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Abstract

How does social distancing affect the reach of an epidemic in social net-
works? We extend the Susceptible-Infected-Removed (SIR) epidemic
model to social networks in which individuals are limited in the number
of other people they can interact with. While increased social distanc-
ing always reduces the spread of an infectious disease, the magnitude
varies greatly depending on the topology of the social network. Our re-
sults also reveal the importance of coordination at the ‘global’ level. In
particular, the public health benefits from social distancing to a group
(e.g., a country) may be completely undone if that group maintains
connections with outside groups that are not social distancing.
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1 Introduction

How does social distancing affect the reach of an epidemic? To address
this question we introduce temporary social distancing measures to the
Susceptible-Infected-Removed (SIR) epidemic model of Kermack and McK-
endrick (1927)." The results of our simulations reveal a number of stylised
facts that could prove useful for policy makers handling the outbreak of the
novel coronavirus (COVID-19).

While the spread of an epidemic is curtailed with social distancing, the
magnitude varies greatly depending on the topology of the social network.
We illustrate this by running simulations of our capacity constrained SIR
model on three types of well-studied networks: the ‘random graphs’ model
of Erdés and Rényi (1959) and Gilbert (1959) (hereafter, ERG), the ‘small
world” networks of Watts and Strogatz (1998) (hereafter, WS), and the
‘scale-free’ model of Barabasi and Albert (1999) (hereafter, BA).?

We begin by focusing on two main questions: (i) What is the likelihood
that an infectious disease will become endemic? (ii) What is the distribu-
tion of the peak infection rate over the lifecycle of the epidemic? The reason
for focusing on (i) is that the level of herd immunity attained is an impor-
tant policy tool in knowing how, when, and by how much social distancing
measures can be relaxed. The reason for focusing on (ii) is that the peak
infection rate corresponds to the most overloaded instance that a health ser-
vice encounters over the lifecycle of an epidemic. Success in both the above
dimensions is not simultaneously possible because as one goes up the other
goes down. Our results help to guide what the relative trade-offs are.

For all three social network structures, strong measures of social distanc-
ing (limiting everyone’s daily interactions to 3 or fewer) stops an epidemic
with high probability (see Figure 2). However, for societies structured ac-
cording to WS, the fraction of individuals who are in state R after the
epidemic has passed is much less over this range (see rows labeled ‘Herd

!By ‘social distancing measures’ we mean limiting the number of social interactions in
which an individual partakes. We do not mean individuals maintaining a predetermined
physical distance throughout an encounter. Our measure is adapted from the game-
theoretic model of Netflix Games (Gerke et al., 2019; Gutin et al., 2020). There, the
purchaser of a product may only share with a limited number of friends. Here, the carrier
of an infectious pathogen is limited in the number of friends they may interact with.

2To ensure we are comparing like-for-like, we fix it such that all networks are connected
and possess the same average degree. This means it is the way in which the societies are
organised, and not the overall level of interaction, that is being varied. We initialise
each trial with 1% of the population infected, using the COVID-19 disease parameters
calibrated in Toda (2020).



Immunity’ in Table 1). Moderate social distancing (defined as 4-5 interac-
tions per period) delays the peak of an epidemic but has little effect on the
size of the peak and on the number that the disease ultimately reaches. The
effect of mild social distancing (limiting individuals to 10 social interactions)
differs greatly across network structures. With a ERG network, the effect is
negligible. With a WS network, the outcome is the same as no intervention.
With a BA network, the peak is significantly reduced. This is because in the
BA network there are a small number of individuals with lots of connections,
who, without constraints imposed may act as “super-spreaders”.?

Our framework is flexible enough to address a host of other policy ex-
periments. For example, we consider a network comprised of two densely
connected components, interpreted as ‘countries’, that have a few connec-
tions between them that we interpret as international friendships. We show
that the benefits to a country that imposes strong social distancing measures
are dramatically reduced if it continues to allow international connections,
interpreted as maintaining open borders, with a country that is not imple-
menting similar measures. In a hyper-connected world this points to the
need for ‘global’ cooperation to eradicate an epidemic. In particular, if the
global approach is uncoordinated with each country unilaterally applying
social distancing measures without taking into account the policy choices of
its neighbours, then an infectious disease may cycle around for far longer
than otherwise intended. (During the COVID-19 pandemic, some Asian
countries, e.g., Hong Kong and Singapore, have experienced second waves
after successfully eradicating the virus during its first outbreak.)

We also consider what happens when a subset of individuals are deemed
‘essential workers’” who can go about their lives facing weaker social dis-
tancing constraints than the rest of the population. Our results show that
when 10% of the population is deemed essential, the reach of the epidemic
is similar to that wherein there are no essential workers. Finally, we con-
sider a policy of beginning with severe social distancing measures that are
incrementally relaxed over time, and compare the outcome with that from
a policy of mild but constant social distancing over a shorter window. We
find that the public health outcome is better under gradual relaxation for
ERG networks and WS networks, but worse for BA networks.

We conclude the paper by suggesting some extensions to our framework
that can be implemented in future work.

3A related point is made in Muscillo and Pin (2020) who show, using an SIS model,
that unless all individuals comply with a social distancing policy, and specifically those
who have more contacts, a policy may even be counterproductive.



2 The Model

Modelling how an infectious disease might spread through a population is
done using a contact network: a graph, G = (V, E), where V is the set of
vertices, and F is the set of edges. Vertices represent individuals and an
edge between two distinct vertices ¢ and j captures the idea that these two
people are acquaintances and meet in such a way that the disease may be
transmitted from one to the other.

We assume throughout that GG is connected. The neighbourhood of ver-
tex ¢ in G is denoted N (i) and its degree is denoted d(i) = |N(i)|. The
capacity of G is a function k : V' — Z>¢. This capacity function x is our
measure of social distance. Intuitively, it restricts the number of neigh-
bours that each vertex can interact with, which in turn caps the number of
neighbours to whom any infected person can pass the disease. While & is
allowed to take values that are individual specific, we will assume that it
does not. That is, we abuse notation somewhat by simply writing Npy.x for
the maximum number of neighbours that each individual will interact with.

Our capacity constrained SIR model then operates as follows. Everyone
in the population is currently in one of three states: Susceptible (S) - has
not had the disease and is therefore at risk; Infectious (I) - currently has the
disease and may therefore pass the disease to others; Removed (R) - has had
the disease and is no longer infectious (may be immune, isolated, dead, etc.).
Time is discrete, starts at ¢ = 0, and goes forever. Let Sy, Iy, Ry € {0,1}
be the status of individual ¢ at time ¢, where 1 means being that status and
0 means not being that status. (Clearly, Sy + I;y + Ry = 1 for all i € V
and all times ¢.) In every period, each infected vertex i randomly selects
Npax of its neighbours, and, if any of the selected neighbours are in state S,
then they become infected it with probability 4 € (0,1).* The probability
of removal (moving from state I to state R) is denoted by v € (0,1). We
assume that v is constant over time and is the same for everyone. Once an
individual enters state R, he stays there forever more. We will say that the
system has stopped when there is no individual in state I.

To see how social distancing works in practice we refer to Figure 1 below.
This figure can be thought of “zooming in” on the local neighbourhood
of vertex ¢ with degree 4 in some larger graph. We suppose that vertex
¢ is infected (coloured red) while each of its 4 neighbours are susceptible

4Two things to note. First, clearly the model reduces to the standard SIR model when
k(%) = d(¢) for all « € V. Second, when 0 < k(i) < d(2) for some ¢ € V, there are (:8)
ways for i to select a subset of neighbours of size k(7). We assume a uniform distribution
over the likelihood of choosing each subset.



(coloured blue). The left hand image shows what occurs when the social
distancing measure is 4 or greater. In this case ¢ is unconstrained, and
infects each of its neighbours (depicted by arrows) with probability 5. The
right hand image shows an instance where Ny,,x = 2. Here vertex £ randomly
selects 2 of its 4 neighbours (in this case by h and k) and infects each with
probability 8. The remaining neighbours, ¢ and j, are not encountered
(depicted by dashed arrows) and so cannot become infected. While it is
possible that more neighbours will become infected in the right hand image
it is unlikely.

Figure 1: Left panel: Ny > 4. Right panel: Ny = 2

The above describes the model. The state of the system at any time ¢ is
given by {(Sit, Lit, Rit) },cy,- Moreover, given disease parameters 3 and v, a
graph G and capacity function s, and initial conditions {(S;o, Lio, Rio) };cy/s
the capacity constrained SIR model is a well-defined stochastic process that
is easily simulated.

3 Simulation Parameters

We run simulations on the capacity constrained SIR model described above
for three different types of graphs, ERG, WS, and BA. Before describing
the choice of parameters for the epidemic, we briefly review how each kind
of graph is generated and the graph-parameters required to render them
like-for-like.

Erdés and Rényi (1959) & Gilbert (1959) These networks are often
referred to simply as ‘random graphs’. Begin with an empty edge set. Now,



for every pair of distinct vertices ¢ and j, form edge ij with fixed probability
p. The expected number of edges in the resulting graph is %n(n —1)p.

Watts and Strogatz (1998) The resulting network is often referred to as
a ‘small world’. Begin with the n vertices connected in a ring lattice where
each vertex has k neighbours to the left and £ neighbours to the right, where
k << n. Proceed clockwise around the ring one time, and for each vertex,
rewire each edge it has with the k vertices immediately to its right with
rewiring probability ¢. Since the net change in the number of edges is zero,
the number of edges in the resulting graph is exactly nk

Barabasi and Albert (1999) The resulting network is often referred to
as ‘scale free’. Begin with a complete graph on mg << n vertices and allow
time to increment forward from ¢t = 1 to t = n—myg. At each point in time, a
new vertex is born and the newly born vertex forms one edge with m < my
of the existing vertices, where the probability that the newly born vertex
connects to existing vertex i is given by d(i)/>_; d(j). In total n —mo new
vertices are added so the number of edges in the resulting graph is always
exactly $mo(mo — 1) + m(n —myp).

We choose to equalise average degree, d, across all network types. This
ensures we are comparing like-for-like since it is the way in which the societies
are organised, and not the overall level of interaction, that is being varied.
Given that the number of edges in each graph will be nd/2, some straight-
forward algebra yields the following parameter requirements: p = % for

ERG, k = % for WS, and m = %%)_1) for BA.

In each network we fix the number of vertices to be n = 1,000 and set
d = 10. Such a choice requires setting the ERG parameter p = 0.01. For
WS we choose rewiring probability ¢ = 0.1 and k = 5. For the BA network
we set mg = 1. We set the removal probability v = 0.1. To calibrate 3,
we proceed as follows. Since average degree is d, an infected individual will
infect Bd others in one period and on average 3d/~ over the infectious period
when social distancing is unconstrained. The expression Ad/y must equal
the reproductive number which is calibrated to be 3 in Toda (2020). Given
this, we have that g = 0.03. Finally, we initialise the system by setting each
vertex to state I with probability yo = 0.01 (so that, on average, each trial
starts with 1% of the population infected).

We allow the social distancing measure Ny, to take values in the set
{1,2,3,4,5,10,00}, where the value oo denotes the standard SIR model



(i.e., our model without any constraints). Lastly, unless otherwise stated,
we suppose that the social distancing measure starts in period 0 and is lifted
from period 50 onwards.

4 Simulation Results

Figure 2 below contains six panels organised in a 3 x 2 format. The first
row refers to ERG networks, the second to WS networks, and the last row
to BA networks.

The first panel in each row presents results of four separate simulations
with the network structure held fixed. The z-axis is time, and the y-axis
is infection rate with social distancing measures of Ny = 2,5,10, and oo
(we choose not to present all values of Npax as the resulting image is too
cluttered). The vertical line at ¢ = 50 represents the lifting of the social
distancing restriction.

The second panel in each row presents a probability distribution of peak
infection rates from 1,000 simulations of the type shown in the first panel.
To see the connection between the two panels, we note that each first panel
would provide one data point for the second panel. To further cement un-
derstanding, note that in the first panel of the WS row the peak infection
rate for Npax = 2 trial is greater than that for the Ny = 5 trial.

We begin with the first panels referring to individual trials. For the ERG
and BA networks, the social distancing measure of Ny, = 2 eradicates the
epidemic within the 50 period window. Note however that the Ny, = 2 trial
does not eradicate the epidemic for the WS network. For each of the three
network structures, the trial with moderate social distancing, Ny.x = 5,
delays the peak of the epidemic but has little impact on the size of the
peak. The effect of mild social distancing, Ny.x = 10, differs across network
structures. With a random network (ERG), the effect is mild. With a small
world network (WS), the outcome appears equivalent to no intervention
(Nmax = 00). With a power law network (BA), the peak is significantly
reduced. This is possibly because in the BA network there are a small
number of individuals with large degree who are no longer able to act as
“super-spreaders”.

While the findings in the first panel of Figure 2 are illustrative, they
represent only a single trial and so are not robust findings. As such we now
turn our attention to the panels in the right hand column. Here each panel
presents histograms of the peak infection rate attained in 1,000 trials for
a given network type (four histograms on each graph - one for each of the
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Figure 2: Results for (i) one trial, and (ii) average of 1,000 trials.

same measures of social distancing as in the left hand panels).® For all three
network structures, setting Npy.x = 2 eradicates the infection in ~70% of the
trials. We note that the empirical frequency distribution of peak infection

SWe consider peak infection rate as it captures the worst case scenario. This has been
cited as a particularly important measure in the COVID-19 epidemic where it is often the
excess numbers of sick individuals that strain a healthcare system (limited numbers of in-
tensive care beds, ventilators, and personal protective equipment for medical professionals)
that can be as big an issue to public health as any other factor [cite].



is bimodal for the value Np.x = 2 with the lower mode corresponding to
the epidemic being eradicated. Setting Npax = 5 eradicates the disease in
slightly more than ~10% of the trials of the WS networks and even less for
ERG and BA. Setting Npax = 10 almost never eradicates the disease for
any kind of network. Setting Np.x = 0o never eradicates the disease for any
kind of network.

Conditional on the disease not being eradicated, the distribution of peak
infection rate is the same as no intervention for ERG and WS. This is because
the epidemic restarts after the lifting of social distancing measures. However,
for the BA network, conditional on the disease not being eradicated the
distribution of peak infection rate for Nyax = 5 is sandwiched between that
of Nmax = 10 and Npax = 0o. At first glance this may appear mysterious but
in fact it is not. The explanation is that the distribution of peak infection
rate presented says nothing about the precise moment, during a particular
trial, that the peak infection rate was attained. For Ny.x = 5, the peak
infection rate will typically occur after the social distancing restrictions have
been lifted (as can be seen clearly in the left hand panel of ERG), but this is
not the case for Ny .x = 10. For BA networks, it would appear that setting
Npmax = 10 is a superior policy to the policy to setting Npax = 5.

Table 1 presents further results. The variable ‘Peak’ denotes the peak
infection rate. Letting 7' denote the last period before the system stops,
we say that society has acquired herd immunity if Sdzr < 7, where a7 is
the fraction of susceptible individuals at time 7. (See Toda (2020) for a
discussion.)

As can be seen from Table 1, there is a trade-off to be made between
herd immunity and keeping the peak low (the variable ‘Peak | Immunity’).
While achieving herd immunity is desirable so that the epidemic cannot
strike again, the expected peak is higher under such a scenario. That is,
conditional on acquiring herd immunity, the average peak is a decreasing
function of Npax. This suggests that drastic social distancing policies are
fragile.

In summary, choosing a small Ny« such as Nyax = 1,2 reduces the peak
but prevents building herd immunity, which makes the society susceptible
to further epidemics. Choosing an intermediate Ny ax such as Nyax = 3,4, 5
does not necessarily reduce the peak, while mildly preventing herd immunity.
Choosing Npax = 10 generally reduces the peak infection rate and achieves
herd immunity.



Table 1: Effectiveness of non-pharmaceutical interventions in networks.

Network Variable Nmax
00 1 2 3 4 5 10
Peak 26,5 34 7.7 139 187 19.5 20.7
Std.(Peak) 2.8 74 107 114 89 6.1 25
ERG Med. (Peak) 266 1.0 1.2 209 220 20.8 20.7

Peak | Immunity 26.6 25.1 24.7 23.6 228 21.1 20.7
Herd immunity  99.7 10.3 28.2 56.9 80.9 924 99.7

Peak 145 19 35 51 73 88 13.3
Std.(Peak) 28 32 48 54 53 46 26
WS Med.(Peak) 145 10 1.1 15 89 101 13.3

Peak | Immunity 14.6 12.6 126 12.2 11.7 11.3 134
Herd immunity 994 7.2 19.9 33.5 54.8 72.1 98.7

Peak 2877 40 81 138 182 189 13.0
Std.(Peak) 25 84 114 120 93 6.2 26
BA Med. (Peak) 287 1.0 1.2 203 21.6 199 12.7

Peak | Immunity 28.7 27.1 26.2 24.6 228 204 14.1
Herd immunity  99.9 11.5 282 54.1 78.6 §89.7 49.2

Note: “Peak” is the mean peak infection rate (%). “Std.” and “Med.” are the standard
deviation and median of peak infection rates across 1000 simulations. “Peak | Immunity”
is the mean peak infection rate conditional on acquiring herd immunity. “Herd immunity”
is the fraction of simulations (%) in which herd immunity was acquired.

5 Policy Questions

Our set up is sufficiently flexible that we can address a wide range of policy
issues. Here we present the results of some extensions.

5.1 Tackling Epidemics Requires ‘Global’ Cooperation

Suppose there are two countries, Country A and Country B. Each coun-
try has a population of n individuals, and when viewed in isolation each
country forms its own connected network. Suppose further that every pair
of individuals from different countries are randomly connected with fixed
probability 1/(10n), and we interpret connections of this form as interna-
tional relationships. (We choose a low value so that in expectation only a
very small minority of each individual’s interactions are with foreigners.)

10



For the simulations, we set n = 1,000 and d = 10 for each country, and
we assume that both countries have the same social structure (ERG, WS,
or BA). We use the same values for 3, 7, and initial infection probability yo,
as before.® However, instead of assuming that temporary social distancing
measures are imposed ‘globally’ as in the simulations of Section 4, we now
suppose that Country A levies social distancing measures while Country B
imposes no measures of any kind. Figure 3 below depicts the simulation
results for one trial of the infection rate in both countries as a function of
time for a variety of different social distancing measures, x = 2,5, 10, and
00.

Figure 3 below contains six panels organised in a 3 x 2 format. As with
Figure 2, the panels in a given row correspond to different network structure:
the first refers to ERG networks, the second to WS networks, and the last
row to BA networks. Within a given row, the first panel presents time-
varying infection rates for Country A of four separate simulations differing
across social distancing measures (Npax = 2,5,10, and oo). The vertical
line at ¢ = 50 represents the lifting of the social distancing restriction. The
second panel in each row is the corresponding time-varying infection rate
for Country B during the same simulation.

The interesting comparison to make is the results for Country A above
with that of the single country results in the left hand column panels of
Figure 2. Compared to the case with one country, it is clear that social dis-
tancing is less effective because new cases are imported from foreign coun-
tries. This is the case despite the fact that the expected degree for vertices
in Country A has only increased by 0.1.

These simulation results highlight the need for policies designed to tackle
the COVID-19 epidemic to be coordinated. To give an extreme example
imagine a large body of interconnected individuals who live in different re-
gions with no barriers to moving between regions (this is precisely with
countries within the Schengen area of the European Union and states within
the United States of America). If one region has weaker social distancing
measures than all the others while maintaining connections to them, this
one region may impose a large negative externality on the others.

SWe assume that in both countries 1% of individuals are infected. Of course it is
possible to address a host of other related questions. An example would be, “Suppose 2%
of individuals in Country A are infected. What is the lowest value of = such that if % of
individuals in Country A are infected then the reach of the epidemic will be both Country
A and Country B?”.

11
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Figure 3: Epidemic dynamics with two countries.

5.2 Essential Workers

Suppose that some fraction of individuals are deemed ‘essential workers’ who
face different social distancing measures to everyone else. As a numerical
example, suppose a random 10% of the individuals are essential workers,
with number of meetings restricted to Npax = 10 during social distancing.
Figure 4 below contains two panels. In both panels 10% of individuals
are deemed essential workers and randomly assigned Ny.x = 10. The first

12



panel shows the outcomes of one trial for each network type, wherein 1%
of all individuals are initially infected and the 90% of individuals who are
non-essential individuals have Ny.x = 2. The second panel is similar except
the non-essential workers have Nyax = 5. In comparing the graph from each
panel with the corresponding appropriate panel from Figure 2, we can see

that there is not much difference from the benchmark case where there are
no essential workers.

Essential workers, Ny =2

Essential workers, Nyj.x =5
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Figure 4: Epidemic dynamics with essential workers.

5.3 Gradual Relaxation of Social Distancing

As of May 2020, many countries around the world are considering relaxing
the social distancing measures imposed due to the COVID-19 epidemic.
Our framework allows us to consider the outcomes of different relaxation
policies, with a particular focus on time being an important policy tool. As
an example, one can ask how the following two policies compare

Policy A: Start with severe social distancing, Npax = 2, for ten days,
then increment Np.x by 1 every 10 days stopping when Np.x = 10. After
this 90-day window, all social distancing restrictions are lifted.

Policy B: Start with mild social distancing, Npax = 10, and keep in place

for 50 days. After this 50-day window, all social distancing restrictions are
lifted.

Policy B above is identical to that which has already been considered (the
results can be seen in Figure 2 and Table 1). Figure 5 presents simulation
results from one trial of Policy A for each network type. At least for this

13



trial, setting Npax = 10 for just 50 days is better for BA, while gradual
relaxation is better for ERG and WS.

Gradual relaxation of social distancing
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Figure 5: Epidemic dynamics with gradual relaxation of social distancing.

6 Extensions

In this paper we model the direct effect that social distancing has on public
health during an epidemic. While the addition of social distancing to a model
of infectious disease is clearly relevant, there remain other factors that could
be included and other variants of our model that could be explored.

Our model allows for full lockdown by setting (i) = 0 for every in-
dividual ¢. But this is not realistic as even during a full lockdown large
fractions of the population make outings for essential items. Even if every-
one takes great care when outside the home, there is always the possibility
of transmission from a random individual. This could easily be included.

The R state in the SIR model refers to “Removed”, but is more ac-
curately described as “Removed and no longer Susceptible”. As regards
COVID-19, there is new data emerging from South Korea [cite] that indi-
cates that some who have been infected may still be prone to reinfection. If
so, the spread of the coronavirus may be better described by an SIS model
(where the second ‘S’ also stands for susceptible). This important change is
easily is easily incorporated to our set up.

Lastly, while we have focused on the benefits to public health of social

14



distancing, this is far from the full story. Any amount of social distancing
brings with it economic cost and, as evidenced by recent economic data, the
policy responses to the COVID-19 outbreak have had an enormous effect on
the global economy.” Given that, as of time of writing, the mass roll-out
of a successful vaccine to COVID-19 is potentially far on the horizon, some
form of relaxed social distancing measures need to be considered.® A richer
model would also include the effect that social distancing has on economic
output, and subsequently incorporating the interdependent relationship be-
tween output and public health (Weil, 2007; Bloom et al., 2004). Such
a model would allow policy makers to consider the full trade off between
absolute lockdown (safe from exposure, economic activity greatly reduced)
versus no lockdown of any kind (not safe from exposure, economic activity
is maximal).

"Baker et al. (2020) document that the USA’s week-ending jobless claims numbers
from late-March 2020 have been an order of magnitude higher than any seen previously.
Moreover, these numbers were as a result of the lockdown policy and not the virus itself.

®Dingel and Neiman (2020) estimate that only one-third of jobs in the USA can be
done from home.
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