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Abstract

We examine robot-labour substitutions in manufacturing and some
other sectors in industrial countries. We show that the degree of sub-
stitution depends on demand and production elasticities. In multi-
country empirical work its sign and magnitude crucially depends on
a country’s innovation environment. Making use of World Economic
Forum data we estimate that countries with poor innovation capabili-
ties substitute robots for workers but countries with richer innovation
capabilities complement them. In non-manufacturing and transport
equipment robots and workers are stronger substitutes than in other
manufacturing. Our results can be rationalized by appeal to both firm
objectives and international trade.
Keywords. robots-employment substitution, innovation envirom-

nent, company objectives, industrial allocations
JEL classifications. J23, L6, L21, O33, O52

∗We thank Guy Michaels and Soo Hee Lee for commnets and the European Research
Council for financial support through its Advanced Grant Employment in Europe, based
at the University of Cyprus, 2013-2019 (FP7/2007-2013)/ ERC grant agreement n◦ 323940
ERC AdG 2012, Acronym: EUROEMP).

1



Extended abstract 

 

The price of self‐controlled industrial robots has fallen substantially in recent years, inducing a large 

increase in their use. This led many authors to investigate their impact on employment, with fears that 

robots are taking jobs away from workers. At first sight these fears appear justified. The vast majority 

of robot use is in manufacturing and manufacturing employment has been steadily falling for many 

years.  In  this  paper we  investigate  this  question with  data  from  fourteen  counties,  thirteen  from 

Europe and the United States. We focus mainly on manufacturing, although we also study three non‐

manufacturing sectors, agriculture, utilities and mining and quarrying. 

We find that there are two key parameters that determine whether robots take jobs from workers or 

whether  they  complement  labour;  the  elasticity  of  substitution  between  robots  and  humans  in 

production  and  the  elasticity  of  demand  for  the  final  products  produced  by  robots  and  labour 

combined. Simple estimates of the impact of robots on employment across industrial sectors do not 

show any consistent results. But when countries are distinguished by their innovation capabilities, as 

determined by  international organizations, we  find  robust  results. Countries with good  innovation 

capabilities, such as the United States, Germany and the Nordics, increase their employment when 

robots  are  introduced, whereas  countries with  poor  innovation  capabilities,  such  as  the  Southern 

Europeans, use robots to replace labour. There are differences across industrial sectors, such as more 

substitutability in non‐manufacturing and in the automotive sector than in electronics and elsewhere, 

but the overall message is clear. Robots are much friendlier to labour when the country has a good 

innovation environment than when it has a poor environment. 

We  speculate  about  the  reasons  for  this  divergence.  We  find  anecdotal  and  some  more  formal 

evidence  of  a  correlation  between  innovation  capabilities  and  stakeholder  objectives,  including 

employees’  interests.  Also,  the  introduction  of  robots  in  a  country  with  a  better  innovation 

environment would normally be associated with higher productivity growth and so with more exports. 

The association between  robot‐labour  substitution and  innovation capabilities  seems  to be  robust 

enough to justify more research into these links. 



1 Introduction

Recent advances in industrial robotics are making it possible to automate
many production processes, especially in manufacturing. The question about
their role in labour markets most frequently raised in the empirical literature
is whether the new technologies are taking jobs away from workers; more
formally, whether robots and human labour are substitutes or complements.
In this paper we investigate the role played by the institutional structures of
a country that are summarized in the country’s “national innovation system”
in the answer to this question.
A national innovation system is defined as the network of institutions,

such as universities, industrial research units and other technical and sci-
entific establishments, whose activities and interactions affect the rate and
direction of technological change in the economy. It includes the areas of the
economy that affect searching, exploring and learning, which are all critical
activities for the acquisition and generation of knowledge.1

We view the introduction of robots in production as the adoption of a new
capital good that might displace or complement labour, measured by hours
of work. We show that as in the pioneering work of Douglas North (1990),
or the more recent work by Daron Acemoglu and James Robinson (2012),
the impact of the new technology depends on the institutional structure of
the country. In estimates with data from fourteen industrial countries over
the period 2006-2016, we find that although when we omit the innovation
system of a country in our estimation the impact of robots on employment
at the industrial level is either zero or very small negative, once the national
innovation system is taken into account results change. Countries that rank
low in their national innovation system substitute robots for human labour
much more than countries that rank higher, which might even increase hours
in the sectors that introduce them.
We organize our thoughts around a model that consists of a robot-using

sector (essentially manufacturing) and a labour intensive one that does not
use robots (services). The driving force for the introduction of more robots
is the fall in their price, which is widely documented and which we take as
exogenous.2 Deriving the impact of such changes on industrial employment,

1Different aspects of this institutional structure are discussed by Christopher Freeman
(1987), Bengt-Ake Lundvall (1992), Richard Nelson (1993), Richard Nelson and Sydney
Winter (2002), the European Commission (2018) and the Organisation for Economic Co-
operation and Development (OECD, 1997 and 1999).

2See for example, International Federation of Robotics (IFR, 2017) and Georg Graetz
and Guy Michaels (2018). The underlying assumption is that the fall in the price of robots
is due to improvements in their production technology, which we do not include in the
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we find that if the production elasticity of substitution between labour and
robots is larger than the final-demand elasticity of substitution between man-
ufacturing and non-manufacturing goods, the introduction of robots reduces
hours in the robot-using sector, increasing them in the labour-intensive sec-
tor. At first sight this ranking is plausible, given what we know about robot
capabilities in production and the demand elasticity for manufacturing goods
(see below for more discussion).
There are two channels in which the innovation environment of a country

can reverse the elasticity ranking, and so imply complementarity between
robots and labour. The first concerns the elasticity of substitution between
labour and robots. Although technically robots can perform the tasks done
by labour, and so in principle there can be a high elasticity of substitu-
tion between them, several contributions in the management literature point
to complementarities between labour and robots (more generally, between
labour and new technologies based on digitalization). We postpone discus-
sion of this, with references, to section 3.
The second concerns the elasticity of substitution in the utility func-

tion, which underlies the price elasticity of demand for manufacturing goods.
A country with a better innovation system than another will have higher
manufacturing productivity, the sector that benefits most from innovation.
Although in a closed economy the elasticity of substitution between man-
ufacturing and non-manufacturing goods has been documented to be small
(below 1), which accounts for the productivity-growth explanation of the
decline of manufacturing employment and the growth of services (Rachel
L. Ngai and Christopher A. Pissarides, 2007, Daron Acemoglu and Veron-
ica Guerrieri, 2008), manufacturing goods account for most of international
trade. As Kiminory Matsuyama (2009) has shown, relatively faster produc-
tivity growth shifts the comparative advantage in the production of manufac-
tured goods in its favour. This has a positive impact on employment, which
mitigates the negative closed-economy effect.
The level at which we do our empirical work is closest to the paper by

Graetz and Michaels (2018) but we focus on a different question. Graetz
and Michaels focused on industrial productivity in a set of industries and
countries comparable to ours (although for a much earlier time period) and
examined the impact of robots on it by regressing the difference between the
2007 and 1993 productivity levels on robot density (the ratio of robots to
one million hours) and some other variables. They find a strong impact of
robots on productivity, something that our model requires, but when they
considered their impact on employment in an extension of their model they

model.
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found that robotics do not influence it, except for a small impact on low-skill
workers. We use annual observations beginning 2006, which give richer results
for employment, and show that taking into account the national innovation
system ties down a statistically strong impact of robots on employment.
Making use of a similar data set, Francesco Carbonero, Ekkehart Ernst

and Enzo Weber (2018) find a small negative impact on industrial sectors
in developed countries but a larger negative impact in emerging countries.
Their findings can be given an interpretation that is consistent with ours.
Emerging countries on average have poorer innovation structures than in-
dustrial countries, so they are more likely to use robots to substitute labour
without complementary job creation.3

We use country-industry data from the International Federation of Ro-
botics (IFR) and EU KLEMS to compute the number of robots per million
working hours in the production sectors of the United States and thirteen
European countries, between 2006 and 2016. In simple regressions of work-
ing hours on robot density (and some other variables) we find only a very
small negative and imprecise impact of robot density on hours of work in
manufacturing, and a stronger negative impact on the non-manufacturing
sectors, which are very small users of robots. We subsequently extract from
the World Economic Forum’s Global Competitiveness Report (Klaus Schwab,
2017, and earlier versions) country-level measures of “innovation capacity,”
and re-estimate the relation between robot density and hours worked, by
taking into account the impact of each country’s national innovation system
on the marginal effect of robots on hours. Our index of a country’s national
innovation system is the simple average of six scores for as many indicators:
the availability of scientists and engineers, collaborations between universi-
ties and industry in R&D, government procurement of technology products,
quality of scientific research institutions, company spending on R&D and
capacity for innovation. The individual scores are compiled by the World
Economic Forum from surveys of senior company executives.
Our results suggest that countries with a low value of the innovation

index are characterized by a negative impact of robots on hours of work. The
countries with the lowest index value in our sample are the three Southern
European and the one East European countries that are part of our sample,
and the ones with the highest index value are the nine Northern European
countries and the United States. In OLS regressions we find that the net

3Another set of studies consider the impact of robotics on employment across regions,
an issue that we do not address here. See Daron Acemoglu and Pasqual Retrepo (2020)
for a study of the impact of robots in US commuting zones and Francesco Chiacchio,
Georgios Petropoulos and Davis Pichler (2018) for local labour markets in the European
Union. Both sets of authors find large negative effects on local employment.
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elasticity of robot density on hours of work in Italy and Spain is about −0.07
whereas in Finland and the United Stares it is +0.04. The point at which
the sign of the net elasticity switches from negative to positive is close to the
average index value of the innovation index, with 5 of the 14 countries in our
sample, which have a mid-range index value, estimated to have statistically
insignificant elasticities.
These results are confirmed by two other indices of innovation perfor-

mance, theGlobal Innovation Index (Cornell University, INSEAD andWIPO,
2019) and the European Union’s Summary Innovation Index (European
Commission, 2019). They are also confirmed when we disaggregate our index
of innovation performance. Five of the six indicators that make up our index
give significant and comparable results when tested individually, so our re-
sults are not driven by outliers in the indicators or by the aggregation method.
We did a number of other robustness checks to our empirical estimates and
we also estimated using three different sets of instruments to remove any
biases due to the endogeneity of robot density, but the basic result of the
influence of the innovation environment on robot-labour substitution did not
change.
In these regressions all industries are restricted to have the same coef-

ficients on robot density. Allowing the estimation to assign different val-
ues to each industry coeffi cient reveals important differences between the
“low-tech”industries and the two classified as “high-tech”on the OECD de-
finition, as well as between manufacturing and non-manufacturing sectors.
Non-manufacturing sectors are less responsive to the innovation environment
of a country than manufacturing sectors are, to the extent that robots substi-
tute labour in all countries in our sample. Within manufacturing, electronics,
which are also producers of robots, are much more responsive to the innova-
tion environment of a country than other sectors, as we would expect. The
biggest user of robots, transport equipment, is less responsive and reduces
hours for each robot in all countries in the sample (although less so in the
more innovative countries). Finally, we show by decomposing our index into
its individual indicators, that although five of the six yield statistically sig-
nificant results on their own, the impact of the innovation environment is
more powerful when the six indicators are present together than when they
are introduced individually. This indicates complementarities between the
indicators that increase their impact when they are introduced together.
The rest of the paper is organized as follows. Section 2 describes our

model that is used to organize our thoughts. Section 3 defines the innovation
environment and discusses the channels by which it influences the robot-
labour substitution. In section 4 we discuss our data and in section 5 we
report our estimation results. Section 6 further tests the specification with a
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number of extensions and robustness checks.

2 A two-sector model with robots and labour

The objective of this section is to organize our empirical estimation by sug-
gesting the links between employment and robots. In section 3 we discuss
how these links are affected by a country’s national innovation system. The
empirical literature that calculates how many jobs robots could potentially
replace usually lists tasks and examines whether robots have the capability of
performing the tasks. The econometric literature has followed a similar ap-
proach and modelled the adoption of robots as the profit-maximizing choice
between humans and robots in the performance of a particular task.4

Here we follow a simpler and more conventional approach that brings
out the main linkages that our research emphasizes. Our results depend on
two elasticities, the elasticity of substitution of consumption goods in the
utility function and the elasticity of substitution between robots and labour
in the production function. The simplest model that illustrates our points
is one consisting of two sectors. Sector 1 produces a consumption good that
is tradeable and has a technology that can use both labour and robots and
sector 2 uses only labour as an input and produces a consumption good that
is not tradeable. We introduce a rudimentary foreign trade sector to illustrate
the differences that it might make to the domestic results. Sector 1 can be
identified with manufacturing, which is the sector that employs more than
99% of known robots. Sector 2 is the rest of the economy, which is dominated
by services. We derive the equilibrium of this economy under the assumption
that robots can be hired at a fixed and exogenous price ρ, expressed in wage
units. Of course, in the data robots are traded manufacturing outputs but
our static framework is not suited to the introduction of a robot production
sector.
We consider a one-period model with production functions,

y1 = A1

[
(1− β)H

(σ−1)/σ
1 + βR)(σ−1)/σ

]σ/(σ−1)
(1)

≡ A1z (2)

y2 = A2H2 (3)

4On the former, see the pioneering work of Carl Frey and Michael Osborne (2017)
and the many studies that followed, e.g., McKinsey Global Institute (2017), Ljubika
Nedelkoska, and Glenda Quintini (2018) and Cecily Josten and Grace Lordan (2020). On
empirical modelling see Daron Acemoglu and Pasquale Restrepo (2020) and Georg Graetz
and Guy Michaels (2018). A notable early exception using more conventional techniques
is Joseph Zeira (1998).
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where yi are outputs, Hi hours of work, R is the number of robots employed
by sector 1, Ai are productivity parameters and β is the robot intensity of
sector 1, 0 < β < 1.
Output prices are given by pi and they clear markets. There is free

movement of labour so there is a unique wage W which clears the labour
market. All agents are price and wage takers, so the maximization conditions
for the three inputs satisfy the marginal productivity conditions,

p1A1(1− β)

(
z

H1

)1/σ
= W, (4)

p1A1β
( z
R

)1/σ
= ρW, (5)

p2A2 = W. (6)

ρW in equation (5) is the (nominal) price of robots. The real (in wage units)
price ρ is the parameter that drives the results of the model. In particular,
we ask, what is the impact of a fall in ρ on equilibrium outcomes?
The domestic consumption levels of the two goods are given by c1 + c∗1

and c2, where c∗1 denotes imports of manufacturing goods purchased at price
p∗1. Consumer income is Y, which is equal to the sum of the value of outputs
of the two sectors. Domestic production of manufacturing goods is given by
c1+c∗∗1 , where c

∗∗
1 ≥ 0 denotes exports. The consumer maximization problem

is

max
c1,c∗1,c2

U (c) = ln c (7)

c =
[
ωc̃

(ε−1)/ε
1 + (1− ω)c

(ε−1)/ε
2

]ε/(ε−1)
(8)

c̃1 =
[
ψc

(η−1)/η
1 + (1− ψ)c

∗(η−1)/η
1

]η/(η−1)
(9)

2∑
i=1

pici + p∗1c
∗
1 ≤ Y. (10)

The idea behind the nesting of the utility function is that there is a different
elasticity of substitution between manufacturing and service goods, ε ≥ 0,
which is likely to be small, and a higher elasticity of substitution η ≥ 0
between manufacturing goods produced at home and abroad. We assume
0 < ω < 0 and 0 < ψ ≤ 1, allowing for the case of the closed economy when
ψ = 1.
Labour markets clear subject to the resource constraint,

2∑
i=1

Hi ≤ 1, (11)
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whereas output markets clear according to

c1 + c∗∗1 ≤ y1 (12)

c2 ≤ y2 (13)

Y = p1y1 + p2y2, (14)

given an exogenous demand for exports, c∗∗1 .

Definition Equilibrium is defined by an allocation for consumption goods
that satisfies the consumer maximization problem (7)-(10) and market clear-
ing conditions (12)-(14), subject to exogenous foreign prices p∗1 and demand
for exports c∗∗1 , a labour allocation that satisfies the profit-maximizing condi-
tions (4) and (6) and resource constraint (11), and a robot input that satisfies
the profit-maximizing condition (5) subject to an exogenous real price ρ, mea-
sured in wage units

We state here the main results of the model in the form of two propositions
and collect all derivations and proofs in the Appendix.

Proposition 1 Lower real robot price ρ raises the robot density of sector 1
(the ratio of robots to hours of work) and the productivity of sector 1 (y1/H1),
and lowers relative price (p1/p2). These results are independent of foreign
prices and exports so they hold in both closed and open economies.

The intuition behind these results is that lower robot price is equivalent
to a technological improvement that benefits the robot-using sector. In a
more complete model the lower price of robots would be due to technological
improvements in the robot-producing sector of the economy, so it is an ex-
ample of a technological improvement in an intermediate goods sector that
transfers to the firms that use the intermediate good (the robots) as an in-
put. The results of Proposition 1 have been the focus of the empirical work
of Graetz and Michaels (2018) and we will not test them further.

Proposition 2 In the closed economy lower robot price ρ raises hours of
work in the robot using sector if ε > σ, it has no impact on hours if ε = σ
and shifts hours from sector 1 to sector 2 if ε < σ. With international trade,
the condition ∂(p1/p

∗
1)/∂ρ ≤ 0 is suffi cient for two further results. First, for

given exports, lower robot price has a positive additional impact on hours in
the robot-using sector if η > ε, has no additional impact if η = ε and has a
negative additional impact if η < ε. Second, lower robot price has a further
positive impact on hours in sector 1 through a bigger volume of exports.
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The results for the closed economy are a generalization to a CES produc-
tion function of the results in the structural transformation literature. A fall
in the price of robots is a technological improvement in sector 1 that raises
its output, reduces its relative price and increases its relative demand with
elasticity ε. If the elasticity of demand is low (ε < σ) the rise in demand is
not enough to absorb the additional output so labour has to leave the sector
to restore equilibrium.
For the open economy the stated suffi cient condition is that the fall in

the price of robots deteriorates the country’s terms of trade. A mechanism
for this effect is that the country in question is able to use robots more
effectively to reduce the unit production cost of manufacturing goods than
its trading partners can. We are going to argue that this effect is likely
to obtain when the domestic country has a better innovation environment.
The terms of trade change makes domestic residents substitute domestic
goods for imports. If the rise in domestic demand due to this channel is
bigger than the general rise in domestic demand (η > ε) there is need of an
increase in hours in sector 1 over and above any closed-economy adjustments.
The property η > ε is easily justified in our model, as ε is the elasticity of
substitution between services and manufacturing, whereas η is the elasticity
of substitution between differentiated manufacturing goods.
Finally, by making the common terms-of-trade assumption of the open

economy literature, that a fall in the relative price of domestic to foreign
manufacturing leads to a rise in the demand for exports, we obtain another
positive influence on domestic manufacturing employment through an in-
crease in export demand.
It follows from Proposition 2 that the introduction of international trade

to a closed economy model introduces ambiguities about the direction of
employment change following the introduction of robots in production, that
parallel the impact of other more general technological improvements (Kimi-
nori Matsuyama, 2009). The closed economy result shows that robots do
not always “destroy jobs”. They do only when they are a suffi ciently good
substitute for labour (σ > ε). But in the structural transformation literature
the requirement of a small ε is needed and it is generally assumed, so on the
face of it the introduction of robots must reduce hours of work in manufac-
turing. For aggregates such as total manufacturing and services, a plausible
range for ε is 0 to 0.3 (see Rachel Ngai and Christopher Pissarides, 2008).
In the open economy the negative impact on manufacturing hours could be
reversed if the introduction of the robots reduces the domestic price by more
than the fall in the price in foreign countries. Of course, worldwide the closed
economy result holds and σ > ε is a suffi cient condition for the reduction of
global manufacturing employment.
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3 The innovation environment

Our model points to three elasticities of critical importance in signing the
impact of robots on employment, σ, ε and η.We now argue that the innova-
tion environment of a country will influence firms’responses to the robotics
technology through two channels. They respectively influence the elasticity
of substitution between robots and workers, σ, and the elasticity of demand
for manufacturing goods, which is a weighted average of ε, the low elasticity
of domestic demand, and η, the higher elasticity of foreign demand.
We summarize evidence here that supports these claims. The first is

related to company objectives beyond profit maximization; firms pay atten-
tion to other objectives as well, such as stakeholders’interests. We discuss
evidence that supports the claim that there is a connection between the in-
novation environment and these other objectives, which may lead firms to
choose production technologies that involve less substitution between robots
and labour. The second is related to international trade and exports of man-
ufactured goods. Countries with more innovation capabilities are likely to
have higher manufacturing productivity and export a higher fraction of their
output, other things equal. The overall demand elasticity for their manu-
facturing goods attaches more weight to the η elasticity and less to the ε
elasticity than in countries with lower innovation capabilities.
In order to discuss this evidence further, we first define more precisely our

concept of innovation environment and describe the data that we used to con-
struct our innovation index. We used the innovation capabilities pillar (no.
12) of the World Economic Forum’s Global Competitiveness Report, which
has been available in its current form since 2006. Up to the 2017-2018 Global
Competitiveness Report the innovation capabilities pillar was computed in
comparable format and it was the average of seven indicators: capacity for
innovation; quality of scientific research institutions; company spending on
R&D; university-industry collaboration in R&D; government procurement
of advanced technology products; the availability of scientists and engineers;
and patent applications (see Klaus Schwab, 2019, 323). The main input to
the index is the annual Executive Opinion Survey, which records the opin-
ions of business leaders about the indicators that make up the index, except
for patent applications. The first six indicators derived from the Survey are
based on the subjective responses of the business people and expressed as
scores on a scale of 1—7, with 7 being the most favourable (for innovations)
outcome. For patents the World Economic Forum takes the number of ap-
plications filed under the Patent Cooperation Treaty (PCT) and normalizes
it to a scale of 1-7 to align it with the results of the Executive Opinion Sur-
vey. The way of counting patents, however, changed during the years of the
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sample and it was not possible to go back and adjust the earlier numbers on
the basis of the new counting method. Partly because of this change, partly
because the patent indicator is based on a different collection method from
the other six, we computed our innovation index by excluding patents and
setting it equal to the average score of the first six indicators.5

Returning now to the properties summarized in Proposition 2, the task-
based literature shows that robots could do a lot of tasks that humans do,
so the elasticity of substitution σ is potentially very high. But it does not
necessarily follow that all employers will find it profitable to use robots in that
capacity; in particular that all employers will choose a production technology
with high σ. A large recent literature on corporate objectives argues that
companies have objectives beyond profit maximization. In particular that
they take into account stakeholders’objectives, including those of employees.
The case for maximizing shareholder value was most influentially put for-

ward by Milton Friedman (1962) in his book Capitalism and Freedom and
subsequently in a widely discussed article in the New York Times magazine.
More recently, it has been criticized as an inadequate objective by a large
management literature.6 Many quotes that confirm this change are found in
the literature. A recent example from a company that uses a large number
of robots in its operations is due to Amazon’s “chief robotics technologist,”
who told the British Broadcasting Corporation (BBC), in response to the
company’s expanding use of robots in its warehouses, “The way that I think
about this is a symphony of humans and machines working together, you need
both. The challenge that we have in front of us is how do we smartly design
our machines to extend human capability?”7 Another influential statement
was made by the Chairman and Chief Executive of Blackrock, the biggest
asset management company in the world, who in a letter in January 2018 to
the CEOs of the companies whose assets made up the Blackrock portfolio, he
urged them to “be deliberate and committed to embracing purpose and serv-
ing all stakeholders —your shareholders, customers, employees.”8 Concern for
employees as stakeholders is also observed in the regular survey of compa-

5We repeated all our regressions with the average value for pillar 12 given by the World
Economic Forum and results were comparable throughout, with small changes in point
estimates only. The disaggregated regression with patent numbers only, comparable to
those in Table 7 below, gave completely insignificant results.

6See New York Times Magazine, September 13,1970 for Friedman’s article and Ed-
ward Freeman (2010) for the stakeholder approach. For a more recent critique of
Friedman’s doctrine see Colin Mayer (2008) and (e.g.) the University of Chicago com-
mentary in this link https://review.chicagobooth.edu/economics/2017/article/it-s-time-
rethink-milton-friedman-s-shareholder-value-argument

7https://www.bbc.co.uk/news/technology-48590628 11 June 2019.
8https://www.blackrock.com/corporate/investor-relations/larry-fink-ceo-letter
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nies by the McKinsey Global Institute, in which the differential response
to the new technology by different companies (some using it to substitute
labour, others using it to expand business and improve working conditions
for employees), is something that is regularly observed.9

The argument in this literature is that in many cases robots can be a
complement to labour; in terms of the model, that if there is a choice of
technology, companies, with other objectives in mind, will choose production
processes for which the elasticity σ is a small number.
Our argument that a country’s innovation environment influences the

robot-hours substitution requires also that there is an association between
stakeholder objectives and the innovation environment. There is no direct ev-
idence for this (or against it) but there is ample indirect evidence. All indices
of innovation performance pay particular attention to the quality of human
capital and the availability of good education and training systems. Of the
available innovation indices the Global Innovation Index gives more details
of its construction and includes measures for “information about the degree
of sophistication of the local human capital currently employed”as well as
“the conception or creation of new knowledge, products, processes, methods
and systems, including business management.” (see below, section 6.3, for
more details). Better qualified and more sophisticated human capital is less
likely to be substituted by robots than less well-trained human capital (see
for example, International Federation of Robotics, 2018, and Konstantinos
Pouliakas, 2018).10

Another type of evidence also points to a link between the innovation
environment and employee-focused policies: diversity. A company has di-
versity when it employs a labour force, especially at decision-making level,
that contains a mix of people that reflects society, across gender, ethnic and
social origin, career path, sexual orientation and educational and industry
background. Diversity is a stakeholder objective taken into account by com-
panies that do not focus solely on profit maximization. We cite two recent
studies that find a link between diversity and innovation.
In a survey of 1,700 companies in eight countries conducted in 2018, the

Boston Consulting Group found strong evidence that more diverse companies

9See McKinsey Global Institute (2018, 2019), Jacques Bughin et al. (2019) and Meera
Sampath and Pramod Khargonekar (2018). Of course, not all employers behave in this
way. For example, Foxconn, the Chinese conglomerate that manufactures smartphones,
declared its intention to replace most of its employees by robots as far back as 2011, and
has been pursuing this policy ever since.
10Both these references go further and suggest that robots complement better trained

human capital, reaching the conclusion that lifelong learning and upskilling can lead to
complementarity between hours and robots.
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were more innovative, more likely to be adopting digital technologies and to
be following policies that paid attention to the interests of employees as
stakeholders. In their survey respondents were asked to rank the factors that
enabled a more inclusive environment and ranked “managers value employee
contributions”as number one.11

In 2019 the London Financial Times published for the first time a rank-
ing of “Diversity Leaders”. Seven hundred companies were ranked on the
basis of their “gender balance, openness to all forms of sexual orientation,
disability as well as an ethnic and social mix that reflects wider society.”12

There are eight countries in our sample that are also included in the Finan-
cial Times sample.13 We extracted the number of companies in each of the
eight countries that feature in the top 100 companies (results with the top
200, 300 and 500 companies were very similar) and correlated them with
our innovation index, after rescaling by dividing the number of companies in
each country by the total number of registered enterprises given by Eurostat
(adjusted to have mean 1, so the mean value of the adjusted company series
is the same as the actual number). The result is shown in Fig. 1.
The simple correlation coeffi cient between the innovation index and the

log of the number of diverse companies is 0.66. A surprising result in these
eight countries is Sweden, given its record of a large welfare state intended
to reduce inequalities and increase inclusiveness, which is generally regarded
as successful. In the Financial Times index it is listed as a country with
relatively very few diverse companies. As the survey was conducted in only
one year we cannot compare across years for consistency. But if Sweden is
dropped from the sample, the simple correlation coeffi cient with the remain-
ing seven countries rises to 0.93.We conclude that as in the Boston study, this
evidence points to a strong correlation between the innovative environment
of a country and the diversity of its companies.
The open economy provides another channel that explains a differential

response of manufacturing employment to new technology across countries.
It is clear from the data that employment shares in manufacturing in some
countries cannot be easily explained solely by the dynamics of structural

11Several other reports by this group and others make similar claims. See
https://www.bcg.com/en-us/publications/2018/how-diverse-leadership-teams-boost-
innovation.aspx for the results of the survey and more discussion.
12The main source of information for the ranking is a survey of 80,000 employees work-

ing in 10,000 companies employing more than 250 people, in ten European countries.
See Financial Times, November 13, 2019, “Striving for Inclusion, Top European Compa-
nies Ranked”https://www.ft.com/content/bd1b4158-09a7-11ea-bb52-34c8d9dc6d84 It is
intended to make the survey annual.
13Austria, Belgium, France, Germany, Italy, Netherlands, United Kingdom and Sweden.
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change in closed economies.14 Foreign trade plays a role, a connection that is
even more obvious than in the European comparisons in countries like Japan
and South Korea in the second half of the 20th century and China in the
first two decades of this century.
The link between the innovation index and the trade performance of a

country has two components. The first is the one summarized in our Proposi-
tion 1 and documented by Graetz and Michaels (2018). Countries that adopt
more robots increase their productivity and this gives them an advantage in
international markets. The second is more general and it is the one that mo-
tivated Matsuyama’s (2008) study. Firms in countries that rank higher in the
innovation index do more R&D (by the definition of the innovation index)
and produce more advanced technology products. They are therefore likely
to achieve higher average levels of productivity growth than firms in coun-
tries with lower rank in the index (higher A1 in the notation of our model,
and since most of the R&D is in manufacturing sectors, higher A1/A2). From
equation (24) in the Appendix this gives a lower relative manufacturing price
in the more innovative country, and so it gives it a comparative advantage
in international markets.
Proposition 2 shows that a comparative advantage in manufacturing leads

to a positive impact on manufacturing employment through more exports.
Countries with a high innovation score should have a positive open-economy
impact on hours of work when more robots are introduced, in contrast to
lower-ranking countries which do not have the comparative advantage. These
impacts are superimposed on any closed economy effects, with theoretically
ambiguous overall results.
These arguments show that despite the frequent claims that robots are

taking jobs away from labour, there could be circumstances in which robots
either complement labour or give a boost to employment by reducing the
relative price of manufacturing goods. Our claim is that these circumstances
are more likely to arise in countries with more advanced innovation systems.
Ultimately the extent to which robots and workers substitute or complement
each other can only be discovered empirically; we now turn to this question.

4 The data

Our data are annual observations of robot use and hours of work across
industrial sectors and countries. We have already discussed our definitions

14For example, in three very similar European countries, Germany, France and the
United Kingdom, manufacturing shares of hours of work in 1995 were, respectively (in
percent), 21.4, 15.0 and 17.0. In 2017 they became 18.3, 9.5 and 8.8.
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and sources for national innovation systems.15 We mention one more thing
about it here. The annual score computed by the World Economic Forum
changes very little, if at all, from year to year, and there are some missing
observations. We run our regressions both with the annual series and with
the sample average for each country, as a single index. Results were virtually
identical, indicating that the estimates are driven by the differences in the
index across countries and not by within-country variations. The regression
results that we report here are with the annual series, which use all available
information.
The source that we use for the number of productive robots in employ-

ment is the International Federation of Robotics (https://ifr.org), and the
source for the labour market variables is the 2019 update of EU KLEMS
(Robert Stehrer et al. 2019). Our sample is 2006-2016, the earliest year for
which we have complete data sets for industrial robots and the innovation
index, and the most recent year of the EU KLEMS data. We focus mainly
on seven manufacturing sectors but we also include three non-manufacturing
sectors. We have suffi cient data from fourteen industrial countries with some
missing observations, especially in the early years. The list of countries and
sectors, with sample means, are shown in Tables 1 and 2.16

The IFR defines industrial robots as fully autonomous machines that can
be programmed to perform several manual tasks without human intervention.
These tasks include handling, welding, dispensing, processing, assembling
and dismantling. The data are collected from deliveries by the suppliers of
manufactured robots. They are adjusted by the IFR for depreciation by
assuming that the average service life of a robot is 12 years and that there is
an immediate withdrawal of the robot after this time (IFR, 2017).17

Our employment variable is hours of work in each sector and country.
We also obtain data for wages, the total capital stock and ICT capital. We
convert nominal variables to 2010 US dollar prices using purchasing power
parity (PPP) exchange rates.
The IFR uses the International Standard Industrial Classification (ISIC)

for industries, whereas EU KLEMS uses the General Industrial Classification
of Economic Activities (NACE). We matched the two sources by allocating
the original nineteen ISIC Rev.4 industries from the IFR to the NACE Rev.2
industries. We were able to match most sectors one for one but the data for
15The Appendix gives more details on sources and the construction of variables.
16Initially we also included construction in our sample but results were poor. It is a

large sector, its average hours being about 70% of average manufacturing hours, but a very
small user of robots. Its average robot number in our sample was 0.16% of the number of
manufacturing robots (one sixth of 1%).
17When countries calculate their own operational stock the IFR uses that figure instead.
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chemicals and rubber, and plastics and other non-metallic mineral products,
are not reported separately in the IFR dataset. We aggregated these indus-
tries in EU KLEMS, together with coke and refined petroleum products, into
the plastics and chemical products category. Finally, we excluded from our
analysis the residual categories “all other non-manufacturing sectors” and
“all unspecified sectors”. These categories account for about 15% of robot
deliveries.
In Table 1 four countries stand out as having the lowest index values

for innovation, Greece, Italy, Spain and the Czech Republic (Czechia), with
a gap between them and the rest. These are the only countries that we
have outside the United States and North-Western Europe. At the more
innovative end progression is smoother, although the next six countries could
be described as middling and the remaining four as the innovation leaders,
which contains Germany, Sweden, Finland and the United States. The mean
value of the index is 4.63, with only the four weakest countries below it
and the rest above it. There are also large differences in robot density,
both across countries and industries. Perhaps a surprising result is that
there is no correlation at all between a country’s innovation score and robot
density. Italy, for example, is one of the biggest robot users, although it has
the second lowest value for innovation capacity. Given the relatively high
robot density in the manufacture of transport equipment (Table 2), there
is some correlation between industrial structure and country robot density,
with Germany, Italy and France having high densities and a relatively large
automotive sector. But robot density is also high in Denmark and Finland,
which do not produce cars. Greece is an outlier as a very low user of robots
and its relatively high value in the non-manufacturing sectors is due to a
relatively high value in mining and quarrying.

5 Empirical model: The basic equation esti-
mates

Our empirical strategy is to estimate log-linearized semi-reduced form equa-
tions for annual hours worked in production industries in terms of robot
density, the index for the innovation system of the country and a number of
other labour market variables:

lnHict = β0 + β1 ln(Rict/Hict) + β2 ln(Rict/Hict) ∗ Vct + Zict + εict (15)

Hict is the number of annual hours worked in millions, Rict is the number of
robots in production, each distinguished by industry i, country c and year t,
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and Vct is the innovation index for each country. The vector Zict represents
other control variables: hourly wages, the capital stock, the ratio of ICT
capital to the total and industry, country and year fixed effects; εict is the
error term.18

A key claim of our model is that country hours respond differently to the
introduction of robots in production, depending on their innovation environ-
ment. Countries with a more favourable national innovation system are in a
position to either mitigate or reverse any negative impact that the introduc-
tion of robots might have on hours of work. The elasticity with which hours
of work respond to an increase in robot density is β1 + β2Vct and we expect
the sign of the estimated β1 to be negative but that of β2 to be positive.
We estimate equation (15) for manufacturing and for the full sample that

includes the three non-manufacturing sectors. We estimate it with OLS as
well as with instruments that deal with any endogeneity bias in robot density.
We also explore further the role of the innovation environment by estimating
it with available alternative measures and by breaking down the innovation
system into its component parts and estimating the impact of each, to test for
any big differences between them. Some other robustness tests are performed
and reported in the section that follows.
Table 3 shows the results of the estimation of the basic equation (15) for

the seven manufacturing sectors. Country and year fixed effects are included.
Consider first results for the simple regression without taking into account
the innovation system of the country. In column (1), the impact of robot
density on hours of work is negative but weak. In addition to robot density
and the fixed effects we include three other economic variables, the capital
stock, the fraction of the capital stock classified by EU KLEMS as ICT and
the total wage bill for the industrial sector divided by hours of work. The
elasticities of the three economic variables are estimated precisely and the
point estimates are plausible. These estimates are robust to differences in
the specification of the equation; the capital elasticity is 0.72, ICT capital
contributes positively another 0.1 to the elasticity (ICTict is already included
in Kict), and the hourly wage elasticity is −0.3.
In column (3) we estimate the equation with 2SLS using our preferred in-

strument, robot density in the Republic of Korea. The idea of the instrument
is to isolate the impact of technological improvements in the manufacture of
robots. We have chosen Korea as it is suffi ciently removed from our sample
of Europe and the United States, so other common influences are remote,

18Because we always estimate the regression with country fixed effects, a linear term in
Vct is redundant, given what we said about the cross-country and within-country variation
in it.
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and it is the country of the largest robot densities in manufacturing world-
wide. The results of the IV regression show that the negative impact of robot
density on hours in the absence of the innovation environment is not robust
to instrumentation.
So overall, the conclusion from the estimation of equation (15) for man-

ufacturing, under the restriction β2 = 0, is that although there is small
negative impact of robot density on hours of work, it is not precise or robust
across estimation specifications. In contrast, the impact of other economic
variables on hours of work is estimated precisely and with robustness.
This contrasts sharply with the results of estimating the regression by

taking into account each country’s national innovation system. In column
(2) of Table 3 we show OLS estimates, in which the elasticity on robot density
is precisely estimated to be −0.34. This negative estimate contrasts with a
positive estimate on the interaction of robot density with our index of the
national innovation index, estimated to be 0.07. Dividing the former by the
latter gives the point at which the net effect switches sign from negative to
positive, and this is at V 0 = 4.93, which is slightly above the mid point (4.63)
of the innovation index. Calculated at the sample mean for Vct, the range of
the net elasticities across countries is from −0.105 for Greece and −0.078 for
Italy to +0.04 for Finland and the United States.
The instrumental variables estimation of the regression with the innova-

tion index is in column (4) of Table 3. The results confirm an even stronger
influence of the innovation index on the impact of robots on hours. Both
estimated coeffi cients on the endogenous robot density rise in absolute num-
ber, from −0.34 in the OLS estimate to −0.54 in the IV estimate, and from
+0.07 to +0.115. The net impact of robots is now zero at V 0 = 4.68, closer
to the mean, and the net elasticities vary from −0.15 in Greece to +0.095 in
the United States.
In Table 4 we calculated the net elasticities at sample means implied

by the OLS estimate for all countries, with their robust standard errors.
In the four countries with the weakest innovation systems (three Southern
European and one East European) the net elasticity is precisely estimated
with a negative sign. These countries are joined by Austria with a weaker
negative elasticity. The four most innovative countries (the United States and
three Northern European countries) all have strong and significant positive
elasticities. The other countries have no significant elasticity estimates.
In order to give more information on the quantitative importance of these

estimates we calculated an approximation to the implied change in annual
hours when one more robot is introduced. From (15) we get, for a given
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initial value for Hict,

∆Hict = (β1 + β2Vct)
Hict

Rict

∆Rict, (16)

where (β1 + β2Vct) is the net coeffi cient shown in Table 4 for each country
and Hict/Rict is the inverse of robot density for each country. We compute
the change in hours from (16) for ∆Rict = 1, at the average value of the
innovation index and the average robot density of the last five years of the
sample (i.e., for 2012-16). The result is shown in Table 4 under the heading
∆H per robot.
Overall the results appear plausible, with the impact ranging from sub-

stantial negative in Italy and Spain to substantial positive in the Nordic coun-
tries and the United States. Results appear implausible for Greece, which
has very small average densities and missing observations.19 Translating from
annual hours to jobs, at average hours per manufacturing job, the impact of
one more robot in Italy is −4.72 jobs, very similar to Spain’s, whereas in
Germany it is +0.98 and in the United States and Finland +2.62 jobs.

6 Extensions and robustness checks

6.1 Alternative instruments and fixed effects

To test further the robustness of the basic equation estimate, we estimated
the same equation with two alternative instruments, robot density in Ger-
many from 1993 to 2004 and patents in Korea normalized by population.
The justification is the same as with our preferred instrument. Germany is
the country in our sample which had the biggest penetration of robots in
its manufacturing and has good data going back to 1993. Since the price of
robots has been falling long before our sample begins (IFR, 2017), any corre-
lations between the German trends before 2004 and our sample are likely to
be due to technology improvements in robot production, as reflected in their
price. Our third instrument, patents in Korea, is another signal of technology
trends in the country with most robot penetration in the world.
Results with these instruments were similar to each other. Without the

innovation index, the estimate of the impact of robot density on hours be-
came stronger in the regression without industry dummies, with elasticities
19Despite this we retained Greece in the sample but tested whether our estimates were

affected by its inclusion (and also by the inclusion of Czechia) but they were not. In our
discussion of country comparisons we refer to Italy or Spain as the countries with the
weakest national innovation systems, rather than Greece, because of the data problems
with Greece.
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−0.036 and −0.054 respectively, but it became completely insignificant when
industry dummies were introduced. In the regression with the innovation in-
dex the estimates with the other two instruments were very similar to the IV
estimation in Table 3. As before, instrumentation of the regression with the
innovation index shows more robustness than in the one without the index,
confirming the point estimates in Table 3.
The results reported so far introduce country and time fixed effects but

not industry effects. We repeated the estimation with a full set of industry
dummies for the seven sectors and results were of the same order of magnitude
as in the regressions without industry dummies. Under the restriction β2 =
0 the estimate of the coeffi cient on robot density in the OLS regression was
−0.038 (s.e. 0.009) but in the IV estimation it became +0.11 (s.e. 0.25).
The three estimated coeffi cients on the other economic variables were very
similar to the ones in Table 3. We tried two other specifications, two-way
clustering with 98 country/industry clusters, and three pairwise interactions
of the dummies, country/industry, country/years and industry/years. In
both cases the results were very close to the ones in Table 3. In the two-
way clustering the coeffi cient on robot density was completely insignificant
whereas in the case of interactions of fixed effects it became negative but not
strong.20

IV estimation in the regression that included the innovation index was
also robust to the alternative specifications that we tried. With industry
dummies the coeffi cients were close to the ones without, with the negative
elasticity on robot density estimated to be −0.331 (s.e. 0.032) and the es-
timate on the interaction term +0.062 (s.e. 0.007). Two-way clustering also
gave similar results, with coeffi cients given by −0.538 and +0.115 respec-
tively and significant at the 1% level. The IV regression with country and
industry interaction gave estimates −0.510 and +0.109, again significant at
the 1% level. The only failure in the estimation was the IV estimation of the
other two dummy interactions, for which our estimation did not converge.

6.2 Sample exclusions

With seven industrial sectors and fourteen countries, mostly small European
ones, it is possible that single important sectors or countries drive the re-
sults. We checked whether the two most prominent users of robots in each
case, Germany and transport equipment (see Tables 1-2), are responsible for
our estimates. The answer is that they are not. The exclusion of Germany

20The full estimation results with the alternative specifications can be made available
on request
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makes virtually no difference to the estimated coeffi cients in Table 3. This
is consistent with the fact that Germany is fairly close to the mean of the
innovation index distribution, where the impact of robots on hours of work
is small (Table 4). The exclusion of the transport sector does not affect
the performance of the equation but it reduces the implied substitutability
between labour and robots. Without transport equipment Italy has net elas-
ticity of −0.05, instead of −0.08 as in Table 4, whereas the United States
and Finland have elasticity +0.095 instead of +0.04 for the full sample. The
lower substitutability outside transport equipment is consistent with the re-
sults discussed in sub-section 6.4, about the differences in estimates across
sectors.

6.3 Alternative measures of innovation performance

There are two other widely-available measures of a country’s innovation en-
vironment, the Global Innovation Index and the Summary Innovation Index
of the European Innovation Scoreboard. The Global Innovation Index has
been published since 2007 by Cornell University, INSEAD and the World
Intellectual Property Organization (WIPO) and is the average of scores in
two sub-indices, the Innovation Input Sub-Index and Innovation Output Sub-
Index (see the latest edition, Cornell University, INSEAD and WIPO, 2019,
especially Appendix 1). The innovation input sub-index consists of five pil-
lars which capture the country’s enabling environment for innovation. The
innovation output sub-index is the average of two pillars that capture the
outputs of the innovation activities within the country. The overall index is
the average of the two sub-indices. The five pillars of the input index are
the quality of institutions, human capital, infrastructure, market sophistica-
tion and business sophistication, and the two pillars of the output index are
knowledge and technology outputs and “creative”outputs. The data sources
are all secondary published sources, mostly by international organizations
such as the OECD and Eurostat.
The Summary Index of the European Commission Scoreboard is an un-

weighted average of several indicators (see European Commission, 2019).
Currently the number is 27, but in earlier years there were fewer. In the
years of our sample they were divided into three categories, enablers, in-
cluding factors like education standards and availability of venture capital,
firm activities, such as R&D and patent applications, and outputs, such as
employment in knowledge-intensive industries and exports of high-tech prod-
ucts. The data sources are again publications of international organizations
such as Eurostat, OECD and the United Nations. The index covers all mem-
bers of the European Union and in the early years of our sample it covered
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the United States as well, although inclusion of the United States has now
been discontinued.
The simple correlation coeffi cient of our index with the Global Innovation

Index is 0.94 and with the European index (excluding the United States) also
0.94 (the correlation between them is 0.89). The ranking of countries is also
very close to each other in the three indices. Not surprisingly, given the high
correlation between the three indices, the estimation results with the two
new indices are very similar to the ones in columns (2) and (4) of Table 3. In
the interests of space we do not report the whole estimated regressions but
report here only the two key coeffi cients, for the log of robot density and the
same interacted by the new innovation index.21

For the Global Innovation Index, which has range 0 to 100, the estimated
coeffi cient on robot density is −0.398 (s.e. 0.041) and for the interaction
term 0.007 (s.e. 0.001). For a country close to the mean of the index, like
France, the net effect of robots is very close to zero, whereas for Italy and the
United States the net elasticity of robot density on hours of work is −0.07
and +0.04, respectively, which are very close to the estimates in Tables 3
and 4. For the EU summary index, which has range 0 to 1, the coeffi cient
estimate on robot density is −0.248 (s.e. 0.025) and for the interaction term
the estimate is 0.449 (s.e. 0.048). The implied net elasticity for Italy is
−0.08 and for Sweden, which in the absence of the United States is the most
innovative country in this index, it is +0.06.
It is clear that our estimates can be replicated with alternative indices for

a country’s innovation environment and they are not due to peculiarities in
our index. The main difference between our index and the two alternatives is
that the latter two use data published by international organizations whereas
the source of data for our index is a survey of firms conducted by the World
Economic Forum. In both cases the correlation between our index and the
alternatives is extremely high and the estimated elasticities are very close to
each other in all three cases. We continue with our index only, which gives
more complete data information for our sample.

6.4 Industry breakdowns

So far we have restricted ourselves to manufacturing industries, which are
the main users of robots. We now investigate the impact of robots with
two alternative samples, one that treats transport equipment and electron-
ics separately from the rest of manufacturing and one that includes three

21The results shown are for the OLS estimate without industry fixed effects. Results
are very similar if instruments are used and if industry fixed effects are included.
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non-manufacturing sectors which are robot users, albeit at a much lower rate
than manufacturing (see Table 2). Transport equipment and electronics are
defined by the OECD as high-tech and both are heavy users of robots; elec-
tronics is a producer as well as user of robots whereas transport equipment is
by far the biggest user of robots. The other five sectors are low-tech except
for some elements of our chemicals sector, which cannot be separated out.
We refer to their aggregate as low-tech. Table 5 shows the results of the
estimation when the two hi-tech sectors are estimated separately.
The estimation gives good statistical results, with all estimates significant

at the 5% level. We introduced industry dummies for the two industries in
the regression and for the aggregate of the rest of manufacturing, but results
were virtually identical to the ones without dummies. Results are in line
with the aggregate manufacturing estimates, with the replacement of labour
by robots in the countries with better innovation performance weaker or
completely reversed. The estimates for the non-tech sectors are close to the
aggregate manufacturing ones. The point at which the sign of the net effect
of the impact of robot density on hours reverses is 4.64 (instead of 4.93 for
the aggregate), with both close to the mean index of 4.63. The elasticity
estimates for Italy and the United States, however, show a bigger range than
the ones for the aggregate, −0.083 and +0.084 respectively (see Table 4 for
the aggregates).
We highlight two differences for electronics and transport equipment,

when compared with the aggregate. First, in electronics the innovation en-
vironment plays a more significant role than in other sectors and there is
overall less substitution of robots for labour. The point at which the sign
of the net impact of robot density on hours switches is lower, at 3.94, and
all net elasticities shift to the right. The elasticity for Italy in this sector is
−0.016 and in the United States it is +0.16. This is easily justified. Elec-
tronics is technologically the most advanced sector and it is a producer of
new technologies (including robotics) as well as a user. So it benefits a lot
more from a favourable innovative environment than other sectors do.
In contrast to electronics, the transport equipment industry is not very

sensitive to the innovation environment. The impact of robot density on
hours of work is negative in practically all countries, with an estimated elas-
ticity of −0.05 in Italy and zero in the United States. This sector is an
outlier in the use of robots and indeed the possibility of assembling cars with
robots was a major impetus to the development of robot technology, so it is
not surprising that the large use of robots does not create jobs on top. A
favourable innovation environment in the country still saves some jobs from
replacement by robots in this sector, but it does not induce additional job
creation.
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6.5 Non-manufacturing industries

Table 6 shows the results of estimation when we add three non-manufacturing
production sectors to the sample, agriculture, mining and quarrying and wa-
ter supply, gas and electricity (utilities). These three sectors are small users
of robots and there are several zero entries for robot density in some coun-
tries, which we classify as missing observations. We use industry fixed effects
for the non-manufacturing sectors and a common one for manufacturing, al-
though the results are virtually identical with a full set of manufacturing
fixed effects.
The striking result in this table is the difference between manufacturing

on the one hand and non-manufacturing on the other. The manufacturing
estimates are very similar to the ones in Table 3, with the more innova-
tive countries creating jobs when robots are installed. In contrast, the non-
manufacturing results indicate that there is a substitution of robots for labour
in all countries. Although the innovation environment still has a small, sta-
tistically significant effect on the net elasticity, the biggest net impact, in the
case of the United States, is still a significant negative number at −0.055.
For the biggest country with a poor innovation environment, Italy, the net
elasticity is −0.087. For these industries, even a country with the maximum
innovation environment score, 7, yields a negative net elasticity. Consider-
ing that the three sectors are agriculture, mining and utilities, it appears
that the use of robots is almost exclusively for the automation of processes
done by humans, such as moving boxes or digging the ground, without a
complementary job creation.

6.6 Decomposing the innovation index

Our final robustness test is a very stringent one that breaks up the innovation
index into its six components and runs the OLS regression in column (1)
of Table 3 again, with each replacing the national innovation index. It is
stringent because our innovation index might average out any fluctuations in
a single index, which will influence the estimation in this decomposition. The
estimates of the two main coeffi cients, as well as the value of the component’s
index that gives a zero net impact of robot density on hours, are in Table 7.
All indicators except for the availability of scientists and engineers give

statistically significant results that conform to the estimates of Table 3. Two
of the indicators, R&D spending and government procurement of tech prod-
ucts, are flow concepts, whereas the others are closer to institutional features,
yet there is no discernible difference between them in the estimation. The
only difference between the disaggregate results and the aggregate ones is
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that the point of the index at which the sign reverses from negative to pos-
itive is higher for the individual indices than for the aggregate. This might
indicate some complementarity between the individual indicators. Any one
indicator alone is not strong enough to reverse the negative impact of robots
on hours but all together are suffi ciently strong to do it for about half the
countries. This is indicative of a powerful result that needs further research:
the existence of complementarities between different aspects of the innovation
environment that reinforce each other when they are present together.

7 Conclusions

Our argument in this paper is that robots have the technical capabilities to
replace humans in manufacturing and some other sectors, but whether they
do or not depends also on the institutional environment of the country and
the incentives that firms have to take them on. We have shown that the
institutions shaped by the innovation environment of a country, such as the
extent of R&D, the quality of scientific research and the collaboration be-
tween companies, universities and governments, play a critical role in shaping
those objectives. Countries with a poor innovation environment, mainly lo-
cated in the European South and East, do substitute robots for labour, but
countries with a more favourable environment, such as the United States,
Germany and the Nordic countries, might even add labour when they re-
cruit more robots. Regressions with non-manufacturing production sectors
(agriculture, mining and utilities) show that robots substitute hours in all
countries but less so in countries with good innovation systems; in the biggest
user of robots, transport equipment, there is also evidence that there is more
substitution than in other sectors, but in electronics and electrical equipment
the opposite holds.
We have shown in a simple model of labour-robot substitutions that

whether robots replace or complement labour depends on the relation be-
tween two elasticities, the elasticity of the demand for the final product and
the elasticity of substitution in production. If the elasticity of demand ex-
ceeds the elasticity of substitution robots and workers are complementary.
We have argued that there are two channels in this framework which might
imply that a more favourable innovation environment might be associated
with higher robot input and employment. The first is based on arguments
that firms with stakeholder and other community objectives, taking into ac-
count their employees’interests and views, are more likely to have lower elas-
ticities of substitution between workers and robots; namely, they are more
likely to treat workers and robots as complements. We have summarized
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some evidence that shows that such firms also do more R&D. The second is
based on the open economy. Countries that do more innovation gain a com-
parative advantage in international markets for manufactures and through
exports experience a higher elasticity of demand for their final products than
firms in countries that supply exclusively their domestic market. The Nordic
countries might fit the first argument and Germany and the United States
the second. Indirect support for our tradeables argument is also provided by
our finding that the innovation environment plays much more limited role in
non-manufacturing sectors, which always substitute robots for labour.
Overall, our results point to the fact that it is not possible to use estimates

from one country to make inferences about robot-labour substitutions in
another, even if the countries are broadly similar. There are interactions
between robot-labour substitutions and other features of the economy which
influence the estimated elasticities. We have identified one - the innovation
environment - but there could be others that future work could identify.
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8 Appendix

8.1 The model: solution and proofs

We derive explicit solutions for the employment allocations from the equa-
tions of the model. The consumption allocations satisfy the marginal rate of
substitution conditions,

c1
c∗1

=

(
ψ

1− ψ

)η (
p1
p∗1

)−η
(17)

c̃1
c2

=

(
ω

1− ω

)ε(
p̃1
p2

)−ε
(18)

p̃1 =
[
ψηp1−η1 + (1− ψ)ηp∗1−η2

]1/(1−η)
(19)

We divide (4) by (6) to obtain,

p1A1
p2A2

(1− β)

(
z

H1

)1/σ
= 1. (20)
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Dividing also (4) by (5) we obtain the equilibrium solution for robot density,

R

H1

=

(
1− β

β
ρ

)−σ
(21)

From the definition of z in (2), we obtain,

z

H1

=

[
1− β + β

(
R

H1

)σ−1
σ

] σ
σ−1

(22)

and so from (21), after some simplification,

z

H1

= (1− β)−σ
[
(1− β)σ + βσρ−(σ−1)

] σ
σ−1 . (23)

Labour productivity in sector 1 is given by A1z/H1 so it is immediately
obtained from (23).
To get relative prices we substitute (23) into (20) to get,

p1
p2

=
A2
A1

[
(1− β)σ + βσρ−(σ−1)

]− 1
σ−1 . (24)

We note that the derivations so far have not used any of the trade vari-
ables so they hold for the closed and open economy, independently of trade
magnitudes. The results of Proposition 1 follow immediately from these
derivations. Robot density is increased by a fall in ρ from (21), productivity
in sector 1 is increased because of (23) and relative prices fall because of (24).
Consider now the closed economy model, by setting ψ = 1 in the utility

function (9) and c∗∗1 ≡ 0. By market clearing c1 = A1z and c2 = A2H2 and
from (18),

A1z

A2H2

=

(
ω

1− ω

)ε(
p1
p2

)−ε
. (25)

Therefore,

H1

H2

=

(
A1z

A2H1

)−1(
ω

1− ω

)ε(
p1
p2

)−ε
=

(
A1
A2

)ε−1(
ω

1− ω

)ε
(1− β)σ

[
(1− β)σ + βσρ−(σ−1)

] ε−σ
σ−1 . (26)

From this and the resource constraint H1 + H2 = 1, we obtain the closed-
economy result of Proposition 2.
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With imports and exports output markets clear according to (12) and
(13), so (25) changes to,

A1z

A2H1

H1

H2

=
c1 + c∗∗1
c2

(27)

=
c1
c2

y1
c1
. (28)

making use of the MRS conditions we get,

c1
c2

=

(
c̃1
c1

)−1(
c̃1
c2

)
(29)

=

(
c̃1
c1

)−1(
ω

1− ω

)ε(
p̃1
p2

)−ε
(30)

=

(
ω

1− ω

)ε(
p1
p2

)−ε(
p̃1
p1

)−ε(
c̃1
c1

)−1
. (31)

Comparing now (28)-(31) with (25), we find that the solution for H1/H2

in the open economy has the same terms on the right-hand side as in (26)
except for one multiplicative term, which we denote by F (.),

F (.) =
y1
c1

(
p̃1
p1

)−ε(
c̃1
c1

)−1
. (32)

This is the only term that contains foreign trade variables, as one of the first
two terms is a ratio of preference parameters and the other is solved in (24)
in terms of domestic parameters only. As might be expected, if ψ = 1 and
c∗∗ = 0, F (.) = 1, giving the closed-economy solution.
Returning now to (32), we can express (p̃1/p1)

−ε (c̃1/c1)
−1 in terms of

model parameters and the “terms of trade”p1/p∗1 :

(
p̃1
p1

)−ε(
c̃1
c1

)−1
=

[
ψ + (1− ψ)

(
c∗1
c1

) η−1
η

] η
1−η

(33)

=

(
p̃1
p1

)−ε [
ψ + (1− ψ)

(
1− ψ

ψ

)η−1(
p∗1
p1

)1−η] η
1−η

(34)

= ψη
(
p̃1
p1

)η−ε
. (35)

The first term of (32), y1/c1, depends on the volume of exports, which is
unknown. Moreover, without an equation for trade balance, the equilibrium
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terms of trade are also unknown. Equation (35) at least shows that for given
exports (more precisely for given proportionality relation between exports
and domestic consumption of home-produced manufacturing goods) a fall in
p1/p

∗
1 has positive impact on employment in sector 1 for as long as η > ε. By

differentiation, F ′(p1/p∗1) < 0 if and only if η > ε, for a given y1/c1. A rise in
exports everything else constant trivially produces another positive influence
on H1, so under the reasonable assumption that exports are a falling function
of p1/p∗1, we obtain that a fall in p1/p

∗
1 reinforces the positive impact of the

import substitution effect on domestic manufacturing employment.

8.2 Data: Definitions and sources

Hours of work —The total number of annual hours worked by all persons
engaged in production by industrial group, 2006-2016. Source: EU KLEMS,
2019 release.
Robots —The total number of robots by industrial group, annual ob-

servations for 2006-2016, as estimated by the International Federation of
Robotics. The IFR estimates the operational stock by assuming a service life
of 12 years followed by an immediate withdrawal from service. Source, IFR
(2017)
Robot density —The number of robots divided by hours of work in

millions. In the early years, a very small number of year-country-industry
entries show zero robots or an unexplained big jump, which we treat as
omitted variables.
Capital —We use the EU KLEMS 2019 dataset, listed by industry,

country and year, which provides information on net capital stock, vol-
ume 2010 reference prices. We convert to US dollars using PPP exchange
rates from the OECD, https://data.oecd.org/conversion/purchasing-power-
parities-ppp.htm . Total capital includes ten asset types: residential struc-
tures; total non-residential investment; transport equipment; computing equip-
ment; communications equipment; other machinery, equipment and weapons
systems; cultivated assets and intellectual property products including R&D,
computer software and databases, and others. EU KLEMS calculates the
stock using the perpetual inventory method. We exclude R&D from our
measure of the capital stock.
ICT —EU KLEMS defines ICT capital as computing equipment, com-

munications equipment and computer software and databases. We take this
from the definition of overall capital and use its ratio to total capital in our
regressions.
Compensation of employees —Compensation includes wages, salaries

and all the other costs of employing labour which are borne by the employer.
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We convert to constant 2010 US dollar prices using PPP exchange rates. For
hourly compensation we divide the total compensation in EU KLEMS 2019
by hours of work, in millions.
Innovation Index —The average of the first six indicators of Pillar 12

of the World Economic Forum Global Competitiveness Index, available on a
consistent basis for all countries in our sample in 2006-2016. Two additional
composite indicators that we used are the Global Innovation Index and the
European Union Summary Innovation Index. The Global Innovation Index
(GII) was first published in 2007 by Cornell University, INSEAD and the
World Intellectual Property Organization. The Summary Innovation Index
(SII), developed by the European Commission, covers European countries
only.
Instrumental variables —The following instruments were used. Robot

density in South Korea, defined as in our countries. The total number of
annual hours worked by industrial groups is available up to 2012. We impute
the industry-level hours worked for the years 2013-2016 using the average
annual change of an industry’s hours worked during the years 2004-2012.
Sources: IFR (2017), World KLEMS, http://www.asiaklems.net/.
Robot density in Germany, annual observations for 1993-2006. Sources:

EU KLEMS, 2012 release; 2019 release, IFR (2017).
The number of patents applications in South Korea, by industrial group,

from 1980 to 1994. The number of patents is divided by population, in mil-
lions. Sources: European Patent Offi ce, the Autumn 2018 edition, population
from the World Bank database.
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Notes: The vertical axis shows the number of companies from each of eight countries in the Financial 

Times diveristy leaders rank, top 100. The actual count is divided by the total number of enterprises 

in the country, adjusted to have sample mean 1.  
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Fig. 1. Diverse Leaders vs. Innovation Index ‐ eight
European countries



 

 
Table 1. Country means of key variables 

 

Country  Innovation  Annual  Robot density 

 Index  Hours  manufacturing  Non‐manuf. 

  scale 1‐7  (millions)     

         

Greece  3.40 867 0.26  0.63

Italy  3.79 8,713 10.91  0.04

Spain  3.92 5,421 9.21  0.1

Czechia  4.24 2,003 2.31  0.04

Austria  4.73 1,341 5.98  0.27

France  4.81 5,820 11.06  0.24

Belgium  4.96 886 7.56  0.09

Netherlands  4.98 1,231 4.57  0.21

Denmark  4.99 469 12.16  1.52

UK  5.04 5,461 3.49  0.1

Germany  5.28 10,115 14.3  0.04

Sweden  5.36 1,045 8.57  0.45

Finland  5.49 745 8.76  0.12

USA  5.50 24,403 5.44  0.02

Notes         

For the construction of the innovation index see text.   

Annual hours are defined as the annual average of total hours actually worked in the sectors in 
the sample, 2006‐2016. 

Robot density is the unweighted average of the annual ratio of robots in production to hours of 
work, again for the sectors in the sample. 

In the calculation of sample means only observations for which a positive number of robots is 
shown are included.  

     

 

  



 

Table 2. Industry means of key variables 
 

  Annual  Robot 

Industry  hours  density 

  (millions)   

     

Electronics  455  3.90 

Food and beverages  663  3.32 

Metal  722  8.24 

Plastics and chemical  745  6.13 

Textiles  201  1.16 

Transport Equipment  487  27.89 

Wood and paper  331  1.66 

     

Agriculture  989  0.09 

Utilities  272  0.04 

Mining and quarrying  63  0.60 

Notes         

Annual hours is defined as the annual average of hours of work in each sector and country for 
which the reported number of robots is positive. 

Robot density is the unweighted average of the annual ratio of robots in production to hours 
of work (in millions) for all countries in the sample. 

In the calculation of sample means only observations for which a positive number of robots is 
shown are included.  

  



 

Table 3. Results for manufacturing industries 
 

 

Dependent variable in all regressions: log hours by country, 

industry and year, lnሺ 𝐻𝑖𝑐𝑡ሻ  

  (1)  (2)  (3)  (4) 

  OLS  OLS  IV  IV 

         

Independent variables         

         

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ   ‐0.015  ‐0.339  ‐0.001  ‐0.538 

  (0.006)  (0.037)  (0.008)  (0.049) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  *𝑉௖௧   0.069    0.115 

    (0.008)    (0.010) 

lnሺ𝐾𝑖𝑐𝑡ሻ   0.723  0.700  0.716  0.676 

  (0.011)  (0.011)  (0.011)  (0.012) 

lnሺ𝐼𝐶𝑇௜௖௧/𝐾௜௖௧ሻ  0.097  0.063  0.094  0.037 

  (0.014)  (0.014)  (0.014)  (0.014) 

lnሺ𝑊௜௖௧/𝐻௜௖௧ ሻ  ‐0.299  ‐0.245  ‐0.329  ‐0.247 

  (0.035)  (0.035)  (0.037)  (0.037) 

         

country dummies  yes  yes  yes  yes 

time dummies  yes  yes  yes  yes 

industry dummies  no  no  no  no 

         

Number of obs.  1,044  1,044  1,044  1,044 

F( 27,  1016)  1,164    1,157   

F(28, 1015)    1,207    1,158 

Cragg‐Donald Wald F 
statistic       1,192  482 

Notes         

Robust standard errors in parentheses.  

The instrument used is robot density in South Korea over the period of the sample. 
 

 
   



 

Table 4. Net elasticity estimates by country (OLS) 
  

country  net  𝛥𝐻 country  net  𝛥𝐻
  estimate  per robot    estimate  per robot 

           

Greece  ‐0.105  ‐241,742  Netherlands  0.004  550 

  (0.012)      (0.006)   

           

Italy  ‐0.078  ‐8,197  Denmark  0.004  288 

  (0.009)      (0.006)   

           

Spain  ‐0.069  ‐7,876  United Kingdom  0.008  1,984 

  (0.008)      (0.006)   

           

Czechia  ‐0.047  ‐10,541  Germany  0.024  1,341 

  (0.007)      (0.007)   

           

Austria  ‐0.013  ‐1,736  Sweden  0.030  2,395 

  (0.006)      (0.008)   

           

France  ‐0.008  ‐900  Finland  0.039  4,302 

  (0.006)      (0.008)   

           

Belgium  ‐0.002  ‐224  United States  0.039  4,679 

  (0.006)      (0.009)   

Notes           

The column headed net estimate shows the net elasticity of hours on robot density obtained 
from Table 3, with robust standard errors for the net estimate in parentheses 

The column headed 𝛥𝐻 per robot shows the change in the number of annual hours for each 
additional robot, evaluated at the mean values of the last five years (2012‐16) for all countries 
except for Greece, which is evaluated at the average of the last three years of the sample, 
because of missing observations. 

 

   



 

Table 5. Manufacturing industries breakdowns 
 

 

OLS regression, 
Dependent variable 
lnሺ𝐻௜௖௧ሻ 

Independent variables   

   

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ ∗ 𝛪 ఔఛ ‐0.453 

  (0.041) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ ∗ 𝛪ఌ ‐0.413 

  (0.117) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝛪𝛼 ‐0.149 

  (0.053) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼𝜈𝜏 ∗ 𝑉𝑐𝑡 0.098 

  (0.009) 

lnሺ𝑅𝑖𝑐𝑡/𝐻𝑖𝑐𝑡ሻ ∗ 𝐼𝜀 ∗ 𝑉𝑐𝑡 0.105 

  (0.024) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ ∗ 𝐼ఈ ∗ 𝑉௖௧ 0.026 

  (0.011) 

lnሺ𝐾௜௖௧ሻ 0.678 

  (0.012) 

lnሺ𝐼𝐶𝑇𝑖𝑐𝑡/ 𝐾𝑖𝑐𝑡ሻ 0.025 

 (0.015) 

lnሺ𝑊௜௖௧/𝐻௜௖௧ሻ ‐0.253 

 (0.036) 

   

country dummies yes 

time dummies  yes 

industry dummies  no 

   

Number of obs.  1,044 

F( 32,  1011)  1,150 

   

 

Notes 

Subscript 𝜈𝜏 denotes low‐tech industries,  𝜀 electronics and  α transport equipment. 

Robust standard errors in parentheses.  

 
 

 



 

Table 6. Manufacturing and non‐manufacturing industries 
 

 

OLS regression 
Dependent variable 
lnሺ𝐻௜௖௧)

Independent variables   

   

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ *𝛪ఘ  ‐0.159 

  (0.037) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ *𝛪ఓ  ‐0.239 

  (0.037) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ *𝛪ఘ*𝑉௖௧   0.019 

  (0.008) 

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ *𝛪ఓ*𝑉௖௧   0.053 

  (0.008) 

lnሺ𝐾௜௖௧ሻ 0.663 

  (0.010) 

lnሺ𝐼𝐶𝑇௜௖௧ / 𝐾௜௖௧ሻ 0.057 

  (0.012) 

lnሺ𝑊௜௖௧/𝐻௜௖௧ ሻ ‐0.243 

  (0.026) 

  

country dummies  Yes 

time dummies  Yes 

industry dummies 
for 3 non‐

manufacturing sectors 

   

Number of obs.  1364 

F( 33,  1330)  1237 

 
  Notes 

Subscript  𝜇 denotes the manufacturing sectors in our sample and  𝜌 the three non‐
manufacturing sectors (agriculture, mining and quarrying and utilities). 

Robust standard errors in parentheses.  

 
 

 
 
 



 

Table 7. Components of the innovation index 
 

  Dependent variable in all regressions  ln(𝐻௜௖௧) 

    Scientific  R&D  University  Government  Scientist 

  Innovation  research  company  industry  Tech  Engineer 

  capacity  quality  spending  collaboration  procurement  available 

             

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ  ‐0.275  ‐0.277  ‐0.240  ‐0.266  ‐0.204  ‐0.030 

  (0.032)  (0.032)  (0.027)  (0.027)  (0.031)  (0.046) 

             

lnሺ𝑅௜௖௧/𝐻௜௖௧ሻ 0.054  0.050  0.050  0.053  0.049  0.003 

*𝑉௖௧   (0.007)  (0.006)  (0.006)  (0.005)  (0.009)  (0.013) 

             

Zero net 
effect  5.13  5.51  4.84  4.99  4.19  10.5 

No. obs.  1044  1044  1044  1044  1044  1044 

Notes             

The coefficients in this table were estimated with regressions like the one in column (2) of Table 3, 
with each of the six components of the National Innovation Index replacing the aggregate index in 
turn.  

Robust standard errors in parentheses.      

 
 
 
 


