capacity by a factor of
4 and increasing the death toll by 71% relative to the epidemiologically-
correct policy. The loss of output costs are of course low due to the very
short lockdown, but total planner costs are 56% higher than under the
epidemiologically-relevant strategy, due to a much higher death toll.

Under the SIRD model with γ = 1/7, optimal lockdown timing is
closer to the epidemiologically-grounded one, and is in fact even more
conservative, with the lockdown starting one week earlier and ending one
week later than under the correct SEIR specification. However, timing is
crucial here and seemingly more stringent policies can be as dangerous as
more relaxed ones. By starting the lockdown too early relative to the pol-
icy based on the epidemiological evidence, the planner suppresses the first
wave and under-utilizes ICU capacity at the beginning of the disease. Af-
ter release, a second wave develops, which is much higher than the first
one, with a massive breach of ICU capacity by almost three-fold and a high
death toll. This type of mis-specification implies a death toll that is 36%
higher relative to the epidemiologically-correct policy.

The Mechanism. When planning interventions to manage epidemics,
timing is of the essence. Locking too early, when lockdown cannot last too
long, means that the second wave will be high and might breach the capac-
ity constraint of the public health system. Locking too late, when the dis-
ease is growing exponentially, poses an immediate threat to ICU capacity
and results in excess deaths. These are the kinds of outcomes that emerge
when the policymaker derives lockdown timing based on erroneous as-
sumptions on the dynamics of the disease. Using the epidemiologically-
grounded model to guide policy is crucial to get the timing right and avoid
unnecessary loss of life and output.

The Bottom Line. We have shown that a SIR model is very far from the
SEIR specification in terms of both implied disease dynamics and optimal
interventions timing. We have also shown that the SIRD model is close to

17The assumption is that RW cannot come down from R0 immediately. It declines after
a period of lockdown.
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the epidemiologically-grounded model in terms of disease dynamics, but
that it implies significantly different outcomes when coming to derive and
implement optimal policy timing.

Comparison to the real world. Three remarks are in place. One is that
there can be much more favorable outcomes with much lower death num-
bers when allowing the planner more choices of lockdown strategies. We
show one example in an analysis of a planner problem in Alon et al (2020).
The costs of mis-specification, though, remain high. The second, and re-
lated to the first, is that in the real world, U.S. death numbers are currently
(late November 2020) around 260, 000 or 0.08% of the population, an order
of magnitude lower than the best scenario here. This is so because U.S. pol-
icymakers have imposed longer lockdowns than the planner above, having
access to wider policy choices. Third, most papers, which model the SIR-
based planner, actually present higher numbers of deaths, in the order of
magnitude of the worst scenario here, or even worse.

7 Conclusions

The paper has shown how the dynamics of COVID19 should be modelled
and parameterized based on epidemiological and clinical analyses. Dura-
tion of the infectious stage is crucial for implied disease dynamics. The
popular SIR model does not fit the data and makes a grave mistake as
it extends the infectiousness period, distorting policymaker decisions to-
wards less severe interventions. Tweaking the initial seed in the baseline
SIR model to correct its timescale requires implausible assumptions and
is misleading in terms of the predicted burden on the constrained public
health system.

We use the epidemiologically-grounded model in companion work (Alon
et al (2020)) to explore an optimal planner model with two dimensions –
the stringency of lockdown policies and its timing. The emerging optimal
policy is quite different from the one proposed thus far in the Economics
literature.
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Exhibits

Figure 1

a. The Infection Transmission Block (SEIR)

b. The Clinical Block

c. Timescales of the Three Models
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Table 1: Epidemiologically- and Clinically-based Parameterization

Interpretation Range Preferred
Parameter
value used

a. The Infection Transmission Block (SEIR)
σ latent period duration 3− 5 days 3 days 1/3

γ infectious period duration 4− 5 days 4 days 1/4

b. The Clinical Block
θP incubation period 5− 6 days 5 days 1/5

θM
days from symptoms
till hospitalization

7 days 7 days 1/7

θH days in hospital till ICU 2 days 2 days 1/2

θX days in ICU before death 5.5 days 5.5 days 1/5.5

η
Prob. to be
asymptomatic

20%− 50% 50% 0.5

ξ
Prob. to get
hospitalized

when symptomatic

#Hospitalized
#Infected

= [2%− 4%]
4%

0.04
1−0.5
= 0.08

π Prob. of ICU admission 10%− 40% 40% 0.4

Notes:
1. Sources —for panel a: Bar-On et al (2020); He at al (2020); Li et al (2020);

Tian et al (2020);
For panel b — Bar-On et al (2020); Huang et al (2020); Richardson et al

(2020); Salje et al (2020).
2. #Hospitalized

#Infected = #Hospitalized
#Symptomatic ·

#Symptomatic
#Infected = ξ · (1 − η) =⇒ ξ =

#Hospitalized
#Infected

1−η
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Figure 2: NYC deaths and SEIR model fit

a. NYC daily deaths and model timeline

b. NYC cumulative deaths: data and the simulated SEIR model
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Figure 3: Disease Dynamics in the Three Models

a. Exposed and Infectious (E + I)

b. Critically Ill (X)

c. SEIR seed 10−4, SIR seed 10−2

SEIR SIR SIRD

Parameterization
σ 1/3 − −
γ 1/4 1/18 1/7

θ −(a) −(a) 1/11

Scale(b) E1 + E2 + I1 + I2 I I

Implied transmission rate given R0 = 2.50
β R0 · 1/4 = 0.625 R0 · 1/18 = 0.139 R0 · 1/7 = 0.357

Implied growth rate, doubling time and disease scale at peak given R0= 2.50
λ(c) 0.18 0.08 0.21

t(d) 3.91 8.32 3.23

Scale∗(e) 0.27 0.23 0.23

d. Properties of the Three Models

Notes: (a) there is no duration for the R state in these models. (b) scale of the
disease - the number of people who are either infectious or exposed (i.e., will become
infectious). (c) exponential growth rate. (d) doubling time. (e) scale of the disease at
the peak.
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Figure 4: Planner Policy in the three Models

Timing V VY D per 106

T0 T1 planned realized planned realized planned realized

SIR, γ = 1/18 0 14 0.484 0.651 0.020 0.025 5, 609 7, 421

SIRD, γ = 1/7 30 91 0.426 0.561 0.064 0.066 4, 278 5, 895

SEIR, σ = 1/3, γ = 1/4 37 84 0.418 0.418 0.051 0.051 4, 335 4, 335

c. Optimal Timing and Outcomes

Notes:

V =

540∫
0

e−rt ·

Y (t)

N(t)
(NSS −N(t))︸ ︷︷ ︸

output loss, VY

+ χ ·
·
D(t)︸ ︷︷ ︸

value of lost life

 dt
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