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1 Introduction

A classic question in macroeconomics concerns the transmission of monetary policy surprises

into the economy. The interest in this question stems from the notion that empirical impulse-

responses can guide the development of theory (eg, Christiano, Eichenbaum, and Evans,

1999). This research strategy, however, rests on the assumption that one can identify the

relevant impulses (shocks) in the data. The traditional approach to this identification prob-

lem relies on monthly or quarterly vector auto-regressions (VAR) combining macroeconomic

data with a short-term nominal interest rate, taken as a proxy for a policy instrument.

Various identification schemes have been proposed within this approach (see Ramey, 2016,

for a review). What they have in common, however, is that the identified shocks at best

reflect monetary policy surprises relative to the mathematical expectations of the regression

model.1 Furthermore, VAR-based identification is limiting once financial data are included.

How does one invert the VAR residuals to identify monetary policy shocks when, at monthly

or quarterly frequency, financial markets react to monetary policy and policy makers partially

base their decisions on information contained in asset prices? At the same time, ignoring

financial data is inefficient, as asset prices reflect expectations of future monetary policy

and some sectors, for instance the housing market, are sensitive to asset prices (long-term

interest rates).2

High-frequency (HF) data can ameliorate the identification problem (see Kuttner, 2001;

Cochrane and Piazzesi, 2002; Gürkaynak, Sack, and Swanson, 2005b, for early contributions).

The idea is that the announcement of the outcome of a policy meeting is the only event im-

pacting on asset prices in a tight enough window around the news release and that, in that

window, the content of the news release is exogenous to asset prices. The HF movements

in asset prices thus provide instruments that can identify policy shocks.3 Once the shock

1An alternative identification strategy, proposed by Romer and Romer (2004), is based on central bank
narrative.

2Evans and Marshall (1998) is an example of an attempt to include long-term interest rates in a macro
VAR model with monetary policy shocks identified in one of the traditional ways.

3There is a debate about the interpretation of the shocks identified this way and we briefly discuss this
debate below.



is identified, it can be used in an empirical model to trace out its effect on macro variables

in a standard way. Gertler and Karadi (2015) carry out such an exercise and arrive at a

stark conclusion: monetary policy surprises transmit into the economy almost exclusively

through changes in term premia, with movements in expected future interest rates playing

a minuscule role.4 This finding presents a challenge to standard macro models used for

monetary policy analysis. In standard models, monetary policy transmits through changes

in the conditional mean of the nominal pricing kernel, not its variance, the relevant part for

movements in term premia (eg, Atkeson and Kehoe, 2009).

In this paper, we first revisit the question to what extent monetary policy surprises

affect the yield curve through term premia vs. expected future nominal interest rates. We

then proceed to investigate the implications of this decomposition for the macro-economy,

including housing market variables. Specifically, in the first step, we employ an estimated

affine term structure model (ATSM) to decompose the HF movements in yields around

Federal Open Market Committee (FOMC) announcements into expected interest rates and

term premia.5 The key feature of the estimated ATSM is that it is subject to recently

proposed restrictions leading to more precise estimates of expected interest rates, and thus

term premia, than either VAR models or unrestricted ATSMs would suggest. In the second

step, we take the HF changes in the two yield curve components to derive instruments that

we use in local projections (Jordà, 2005) to trace out the dynamic effects of policy shocks on

macro variables. The instruments generalise proxies for monetary policy shocks employed in

recent studies and have intuitive economic interpretation.

Why use an ATSM for the decomposition and why is it important to estimate the term

structure model subject to restrictions? As the term premium is often estimated as a dif-

ference between the observed yield of a given maturity and the expected future path of the

4Term premia reflect risk compensation for holding a long-term bond and can be estimated as a difference
between the observed long-term interest rate of a given maturity and a forecast of the path of the short rate
over that time horizon (ignoring technical details such as measurement errors and Jensen’s inequality).

5ATSMs are the go-to models in empirical finance to study the term structure of interest rates. See
Diebold, Piazzesi, and Rudebusch (2005), Piazzesi (2006), Duffee (2012), or Gürkaynak and Wright (2012)
for an introduction.
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short rate, one could in principle estimate a VAR on yields (and possibly macro variables)

and then iterate it forward J times to obtain forecasts of the short rate between now and

the Jth period ahead, thus obtaining the term premium for the Jth maturity. There are two

problems with this approach, which is the approach taken by Gertler and Karadi (2015).

First, the VAR-based forecasts of future yields of different maturities may imply arbitrage

opportunities, which are unlikely to be present in such a deep market, like the government

bond market. Second, nominal interest rates are highly persistent, which, in samples of the

length typically observed, leads to both a downward bias in the persistence of the VAR pro-

cess and high standard errors of its estimates. This problem arises because we do not observe

frequent enough mean reversions of interest rates in the data to estimate the parameters of

the driving process well.6 The implication of the downward bias is that VAR-based forecasts

of future interest rates at the long end of the yield curve are insensitive to current shocks

and thus any observed movements in long yields are prescribed to term premia.

By construction, ATSMs resolve the first issue by requiring that the evolution of yields,

determined by a VAR for a small number of risk factors, respects no-arbitrage conditions.

ATSMs can also resolve the second issue, but only if they are estimated subject to restric-

tions. As ATSMs are estimated on both time series and cross-sectional (across maturities)

data, they use more information than a VAR. In particular, the cross section of yields at

a point in time can potentially provide very precise information for the model dynamics.7

However, a well-documented time-variation in risk premia (Fama and Bliss, 1987, and a long

list of studies that followed), effectively eliminates this connection between the time-series

and cross-sectional dimensions of ATSMs. Loosely speaking, there always exist some (un-

observed) prices of risk that make the time series data consistent with the cross-sectional

data. In terms of the ATSM terminology, they make the physical ‘P-dynamics’ of the state

6See the classic results of Kendall (1954), Nicholls and Pope (1988), and Shaman and Stine (1988)
and, for a discussion in the context of ATSMs, Bauer, Rudebusch, and Wu (2012). As demonstrated by
Pierse and Snell (1995), increasing the sampling frequency does not resolve the problem.

7To illustrate this, suppose investors were risk neutral (ie, prices of risk were equal to zero) and so observed
yields were equal to expected future interest rates. Then one could simply read off expected future interest
rates from the cross-section, thus avoiding the problematic time series data altogether.
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space consistent with the risk-adjusted ‘Q-dynamics’ implied by the cross-section. In fact, as

demonstrated by Joslin, Singleton, and Zhu (2011), in a canonical ATSM—the maximally

flexible model that is subject only to normalizing restrictions required for identification—the

cross-sectional data convey no information for the time-series properties of the model (see

also Hamilton and Wu, 2012). As a result, the parameter estimates of the underlying state

space process are equivalent to those obtained from a simple VAR estimated on time series

of yields, with the problems noted above.

Following the common practice of using as risk factors the principal components (PCs)

of interest rates, we estimate an ATSM subject to two types of restrictions, broadly defined.

First, we employ a statistical search procedure to set some parameters of the affine mapping

from the factors to risk prices equal to zero. By restricting how individual risk prices respond

to the factors, this procedure constrains the wedge between the P- and Q-dynamics, thus al-

lowing to exploit the cross-sectional information for the estimation of the VAR parameters of

the state space. This strategy has been employed, in various forms, by Cochrane and Piazzesi

(2008), Duffee (2011), Joslin et al. (2011), Joslin, Priebsch, and Singleton (2014), and Bauer

(2018). For our main exercise, we use the Bayesian procedure proposed by Bauer (2018).

Second, we estimate a bias-corrected ATSM as in Bauer et al. (2012). Specifically, the model

is estimated subject to the restriction that, if taken as the data-generating process, it pro-

duces the same small-sample bias as in the data. Both restrictions lead to the same result,

namely higher persistence of the factors, relative to estimates from a simple VAR, and thus

more volatile expected future interest rates. To ensure robustness, the estimation is carried

out on monthly as well as daily data. Monthly data conform in terms of frequency to macro

variables, and as such are commonly used in the literature, while daily data are closer to the

HF decomposition.

The estimated ATSMs are then used to decompose movements in the yield curve in a tight

window around FOMC meetings into changes in term premia and expected future interest

rates. The HF changes in the two components of the yield curve serve as instruments to
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identify monetary policy shocks in a local projection macro model. We are interested in how

the different shocks affect the macro-economy. As the shocks are identified from unexpected

movements of the entire yield curve, not just the short rate, they are conceptually different

from the traditional shocks identified in structural VARs. For instance, a shock can occur

even if the Fed maintains the fed funds rate unchanged.

Our instruments generalise the proxies for monetary policy shocks employed in recent

studies. Gertler and Karadi (2015) identify monetary policy shocks by using the change in a

single interest rate around FOMC meetings. In contrast, we exploit information in the entire

term structure. Our approach is thus closer to the work of Gürkaynak, Sack, and Swanson

(2005a) who show that FOMC announcements are adequately described by two factors ob-

tained from the cross-section of high frequency yields. However, we go beyond their approach

and use ATSMs to decompose the HF changes in the yield curve into term premia and in-

terest rate expectations and study their dynamic effects on selected macro variables. Such

decomposition provides a sharper characterization of the transmission mechanism of mone-

tary policy than instruments that bundle the two components together.

Our main findings, based on the period 1996-2007, characterized by conventional mone-

tary policy, can be summarized by two points. First, the reaction of expected future interest

rates in response to FOMC announcements in this period was significant. Specifically, in all

ATSM specifications that are estimated subject to restrictions, expected interest rates at the

ten-year horizon are twice as volatile as what a VAR analysis would suggest. In the monthly

models, in particular, the HF reaction of expected interest rates is as large as the reaction

of term premia. Monetary policy surprises contained in FOMC announcements thus had an

equally important effect on expected interest rates as on term premia.

Second, a PC decomposition of the HF change in expected interest rates and term premia

identifies three types of policy shocks. Two of them account for most of the variation in the

HF changes in the yield curve, with the third one playing quantitatively a less important role.

One accounts for a bulk of the HF movements in expectations (the first PC of expectations)
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and the other in term premia (the first PC of term premia). The first PC of expectations

identifies what appears to be a persistent shock associated with an increase in expected future

nominal interest rates, inflation, and the 30-year mortgage rate, and a decline in housing

market activity and aggregate output. The propagation of this shock into the economy fits

the narrative of models with a role for housing finance. The first PC of term premia, on

the other hand, identifies a policy shock associated with a temporary increase in corporate

credit spreads, and a decline in inflation and output. Its effects seem consistent with financial

accelerator models. The third shock has similar aggregate implications as the shock moving

term premia, but is identified from a HF change in expected interest rates (the second PC of

expectations). It appears to fit a narrative of New-Keynesian models. In sum, the economy’s

responses to the three instruments seem broadly consistent with existing theories.

HF, intra-day, data have been increasingly used to study yield curve responses to var-

ious macroeconomic events and to identify monetary policy shocks. Broadly speaking,

the literature can be divided into two mutually non-exclusive categories: the decomposi-

tion of the yield curve into its various components (including real and nominal) and the

structural interpretation of monetary policy surprises. The first category includes, for

instance, Beechey (2007), Beechey and Wright (2009), Bauer (2015), Gertler and Karadi

(2015), Hanson and Stein (2015), and Hördahl, Remolona, and Valente (2015). Daily data

are used by Abrahams, Adrian, Crump, Moench, and Yu (2016). Some of these studies em-

ploy ATSMs, while others use simple regressions. The second category includes, among oth-

ers, Nakamura and Steinsson (2018), Cieslak and Schrimpf (2019), and Jarocinski and Karadi

(2020). These authors investigate the information content of policy surprises, as opposed

to genuine policy shocks. Gürkaynak et al. (2005a), in contrast, look at surprises in current

policy actions vs. communication about future policy. A few studies (Gertler and Karadi,

2015; Nakamura and Steinsson, 2018; Jarocinski and Karadi, 2020) proceed, like we do, to

study the macroeconomic consequences of monetary policy surprises identified in HF data.

We focus on the most fundamental decomposition of the nominal yield curve, into term
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premia and expected future interest rates, and one specific event, FOMC announcements.

In terms of the housing market, a subset of our findings is consistent with those reported by

Hamilton (2008), who follows a different methodology.8

The paper proceeds as follows. Section 2 discusses the HF data, Section 3 introduces the

ATSM framework and the necessary notation, Section 4 describes estimation of the ATSMs,

Section 5 reviews the estimates, combines the models with HF data for the purposes of the

HF decomposition, and carries out the local projection analysis. Finally, Section 6 concludes.

Additional robustness checks and other details are included in an online Appendix.

2 High-frequency movements around FOMCs

In this section we describe the yield curve data used to estimate surprises in FOMC an-

nouncements. We also briefly analyse some of their properties, which will then serve as a

basis for the advanced term structure analysis presented in the later sections of the paper.

In order to study high-frequency yield curve reactions to monetary policy decisions,

we measure yields at various maturities in a narrow window around FOMC announce-

ments. In doing so, we build on the available literature studying monetary policy shocks

within the high-frequency approach (see Gertler and Karadi, 2015; Miranda-Agrippino, 2016;

Jarocinski and Karadi, 2020, among others). This literature focuses on the short end of the

curve and uses the change in the three-month fed funds future (FF4) as a baseline measure

of the interest rate surprise. Importantly, we extend these studies and measure monetary

policy surprises along the spectrum of maturities, capturing the reaction of the whole yield

curve.

8A part of the literature, Kim and Orphanides (2012) being an early example, complements yield curve
data with surveys of professional economists as a source of data for expected future interest rates. To keep
the paper focused on the improvement of the estimation relative to VARs, we confine ourselves only to yield
curve data.
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2.1 Intra-day data

Our main high-frequency data source is coming from Refinitiv Tick History. As in the earlier

literature, the surprises are measured in a 30-minute window starting 10 minutes before and

ending 20 minutes after the announcement.

We focus on the period from January 1996 to August 2007, characterized by conventional

monetary policy. Unfortunately, the data could be scarce, especially in the 1990s, with only

a dozen of intra-day observations available in some cases. Therefore, for a few announcement

dates our window has to be wider than 30 minutes. Despite this, the estimated changes in

rates are very similar to those reported by other studies. For example, our constructed FF4

reactions are similar to the raw FF4-based shocks reported by Miranda-Agrippino (2016),

with the correlation between the two being 0.9.

At the beginning of the sample, Treasury bonds with maturities longer than 10 years

were traded relatively infrequently. Therefore, our longest maturity is based on the 10-year

Treasury yield series. At medium-term maturities, Treasuries were not as frequently traded

as LIBOR-based swaps. Hence we faced a trade-off between having the same instrument

but captured at different times due to relative illiquidity (which is especially the case for

the 1990s), or having all rates captured at the same time but taken from similar assets

rather than the same instruments. We chose the latter and estimated the high-frequency

changes at 2-, 3-, and 5-year maturities from LIBOR-based swaps, which enabled us to

create consistent narrow windows around the announcements. The observed changes across

the various maturities around the announcements are shown in Figure 1, which displays a

consistent response pattern across all maturities. Although the strongest reactions seem to

be in the short rates, the response is evident at all maturities, and longer-term rates are

rarely responding by much less than medium-term rates. The next subsection investigates

the simple statistic properties of these reactions in more detail.

Finally, to analyse the behaviour of the yield curve around the announcements in a

systematic way, we constructed a consistent yield curve across all maturities, adjusting for

8



observed daily LIBOR spreads. We do this by estimating the spreads between LIBOR swap

rates and the corresponding maturity yields observed at the close of business on the pre-

announcement dates and then apply them to LIBOR rates around the announcements.

2.2 Basic properties of yield curve reactions

Table 1 presents basic statistics for the responses across maturities. Several observations

follow. First, during 1996-2007, monetary policy surprises were slightly negative on average,

with the shortest maturities affected the most and the impact declining with maturity. Also,

judging by the volatilities, the shortest maturities were the most sensitive to the announce-

ments and the longest maturities were the least sensitive. Second, despite the declining

volatility pattern, all maturities display a strong reaction to the announcements, with yield

volatility at medium and long maturities being, respectively, more than 80 and 60 percent

of the volatility of FF4. Third, the yield curve tends to respond to the announcement in a

consistent way, as indicated by the positive correlations between reactions across maturities,

although the correlations are declining with maturity.

Interestingly, the responses are highly correlated across medium and long maturities, with

all the correlations between them being around 0.9.9 The decompositions carried out with the

ATSMs into term premia and interest rate expectations, and the subsequent decomposition

of these yield curve components into their respective PCs will provide a clear interpretation

of the observed correlations.

3 The ATSM framework

The aim of this section is to provide a brief overview of the ATSM and introduce concepts

and notation used in the rest of the paper. An underlying assumption behind an ATSM is

the fundamental principal of finance, applied to default-free zero-coupon bonds of different

9According to Hanson and Stein (2015), for instance, this strong co-movement in maturities beyond the
policy horizons is due to monetary policy affecting predominantly term premia at longer horizons.
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maturities. Specifically,

Et

[
Mt+1R

(j)
t+1

]
= 1, (1)

where the expectation operator is with respect to information in period t, the scalar Mt > 0

is a kernel that prices all bonds and R
(j)
t+1 is a one-period gross return on a bond of any

maturity j. That is, R
(j)
t+1 = P

(j−1)
t+1 /P

(j)
t , where P

(j)
t is the price in period t of a bond of

maturity j, which becomes a bond of maturity j − 1 one period later. Of course, P
(0)
t = 1,

as one dollar today has a value of one dollar.

ATSMs assume a specific functional form for the pricing kernel

− logMt+1 = rt +
1

2
λ

′
tλt + λ

′
tεt+1. (2)

The popularity of this functional form lies in its practicality: when combined with the state

space described below, it leads to a convenient affine solution for yields satisfying the no-

arbitrage condition (1). Here, rt is the continuously compounded short-term nominal interest

rate, λt is a N×1 vector of risk prices for N underlying risk factors, and εt+1 is a N×1 vector

of innovations specified below. The N factors are assumed to follow a first-order Gaussian

VAR

Xt = μ+ ΦXt−1 + Σεt, (3)

with εt ∼ N(0, IN). This VAR process, describing the stochastic evolution of the risk factors,

is referred to as the ‘P-measure’ and the implied dynamics as the ‘P-dynamics’. That is, this

is the physical probability measure describing the physical dynamics of the state space.

Both the short rate and the risk prices are assumed to be related to the N factors through

affine mappings

rt = δ0 + δ
′
1Xt, (4)

λt = Σ−1(λ0 + λ1Xt), (5)

where δ0 δ1, Σ
−1, λ0, and λ1 are commensurate to the variables. In particular, λ1 is N ×N .
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That is, the risk price of a particular factor can be affected by all factors. Observe that

under risk neutrality (zero risk prices), the pricing kernel is simply Mt+1 = exp(−rt). That

is, future cash flows are discounted with the short rate. Equations (1)-(5) summarize the

ATSM.

Starting with P
(0)
t = 1, the model can be solved recursively for equilibrium bond prices.

Given the functional assumptions on the pricing kernel and the state space, the solution is an

affine mapping from factors to the logarithm of bond prices (see, eg, Gürkaynak and Wright,

2012). Continuously compounded yields can then be inferred from the bond prices through

standard discounting, P
(j)
t = exp(−jy

(j)
t ), which can be inverted to obtain yields as y

(j)
t =

(−1/j) logP
(j)
t . Yields are thus also affine in factors. For j = 1, we get the short rate:

y1t = rt.

The vector of any J yields, Ŷt, can be written as

Ŷt = A+BXt, (6)

where Ŷt is a J × 1 vector. Equation (6) describes the model-implied yield curve—the

cross-section of yields at a point in time that is consistent with no-arbitrage. In an empirical

implementation of the model, model-implied yields can potentially differ from observed yields

due to measurement error and the lack of fit.

The arbitrage-free loadings A and B are non-linear, recursive, functions of the model

parameters δ0, δ1, λ0, λ1, μ, Φ, and Σ (see, eg, Gürkaynak and Wright, 2012). It can then

be shown that the A and B in equation (6) would be the same if pricing was risk neutral,

Mt+1 = exp(−rt), but the law of motion for the risk factors was given by a risk-adjusted

VAR

Xt = μQ + ΦQXt−1 + Σεt, (7)

where

μQ = μ− λ0 and ΦQ = Φ− λ1. (8)
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The VAR process (7) is referred to as the ‘Q-measure’, describing the ‘Q-dynamics’. That

is, dynamics under risk neutral pricing. Observe that under risk neutral pricing, the model

is parameterised in terms of δ0, δ1, μQ, ΦQ, and Σ. Thus, to derive the cross-sectional

implications of the model summarized by equation (6), all that is required is the Q-measure.

The knowledge of the P-measure and the risk prices λt is not required. To put it differently,

the cross-section identifies the parameters of the Q-measure, not the P-measure.

Under the Q-measure, the expected value of the short rate j periods ahead can be ob-

tained from the short rate equation (4) and the VAR process (7). The effect of Xt on the

expected value is given by (ΦQ)j. The effect of Xt on the average expected short rate over

the forecast horizon under the Q-measure is thus

Bj =
1

j
δ′1
[
I + ΦQ + · · ·+ (ΦQ)j−1

]
, (9)

which is the jth row in the loading B in equation (6). Under the P-measure, the expected

value of the short rate j periods ahead can be obtained from the short rate equation (4) and

the VAR process (3). In this case, the effect of Xt on the expected value is given by Φj and

the average expected short rate over the forecast horizon is given by

BP
j =

1

j
δ′1

[
I + Φ + · · ·+ Φj−1

]
. (10)

The difference (Bj − BP
j ) accounts for the effect of Xt on the term premium in yield y

(j)
t

and, as follows from the relationship (8), depends on λ1. Thus, while the knowledge of the

P-measure is not required for the cross-sectional implications of the model, it is necessary to

derive a decomposition between term premia and expected interest rates. Observe that the

P-measure can be identified either from the time-series of Xt or the cross-section of yields

and the knowledge of λ0 and λ1 through the relationship (8).
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4 Estimation of the ATSM

To ensure identification, normalising restrictions need to be imposed on the no-arbitrage

framework introduced in the previous section. We employ the normalising restrictions of

Joslin et al. (2011), leading to their canonical representation—the maximally flexible form

that is identified. Under this representation, the N risk factors are defined as linear combi-

nations of yields, Xt = WŶt, where W is a weighting matrix, and the model parameters are

mapped into the set of unknowns kQ, φQ, μ, Φ, and Σ, which fully characterize the P- and

Q-dynamics, (μ,Φ) and (μQ,ΦQ) respectively. Here, kQ determines the mean of the short

rate under the Q-measure and φQ is a N ×1 vector that contains the eigenvalues of ΦQ. Fol-

lowing Joslin et al. (2011), the risk factors Xt are calculated as the first N PCs of the yields

and W is the associated N × J loading matrix. Finally, the observed yields Yt are assumed

to be measured with error: Yt = Ŷt + et. Under the assumption that Xt are observed in the

estimation (ie, N linear combinations of yields using the weights W are estimated exactly

by the model), the J −N independent measurement errors are normal with variance σ2
e .

We estimate three versions of the model, with details of the estimation provided in

the next sections. Model M0 is the maximally flexible benchmark that is only subject

to the Joslin et al. (2011) normalising restrictions. As discussed in the Introduction, such a

specification does not fully exploit the information in the cross-section of yields and estimates

of the VAR parameters under the P-measure (μ, Φ) are based on time-series information only.

Due to the persistence of interest rates, the estimates of the VAR parameters can be biased

in small samples. The maximally flexible model is subject to this problem. By placing no

restrictions on risk prices, λ0 = μ − μQ and λ1 = Φ − ΦQ are simply obtained from the

separate estimates of the P- and Q-measure parameters, (μ,Φ) and (μQ,ΦQ) respectively.

Therefore, one approach to deal with this issue involves placing zero restrictions on λ0 and

λ1.

To impose such restrictions on risk prices, our first alternative specification of the ATSM

(model M1) uses a stochastic search variable selection (SSVS) algorithm employed by Bauer
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(2018). It is clear from the definition of λ0 and λ1 that setting some risk prices to zero has

the effect of ‘pulling up’ the VAR parameters μ and Φ towards μQ and ΦQ, thus ameliorating

a small sample bias.

Our second alternative specification (model M2) is based on the analysis of Bauer et al.

(2012), who propose statistical methods to estimate and correct the small sample bias in μ

and Φ. In this case, the model is estimated subject to the restriction that, assuming it is the

data-generating process, it produces the same small sample bias in the persistence of yields

as in the data. As a result, this procedure increases the persistence of the VAR under the

P-measure, relative to that under M0.

4.1 MCMC algorithm

As shown by Joslin et al. (2011), an important implication of their canonical representation

is that the likelihood of the model factors into components that simplify estimation greatly.

The likelihood function is defined as:

f (Yt|Yt−1,Θ) = f
(
Yt|Xt, φ

Q, kQ,Σ, σ2
e

)× f(Xt|Xt−1, μ,Φ,Σ), (11)

where Θ =
(
φQ, kQ,Σ, σ2

e , μ,Φ
)
denotes the parameters to be estimated. Note that the first

term in this factorisation is the ‘Q-likelihood’, as it incorporates information from the cross-

section of yields. In contrast, the second term is the ‘P-likelihood’, based on information

derived from the time-series of the risk factors.10

We employ a Bayesian approach to estimate the different versions of the model, using the

Gibbs sampling algorithm proposed by Bauer (2018). The Bayesian approach is particularly

useful as it provides a systematic and efficient method to impose restrictions on μ and Φ (or

equivalently on λ0 and λ1). This means that there is no need to carry out an explicit model

comparison exercise that can involve estimation of a large number of restricted specifications.

10As Joslin et al. (2011) show, the fact that the two likelihoods share Σ does not affect the estimates of
the other parameters.
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Moreover, maximisation of the likelihood of the ATSM is a non-trivial task that is made even

more challenging by the small sample of the typical data set. Bayesian estimation does not

rely on maximisation of the likelihood function and, instead, aims to approximate the joint

posterior distribution of the model parameters. MCMC methods make this task easier by

working with the conditional distributions associated with the joint posterior, thus breaking

a complex problem into smaller portions. Finally, as the Bayesian approach approximates

the posterior distribution, error bands for parameter estimates are obtained directly. In

contrast, frequentist approaches rely on asymptotic standard errors that may be inaccurate

in small samples.11

Details of the MCMC algorithm and the conditional posterior distributions are provided

in the Appendix. Here we present a summary of the algorithm for each version of the model.

The Gibbs algorithms use 1,000,000 iterations. Every 20th draw after a burn-in period of

500,000 is used for inference. The Appendix presents inefficiency factors that are fairly low,

suggesting convergence.

4.1.1 Model M0

As described in the Appendix, we employ un-informative priors for the parameters. The

Gibbs algorithm samples from the following conditional posterior distributions:

1. g(μ,Φ|φQ, kQ,Σ, σ2
e). Given the factorisation of the likelihood in equation (11), this

conditional posterior is standard. In other words, conditional on φQ, kQ,Σ and σ2
e ,

the model collapses to a standard Bayesian VAR with flat priors where the posterior

distribution of the P-coefficients is known to be normal with mean and variance given

by OLS estimates.

2. g(φQ, kQ|μ,Φ,Σ, σ2
e). The conditional posterior of the Q-parameters is non-standard.

Therefore, a random walk Metropolis-Hastings step is used to sample these parameters.

11Note that bootstrap methods require repeated re-estimation of the model by maximising the likelihood.
This approach is, therefore, subject to problems associated with the task of finding the mode of the likelihood.
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Note that the acceptance probability is easily computed using the Q-likelihood in the

factorisation shown in equation (11).

3. g(Σ|φQ, kQ, μ,Φ, σ2
e). Σ appears in both terms of the likelihood factorisation. As

a consequence the conditional posterior is not known in closed form. We therefore

sample from this conditional posterior using a random walk Metropolis-Hastings step.

4. g(σ2
e |Σ, φQ, kQ, μ,Φ). Conditional on the remaining parameters, the model collapses to

the multi-variate regression Yt = A + BXt + et where var(et) = σ2
e . Given an Inverse

Gamma (IG) prior for σ2
e , the conditional posterior is also IG with scale parameter

ẽ′tẽt + σ2
0 and degrees of freedom T (J −N) + T0 where ẽt = vec(et) and σ2

0 and T0 are

the prior scale parameter and degrees of freedom, respectively.

4.1.2 Model M1

The estimation of model M1 differs from the estimation of model M0 only in step 1. The

model is re-parameterised in terms of the risk prices λ′ = (λ′
0, vec(λ1)

′), where λ has dimen-

sion N(N + 1) × 1. The P-dynamics parameters are consequently obtained from equations

(8). Bauer (2018) shows that this results in a restricted VAR under the P-measure. Re-

strictions on λ are implemented using the SSVS algorithm of George and McCulloch (1993).

This algorithm involves a hierarchical prior on the elements of λ. In particular, the prior for

λ is assumed to be normal: (1− γ)N (0, τ 20 ) + γN (0, τ 21 ) where γ is a N(N + 1)× 1 vector

of ones and zeros, τ 20 is a small number while τ 21 is chosen to be large number.12 If the ith

element of γ equals zero, the prior for the ith risk price is tightly centered around zero. On

the other hand if the ith element of γ equals 1, the prior for the corresponding risk price is

loose and the posterior can be different from zero. Here, γ is treated as an additional set

of unknown parameters. We employ an uninformative prior for the elements of γ, implying

a-priori a 50% chance for risk price to be included or excluded (ie, set to zero).

12τ0 is set equal to 1
c σ̂λ and τ1 = cσ̂λ where σ̂2

λ is an estimate of the variance of λ based on maximum
likelihood estimates of the model parameters. c is set to 100.
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The vector of parameters to be estimated for modelM1 is given by Θ =
(
φQ, kQ,Σ, σ2

e , λ, γ
)
.

The conditional posteriors for φQ, kQ,Σ, σ2
e remain unchanged from the ones described in

steps 2-4 of the algorithm for model M0. As shown in George and McCulloch (1993), the

conditional posterior for γ is Bernoulli. Given a draw of γ, the prior for λ is specified as

described above. Bauer (2018) shows that the conditional posterior for λ is normal and

derives the mean and the variance.

4.1.3 Model M2

The estimation of model M2 differs from that of the maximally flexible specification again

only in step 1. Specifically, it differs in terms of the prior used for the VAR parameters

β ′ = vec (μ,Φ)′. We assume the following prior for β: N (βb, Vb), where βb denotes the

bootstrap bias corrected estimator of the VAR coefficients used by Bauer et al. (2012). The

covariance Vb is a diagonal matrix with elements on the main diagonal set to 1e − 04.

Therefore, this prior reflects a very strong belief that the VAR coefficients are close to the

bias corrected estimates. The rest of the steps of the MCMC algorithm are identical to the

ones used for model M0.

4.2 Data for estimation of the ATSMs

We estimate the models using both monthly and daily data for yields at maturities of 1, 3

and 6 months and 1 through 10 years. That is, thirteen maturities in total. We use both

frequencies for robustness. Monthly data conform in terms of frequency to the macro model,

and are commonly used in the ATSM literature, while daily data are closer to the intra-day

decompositions. The data at maturities of one year and above are obtained from the Federal

Reserve Board database on the nominal yield curve (the Gürkaynak-Sack-Wright data set),

with rates at shorter maturities taken from the FRED database. The sample runs from

January 1990 to December 2008.
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5 Results

This section consists of three parts. First, we present key results for the three models

estimated using monthly and daily data, respectively. The purpose of inspecting these results

is to gauge the effects of imposing the restrictions on the ATSM and to determine whether

the estimated models display reasonable properties. Second, we use the estimated models to

decompose movements in the yield curve around FOMC announcements into term premia

and interest rate expectations. And third, we use the intra-day yield curve components as

instruments in a local projection model to study the dynamic effects of monetary policy

shocks thus identified on selected macro variables.

5.1 Estimated ATSMs

All models display a good fit to the data with root mean squared errors that are below 5

basis points. The estimates of the P and Q parameters, and the implied λ’s, are shown in

Tables 1-3 of the Appendix.

5.1.1 Persistence and volatility

Figure 2 shows the estimated posterior distributions of the largest eigenvalues of ΦQ and Φ

obtained from the three monthly models. The top panel of the figure shows that under the

Q-measure, the three models have a very similar profile in terms of persistence. This, of

course, is expected as the estimates are based on the same cross-sectional information and

the partial likelihoods for the Q-measure differ across the models only in terms of Σ. The

results, however, are very different for the eigenvalues under the P-measure. The bottom

panel of the figure shows that the maximally flexible specification has the lowest persistence

under the P-measure. The median estimate of the highest eigenvalue for this model is 0.9827

with a 68% error band of 0.9685 and 0.9937. In contrast, the posterior estimates for the

restricted models M1 and M2 are shifted to the right. The median estimate of the maximum

eigenvalue for model M1 is 0.9925 with an error band of (0.9784, 0.9970). The estimates
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for model M2 are more precise, with the median and error bands given by 0.9961 and

(0.9923, 0.9987), respectively. Thus, restrictions on risk prices or statistical bias correction

lead to a substantial increase in persistence. To illustrate this, take the median values to the

power of 120 to derive their effect on excepted interest rates ten years ahead. This exercise

results in 0.12, 0.41, and 0.63 percentage point increase in the nominal short rate in ten-years

time for the three models respectively, for one percentage point increase in the current short

rate.

Figure 3 tries to assess more formally the consequences of the differences in persistence

under the P-measure on the volatility of the two main components of yields. The term

premium is calculated as the difference between the fitted yield Ŷt and the forecast of the

average short rate over the relevant horizon, based on the VAR parameters under the P-

measure. Note that the latter represents the expectations component of yields. We focus

on the 10-year yield. The top panel of Figure 3 plots the posterior distribution of the

unconditional standard deviation of the term premium for the three models, while the bottom

of the figure shows the posterior distribution for the expectations component (as the two

components may be correlated, the respective volatilities do not necessarily add up to the

volatility of yields). The figure shows that the term premium from the maximally flexible

model is the most volatile when compared with the alternative specifications. In contrast,

models M1 and M2 produce a more volatile expectations component than the unrestricted

model.13

Figure 4 presents the measure of persistence for the estimated daily models.14 There

are two features of these results that distinguish them from the monthly estimates. First,

the largest eigenvalue under the P-measure is higher than in the monthly estimates, with

the posterior median estimated to be 0.9992 for all three models. This, of course, is not

13The charts seem to suggest that the standard deviation may be negative. This, however, is just an
artefact of the kernel density used to approximate the distribution.

14The headline specification of the daily model contains only one lag of the risk factors in the state space.
This is theoretically consistent with the framework outlined in Section 3 under spanning (see Duffee, 2012).
Nevertheless, to allow for the possibility that all relevant information is not reflected in bond prices on the
same day, we also estimated the model with up to 21 lags (one month), with AIC criterion picking up 12
lags. This turned out not to affect the persistence of the models.
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surprising, as the daily models are estimated on data sampled at a higher frequency than

the monthly counterparts. When converted to monthly frequency, the persistence is similar

to that of the unrestricted monthly model M0.
15 Second, restrictions on risk prices and bias

correction do not affect the results substantially. One consequence of this result is that the

properties of the components of yields do not vary much across the daily models, as demon-

strated in Figure 5.16 Nevertheless, comparing Figures 3 and 5, we see that the expectations

component in all three daily models is more volatile than in the unrestricted monthly model.

This occurs despite the aforementioned similarity of the P-measure persistence between the

daily models and the unrestricted monthly model. It is due to a change in the estimated

correlation between the term premium and the expectations component, when compared to

the unrestricted monthly model. Estimating the ATSM, with or without restrictions, on

daily data thus brings the volatility of the expectations component closer to the restricted

versions of the ATSM estimated on monthly data. It appears that daily time series data

contain information that makes the expectations component of yields more volatile than

what monthly time series data would imply.17

In sum, imposing restrictions on the monthly ATSM to correct for the small sample bias,

or estimating the ATSM on daily data, increases the volatility of the expectations component

above what a simple monthly VAR model would suggest.

15The implied eigenvalue at the monthly frequency can be obtained by raising the daily estimate to
the power of 21. The posterior median and error band of the implied monthly eigenvalue are 0.983 and
(0.97, 0.993), respectively, and are essentially the same as those of the unrestricted monthly model. However,
relative to the unrestricted monthly model, the distribution of the estimates for the daily model is skewed
to the right (ie, towards higher persistence).

16One possible reason why the restrictions do not substantially affect the estimates of the P-measure is that
daily persistence is already quite high and any attempt to increase it, by subjecting the model to restrictions,
operates in a region of significant digits that make any numerical refinements difficult to achieve.

17The similarity of the estimates across the three versions of the daily model is not a general property of
daily models and depends on the sample period. For instance, when the daily model is estimated using data
starting in 1982 (that is, including the Volker disinflation period), the persistence under the P-measure is
estimated to be higher in the two restricted versions of the daily model than in the maximally flexible one.
Estimating an ATSM subject to restrictions thus seems, a-priori, a robust strategy even when the estimation
is based on daily data and ex-post the restrictions turn out not to bind in a given sample.
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5.1.2 The implied time series

The time series of the term premia and the expectations components for the 10-year yield

(based on the median posterior estimates of the parameters) are presented in Figures 6

and 7, for the monthly and daily models, respectively. The left panel of Figure 6 shows

that the estimated term premium from the monthly maximally flexible model has a clear

declining trend, falling from about 5 percent in early 1990s to around 1 percent at the

end of the sample. The term premia from models M1 and M2 are more stable across the

sample period. It is also apparent from the right panel of the figure that the expectations

component from models M1 and M2 shows variation over the sample that is larger than in

the unrestricted model. In all specifications, the correlation between the term premium and

the expectations component is positive, slightly above 0.5.

As noted above, whereas the persistence under the P-measure (when converted to monthly

frequency) in all three daily models is comparable to the persistence of the unrestricted

monthly model, the volatility of the expectations component in the three daily models is

closer to the volatility in the restricted monthly models M1 and M2. This finding shows up

also in Figure 7. The major swings in the expectations component—during the early 1990s,

the early 2000s and in 2008—are twice as large in the daily models as in the unrestricted

monthly model.

Figures 6 and 7 suggest that in the restricted monthly models M1 and M2, as well as

in the daily models, term premia are elevated during the NBER recessions (shaded areas),

whereas expected interest rates decline. To provide a better sense of this comovement, we

compute correlations of term premia and expected interest rates with the index of industrial

production, which we take as a monthly proxy for the business cycle.18

Focusing on the 10-year bond and the monthly models, Table 2 shows that the term

premium in both restricted monthly models exhibits a negative correlation with industrial

production, whereas in model M0 the correlation is essentially zero. The correlation coeffi-

18A number of theoretical models point towards countercyclical prices of risk; ie, high prices of risk in
downturns (eg, Campbell and Cochrane, 1999; Wachter, 2006; Atkeson and Kehoe, 2009).
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cient is more negative for model M1 than model M2, -0.33 vs. -0.17. In all three models,

the expectations component, in contrast, is positively correlated with industrial production.

For completeness, the table also includes correlations for the 3-month and the 10-year yields

and their spread. The 3-month yield is more strongly positively correlated with the business

cycle than the 10-year yield, with the spread exhibiting a strong negative correlation. These

statistics are thus consistent with the narrative suggesting a decline in nominal interest rates

and interest rate expectations in downturns, which are partially offset for long yields by an

increase in term premia. The restricted monthly models fit better this narrative, especially

model M1, whereas the unrestricted model fails to generate countercyclical term premia.

5.2 High-frequency decomposition

With the estimated ATSMs in hand, we turn to the first key question of the paper: Are yield

movements around FOMC meetings driven by changes in expectations or term premia? Note

that as we estimate both restricted and unrestricted ATSMs and use monthly and daily data,

we are also able to investigate how the small sample bias affects the decomposition. This

is an advantage over relying on simple VARs (eg, Gertler and Karadi, 2015) to decompose

yields into term premia and expectations.

5.2.1 Implementation

While the decomposition differs slightly across the monthly and daily models, in nutshell,

our procedure is based on feeding into the estimated models changes in the risk factors

observed in a narrow window around FOMC meetings and using the structure of the models

to decompose the changes in fitted yields into changes in term premia and the expectations

component.19 In what follows, the results are based on the median posterior estimates of

the parameters.

For the monthly ATSMs, the decomposition follows a simple procedure. Let ΔX̃t denote

19As our shortest maturity in the HF dataset is three months, all maturities used in the HF analysis are
determined in the market and thus reflect the market reaction to a policy announcement.
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the first four PCs obtained from the time series on the changes in yields in a tight window

around FOMC meetings (recall that the observed yields are recorded 10 minutes before and

20 minutes after the meeting and the data consist of maturities of 3 months, and 2, 3, 5,

and 10 years).20 The changes in term premia and expectations are then computed using

ΔX̃t and the estimated models in the usual way. In terms of the notation of Section 3, the

vector of changes in the expectations component, for the five maturities, is given by BPΔX̃t

and the vector of changes in term premia is given by (B − BP)ΔX̃t, where BP and B are

the estimated P- and Q-measure loadings given by (10) and (9), respectively. We also derive

ΔỸt = BΔX̃t, where ΔỸt is the change in the fitted HF yields.21

The decomposition using daily models proceeds in a similar manner, but is fine-tuned to

align the models more closely with the high frequency data. In particular, before carrying

out the decomposition, the daily models are re-estimated by replacing the observations on

the day before and on the day after a FOMC meeting with the high frequency data recorded

10 minutes before and 20 minutes after the meeting. The parameter estimates are then used

to calculate the loadings and decompose the changes in yields around FOMC meetings as

for the monthly models (the re-estimation has no effect on the findings reported in Section

5.1).

5.2.2 Findings

Figures 8 and 9 show the contributions of term premia and expectations components to

the changes in yields (for 3-month, 5- and 10-year bonds) around FOMC meetings in the

three monthly and daily models, respectively, together with the observed changes in yields.

Starting with the monthly models, Figure 8 shows that changes at the short end of the

20Given that the set of maturities in the HF dataset is only a subset of the maturities used to estimate
the models, one may wonder how different the estimated parameters of the ATSMs would be if only the
maturities of the HF dataset were used in the estimation. It turned out that the estimates are almost
identical. The maturities in the HF dataset thus seem to capture all of the main movements in the yield
curve over time.

21The root mean squared error of the fit of the models at the high frequency is about 3 to 4 basis points
across all models, comparable to their fit at the monthly and daily frequencies. The models, however, have
a hard time fitting well the largest HF changes at the shortest maturity, as is apparent from Figures 8 and
9 below.
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yield curve are largely explained in all three specifications by changes in the expectations

component. The figure further reveals that the maximally flexible model attributes the bulk

of the movement in yields at the 5- and 10-year horizon to the term premium component.

This matches the conclusions reached by Gertler and Karadi (2015), who show that the

responses of long-term rates to monetary policy surprises are almost completely due to a

reaction of term premia. However, once the small sample bias in the VAR parameters under

the P-measure is corrected (models M1 and M2), the resulting decomposition at the 5-

and 10-year horizons offers conclusions that are different. As is apparent from Figure 8, the

chunk of the light bars denoting the contribution of term premia that dominate the charts

for model M0 turn into a dark color, denoting the contribution of expectations, as we move

from model M0 to models M1 and M2. Imposing restrictions on risk prices or correcting

the statistical bias thus prescribes a more important role to the expectations component in

accounting for the movement of interest rates at medium and long horizons. Using daily

data has a similar, though not as strong, effect, as emerges from Figure 9. All daily models

have higher volatility of the expectations component at the 5- and 10-year horizon, relative

to the unrestricted monthly model.

Figure 10 provides a summary of the properties of the time series plotted in Figures 8

and 9. It plots the volatility curve of the HF changes in the two components. Figure 10

clearly demonstrates that imposing restrictions on estimation, as well as using daily data,

substantially increases the reaction of expected future interest rates to FOMC announce-

ments. In the restricted monthly models M1 and M2, the volatility of the change in the

expectations component at the 10-year horizon is as large as the volatility of term premia,

and about twice as large as in the unrestricted model M0. In the daily models, while term

premia are more volatile than expectations, the volatility of expected interest rates at the

10-year horizon is again about twice as large as in the unrestricted monthly model. These

findings demonstrate that a simple VAR can severely underestimate the effects of monetary

policy surprises on expected interest rates.
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Note that the plotted volatilities in the two components of the yield curve in Figure

10 do not represent a variance decomposition. Any of the risk factors contained in ΔX̃t

can potentially move both term premia and expectations. Term premia and expectations

can thus be correlated. The solid line at the bottom of the charts in Figure 10 plots the

correlation at a given maturity. We note here that, in the HF movements, only the monthly

modelM1 exhibits a positive correlation between the two components at the 10-year horizon,

of around 0.5, which is about the same as the correlation in all the models at their respective

either monthly or daily frequencies.

5.2.3 Potential interpretations

While it is beyond the scope of the paper to provide an economic model to justify the findings

from a theoretical perspective, it is worth asking if the results can be, in any way, informative

about possible mechanisms at play. To this end, we first carry out a PC decomposition of the

change in yields around FOMCs. As in Gürkaynak et al. (2005a), we find that HF monetary

policy surprises are two dimensional. Two PCs explain the bulk of the variation in the

change in yields across maturities in the FOMC window, with contributions of 85 and 11

percent, respectively. With the ATSMs in hand, however, we can go further and ask about

the dimensionality of the HF changes in the two components of yields, term premia and

interest rate expectations. The broad picture that emerges across the various specifications

of the ATSM is that the HF change in interest rate expectations is two-dimensional, with

its first and second PCs explaining 83-90 percent and 10-17 percent, respectively. The HF

change in term premia, in contrast, has a first PC accounting for up to 99 percent of its

variation, depending on the model.

The loadings of the PCs of expectations and term premia for the different maturities are

presented in Figure 11. They are broadly consistent across the different models. An inter-

esting feature of the loadings for interest rate expectations is that the patterns are consistent

with theoretical responses of nominal interest rates to certain monetary policy shocks.22 The

22Under rational expectations, the dynamic impulse-responses should correspond to the expectations em-
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pattern for the first PC (the upper left chart) resembles responses to a persistent shock in-

ducing a shift in inflation expectations (along the lines of the papers referred to by Ireland,

2007), or an information shock about the long-term real rate, as in Nakamura and Steinsson

(2018). The pattern for the second PC (the upper right chart) resembles responses to the

standard temporary monetary policy shock in New-Keynesian models (eg, Gaĺı, 2015), albeit

with not so well anchored long-term inflation expectations along the lines of Gürkaynak et al.

(2005b), accounting for the negative loadings at the medium and long end. The loadings of

the first PC of term premia, unsurprisingly, increase with maturity.

The patterns in Figure 11 can help us interpret the basic correlations in the HF change in

yields reported in Table 1. Based on the patterns in Figure 11, the high correlations across

medium and long rates in Table 1 can occur due to both the first PC of the expectations

component and the first PC of term premia. The pattern for the second PC of expectations,

producing a negative correlation between the short and medium to long end, is then respon-

sible for the weaker correlation in Table 1 between the short rate on the one hand and the

medium and long rates on the other.

5.3 Local projections

To estimate the impact of policy shocks on macroeconomic variables of interest, we use

Bayesian local projections (BLP) introduced by Miranda-Agrippino and Ricco (2015). As

in Jordà (2005), the model is

Zt+h = c(h) +B
(h)
1 Zt +

P∑
j=1

b
(h)
j Zt−j + vt+h, (12)

where Zt denotes the M variables of interest, h is the impulse-response horizon and vt+h

denotes residuals that represent combination of forecast errors and, therefore, are serially

correlated and heteroscedastic. The impulse-response to the shock of interest at horizon h

can be calculated as B
(h)
1 A0, where A0 denotes the contemporaneous impact matrix. As

bedded in the yield curve.
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discussed below, the column of the A0 matrix corresponding to the shock of interest is

estimated using instruments based on the high-frequency change in the components of yields

identified above.

Relative to VARs, the main advantage of local projections (LP) is that they are not

subject to biases that may arise if the VAR model is misspecified or subject to a severe

small sample bias, as in the case of interest rates. By using LPs, we mitigate these concerns.

However, LPs are likely to be less efficient than VARs. This is due to the non-spherical

nature of vt+h and because of the fact that LPs involve an estimation of a large number of

coefficients. We address this bias vs. variance trade-off by following the Bayesian approach

of Miranda-Agrippino and Ricco (2015) and use prior information to reduce the variance of

the estimates. To elicit priors for the coefficients of the LP, Miranda-Agrippino and Ricco

(2015) exploit the fact that there is a mapping between the impulse-responses at horizon h

obtained using a LP and those obtained from a VAR iterated forward h periods. This is done

by using the implied VAR coefficients at horizon h as the mean of their prior. The tightness

of the prior is set in an optimal manner by maximising model fit and penalising overfitting

(see Giannone, Lenza, and Primiceri, 2015). Miranda-Agrippino and Ricco (2015) derive the

posterior distributions of the parameters of the BLP and provide a Gibbs sampling algorithm

to approximate the posterior distributions.23

As discussed by Miranda-Agrippino and Ricco (2015), the contemporaneous impulse-

response in LPs and VARs is equivalent and the A0 matrix can be estimated using standard

structural VAR (SVAR) methods.24 We use an external instruments or ‘Proxy’ SVAR to

calculate the A0 matrix. Introduced by Mertens and Ravn (2013), the approach differs from

standard SVARs, where the A0 matrix is estimated by placing restrictions on the impulse-

responses at various horizons. Instead, a Proxy SVAR exploits variation in an instrumental

variable that is external to the VAR to isolate the portion of the VAR residuals that are

associated with the shock of interest. More formally, we assume that the instrument mt is

23We use a modified version of the Matlab codes provided by Silvia Miranda-Agrippino on her web page
(http://silviamirandaagrippino.com/code-data).

24The estimation of the A0 matrix is not subject to the problems with VARs noted above.
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relevant and exogenous:

cov (mt, U1t) = α and cov (mt, U−) = 0, (13)

where U1t denotes the structural shock of interest, α �= 0 and U− are the remaining structural

shocks. Let Et denote the reduced-form residuals of a VAR estimated using Zt and note that

Et = A0Ut = A0,1U1t + A0,(−)U−, where Ut is the matrix of structural shocks, A0,1 denotes

the column of interest of the A0 matrix, with the remaining columns denoted by A0,(−). The

choice of the first column of the matrix A0 is without loss of generality. Using this relationship

and the assumptions in equation (13), the covariance between the VAR residuals and the

instrument can be written as

cov (mt, Et) = cov
[
mt,

(
A0,1U1t + A0,(−)U−

)]
= A0,1α. (14)

With an estimate of the covariance cov (mt, Et) in hand, equation (14) can be re-arranged to

calculate a normalised version of A0,1. In other words, for the jth residual: cov(mt, Ej,t) =

A
(j)
0,1α, where A

(j)
0,1 is the jth element of A0,1. Taking the ratio of the covariance of mt and

Ej,t and the covariance of mt and E1,t eliminates α, an unknown, from the right-hand side

of equation (14) and provides an estimate of the normalised elements of A0,1

A
(j)
0,1

A
(1)
0,1

=
cov(mt, Ej,t)

cov(mt, E1,t)
, j = 2, 3, ..M. (15)

5.3.1 Variables and instruments

In the BLP model, the control variables Z include 12 lags of the following variables: the log

of industrial production, the log of CPI, the excess bond premium (Gilchrist and Zakraǰsek,

2012), and the first two PCs of yields that were used as risk factors in the estimation of the

ATSMs.25 The first three variables are standard in the empirical macro literature. The two

25The excess bond premium is the component of the spread between an index of rates of return on corporate
securities and a similar maturity government bond rate that is left after the component due to default risk
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PCs are included in order to account for information in the yield curve (they account for

99% of the variation in yields across maturities). The first PC loads positively on yields at

all maturities and thus shifts the level of the yield curve (level factor). The second PC has

positive loadings on yields at maturities of 2 years and less but loads negatively at the longer

end of the curve (the negative of the slope factor). In addition to these benchmark series,

we consider responses of housing market variables: the 30-year mortgage rate, the log of

new single-family home sales, and the log of real house prices. We include housing variables

in the analysis as housing is heavily mortgage dependent and thus should be particularly

sensitive to changes in the yield curve.26 The BLP models are estimated on the monthly

sample 1990-2007, which is typical for models that do not consider unconventional monetary

policies. As in Miranda-Agrippino and Ricco (2015), the prior distributions are set using a

training sample, which spans the period 1982-1989.

We consider three instruments to identify monetary policy shocks. The first two instru-

ments are the first two PCs of the expectations component of the HF yield changes around

FOMC meetings. As shown in Figure 11, these PCs represent very different combinations of

expected yields across maturities. The first PC (m1t) affects expectations at all maturities

with the same sign and resembles a level factor of expectations. In contrast, the second PC

(m2t) loads positively on the 3-month maturity and negatively on other maturities. It thus

resembles the negative of a slope factor of expectations. The third instrument (m3t) that

we consider is the first PC of the HF change in term premia. It appears from Figure 11

that at least some of the information provided by this instrument may overlap with m2t.

The pattern of the loadings on m3t matches those associated with the second PC of expec-

tations (m2t), albeit with the opposite sign. However, the magnitude of the loadings on m3t

is smaller at short maturities and larger towards the long end. This implies a correlation

between m2t and m3t that is fairly small (−0.08). The findings reported below are based on

is removed. It is typically interpreted as a measure of credit market conditions in the non-farm business
sector.

26Except the excess bond premium and the PCs of yields, the data come from either FRED or Haver.
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the instruments extracted from model M1.
27

These instruments generalise the proxies for monetary policy shocks employed in pre-

vious studies. For instance, Gertler and Karadi (2015) identify monetary policy shocks by

using the change in a single interest rate around FOMC meetings. In contrast, we exploit

the entire term structure of interest rates. Our approach is closer to the seminal work of

Gürkaynak et al. (2005a) who show that FOMC announcements are adequately described

by two factors obtained from the cross-section of high frequency yields. These factors have

been used in a number of papers to identify conventional and unconventional monetary policy

shocks (see Ferreira, 2020; Lakdawala, 2019). However, we go beyond this approach and use

the ATSMs to decompose the HF changes in the yield curve into various components of term

premia and interest rate expectations. Such decomposition provides sharper implications for

economic models than instruments that bundle the different components together.

5.3.2 Findings

Figures 12-14 report the responses from the local projection model to monetary policy shocks

identified by the three instruments, m1t, m2t and m3t, respectively. The figures plot the

median response and the 90 percent error band.28 In each case, the shock is scaled to

increase the negative of the slope factor by 1 percent on impact. This implies a rise in short-

term interest rates on impact. We choose this normalisation as it fits the common notion of a

policy shock and is a natural normalisation for the interpretation of the responses identified

by instruments m2t and m3t. The horizon for the responses in the figures is 36 months.

While it is beyond the scope of the paper to provide an economic model to justify the

27Given the similar patterns across the models in Figure 11, the impulse-responses are not particularly
sensitive to which model is used to obtain the instruments from, as confirmed by sensitivity analysis. Only
the responses of home sales show some quantitative differences across the models, however without affecting
the overall message.

28Mertens and Ravn (2013) propose a reliability statistic to check the strength of instruments in a proxy
SVAR setting. This statistic can be interpreted as the squared correlation between the instrument and the
structural shock of interest and is constrained to lie between 0 and 1. The estimated reliability for m1t is
0.15 with a 90 percent error band of (0.1, 0.19). The median reliability estimate for m3t is 0.12 with an error
band of (0.1, 0.14) . The reliability of m2t is slightly lower with a point estimate of 0.1 and an error band of
(0.06, 0.11). These values are comparable to those for the instruments used by Caldara and Herbst (2019),
who also employ a Bayesian approach.
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findings from a theoretical perspective, the impulse-responses appear to broadly fit the nar-

rative of existing theories. First, consider the responses to the shock identified by m1t. Recall

from Figure 11 that m1t is characterized by an increase, around FOMCs, in interest rate ex-

pectations across maturities, accounting for up to 90 percent of their movement. In Figure

12, the shock identified by this instrument leads to an increase in the level factor of yields,

implying that interest rates rise across maturities. CPI increases and stays positive over the

horizon considered. The upward trajectory of the median CPI response suggests that annual

inflation increases persistently in response to this shock. The shock is thus at least partially

characterised by a Fisher-type effect. Industrial production persistently declines. The in-

crease in the level factor is reflected by a similar increase in the 30-year mortgage rate.29 The

black dotted line in the chart for the mortgage rate shows that at least half of the response

of this long-term interest rate is due to an increase in interest rate expectations (implied by

the ATSM M1). The response of new home sales and real house prices essentially tracks the

response of the mortgage rate, but with the opposite sign. That is, housing market activity

declines.

In relation to the pattern of the loadings for the instrument m1 in Figure 11 we have

noted that the pattern is suggestive of a policy surprise along the lines of both, a shock

inducing a change in inflation expectations (eg, Ireland, 2007) or a positive signal about the

future state of the economy, which gets reflected in a persistent increase in the real rate

(eg, Nakamura and Steinsson, 2018). While the shock identified by m1 can be interpreted as

partially reflecting a persistent increase in the real rate, the persistent decline of industrial

production is inconsistent with a revelation of a positive news about future economic growth,

as in the model of Nakamura and Steinsson (2018).30 It appears that this shock depresses

the housing market by increasing the mortgage rate, with the reduced activity in the housing

market possibly spilling over into the rest of the economy. The response of the mortgage

29The response of the 10-year yield is almost identical to that of the mortgage rate in all impulse-responses
considered.

30Interestingly, industrial production weakly increases when, instead of m1, we use as an instrument the
HF change in the first PC of yields. The first PC of yields, however, bundles together both expectations and
term premia.
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rate and the housing market variables is consistent with the price effect in the model of

Garriga, Kydland, and Šustek (2017), regardless of whether the shock identified by m1 is a

pure policy shock associated with a Fisher-type effect or reflects a persistent change in the

real rate. The findings regarding the responses of the mortgage rate, and the accompanying

decline in housing market activity, are also supportive of the conclusions reached by Hamilton

(2008), who stresses the important role of interest rate expectations and the housing market

in the transmission of US monetary policy.

Turning to the instruments m2t and m3t, recall from Figure 11 that both instruments are

associated with a HF change in the slope of the yield curve, though for different reasons. The

instrument m2t is related to a HF change in expectations (accounting for up to 17 percent of

their movement), whereas m3t is related to a HF change in term premia (accounting for up

to 99 percent of their movement). The policy shocks identified by these instruments generate

similar responses of some variables, as is apparent from Figures 13 and 14. Specifically, of the

level and slope factors, inflation, and industrial production. In response to both shocks, the

level of the yield curve declines, the slope changes whereby the short rate increases while the

long rate declines, and both CPI and industrial production decline (the latter temporarily).

However, the two shocks markedly differ in their effects on the excess bond premium and the

source of the decline in the mortgage rate (the shocks also have a different effect on house

prices). In particular, the shock identified by m2t is associated with a small decline in the

excess bond premium, whereas the shock identified by m3t is associated with a sharp increase

in this variable. Further, in the former case the mortgage rate declines predominantly due

to a decline in interest rate expectations (the black dotted line), whereas in the latter case

the decline is due to term premia (the blue dashed line). Thus, while the outcome for output

and inflation is similar, the two shocks appear to propagate through different mechanisms.

The responses to the shock identified by m2 seem to fit the narrative of a New-Keynesian

mechanism, albeit with not well anchored inflation expectations (Gürkaynak et al., 2005a).

According to this mechanism, a temporary surprise increase in the short rate convinces the
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market that the Fed is more serious about inflation than previously thought, thus reducing

long-term interest rates due to a Fisher effect.31 The temporary decline in industrial pro-

duction and prices fits the standard New-Keynesian channel (eg, Gaĺı, 2015). This channel,

however, appears to be somewhat muted by the increase in housing market activity, resulting

from the decline in the mortgage rate.

The responses to the shock identified by m3, in contrast, are suggestive of a financial ac-

celerator mechanism (Bernanke, Gertler, and Gilchrist, 1999). The worsening of conditions

in the market for business credit, captured by the sharp rise in the excess bond premium,

leads to a decline in output and prices. An interesting additional feature of the impulse-

responses, however, is a decline in the mortgage rate, most of which is due to a decline in

term premia. The shock identified by m3 thus appears to reduce the cost of credit to house-

holds, while making accessing credit harder for firms. The latter seems to have a dominant

effect on output in the short run.

6 Conclusions

This paper investigates the relative importance of expected future interest rates and term

premia in the transmission of monetary policy. To this end, we adopt a two-stage procedure.

First, we decompose high-frequency movements in the yield curve around FOMC meetings

into the two components. Unlike existing work on the topic, we carry out this decomposition

using term structure models that correct for a small sample bias in the estimates of the two

components inherent in time series data. Earlier studies that are subject to this problem

have found that the transmission of monetary policy occurs almost exclusively through term

premia. We find that once the small sample bias is accounted for, the reaction of expected

interest rates to policy surprises is as large as that of term premia.

Second, we decompose the high-frequency reaction of expected interest rates and term

31Some other work (eg, Coibion, Gorodnichenko, Kumar, and Pedemonte, 2020), however, suggests that
inflation expectations are not particularly sensitive to monetary policy, especially in a low inflation environ-
ment.
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premia across maturities into their respective principal components. We find that almost

all of the reaction of expected interest rates to FOMC announcements is summarised by

two principal components, whereas only one principal component is sufficient to capture the

bulk of the reaction of term premia. The first principal component of expected interest rates

rises all interest rates across maturities, whereas the second principal component of expected

interest rates, as well as the first principal component of term premia, changes the slope of

the yield curve. The principal components are then used as instruments to identify three

types of monetary policy disturbances in a local projection model of selected macroeconomic

variables. These instruments generalise the proxies for monetary policy shocks employed in

previous studies, which are typically based on a single maturity.

The first principal component of the change in expected interest rates identifies a mon-

etary policy shock that fits the predictions of models with a role for housing finance. This

shock is associated with a persistent increase in the price level, expected interest rates and

the 30-year mortgage rate and a decline in housing market activity and output. The shock

identified using the first principal component of high-frequency movements in term premia

leads to a fall in output and the price level and a sharp rise in credit spreads, suggesting a

financial accelerator type effect. The second principal component of expected interest rates

identifies a shock that has similar effects on output and the price level as the shock identi-

fied by the term premium component, but appears to be transmitted differently, fitting the

standard narrative of New-Keynesian models.

Our analysis has been carried out on the sample preceding the 2008 global financial

crisis and the subsequent zero lower bound and unconventional monetary policies. The find-

ings thus characterise the transmission mechanism in a conventional setting. The analysis

could be extended to the subsequent period, when the policy interest rates approached the

zero lower bound and the Federal Reserve launched the policy of quantitative easing (QE).

However, to adequately account for the zero lower bound, the term structure model would

need to depart from the convenient affine representation, as, for example, in Wu and Xia
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(2016). Extending the analysis to cover the QE period would enable us to separate QE-

related term premia surprises from the implied policy rate (“forward guidance”) surprises.

Swanson (forthcoming) is a recent contribution in this direction. This should improve our

understanding of the unconventional monetary policy effects and their interplay with con-

ventional monetary policy channels. We see such extensions as a promising avenue for future

research.
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Jordà, O., March 2005. Estimation and inference of impulse responses by local projections.
American Economic Review 95 (1), 161–182.

Joslin, S., Priebsch, M., Singleton, K. J., 2014. Risk premiums in dynamic term structure
models with unspanned macro factors. Journal of Finance LXIX, 1197–1233.

Joslin, S., Singleton, K. J., Zhu, H., 2011. A new perspective on gaussian dynamic term
structure models. Review of Financial Studies 24, 926–970.

Kendall, M. G., 1954. A note on bias in estimation of autocorrelation. Biometrica 41, 403–
404.

Kim, D. H., Orphanides, A., 2012. Term structure estimation with survey data on interest
rate forecasts. Journal of Financial and Quantitative Analysis 47, 241–272.

Kuttner, K. N., 2001. Monetary policy surprises and interest rates: Evidence from the fed
funds futures market. Journal of Monetary Economics 47, 523–44.

Lakdawala, A., 2019. Decomposing the effects of monetary policy using an external instru-
ments SVAR. Journal of Applied Econometrics 34, 934–950.

Mertens, K., Ravn, M. O., 2013. The dynamic effects of personal and corporate income tax
changes in the United States. American Economic Review 103, 1212–47.

Miranda-Agrippino, S., 2016. Unsurprising Shocks: Information, Premia, and the Monetary
Transmission. Working Paper 626, Bank of England.

Miranda-Agrippino, S., Ricco, G., Sep. 2015. The Transmission of Monetary Policy Shocks.
Discussion Papers 1711, Centre for Macroeconomics.

Nakamura, E., Steinsson, J., 2018. High-frequency identification of monetary non-neutrality:
The information effect. Quarterly Journal of Economics 133, 1283–1330.

Nicholls, D. F., Pope, A. L., 1988. Bias in the estimation of multivariate autoregressions.
Australian and New Zealand Journal of Statistics 30, 296–309.

38



Piazzesi, M., 2006. Affine term structure models. In: Ait-Sahalia, Y., Hansen, L. P. (Eds.),
Handbook of Financial Econometrics. Elsevier, Amsterdam.

Pierse, R. G., Snell, A. J., 1995. Temporal aggregation and the power of tests for a unit root.
Journal of Econometrics 65, 333–45.

Ramey, V. A., 2016. Macroeconomic shocks and their propagation. In: Taylor, J. B., Uhlig,
H. (Eds.), Handbook of Macroeconomics. Elsevier, Amsterdam.

Ravn, M. O., Uhlig, H., 2002. On adjusting the Hodrick-Prescott filter for the frequency of
observations. Review of Economics and Statistics 84, 371–76.

Romer, C. D., Romer, D. H., 2004. A new measure of monetary shocks: Derivation and
implications. American Economic Review 94, 1055–1084.

Shaman, P., Stine, R. A., 1988. The bias of autoregressive coefficient estimators. Journal of
the American Statistical Association 83, 842–48.

Swanson, E., forthcoming. Measuring the effects of Federal Reserve forward guidance and
asset purchases on financial markets. Journal of Monetary Economics.

Wachter, J., 2006. A consumption based model of the term structure of interest rates. Journal
of Financial Economics 79, 365–99.

Wu, J. C., Xia, F. D., 2016. Measuring the macroeconomic impact of monetary policy at the
zero lower bound. Journal of Money, Credit and Banking 48, 253–91.

39



Table 1: Effect of FOMC announcements on yields across maturities

3-month 2-year 3-year 5-year 10-year

Average response, bps -1.1 -1 -1 -0.5 -0.3
Minimum, bps -48 -22 -23 -16 -16
Maximum, bps 13 19 21 19 13
St. Deviation 6.8 5.9 6 5.2 4.3

Correlations

3-month 1 0.56 0.49 0.42 0.32
2-year 1 0.92 0.93 0.86
3-year 1 0.92 0.88
5-year 1 0.92

Note: The sample is from January 1996 to October 2007.
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Table 2: Business cycle properties, 10-year bond

Correlation with industrial production

Term premia Expectations Yields
M0 M1 M2 M0 M1 M2 3M 10YR spread
0.04 -0.33 -0.17 0.46 0.50 0.41 0.65 0.31 -0.60

Notes: The table is for the monthly model. The correlations are based

on all series being filtered with the HP-filter, adjusted for monthly

frequency as proposed by Ravn and Uhlig (2002). This is to remove

apparent trends in the sample period. The comovement with in-

dustrial production is reported for the average correlation across the

contemporaneous correlation and leads and lags up to three months,

in order to take into account any potential cyclical phase shifts in the

data.
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Figure 1: Yield changes around FOMC announcements across maturities.
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Figure 3: Monthly model: posterior distribution of unconditional volatility of the
term premium and the expectations component of the 10-year yield.
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Figure 4: Daily model: posterior distribution of persistence (largest eigenvalue).
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Figure 5: Daily model: posterior distribution of unconditional volatility of the term
premium and the expectations component of the 10-year yield.

44



Figure 6: Monthly model: historical decomposition of the 10-year yield.

Figure 7: Daily model: historical decomposition of the 10-year yield.

45



F
ig
u
re

8:
D
ec
om

p
os
it
io
n
of

th
e
ch
an

ge
in

in
tr
a-
d
ay

y
ie
ld
s
ob

se
rv
ed

b
ef
or
e
an

d
af
te
r
F
O
M
C

m
ee
ti
n
gs
.

B
as
ed

on
es
ti
m
at
ed

m
on

th
ly

A
T
S
M
s.

Y
el
lo
w

b
ar
s
ar
e
fo
r
te
rm

p
re
m
ia
,
b
lu
e
b
ar
s
fo
r
th
e
ex
p
ec
ta
ti
on

s
co
m
p
on

en
ts
.
T
h
e
re
d

li
n
e
d
ep
ic
ts

th
e
ob

se
rv
ed

ch
an

ge
s
in

y
ie
ld
s.

T
h
e
u
n
it
s
ar
e
b
as
is
p
oi
n
ts
.

46



F
ig
u
re

9:
D
ec
om

p
os
it
io
n
of

th
e
ch
an

ge
in

in
tr
a-
d
ay

y
ie
ld
s
ob

se
rv
ed

b
ef
or
e
an

d
af
te
r
F
O
M
C

m
ee
ti
n
gs
.

B
as
ed

on
es
ti
m
at
ed

d
ai
ly

A
T
S
M
s.

Y
el
lo
w

b
ar
s
ar
e
fo
r
te
rm

p
re
m
ia
,
b
lu
e
b
ar
s
fo
r
th
e
ex
p
ec
ta
ti
on

s
co
m
p
on

en
ts
.
T
h
e
re
d
li
n
e

d
ep
ic
ts

th
e
ob

se
rv
ed

ch
an

ge
s
in

y
ie
ld
s.

T
h
e
u
n
it
s
ar
e
b
as
is
p
oi
n
ts
.

47



0 2 4 6 8 10

Maturities (years)

-1

0

1

2

3

4

5

S
T

D
 b

as
is

 p
oi

nt
s

M
0

0 2 4 6 8 10

Maturities (years)

-1

0

1

2

3

4

5

S
T

D
 b

as
is

 p
oi

nt
s

M
1

0 2 4 6 8 10

Maturities (years)

-1

0

1

2

3

4

5

S
T

D
 b

as
is

 p
oi

nt
s

M
2

0 2 4 6 8 10

Maturities (years)

-1

0

1

2

3

4

5

S
T

D
 b

as
is

 p
oi

nt
s

Daily models M
0
, M

1
,M

2

Figure 10: Volatility curve of the change in yield components around FOMC an-
nouncements. Solid line with markers: expectations. Dashed line: term premia.
Solid line without markers: correlation between the two components. Markers de-
note the available maturities at the high frequency. The shortest maturity is three
months. The results for the three daily models are almost identical. Therefore only
one chart is provided.
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Figure 11: PC decomposition of the change in the expectations component and the
term premium component around FOMC. The percentages denote the share of the
variance accounted for by a given PC in each model. Md stands for the daily model.
The patterns are almost identical across the three specifications of the daily model.
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