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University of Kent, Università di Verona, Univeristy of Sheffield, Univeristy of Lancaster, Universitat de Barcelona,
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of Economics, University of Portsmouth, Universitá Sapienza Roma, 2018 Asia Meeting of the Econometric Society
(Seoul), 6th Workshop in Macro Banking and Finance (Alghero), 71st European Meeting of the Econometric Society
(Cologne), Dynare Conference 2017, MMF conference 2017, 1st Research Conference of the CEPR Network on
Macroeconomic Modelling and Model Comparison MMCN Goethe University Frankfurt, Workshop on ’Structural
Changes, Labor Markets and Policy’ Universitat de Girona, Simposio SAEe Bilbao 2016 and LACEA/LAMES
2016 Eafit Medelling.
†The views expressed in this paper are those of the authors and are not necessarily reflective of views at the

Bank of England (e-mail:cristiano.cantore@bankofengland.co.uk)
‡The views expressed in this paper are those of the authors and are not necessarily reflective of views at the

Federal Reserve Bank of Chicago or the Federal Reserve System (e-mail:fferroni@frbchi.org).
§School of Economics and Macroeconomics, Growth and History Centre (MaGHiC), University of Kent, Keynes

College, Canterbury, Kent, CT27NP UK (e-mail:M.A.Leon-Ledesma@kent.ac.uk).

1



1 Introduction

Widely used structural models for monetary policy analysis that rely on price (and wage)
rigidities establish clear transmission mechanisms from monetary policy shocks to real eco-
nomic activity and inflation. One of the key mechanisms of transmission in these models
operates through the redistribution between labor income and firm’s profits (markups). In
the basic model, when prices are rigid, a monetary policy (MP) tightening should lead to an
increase in the markup and a decrease in the income share of labor as prices cannot react
immediately to the fall in demand. This effect reduces unit labor costs leading to a down-
ward pressure on inflation. For this transmission mechanism to be operative, MP shocks
should affect the cyclical behavior of the labor share in ways that are consistent with these
theoretical predictions. Despite its importance, studies on the effect of MP shocks on the
labor share are very scarce.1

Our first objective is to fill this gap and provide a cross-country comprehensive study on
the effects of monetary policy on the labor share. Using state of the art VAR identification
techniques for a set of five economies2 we present a new and robust set of facts. Furthermore,
we look at the components of the labor share, namely real wages and labor productivity.
This is needed to identify the channels through which the labor share response operates.
Once we establish the empirical facts, we address our second objective. We ask the question:
are current models of economic fluctuations widely used for monetary policy analysis able
to jointly match the response of the labor share, real wages, and productivity? This is an
important question given the above mentioned reliance of models on specific MP transmission
channels.3

The main contribution of the paper is empirical. We uncover a new (and very robust) set
of stylized facts: cyclically, a MP tightening (easing) increases (decreases) the labor share
and decreases (increases) real wages and labor productivity.4 These facts are robust across
time periods, different countries, different measures of the labor share, different identifica-
tion methods, and different information sets. To address concerns about identification of
MP shocks, we use a recursive Cholesky ordering, sign restrictions, and several external in-
struments in the spirit of Stock and Watson (2012) and Mertens and Ravn (2013) to identify
MP surprises.

To analyze whether theories are consistent with these robust stylized facts, we study the
properties of different families of models commonly used in macroeconomics for the analysis
of monetary policy. We first briefly discuss the intuition behind some canonical models to
understand the margins affecting the labor share. We then look at the quantitative properties
of larger models incorporating a combination of different rigidities. We derive measures of
the labor share from the models and look at their response to a MP shock. This is carried out
using a three step approach. We first look at the likelihood that these models can generate
the observed responses obtained in the VAR by using a Prior Sensitivity Analysis (PSA)
approach. Secondly, we identify the key model parameters driving the response of the labor
share, real wages, and productivity using Monte Carlo Filtering (MCF) techniques. Third,

1Ramey (2016), for instance, reviews the available evidence on MP shocks using all the available state of the
art identification techniques in VAR models. However, there is no mention of the impact on real wages and labor
productivity (the components of the labor share).

2The US, the Euro Area, UK, Australia, and Canada.
3Beyond the importance for understanding transmission, these questions are also important to understand

the cyclical redistributive effects of MP at the factor level. Redistributive effects of MP between the owners
of capital and labor can have important consequences. They can affect household income inequality depending
on the structure of capital ownership, and can also lead to inter-generational redistribution as different cohorts
live off changing proportions of labor and profit income. These aspects can have important political economy
consequences, but we do not go as far in this paper.

4We address later the concerns regarding the cyclical composition bias in the measurement of real wages and
productivity discussed, among others, by Basu and House (2016).
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once these key parameters are identified, we estimate them by matching the models’ impulse
responses to those of the VAR.

To advance some intuition, it is well known that, in the simplest version of the New-
Keynesian (NK) model (see Gaĺı 2015), the labor share is equal to the inverse of the price
markup (the marginal cost). This makes the labor share pro-cyclical (the price markup is
counter-cyclical) conditional on a MP shock, which is at odds with the empirical evidence we
find here. However, this direct correspondence between the price markup and the labor share
does not necessarily hold in other versions of the model such as those that consider a cost
channel of monetary policy or search and matching frictions. We also consider the role played
by wage rigidities and fixed production costs. In other words, we look at different families of
models that can break the relationship between markups and the labor share, since they are
potentially able to generate labor share dynamics that differ from the canonical NK model.

The key result from our quantitative analysis of models is that there is a mismatch
between data and theory. This is not just a feature of the basic NK model, but carries over
in richer setups widely used for MP analysis. We show that the combination of labor market
frictions, in the form of wage bargaining, and high nominal wage inertia is able to reproduce
the response of the labor share to an unexpected MP shock. However, this comes at the cost
of obtaining counter-factual (counter-cyclical) responses of real wages. Our impulse response
matching estimates show that several models do a reasonable job at matching the responses
of standard macroeconomic variables to an identified MP shock, but they are unable to
reproduce the response of the labor share.

Related literature

Our paper is related to different strands of the literature that focus on the cyclical behavior
of markups and labor market variables conditional on demand shocks.5 The discussion in
this section shows that the conditional correlation of the labor share to demand shocks is
still empirically and theoretically an open question. It has to be noted, however, that most
of the related studies below focus on the dynamics of markups. Whilst markups are not
directly observable and require the use models to derive measures, the labor share is directly
observable. Thus, in our approach, we provide an analysis of the conditional correlations of
measured labor shares in the data and their implied behavior in NK models. I.e. we start off
analyzing national accounts based measures and then contrast them with consistent model-
implied measures. Furthermore, our contributions relative to the extant literature below
are twofold: on the empirical side, we provide systematic, robust, as well as cross-country
evidence and, on the theory side, we focus on the role of a wide set of real and nominal
frictions and not only on price stickiness.6

Empirically, Christiano, Eichenbaum, and Evans (2005) showed, only for the US and
in a broader context, how wages and labor productivity respond pro-cyclically to an MP
shock. However, they did not provide direct evidence on the labor share, and their focus
was on the persistence of output and inflation inertia. Nevertheless, the response of wages
is typically not significant in most of the literature. Using individual-level data, Basu and
House (2016) find that wages of newly hired workers and the user cost of labor respond
strongly and pro-cyclically to MP innovations. The reason is that aggregate data on wages
and productivity might be subject to biases due to systematic changes in the composition of

5There is a literature on the cyclical behavior of the labor share conditional on technology shocks such as Hansen
and Prescott (2005), Choi and Ŕıos-Rull (2009), Ŕıos-Rull and Santaeulália-Llopis (2010) and León-Ledesma and
Satchi (forthcoming). However, our focus here is on the effects of MP innovations.

6King and Watson (2012) study the relationship between unit labor costs and inflation, unveiling a puzzling
disconnect between them that contrasts with the close link implied by DSGE models. Although our focus here is
not on the relationship between inflation and the labor share, our findings could be important to understand their
puzzle.
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employed workers over the cycle. This composition bias that might affect aggregate measures
of the real wage and labor productivity cancels out when combining them to construct the
labor share measure.7 This argument reinforces the advantage of using the labor share in
aggregate empirical analyses. In our case, since we also find pro-cyclical aggregate responses
of real wages and labor productivity, the composition bias can only reinforce our results (see
section 2.4).

The relationship between the markup, the labor share, and their cyclicality is the focus
of, amongst many others, Bils (1987), Bils, Klenow, and Malin (2018), Gaĺı, Gertler, and
López-Salido (2007), Hall (2012), Nekarda and Ramey (2013) and Rotemberg and Woodford
(1999).

Rotemberg and Woodford (1999) studied extensively the cyclical behavior of real marginal
costs and price markups. They found a pro-cyclical marginal labor cost and show that the
implied counter-cyclicality of markups accounted for a substantial fraction of cyclical output
movements. Gaĺı, Gertler, and López-Salido (2007) expand on the resulting literature on
business cycle and counter-cyclical markups and present a theory based measure of the vari-
ation in aggregate economic efficiency by focusing on the gap between the marginal product
of labor and the household consumption and leisure trade off, the ‘labor wedge’. They show
how this indicator corresponds to the reciprocal of the markup of prices over ‘social’ marginal
costs. The inefficiency gap exhibits large pro-cyclical swings and, under the assumption that
wages are allocational, most of its variation is associated with counter-cyclical movements
in the wage markup hence pointing towards a greater importance of wage rigidities. The
price markup shows, at best, a weak contemporaneous correlation. Under some alterna-
tives to their baseline case, the price markup does move counter-cyclically but movements in
wage markups still dominate the overall fluctuations of the inefficiency gap. More recently,
Barattieri, Basu, and Gottschalk (2014), also find evidence of a greater importance of wage
rigidities while Basu and House (2016), instead, provide evidence against this argument.

Nekarda and Ramey (2013) discuss generalizations of the production function used in NK
models that decouple the price markup from the measured labor share in the data. Using
these theory generalizations as empirical proxies for the markup, they show that the markup
is pro-cyclical or a-cyclical for the aggregate US economy and disaggregate manufacturing
industries. They also show a pro-cyclical response of the markup conditional on demand
shocks. Hence their conclusions, like ours, cast doubts on the standard transmission mecha-
nism of NK models. Our approach differs from theirs because, as mentioned above, we first
obtain evidence from measured labor share from national accounts and then use NK models
from which we derive the behavior of the labor share, real wages, and labor productivity,
and analyze the coherence between their response to an MP shock and that obtained in the
VARs. For that, we make use of a wide variety of NK models introducing several types of
nominal and real frictions. In several of these versions, the relationship between the labor
share and the price markup breaks down. Our evidence also covers a wider range of coun-
tries and different identification schemes, as well as wider information sets. While Nekarda
and Ramey (2013) conclude that refocusing models around wage rigidity may resolve their
empirical inconsistency, we show that, even with wage and labor market rigidities, models
are unable to reproduce the joint behavior of the labor share and its components.8

Finally, Bils, Klenow, and Malin (2018) revive the role of counter-cyclical markups and
sticky prices. They note that criticisms of the counter-cyclicality of the markup are based
on the observation that the gap between average hourly earnings and labor productivity

7The labor share is defined as Sh = W/Y/H = WH/Y , where W are real wages, Y is output, and H is hours
worked.

8Hall (2012) also shows that cyclical movements in profit margins can be disconnected from cyclical movements
in the labor share in the presence of other product-market wedges. Increasing profit margins should increase
advertising spending by a large amount but Hall (2012) shows that this is not the case, refuting the hypothesis
that profit margins rise in recessions.
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is a-cyclical, suggesting that price markup movements are not cyclical. They argue that
average hourly earnings may not reflect the true marginal cost of labor to the firm. Hence
they seek evidence on cyclical distortions in the product market that does not rely on wage
data for workers. For this, they look at the intra-temporal wedge for the self-employed and
the product market wedge from intermediate inputs. Their finding is that product market
distortions are at least as important as labor market distortions in recent recessions. The
cyclical product market wedge they estimate is compatible with firm sales being constrained
in recessions by a (too high) sticky price.

The counter-factual requirement of NK models that, in order to have a counter-cyclical
markup, a pro-cyclical labor share is necessary, is also discussed by Karabarbounis (2014).
He studies the fluctuations in the labor wedge by decomposing it in two parts: a gap coming
from the difference between the marginal product of labor and the real wage (firm’s wedge)
and a gap coming from the marginal rate of substitution between consumption and leisure
and the real wage (household wedge). Starting from the assumption that, under Cobb-
Douglas, the gap between the real wage and the marginal product of labor is a decreasing
function of the labor share, and that the labor share is counter-cyclical, he observes that the
firm’s first-order condition that the MPL equals the real wage needs to be augmented by a
relatively smooth and pro-cyclical wedge in order to make this condition hold in the data.
Our findings also cast doubts on this counter-factual requirement of NK models.

There are several channels that can break the relationship between the labor share and
the inverse of the markup. As discussed in Nekarda and Ramey (2013), for instance, CES
production functions or the presence of fixed costs of production in the form of overhead
labor would imply that the labor share differs from the the inverse of the markup. Another
simple way of breaking this relationship is the cost channel of MP (see Ravenna and Walsh
2006). If firms need to borrow working capital to pay workers in advance of production, then
changes in interest rates would affect wage costs leading to a cost channel of MP.9 However,
the inverse of the labor share and the price markup are not equal in these models because
nominal interest rates have a direct effect on marginal costs. Hence, in the presence of
working capital, there are two contrasting forces: pro-cyclical markups and counter-cyclical
interest rates. Another important channel that breaks the relationship between markups
and the labor share is the existence of search and matching frictions in the labor market (see
Trigari 2006). In these models, wages are determined by a Nash bargaining process between
firms and workers. We show that this set up is able to reproduce the observed response of
the labor share to a monetary policy shock but only when combined with a strong degree
of nominal wage stickiness. If we allow the degree of wage stickiness to be stronger than
price stickiness, in the presence of some positive workers’ bargaining power, real wages will
respond counter-cyclically to a monetary innovation and hence move the labor share in the
right direction. This however comes to the cost of generating a counter-cyclical response of
wages that is at odds with the evidence.

The rest of the paper is organised as follows. Section 2 presents the data, stylised
facts, and key results from the VAR analysis. An extended set of results and robustness is
provided in section D of the Online Appendix accompanying the paper. Section 3 presents
the quantitative analysis on medium scale DSGE models using a three step approach. Finally,
Section 4 concludes.

9Recently, Phaneuf, Sims, and Victor (2015) show that a model with firms networking and working capital
channel can generate a procyclical markup conditional on an MP shock.
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2 The labor share in the data

2.1 Data: construction and sources

Our data set consists of measures of the labor share, real wages, and labor productivity as
well as a set of other variables that will enter our VAR analysis. Here we focus mostly on
the former three measures and leave most of the detail in Appendices A to C as the other
variables follow standard practice in the literature.

Measuring the share of labor in total income is complicated by problems associated with
how to impute certain categories of income to labor and capital owners. The existence of
self-employment income, the treatment of the government sector, the role of indirect taxes
and subsidies, household income accruing from owner occupied housing, and the treatment
of capital depreciation, are common problems highlighted in the literature. These have been
discussed at length in Gollin (2002), Gomme and Rupert (2004) and Muck, McAdam, and
Growiec (2015). In constructing the labor share data for the US, where data on income
sources is richest, we use 7 different measures. The first and the last are directly taken from
the Bureau of Labor Statistics and measure the labor share in the non-farm business and
in the non-financial corporation sectors, the second to the fourth are based on Gomme and
Rupert (2004), the fifth based on the approach of Cooley and Prescott (1995), and the sixth
is taken from Fernald (2014).10

For other countries, where available, we will use similar measures. However, data avail-
ability limits the extent to which we can obtain corrected labor share measures and, in many
cases, we work with rough estimates of labor shares. We work with only one measure of
the labor share for the Euro Area and the United Kingdom (compensation of employees
over nominal Gross Value Added at factor costs) while we will use five different measures
for Australia and two for Canada (see figures A2-A3).11 For each country with more than
a proxy for the labor share we use a baseline measure for the empirical analysis below and
present the results for the rest of the proxies in the supplementary Appendix.12

For real wages in the US, we used nominal compensation of employees deflated by CPI
over hours worked from the database produced by Valery Ramey and updated from the
BLS.13 For the Euro Area, we use hours data from the AWM database. For the rest of the
countries we use hours from the dataset constructed by Ohanian and Raffo (2012). Labor
productivity is calculated as real GDP, using the GDP deflator, over hours worked from the
same databases.14

For the rest of the variables in the VAR analysis, as explained below, we use data on Real
GDP, the GDP deflator, an index of commodity prices, CPI, short term interest rates, and
M2 growth. We construct these information sets for the 5 countries under analysis. Since
these are standard, data sources and details are available in supplementary Appendix C.

10All the proxies for the US are plotted in the supplementary Appendix in figure A1 for the post WWII period.
Generally, these measures are highly correlated in levels. In first differences, the correlation between them always
exceeds 0.5. Details in Appendix B.

11Again, the measures are highly correlated in all cases. Details in Appendix B.
12Where possible we follow Gomme and Rupert (2004) in using as a baseline measure labor share in the non-

financial corporate sector. Neither proprietors’ income nor rental income are included in this sector accounts, thus
avoiding the issues of properly apportioning proprietors’ income to labor and capital or accounting for labor income
in the housing sector. For the US our baseline measure is LS2, labor share in the domestic corporate non-financial
business sector, for Australia we choose the measure LS4, labor share in the domestic corporate sector and for
Canada we choose LS2 in which we imputed mixed income in the same proportion as unambiguous labor and
capital income. These measures are used in the baseline results with the alternative measures presented in the
appendix.

13See http://econweb.ucsd.edu/ vramey/research.html.
14The use of different deflators in the construction of the two components of the labor share is discussed at

length in section 2.4.
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Country Sample LS W LP
US 1955Q1-2015Q3 [-0.29 , 0.04] [0.13 , 0.47] [0.14 , 0.50]
EA 1999Q1-2014Q4 [-0.91 , -0.37] [-0.34 , 0.46] [0.84 , 0.95]
UK 1971Q1-2016Q1 [-0.41 , 0.11] [-0.26 0.19] [0.19 0.64]
AUS 1959Q3-2013Q4 [-0.23 , 0.12] [ [-0.35 , -0.01] [0.13 , 0.43]
CAN 1981Q2-2013Q4 [-0.56 , -0.07] [-0.49 , -0.04] [0.16 , 0.47]

Table 1: Correlation with HP filtered Output. GMM 95 % Confidence Intervals. Wages and
Labor productivity are HP filtered

Country Sample LS W LP
US 1955Q1-2015Q3 [0.28 , 0.60] [-0.51 , -0.12] [-0.55 , -0.19]
EA 1999Q1-2014Q4 [-0.76 , -0.28] [-0.92 , -0.58] [-0.85 , -0.18]
UK 1971Q1-2016Q1 [-0.52 , 0.08] [-0.90 , -0.79] [-0.94 , -0.82]
AUS 1959Q3-2013Q4 [0.49 , 0.70] [-0.67 , -0.36] [-0.68 , -0.38]
CAN 1981Q2-2013Q4 [0.45 , 0.72] [-0.91 , -0.82] [-0.92 , -0.85]

Table 2: Correlation with the policy rate. GMM 95 % Confidence Intervals. Wages and Labor
productivity are HP filtered.

2.2 Descriptive Statistics

Figure 1 plots the baseline quarterly labor share measures for all the countries under analysis
over the available sample. From the figure, it is evident that it fluctuates systematically in
the short run. Most of the countries display the well-known downward trend since the late
1970s.15 Table 1 presents the 95% confidence intervals for the correlation of the raw labor
share and HP filtered real wages and labor productivity with HP filtered output. Table 2
presents the same correlations but with the short term interest rate. In both cases we use the
full sample available.16 Previous literature has usually found the labor share to be counter-
cyclical, a fact that seems to hold on average in our data. However, that unconditional
correlation is weak except for the Euro Area and Canada.17 Labor productivity appears to
be significantly pro-cyclical for all countries while real wages show a more mixed picture.
Regarding the correlation with the short term interest rate, we find a positive and significant
correlation of the labor share in three of the countries in the sample (US, Australia and
Canada) while we observe a strong and significantly negative correlation in the Euro Area.
For real wages and labor productivity we find a significantly negative correlation with interest
rates in all countries.

Note, however, that these correlations are unconditional and hence reflect the cyclical
effect of any shock hitting the economy. The aim of the next sections is thus to uncover the
cyclicality of these variables conditional on a MP shock.

15 Young (2010) and Lawless and Whelan (2011), among others, have argued that nearly all fluctuations in
the labor share are due to movements in shares within industries and not because of variations in the weights of
different industries.

16The sample for Australia and Canada stops in 2013Q4 because of the availability of the data on total hours
from Ohanian and Raffo (2012).

17This result is robust across labor share proxies, see appendix B, and different filtering techniques.
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2.3 Monetary policy and Labor Share: VAR results

2.3.1 Specification of the VAR

As baseline specification, we consider a 7 variables VAR merging part of the information sets
in Olivei and Tenreyro (2007) (OT) and Christiano, Eichenbaum, and Evans (2005) (CEE).
The variables in the information set are: the log of real GDP, the log of the GDP deflator,
the log of an index of commodity prices as in OT, log of the CPI, the log of the labor share,
short term interest rates, and M2 growth.18

Both OT and CEE included the real wage (and hours worked in the case of OT) in
their information sets. We instead use the labor share for two reasons. First, and quite
obvious, because we are interested in dynamics of factor shares and the real wage is one
of the components of the labor share. Second, aggregate wage changes may reflect changes
in the composition of the labor force over the business cycle.19 Hence, as discussed at
length by Basu and House (2016), data on aggregate wages and labor productivity suffer
from a composition bias that makes them appear to be less pro-cyclical than the wages of
individual workers. As argued by Basu and House (2016), the labor share does not suffer
from this composition bias. We use the labor share in the baseline specification of the VAR
for these reasons. However, when we are interested in the components of the labor share,
in section 2.4, we use real wages and labor productivity separately. This would re-introduce
the composition bias in the VAR. Nevertheless, we can show that, given our results, the sign
of the response of these two variables is not affected by the composition bias. In fact, as
we show below, this bias would reinforce our results. Beyond the sign of these responses,
however, we cannot make assertions about their magnitude.

2.3.2 Baseline VAR Identification scheme: Cholesky

We assume that the joint co-movements of our key macroeconomic variables can be described
by a VAR of order p which takes the following form:

yt = Φ0 + Φ1yt−1 + ...Φpyt−p + et et ∼ N(0,Σ),

where yt is a vector that contains the observable variables and εt is a vector of normal
zero mean i.i.d. shocks with Σ = E(εtε

′
t). Φ0,Φ1, ...,Φp are matrices of appropriate dimen-

sions describing the dynamics of the system. The reduced form VAR is compatible with
several structural representations where reduced form residuals can be expressed as linear
combination of structural uncorrelated innovations, i.e.

et = Ωνt,

where ΩΩ′ = Σ and E(νtν
′
t) = In. We use several strategies to retrieve the MP shock from

the rotation matrix, Ω.
We first identify MP shock using a Cholesky recursive ordering.20 The Cholesky or-

dering follows the identification assumption that a shock to the policy rate only has an
instantaneous effect on money growth. This implies that all the other variables do not react

18Results using a 9 variables VAR with consumption and investment are qualitatively similar but present a more
pronounced price puzzle, hence the decision to drop them from the information set. See figure D4. Regarding
corporate profits, in earlier versions of this paper we used both the level of corporate profits as in Christiano,
Eichenbaum, and Evans (2005) and the corporate profit share in the SVAR. Results were very robust to the
inclusion of these variables.

19Stockman (1983) and Solon, Barsky, and Parker (1994) have shown that low-paid workers account for a larger
share of labor payments in booms than in recessions.

20The order is the following: the log of Real GDP, the log of GDP deflator, the log of an index for price of
commodities, log of CPI, log of labor share, short term interest rates and M2 growth.
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contemporaneously to changes in the interest rate. This implies also that the policy rate
responds contemporaneously to all the macroeconomic shocks hitting prices, real variables
and shares.21

The sample spans used for each country VAR are summarized in table 3. Lag selection
is guided by the BIC criterion.22 All the VARs presented in the paper were estimated using
Bayesian methods with Jeffrey priors.

Country Sample
US 1984:Q1 2007:Q4
EA 1999:Q4 2011:Q3

AUS 1985:Q1 2009:Q4
CAN 1985:Q1 2011:Q1
UK 1986:Q1 2008:Q1

Table 3: Sample periods used in the VAR analysis

Figure 2 reports the responses of all the variables in the information set to a monetary
policy shock (tightening) normalized to a 1% increase in the short term interest rate.23 We
report the median response from the posterior distribution as well as the 68% confidence set.
First, we notice how the shock resembles a monetary policy shock for all the countries. The
price puzzle does not disappear completely in all the countries, with the exception of the
EA. However, it is quantitatively small and non significant for the US. It is more pronounced
and significant in the UK, and Australia. The response of the labor share in every country
is positive and statistically significant. It also appears to be persistent with the possible
exception of the EA.

Furthermore, the response of the shares are also quantitatively relevant. Across all coun-
tries, we observe that the magnitude of the increase in the labor share in percentage points
is at least half of the observed one for output and in some cases even bigger. For example if
we look at the US we observe that the median response of output after 10 quarters is almost
-1% while the increase in the labor sharer reaches a peak of 1.4% at the same horizon. For
the rest of the countries, instead, the labor share responses are about a half of the response
of output.

2.3.3 Robustness: Information set and sample

We carried out several robustness checks on the baseline empirical results presented above
which we summarize here.

First of all, in figures D1-D3 of the appendix, we present the results of the baseline
specification using all the different labor share proxies constructed for the US, Australia and
Canada. Second, we check if the results are robust to modifying the information sets and
samples used. We check if the responses of the labor share carry over if we use the same
information sets as in Olivei and Tenreyro (2007) and in Christiano, Eichenbaum, and Evans
(2005)24 separately.

21We checked whether ordering the labor share after the short term interest rate changes the results. It does
not.

22In particular, we assume 3 lags for Australia, 2 lags for US, UK and Canada, and one lag for the EA.
23All responses are in % deviations.
24Excluding corporate profits because available measures of profits also contain capital payments and are highly

negatively correlated with the labor share. If we do include either the level or the share of corporate profits for all
the countries under study we obtain IRFs that are the mirror images of the labor share ones.
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Furthermore, Basu and House (2016) and Ramey (2016) show that using updated samples
with more recent data to estimate SVARs as in Christiano, Eichenbaum, and Evans (2005),
the impulse response functions change substantially and the price puzzle becomes more
pronounced. Ramey (2016) concludes that the most likely reason for the breakdown in
the later sample is simply that we can no longer identify monetary policy shocks well.
The original sample in CEE was 1965:Q1-1995Q3.25 Thus, we estimate the VAR under
the baseline information set for the original CEE sample and for a full sample ranging from
1965:Q1 until 2007:Q4 for the US. We do this also with the information sets in OT and CEE.
For the other countries, due to data constraints, we cannot perform sub-sample robustness.
We observe a positive and significant response of the labor share in almost all the cases.26

2.3.4 Alternative Identification scheme: Sign Restrictions

Here, we study the impact of MP surprises on the labor share using an alternative identifi-
cation scheme based on sign restrictions (see Uhlig (2005)). We postulate that a monetary
policy shock

• increases the short term nominal interest rate at t = 0, 1, 2

• decreases prices, i.e. the GDP deflator and CPI at t = 0, 1, 2

• induces a contraction in M2 at t = 0, 1, 2

This identification scheme imposes a weaker set of restrictions relative to the recursive iden-
tification. Implicit is the idea that a MP tightening should at least raise interest rate, and
depress the price level and monetary aggregates for at least three quarters. While one could
impose more restrictions, these ones are uncontroversial and common to a wide variety of
structural models with different types of frictions. Another way to see it is that, we are
verifying whether the (sign of the) correlation of the LS conditional on a MP shock is stable
across a large set of models with different types of frictions (real, nominal, labor market,
etc.). We generate candidate draws for the rotation matrix satisfying these restrictions using
the algorithm developed in Rubio-Ramrez, Waggoner, and Zha (2010). Figure 3 plots the
results for all the countries. While there are quantitative differences between this and the
Cholesky identification restrictions, the qualitative results are unchanged. That is, after a
MP contraction, the labor share increases for all countries.27 It is important to note that, for
all the countries except the EA, we find that the impact response of output is non-negative,
which is the same result obtained by Uhlig (2005) for the US.

2.3.5 Alternative Identification scheme: External Instrument

We also explore the dynamic transmission of monetary policy shocks to the labor share using
the external/instrumental variable approach as proposed by Stock and Watson (2012) and
by Mertens and Ravn (2013). The basic idea of the structural VAR with external instrument
is that the monetary policy shock in the structural VAR is identified as the predicted value
in the population regression of the instrument on the reduced form VAR residuals. For this
result to hold, the instrument needs to be valid; that is, it needs to be relevant (correlated
with the unobserved monetary policy shock of the VAR) and exogenous (uncorrelated with
the other shocks). This two stage regression allows to recover the the first column of the
rotation matrix Ω, and thus to recover impulse responses and transmission mechanism.

25As noted in Olivei and Tenreyro (2007) only after 1965 did the federal funds rate exceed the discount rate and
hence acted as the primary instrument of monetary policy.

26Table D1 in appendix D.1.2 summarizes the results.
27The same conclusion applies using different proxies for the labor share. See appendix D.2.
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More formally, let mt be the time series proxy for the unobserved monetary policy shock.
Assume, without loss of generality, that the proxy is linked to the first shock as follows:

E(νtmt) = [ρ, 0, ..., 0]′,

E(Ωνtmt) = Ω[ρ, 0, ..., 0]′,

E(etmt) = ρ[Ω11,Ω
′
2:N,1]′.

Assuming that the first reduced form shock is related to the observed proxy, we can partition
the two sets of relationship and obtain:

E(e2,tmt)E(e1,tmt)
−1 = Ω−1

11 Ω2:N,1,

where the second equation can be estimated using the sample analog since mt is observable,
et is observable conditional on Φ and Σ, and they are both stationary. This restriction
coupled with the fact that ΩΩ′ = Σ gives rise to a set of equations that, up to a sign
normalization, uniquely pin down the first column of the rotation matrix (see Mertens and
Ravn (2013) for more details).

Our econometric approach works as follows. We draw the reduced-form VAR parameter
values from the posterior distribution assuming a flat prior as in the previous sections. We
then compute the implied reduced-form VAR residuals associated to this draw. We then
isolate the variation in the reduced-form residual of the policy indicator that is attributable
to the proxy. We then regress the remaining reduced-form VAR residuals on the fitted value
of the first regression. This two stage regression allows us to recover the first column of the
rotation matrix, and thus to recover impulse responses and transmission mechanism of the
monetary policy surprises. We repeat this procedure 1,000 times and compute the 68% high
probability density sets.

For the US we use 5 different proxy or instruments for monetary policy surprises. The
first instrument we use is the Romer and Romer (2004) narrative measure of monetary
policy.28 The second instrument is the estimated monetary policy innovations in the Smets
and Wouters (2007) model and spans the period 1959q1-2004q4.29 The third instrument
is the “target” factor of Gürkaynak, Sack, and Swanson (2005), which measures surprise
changes in the target Federal Funds Rate (quarterly sums of daily data, 1990Q1-2004Q4).30

The fourth instrument is the Gertler and Karadi (2015) measure of monetary policy surprises
and spans the period 1991q1 - 2012q4. It is constructed as the surprise of the current Federal
Funds Rate within a 30 minutes window of the FOMC announcement. The final instrument
is constructed in Miranda-Agrippino (2016) as the component in market-based monetary
surprises that is orthogonal to the central bank’s forecasts about the current and future
economic outlook (see also Miranda-Agrippino and Ricco (2017)).31

Figure 4 reports the dynamic transmission of MP surprises to the US labor share and
other macroeconomic aggregates. Our conclusions about the impact of MP shocks is unaf-
fected: after a MP tightening, the labor share consistently increases. This result is, again,
robust to the labor share measure used (see Appendix D.3).

28Romer and Romer (2004) updated series are taken from Miranda-Agrippino and Rey (2015).
29This series is taken from the database of Stock and Watson (2012).
30Again taken from the database of Stock and Watson (2012).
31For this identification scheme we only focus on the US because we lack good instruments for other countries.

For the Euro Area Jardet and Monks (2014) constructed similar high frequency proxies starting from the 2002.
Given the short sample we cannot use them here. For the UK Cloyne and Hürtgen (2016) developed a narrative
measure while Miranda-Agrippino (2016) obtain high frequency ones. Although we experimented with these two
measures for the UK, we were unable to identify a shock that resembled a MP shock in terms of the behavior of
output and inflation. This may well be due to the fact that we focus on quarterly frequencies here.
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2.3.6 Sectoral evidence

The results on the aggregate labor share response raise the question whether the observed
response is due to changes in the composition of output from sectors with low to sectors
with high labor shares rather than a change in the labor share within sectors. For this
reason, we provide sectoral evidence on the response of the labor share. We carry out this
analysis for the US economy using both the NBER-CES productivity database for 436 US
manufacturing sectors as well as the Klems database for 30 sectors including agriculture,
manufacturing, and services. For reasons of space, we present this analysis in supplementary
Appendix E. The results confirm a similar pattern to that obtained with aggregate data.
I.e., at the sectoral level, the labor share increases after a contractionary MP shock.

2.4 Labor share components

In this section, we dig deeper into the transmission mechanism of MP on the labor share
by looking into its different components. A counter-cyclical response of the labor share
conditional on MP shocks can occur either because real wages are more counter-cyclical
than labor productivity or because labor productivity is more pro-cyclical than real wages.
The two scenarios have very different implications for the transmission mechanism of MP
and will prove to be crucial in evaluating the performance of business cycle theories as we
show in the next section. Hence, here we focus on real wages, and labor productivity data.
Furthermore, we look at output and hours separately to understand the determinants of the
behavior of labor productivity.

A crucial aspect here relates to the use of deflators. In the data, real wages are usually
deflated using a different price index (typically CPI) from the one of income or GDP (see
Pessoa and Van Reenen (2013)). To see this, we can look at the definition of labor share (Sh)
as the ratio between real hourly compensation (W r), usually deflated using CPI, and labor
productivity (LP ) which is the ratio between real GDP deflated using the GDP deflator and
a measure of hours:

Sh =
W r

LP
=

Wn

PCPI
HP

Y n

PCPI

P
, (1)

where Wn are nominal hourly wages, PCPI is the CPI, H is hours, Y n is nominal GDP and
P the GDP deflator. In most of the theory models, instead, W r and LP have, by construc-
tion, the same deflators and we need take this into account when comparing empirical and
theoretical IRFs.32

We use the same Cholesky identification assumption as before and we run a VAR under
two different information sets. The first is a 8 variable set that augments the baseline
7 variable VAR by substituting the labor share with (the log of) real wages and labor
productivity.33 In the second specification, we substitute labor productivity with hours. For
the US we now use data for the non-financial corporate sector only for GDP, GDP deflator,
CPI, and Labor Productivity. This is because, as discussed by Gomme and Rupert (2004),
in this sector there are no problems arising from the measurement of proprietors and rental
income. Hence, we can decompose the measure of the labor share in this sector exactly as
in equation (1) and we have access to data for each of its components.34 For the rest of the

32In two-sector models and open economy models, typically, the GDP deflator and the consumption price deflator
differ. Thus, the dynamics of the real wage may also differ if they are measured using the consumption or the GDP
deflators. Nevertheless, in these models there is a straightforward mapping between model and data quantities.

33The ordering is then: Real GDP, GDP deflator, price of commodities, CPI, real wages, labor productivity,
Federal Funds Rate and M2 growth. CPI in the non-financial corporate sector is constructed by from the data on
real and nominal hourly wages in this sector.

34Details on data sources are available in Appendix C.1.1. The results using data for the aggregate economy
show the same picture.
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countries, however, we do not have access to these variables and hence we use the same data
as before for the whole economy.

Figure 5 plots the individual impulse responses to a monetary tightening for each of the
labor share components in the countries under analysis.35 The first thing to notice from
this figure is that the reduction in labor productivity is significant and persistent (second
column). The magnitude of its decline is always larger than the sum of the effect on real
wages and on the relative price. Hence, the labor share goes up. Regarding real wages, they
fall for the US, Australia, and Canada while their response is not significant for the EA and
the UK. The third column in the figure shows the response of the CPI relative to the GDP
deflator (PCPI/P ). The relative price does not seem to follow any clear pattern in most
countries with the exception of the US, where we observe a significant decline. The last two
columns of the figure show what the driving force behind the reduction in labor productivity
is that output declines more than hours.

The results from this decomposition hence show that the labor share falls because pro-
ductivity falls more than real wages do, and the fall in productivity is driven by a larger
fall in output than in hours worked. Real wages tend to fall on average, but the fall is not
significant in some countries. That is, the results show that the response of real wages is at
least non-positive.

We argued above that one of the advantages of using the labor share is that the com-
position bias in the response of real wages and productivity is alleviated when one takes
their ratio as argued convincingly by Basu and House (2016). However, in this section we
have used them separately to uncover the components of the response in the labor share. It
may be argued, then, that these results are compromised by reintroducing the composition
bias. It is then important to analyze whether, given our results, the composition bias may
invalidate our results.

In order to understand this, we simplify the argument in Basu and House (2016). We
abstract from entry and exit of new workers and matching quality, since these effects would
only reinforce our argument here. Define xt as our measure of aggregate labor productivity
or real hourly wages (W r

t , LPt). Now assume we can classify workers in a discreet grid of
N levels of “human capital” or skills from lowest to highest, j = 1, . . . , N . We implicitly
assume that wages/productivity increase with the level of human capital. Then, aggregate
productivity or wages are simply the weighted sum by level of human capital: xt =

∑
j xj,tαj,t

where αj,t is the weight of hours worked by workers of human capital level j in total hours

worked (αj,t =
Hj,t∑
j Hj,t

). It is easy to show that we can decompose that measure in two

terms:
xt =

∑

j

xj,tαj,t = xt +
∑

j

(xj,t − xt) (αj,t − αt) = µt + θt,

where xt and αt are the averages of wages/productivity and the shares of workers of differ-
ent levels of human capital respectively. This expression tells us that observed aggregate
wages or productivity can be decomposed into two components: the un-weighted average
wage/productivity of workers (µt), and the covariance between wages/productivity and the
share of workers by level of human capital (θt). The first term is the wage/productivity of
the “representative” worker. The second term tells us about the structure of the labor force:
whether shares are increasing or decreasing in productivity (the skill-composition). Changes
in this term would precisely be related to the composition bias: they tell us whether dur-
ing booms or recessions the composition of the labor force changes. For instance, if during

35To make sure the decomposition is consistent with the dynamics of the original variables, we used the impulse
responses of wages, productivity, output, and hours to construct the “implicit” impulse response of the labor share
and labor productivity. In all cases, the “implicit” impulse responses matched the ones obtained directly when we
introduce the labor share and labor productivity in the VAR. Also we used the response of the CPI and the GDP

deflator to compute the “implicit” impulse responses of PCPI

P in the figures.
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booms the share of high productivity workers decreases, then the covariance would fall.
Our interest is in the cyclical evolution of µt conditional on a MP tightening, since this

is the direct correspondence between data and models in a large class of representative
agent DSGEs. To settle notation, call f(., t)MP the impulse response function (IRF) over
t = 1, . . . , T of any variable to a MP tightening. Since the IRF of two additive variables
is also additive, we have that: f(xt, t)MP = f(µt, t)MP + f(θt, t)MP ∀t. Now suppose, for
simplicity, that the effect of a MP shock on aggregate wages/productivity is zero at all
horizons of the IRF. This implies that: f(µt, t)MP = −f(θt, t)MP . Now, suppose we know
that, in an expansion, the share of low skilled workers increases and it falls in a recession as
discussed in Basu and House (2016). Thus, the change in this covariance is negative during
an expansion. Basu and House (2016) also show that, conditional on a MP shock, the
composition bias changes: the covariance increases (falls) with a MP tightening (loosening).
It immediately follows then that, if the aggregate response is zero, then the “representative
worker” response must be negative with a MP tightening.

Our findings above show that the response of aggregate labor productivity is negative and
aggregate real wages respond at least non-positively (and negatively in most cases). From
the above argument, the response of the representative agent wage/productivity would then
be negative. That is, it will be more negative than the one obtained using aggregate data. If
there is a composition bias and that bias is counter-cyclical, at least we know that the sign
of the response of real wages and productivity is negative.36

As a second cross-check of this argument, we use data on composition bias corrected
measures of wages constructed by Haefke, Sonntag, and Van-Rens (2013) for the US. The
results verify that the different measures of composition bias corrected wages are indeed
more procyclical in response to a MP shock than the ones obtained using aggregate wages.37

3 Theory

We tackle our second question: are models of economic fluctuations widely used for mone-
tary policy analysis able to jointly match the response of the labor share, real wages, and
productivity?

Intuitively, it is well know that in standard NK models the labor share is equivalent to
the inverse of the price markup (Gaĺı, Gertler, and López-Salido (2007), Nekarda and Ramey
(2013)). This can be seen by rearranging the linear version of the New Keynesian Phillips
curve as in Gaĺı (2015),

θt =
πt − βEtπt+1

λ
, (2)

where θt represents real marginal costs (inverse of the price markup), πt is inflation, and λ
is the slope. From this expression, it is clear that a temporary decline in inflation (because
of tighter monetary policy, for example) implies a decline in marginal costs (labor share)
and an increase in the markup. This one to one relationship is independent of the presence
factor adjustment costs and nominal wage rigidities and it is true in an economy with and
without capital accumulation provided that the production function is either Cobb-Douglas
or linear in labor.

Several mechanisms commonly introduced in DSGE models can alter the relationship be-
tween the labor share and the markup. For instance, generalising the production function to
the Constant Elasticity of Substitution (CES) family, as in Cantore et al. (2014), introduces

36Note that this is not to say that, from our VAR results, we know the value of this effect, but at least we
do know its sign. Had we found a positive response of wages and productivity, then the true sign would be
indeterminate unless we know the exact magnitude of the composition bias. Also, if the composition bias in wages
and productivity cancels out when constructing the labor share, both the sign and value of this response would be
identified.

37Details available in section F of the Appendix.
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a wedge between these two variables that depends on labor productivity and the elasticity of
capital-labor substitution. The cost channel of monetary policy (Ravenna and Walsh (2006),
Christiano, Trabandt, and Walentin (2010)) introduces a direct effect of the interest rate on
the marginal costs since firms need to borrow in order to pay in advance all or part of their
labor input costs. In this setup, the markup can indeed become pro-cyclical and help gener-
ate a counter-cyclical response of the labor share. However, this cost channel also introduces
a direct effect of the interest rate on the labor share which works in the opposite direction.
Another way to introduce a wedge between the labor share and the markup is by relaxing
the assumption of equality between the average and marginal wage (Bils (1987), Nekarda
and Ramey (2013)). This is usually implemented through the introduction of fixed costs
in production. Finally, relaxing the assumption of competitive labor markets and assuming
search and matching (Gaĺı (2010), Christiano, Eichenbaum, and Trabandt (2016)) implies
that the real wage is related to the bargaining power of workers. In this setting, wages do
not move only proportionally to the markup and labor productivity anymore.38

Each of the channels described above could, in principle, help a New-Keynesian model
to match the impulse responses of interest. State of the art medium scale DSGE models
widely used to study the quantitative consequences of monetary policy commonly contain
a combination of these channels. Hence, we proceed by selecting families of DSGE models
that include these ingredients plus the usual nominal and real rigidities present in standard
NK models and compare them against the SVAR evidence from the previous section.

We start from the benchmark DSGE model developed in the seminal paper by CEE. This
is a medium scale model that includes price and wage rigidities, variable capital utilization,
habit formation in consumption, investment adjustment costs, and indexation in both prices
and wages.39 We label this model NK. The second model extends NK by generalizing the
production function to a CES as in Cantore et al. (2015). We label this model NK CES. We
then consider the role of working capital and hence the cost channel of monetary policy. We
analyzed a version of the Christiano, Eichenbaum, and Evans (2005) model with working
capital. However, because this channel is amplified when there are firm networks and the
working capital channel extends to all inputs in production, we used the model by Phaneuf,
Sims, and Victor (2015) which we label NK WKN.40 Finally, we consider a medium scale
DSGE model with labor market frictions and alternate offer bargaining developed by Chris-
tiano, Eichenbaum, and Trabandt (2016) (labeled NK SM). The last two models abstract
from price and wage indexation usually included to match real wage and inflation inertia
but that have been heavily criticised in the literature due to their lack of microfounda-
tions. Moreover NK SM also abstracts from sticky wages and endogenously generates wage
inertia.41

In order to ensure comparability, we assume the same Taylor type rule for monetary
policy in each of this models:

rt = ρrrt−1 + (1− ρr)[ρππt + ρyyt] + εrt (3)

where rt is the interest rate set by the monetary authority, yt is real output, εr is the
monetary policy shock and variables are defined in deviations from their steady state values.

38Supplementary Appendix G provides a detailed discussion of each of these theoretical channels that can
separate the labor share from the inverse of the markup.

39This model is essentially equivalent to the Smets and Wouters (2007) model abstracting from growth.
40Note that this model has more chances of producing the desired response of the labor share. With the

Christiano, Eichenbaum, and Evans (2005) model augmented with working capital only, results obviously do not
change our conclusions.

41For robustness, we also checked: all the models analyzed in Christiano, Eichenbaum, and Trabandt (2016), a
model with right to manage as in Christoffel and Kuester (2008), and a sticky information model as in Mankiw
and Reis (2007). Results are available upon request.
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ρr is the degree of interest rate smoothness while ρπ and ρy represent the magnitude of the
response of the interest rate to deviations of inflation and output respectively.

Moreover, we follow Christiano, Eichenbaum, and Trabandt (2016) and assume that, in
each model, the monetary policy shock is not in the current (period t) information set of
agents. This ensures that the timing assumptions implicit in the SVAR impulse responses
identified using Cholesky decomposition are comparable with the information set of the
DSGE models.

The response of the labor share in these medium scale models will depend, by construc-
tion, on the specific parameterization chosen. Given the size of these models, it is not possible
to derive analytical expressions that would allow us to discern whether the model is able to
match the responses of the labor share and its components. For this reason, we now turn to
a systematic numerical quantitative analysis. We do this using a three step approach which
we describe below.

3.1 Quantitative analysis: a three step approach

Our objective here is to assess quantitatively the ability of the models discussed above to
replicate the identified MP shock responses of the labor share and its components from
the SVAR. This is done following a three step approach. We first ask whether there are
combinations of model parameters that can, at least a priori, replicate the response of the
variables of interest. Second, we want to identify which parameters, if any, are important to
generate those responses. Finally, we estimate the parameters of interest by minimizing the
distance between the SVAR and DSGE impulse response functions.

In step one, we use Prior Sensitivity Analysis (PSA) (Canova (1995), Lancaster (2004)
and Geweke (2005)) to quantify the likelihood that the model generates a set of signs patterns
that are consistent with those observed in the data. This step will tell us what percentage
of the parameter space of each model is able to generate a positive response of the labor
share (and a negative response of real wages and labor productivity) following a monetary
policy tightening. Step two will make use of Monte Carlo Filtering methods (MCF) (Ratto
(2008)) to determine which parameters are responsible for driving those responses. Step
three, instead, will use Bayesian IRF matching (as in Christiano, Trabandt, and Walentin
(2010) and Christiano, Eichenbaum, and Trabandt (2016)). This will offer us an assessment
of the ability of these models to replicate the joint responses of a set of macroeconomic
variables and the labor share obtained from the SVAR. In particular, which conditional
moments can (or cannot) each model replicate.

3.2 Step 1: Prior sensitivity analysis

Only in very particular situations can we use analytical mappings between model structural
parameters and the impulse response patterns of models. For most models, these linkages are
blurred by the non linear relationships between the structural and the reduced form solution.
However, Montecarlo techniques allow us to assess the likelihood of a model replicating
certain moments of interest.

As explained by Canova (1995), Lancaster (2004) and Geweke (2005), prior predictive
analysis is a powerful tool to shed light on complicated objects that depend on both the joint
prior distribution of parameters and the model specification. By generating a random sample
from the prior distributions, one can compute the reduced form solution and the model-
implied statistics of interest, e.g. impulse responses. Many replicas of the latter generates
an empirical distribution of the model- and prior-implied statistics of interest.42 In other

42These techniques have been used to compute the prior sensitivity of fiscal multipliers implied by different
DSGE models, see Leeper, Traum, and Walker (2015) and Féve and Sahuc (2014).
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words, we can assess the likelihood that the model generates a set of sign patterns that are
consistent with those observed in the data conditional on the model and the specification of
priors.

To this end, we attach uniform prior distributions to the parameters of the models pre-
sented above. Table 4 shows the calibration of parameters held fixed while table 5 shows
the bounds of the uniform distributions we attach to all the other parameters.43 Basically,
we allow for any economically meaningful value of the parameters, even for extreme values
such as full price flexibility.44 We then generate a random sample from the prior distri-
butions, compute the reduced form solution, and the model-implied impulse responses of
interest. We repeat this many times and generate an empirical distribution of the model-
and prior-implied impulse responses.

Table 6 summarizes the numerical analysis for each of the models. Numbers in the table
represents the percentage of the prior support that matches all the restrictions imposed on
the impulse response functions. We proceed in steps and first impose only the restriction
that the impulse response of the labor share needs to be positive from quarters two to five
inclusive and then add the same restriction, with opposite sign, to the real wage and labor
productivity. We repeat the exercise by imposing the same restrictions from quarters five to
eight.45

Looking at the second column we see that each model has a non-negligible portion of
the parameter space able to reproduce the sign of the labor share from quarter two to
five. Yet, for some models, this probability is quite low. This percentage increases when
looking at restrictions over quarters five to eight. As discussed in section 2.4, the labor share
can increase because real wages increase more than labor productivity or because labor
productivity decreases more than real wages. Our empirical analysis suggests that the latter
is the case. When we impose restrictions on wages and labor productivity, the probability
of replicating the full array of sign patterns drops significantly, below 10% (15%) at short
(medium) horizons (columns 3 and 5). As it will become clearer in the next section, the
friction in the model that allows us to match the labor share behavior is the degree of wage
stickiness relative to price stickiness. However, this comes at the cost of mismatching the
response of real wages.

In any case, the results show that there exist a non zero percentage of the parameter
space that is able to match the sign of the impulse responses of the labor share and its
components and, moreover, that this percentage is increasing over the IRF horizon.

3.3 Step 2: Monte Carlo Filtering

In order to understand the relative importance of each specific friction in driving the above
results we now turn to our second step: finding the parameters that are more important to
generate the response patterns in each model. This question is more subtle compared to the
one above because it requires an inverse mapping. Montecarlo filtering (MCF) techniques
offer a statistical framework to tackle this issue. As described in Ratto (2008), MCF tech-
niques are computational tools that allow us to recover, in a nonlinear model, the critical
inputs that generate a particular model output. In our context, for example, we would be in-
terested in the parameters of a model that are more important to drive a positive (negative)

43For NK SM model all the parameters not shown in table 4 are calibrated as in Christiano, Eichenbaum, and
Trabandt (2016).

44The only exception to this is the share of intermediate goods in production in model NK WKN which has a
support up to 0.7. This is due to the fact that, beyond this value, the model does not have a stable solution.

45Note that these restrictions are quite favourable to the models because we only use signs and not specific
magnitudes. Had we used reasonable magnitudes derived from the SVAR results, the outcomes would imply lower
likelihoods.
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movement of the labor share (wages/labor productivity) in response to a contractionary MP
shock.

The literature has mainly focused on sensitivity exercises on calibrated parameters where
the model objects of interest are computed by varying one parameter at a time. The MCF
has clear advantages over calibration sensitivity exercises. First, unlike sensitivity calibration
exercises, all parameters move simultaneously. Second, the Smirnoff test offers, implicitly,
a statistical ranking of parameters from the most to the least influential. Finally, it unveils
important relationships among parameters.46

Table 7 summarizes the results of this stage and highlights parameters that have a p–
value of the Smirnov statistic lower than the critical value of 0.001 for each model over the
same horizons of table 6.47 Check marks in black identify parameters driving the restrictions
over quarters two to five while red check marks identify the ones responsible over quarters
five to eight. Parameters driving the restrictions over both horizons have a check mark in
red and underlined. Few regularities emerge from this table. First of all, as expected, both
Calvo price and wage parameters are identified as crucial in all models except in NK SM
where wage inertia is endogenized via labor market frictions generated by the alternate offer
bargaining.

In particular, in frictionless labor market models, positive responses of the labor share
to a MP shock arise typically when there is substantial wage rigidity and when wages are
less flexible than prices. The left panels of Figure 6 report the wage stickiness Cumulative
Density Functions (CDF) in various models when the the labor share IRFs are positive for
2-5 quarters or when they are not. Random draws of the wage stickiness parameter are split
into those that generate a positive response of labor share (in blue) and those that do not
(in red). For each of these two subsets, the empirical CDF is computed. As it stands out,
the two distributions are different. In particular, the support of the blue CDF is between
0.2 and 1 with most of the probability mass located to the right of 0.8. This indicates that
we need a lot of wage stickiness in order to generate a positive response of the labor share
to a monetary policy shock.

Yet, this might not be enough. We also need prices to be more flexible than wages. This
can be seen in the right panels of figure 6, where we plot the combination of random draws
from price and wage stickiness that do (not) verify the labor share IRF in blue (red). In
the northeast corner of the plot, where both prices and wages are rigid, the response of the
labor share to MP shocks tends to be negative (more red dots). As we move towards the
northeast corner (more flexible prices), the likelihood of generating a positive response of
the labor share to a monetary policy shock increases.

In sum, price and wage stickiness parameters are crucial for standard NK models without
labor market rigidities to match the dynamics of the labor share. In the presence of very
sticky nominal wages and relatively more flexible prices, following a monetary tightening,
the real wage increases because prices will decline more than nominal wages. This, in turn,
will lead to an expansion of the share of labor income relative to total income. Hence, the
labor share goes up but for the ‘wrong’ reasons.

There are a number of other parameters that turn out to statistically matter. The price
markup parameter seems to be relevant in all models except NK CES over both horizons.
This highlights the importance of fixed costs in production: fixed costs are calibrated to
ensure zero entry in steady state and hence their value is directly related to the the price
markup parameter. Also, the elasticity of substitution between capital and labor in the
NK CES model is identified as an important parameter in driving the restriction in the first
few quarters. The working capital fraction for labor inputs, the curvature of the investment
adjustment costs function, and few parameters related to labor market frictions in NK SM

46Details in supplementary Appendix H.
47Detailed results by model are presented in supplementary Appendix H.
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are also key. Other relevant parameters identified are habits in consumption and the interest
rate smoothing parameter in the Taylor rule. These do not always show up as crucial in all
models. However, we adopt the conservative approach that, if any of the parameters has a
significant Smirnov statistic in at least one of the models, it will be estimated in step 3 for all
the models in which that parameter is present. The wage and price indexation parameters
are also estimated as they appeared to be relevant in versions of the working capital model
without firm networking.

In summary, all the channels we had identified as relevant for breaking the relationships
between the labor share and the price markup show up in the MCF analysis. The relative
importance of each of these frictions or mechanisms is crucial also for the transmission of
shocks to variables other than the labor share and its components. This will be important
for next section when we estimate the models to replicate the empirical IRFs.

3.4 Step 3: Bayesian Impulse Responses Matching

In the previous two steps, we have identified the portion of the parameter space and the
parameters responsible for generating IRFs patterns qualitatively similar to the ones we
identify in the SVAR analysis. The final question is then: are any of these models able
to quantitatively match the response of the labor share and other relevant macro variables
to a MP shock? The answer to this question is not trivial. Since we want to minimize
the distance between model and SVAR IRFs for several variables, it may be the case that
models turn out to be well equipped to match some variables but not others. The answer is
also crucial to understand whether the transmission channels of MP shocks present in these
models are adequate. To do so, we estimate the model parameters using the Bayesian IRF
matching approach advocated in Christiano, Trabandt, and Walentin (2010) and Christiano,
Eichenbaum, and Trabandt (2016).

A few things are worth emphasising here. First, we extend our baseline Cholesky spec-
ification by adding the relative price of investment, capacity utilization, real consumption,
and investment to the set of observables since we want to assess the ability of the model to
reproduce the responses of important macro variables. Second, we do not enter real variables
and price indices in levels as we do in section 2 because here we need to match the IRFs
from stationary models. Moreover, the price level cannot be pinned down in the structural
models and hence we have to match inflation instead.48 Third, for reasons of collinearity
with the labor share, we cannot include hours, real wage, and labor productivity as in Al-
tig et al. (2011) or Christiano, Trabandt, and Walentin (2010). Third, because not all the
models have labor market frictions, we abstract from certain labor market variables included
in Christiano, Eichenbaum, and Trabandt (2016).49 Finally, because the VAR contains a
larger set of 11 variables and hence parameters, we increase the sample period and use all
the available data. Since some of the observables are not available for other countries, we
restrict the analysis to the US economy for the sample period 1959Q2 to 2008Q4.50 With
this specification, we estimate a Bayesian SVAR with 2 lags and identify a MP shock follow-
ing the same Cholesky recursive identification approach as before where the Federal Funds

48Hence, the information set of the SVAR estimated for IRF matching is the following: ∆ log of the relative
price of investment, ∆ log of Real GDP, ∆ log of GDP deflator, ∆ log of price of commodities, ∆ log of CPI,
capacity utilization, ∆ log of consumption, ∆ log of investment, log of the labor share, Federal Funds Rate, ∆ M2.
Data on capacity utilization and relative price of investment come from Altig et al. (2011). For the Labor Share
we use our baseline proxy LS2.

49In the SVAR, results for the labor share are robust to the inclusion of labor market variables and are available
upon request.

50We carried out several sensitivity tests with this specification of the VAR and, as before, the positive response
of the labor share to a MP contraction remains robust.
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Rate is ordered just before money growth.51

We then estimate each DSGE model by choosing the values of the selected parameters
that minimize a measure of the distance between the SVAR impulse responses and the DSGE
model-based ones. As mentioned above, we use the Bayesian Impulse Responses matching
approach developed in Christiano, Trabandt, and Walentin (2010) to impose economically
meaningful priors on the structural parameters. As we follow closely Christiano, Trabandt,
and Walentin (2010) and Christiano, Eichenbaum, and Trabandt (2016), we refer the readers
to those sources for details on the minimum distance estimator used. The structural models
are estimated by matching the IRFs of the following variables: output, inflation, federal
funds rates, consumption, investment, capacity utilization, and the labor share.

Each model parameter space is partitioned into two subsets. One comprises calibrated
parameters that are held fixed in estimation and the other parameters estimated to minimize
the distance between the SVAR and DSGE models IRFs. Calibrated parameters in this
exercise are the same as in table 4.52 Table 8 summarizes the priors used in estimation. We
use a Beta distributions for probabilities, habits, interest rate smoothness, working capital
fractions, intermediate shares in production, and matching function share of unemployment.
A Gamma distribution is used for investment adjustment costs, capital utilization, price
markup, Taylor rule responses to inflation and output, and hiring and search costs. Finally,
a Normal distribution is used for the elasticity of capital-labor substitution.53 All priors are
centred around values chosen in line with the literature on Bayesian estimation of DSGE
models.

In Table 9 we report the parameters estimates and 95% confidence intervals. A few
regularities emerge from this table. First, most of the parameter estimates are similar across
models. This is true for habits in consumption, price markup in steady state54 and Taylor
rule coefficients. Variable capital utilization changes substantially across models. Calvo price
parameters show substantially more stickiness in models without the working capital channel.
What appears to be a common pattern is the higher relative stickiness of wages compared to
prices that the estimation produces across all models with Calvo sticky wages. Moreover, all
except the NK WKN model present an implausibly high degree of wage stickiness in order
to minimize the distance with the SVAR and the DSGE IRFs. It is also interesting to note
that the fraction of working capital is estimated to be large in the NK WKN model and that,
in the model with non competitive labor markets, we estimate a high replacement ratio of
60%.

Figure 7 plots the resulting IRFs. It reports, in grey, the 68% confidence bands and
in black the median response from the SVAR while the IRFs from each estimated model
are presented with different colors. All the models are able to reproduce fairly well the
responses of real variables with the possible exception of investment in the first two quarters.
Moreover, inflation persistence is underestimated in all models. What is striking, however, is
the inability all models to reproduce the response of the labor share and capacity utilization,
with the two clearly linked via the effect of MP shocks on labor productivity.55 Only NK CES
and NK WKN are able to produce a small positive response of the labor share after a couple
of quarters following the MP tightening. However, the magnitude of the response and the
profile of the IRF is far off the one estimated in the SVAR.

51For details see Appendix I.
52With the addition of the the inverse of the Frisch elasticity of labor supply and the wage markup that, where

applicable, are now calibrated to value equal 1 and 1.2 respectively. Both parameters were not flagged up as
relevant in the MCF analysis.

53Note that the MP shock standard deviation prior is centred around the estimated standard deviation value in
the SVAR.

54Which determines the proportion of fixed costs in production.
55The associated responses of real wages and labor productivity in each model are not reported here but are in

line with the evidence presented in section 2.4.
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The results in figure 7 are in line with the intuitive discussion of the mechanisms present in
these DSGE models. Although these models, with the exception of NK, are able to separate
the dynamics of the labor share and marginal costs, these mechanisms are not well equipped
to generate a dynamic response that is consistent with the one obtained in the SVAR analysis.
From the PSA analysis we know that there is a sub-set of the parameters’ space in these
models that can reproduce qualitatively the positive response of the labor share to a MP
tightening. However, this subset is not selected when the whole model is estimated to match
the IRFs of several variables of interest. In other words, models that can do a reasonable
job at reproducing the dynamic responses of real variables cannot simultaneously match the
dynamics of the labor share.56 This fact sheds doubts on the transmission mechanism of MP
in these models. Furthermore, in estimated DSGE models for policy analysis, it is common
practice to proxy marginal costs with the labor share as an observable (see, for instance, Del
Negro et al. (2013)). However, if we take the robust evidence presented in Section 2 at face
value, then the transmission mechanism assumed with this practice is at odds with the data
behavior which can have important consequences for the estimates of the model parameters.

4 Conclusions

A key transmission channel of monetary policy shocks in New Keynesian (NK) models works
through the effect of monetary policy (MP) shocks on markups that have direct implications
for the dynamics of the labor share. In its simplest version, the NK model implies that,
after a monetary policy shock, markups increase and the labor share falls. The direct link
between the markup and the labor share, however, breaks down in a variety of models that
introduce different production functions, fixed costs, labor market frictions, and/or a cost
channel of monetary policy. Despite its importance, there is no systematic evidence on the
effect of monetary policy shocks on the labor share. We fill this gap and provide the first
cross-country empirical analysis on the effects of monetary policy on the labor share and its
components (the real wage and labor productivity) for a set of five economies: the US, the
Euro Area, UK, Australia and Canada.

Using state of the art VAR identification techniques our evidence shows that, cyclically,
a monetary policy tightening (easing) increased (decreased) the labor share and decreased
(increased) real wages, and labor productivity during the Great Moderation period for all
countries under study. These facts are robust across time periods, shock identification meth-
ods, information sets, and measures of the labor share.

We then analyze the ability of widely used models for monetary policy analysis to re-
produce these important stylized facts. Unlike the previous related literature that focuses
on the dynamics of the markup, our approach is to obtain measures of the labor share and
its components from models and analyze whether their response to monetary policy shocks
is consistent with the one observed in the data. We analyze standard NK DSGE models
and versions of this model augmented with a working capital channel, different production
functions, and with search and matching frictions. Because of the impossibility of obtain-
ing analytical results, we take a numerical approach that consists of three steps. We first
analyze whether there is a subset of the parameter space of the models that is qualitatively
consistent with the responses obtained in the SVAR. We then select the subset of parameters
that are important drivers of the response of the labor share and its components. Finally,
we estimate these parameters in the different models using impulse response matching and
compare the response of the labor share to an MP shock in the estimated DSGEs with that
obtained in the SVAR.

56To confirm this, we also estimated the DSGE models by matching only the labor share and Fed Funds rate.
In this case, most models can obviously match the labor share, but the response of real variables and inflation is
grossly out of line with the data. See figure I1 in the supplementary Appendix.
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We show that, in the models considered, there is a mismatch between data and theory
which is not just a feature of simple setups such as the basic NK model but carries over in
richer set ups. From steps one and two of our numerical analysis, we show that it is possible
to obtain positive labor share responses to a monetary policy contraction when the degree
of wage stickiness is higher than price stickiness. But this comes at the cost of obtaining
counter-factual (countercyclical) responses of real wages. I.e., the labor share moves in the
“right direction for the wrong reasons”. When we estimate the models using impulse response
matching, we show that the models do a reasonable job at matching the response of real
variables but they cannot match the response of the labor share. That is, models that can
do well at reproducing the dynamic responses of real variables cannot simultaneously match
the dynamics of the labor share in response to a monetary policy shock.
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Description NK NK CES NK WKN NK SM

Discount Factor 0.99 0.99 0.99 0.99
Capital depreciation 0.025 0.025 0.025 0.025
Steady State Hours 0.330 0.330 0.33 -
Unemployment rate - - - 5.5%

Steady State Labor Share 0.670 0.670 0.670 0.670
Fixed cost in production calibrated to ensure 0 profits in steady state
Relative Risk Aversion 1 1 1 1

Table 4: Calibration of parameters held constant in PSA and MCF.

Description NK NK CES NK WKN NK SM

Inverse of Frish Elasticity of Labor Supply U [1, 10] - U [1, 10] U [1, 10]
Investment adjustment costs U [1, 10]

Habits in Consumption U [0, 1]
Variable Capital Utilization U [0, 1]

Calvo price stickiness U [0, 1]
Calvo wage stickiness U [0, 1] U [0, 1] U [0, 1] -

price markup U [1, 1.2]
wage markup U [1, 1.2] U [1, 1.2] U [1, 1.2] -

Interest rate smoothing U [0, 1]
Taylor rule response to inflation U [1.01, 5]
Taylor rule response to output U [0, 1]

Price Indexation U [0, 1] U [0, 1] - -
Wage Indexation U [0, 1] U [0, 1] - -

K/L elasticity of substitution - U [0.01, 5] - -
working capital fraction (labor) - - U [0, 1] U [0, 1]

Intermediate inputs share in production - - U [0, 1] -
working capital fraction (capital) - - U [0, 1] -

working capital fraction (intermediate inputs) - - U [0, 0.7] -
technology diffusion - - - U [0, 1]

prob. of barg. session determination - - - U [0, 1]
replacement ratio - - - U [0, 1]

hiring fixed cost relative to output % - - - U [0, 2]
search cost relative to output % - - - U [0, 2]

matching function share of unemployment - - - U [0, 1]
job survival rate - - - U [0, 1]

vacancy filling rate - - - U [0, 1]

Table 5: Uniform Distribution bounds for PSA and MCF.
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Restrictions
2:5 quarters 5:8 quarters

Model ls (+) ls (+); lp (-); w (-) ls (+) ls (+); lp (-); w (-)
NK 30.9% 1.7% 59.7% 13.9%

NK CES 11.2% 0.7% 55.1% 4.6%
NK WKN 26.5% 9.2% 54.4% 13.3%
NK SM 6.2% 2.8% 46.0% 13.5%

Table 6: Results from prior sensitivity analysis. Percentage of the prior support that matches
all the restrictions.

Description NK NK CES NK WKN NK SM

Relative Risk Aversion
Inverse of Frish Elasticity of Labor Supply

Investment adjustment costs X X X X
Habits in Consumption X X

Variable Capital Utilization
Calvo price stickiness X X X
Calvo wage stickiness X X X

price markup X X X
wage markup

Interest rate smoothing X X X
Taylor rule response to inflation
Taylor rule response to output

Price Indexation
Wage Indexation

K/L elasticity of substitution X
working capital fraction (labor) X X

Intermediate inputs share in production X
working capital fraction (capital)

working capital fraction (intermediate inputs)
technology diffusion

prob. of barg. session determination
replacement ratio X

hiring fixed cost relative to output %
search cost relative to output %

matching function share of unemployment X
job survival rate X

vacancy filling rate

Table 7: Parameters responsible for matching prior restrictions over quarters 2:5
(black checkmark), 5:8 (red checkmark) and 2:8 (red underlined checkmark).
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Figure 6: The wage stickiness Cumulative Density Function (CDF) on the left panels; in blue
(red) the CDF that does (not) generate a positive response of the labor share. On the right
panels, the combination of random draws from price and wage stickiness that do (not) verify the
labor share IRF in blue (red). From top to bottom, the NK model, the NK CES model, and the
NK WKN model.
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Description NK NK CES NK WKN NK SM

Investment adjustment costs Γ(8, 2)
Habits in Consumption B(0.5, 0.15)

Variable Capital Utilization Γ(0.5, 0.3)
Calvo price stickiness B(0.66, 0.1)
Calvo wage stickiness B(0.66, 0.1) B(0.66, 0.1) B(0.66, 0.1) -

price markup Γ(1.2, 0.05)
Interest rate smoothing B(0.7, 0.15)

Taylor rule response to inflation Γ(1.7, 0.15)
Taylor rule response to output Γ(0.1, 0.05)

Price Indexation B(0.5, 0.15) B(0.5, 0.15) - -
Wage Indexation B(0.5, 0.15) B(0.5, 0.15) - -

K/L elasticity of substitution - N(1, 0.3) - -
working capital fraction (labor) - - B(0.8, 0.1) B(0.8, 0.1)

Intermediate inputs share in production - - B(0.5, 0.1) -
working capital fraction (capital) - - B(0.8, 0.1) -

working capital fraction (intermediate inputs) - - B(0.8, 0.1) -
technology diffusion - - - B(0.5, 0.2)

prob. of barg. session determination - - - Γ(0.5, 0.4)
replacement ratio - - - B(0.4, 0.1)

hiring fixed cost relative to output % - - - Γ(1, 0.3)
search cost relative to output % - - - Γ(0.1, 0.07)

matching function share of unemployment - - - B(0.5, 0.1)
job survival rate - - - B(0.8, 0.1)
MP shock stdev Γ(0.74, 0.05)

Table 8: Priors for Bayesian IRF Matching. Distributions: Γ Gamma, B Beta, N
Normal.
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Figure 7: Bayesian Impulse Responses Matching - SVAR vs DSGE models
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Description NK NK CES NK WKN NK SM

Investment adjustment costs 9.22 (5.78-12.84) 12.3 (6.56-18.9) 10.1 (6.55-13.8) 9.93 (6.39-13.6)
Habits in Consumption 0.78 (0.70-0.86) 0.88 (0.83-0.93) 0.81 (0.75- 0.87) 0.81 (0.74-0.87)

Variable Capital Utilization 0.63 (0.13-1.25) 0.93 (0.15-1.81) 0.73 (0.10-1.49) 0.18 (0.02-0.40)
Calvo price stickiness 0.79 (0.70-0.88) 0.78 (0.66-0.89) 0.66 (0.55-0.77) 0.60 (0.50-0.71)
Calvo wage stickiness 0.89 (0.85-0.94) 0.93 (0.90-0.96) 0.77 (0.66-0.86) -

price markup 1.27 (1.18-1.37) 1.20 (1.10-1.30) 1.25 (1.17-1.34) 1.28 (0.19-1.37)
Interest rate smoothing 0.83 (0.80-0.87) 0.87 (0.84-0.91) 0.86 (0.83-0.89) 0.87 (0.83-0.90)

Taylor rule response to inflation 1.73 (1.45-2.02) 1.70 (1.41-2.00) 1.76 (1.49-2.03) 1.74 (1.47-2.03)
Taylor rule response to output 0.10 (0.01-0.19) 0.07 (0.01-0.14) 0.03 (0.01-0.05) 0.04 (0.01-0.07)

Price Indexation 0.63 (0.35-0.90) 0.59 (0.28-0.87) - -
Wage Indexation 0.47 (0.19-0.75) 0.51 (0.22-0.80) - -

K/L elasticity of substitution - 0.67 (0.03-1.23) - -
working capital fraction (labor) - - 0.71 (0.40-1.00) 0.82 (0.66-0.97)
Intermediate inps share in prod. - - 0.58 (0.44-0.70) -
working capital fraction (capital) - - 0.81 (0.53-1.00) -

working capital fraction (intermediates) - - 0.82 (0.56-1.00) -
technology diffusion - - - 0.50 (0.12-0.87)

prob. of barg. session determination - - - 0.50 (0.002-1.27)
replacement ratio - - - 0.60 (0.39-0.80)

hiring fixed cost relative to output % - - - 1.07 (0.52-1.67)
search cost relative to output % - - - 0.05 (0.001-0.14)

matching function share of unemp. - - - 0.46 (0.27-0.65)
job survival rate - - - 0.33 (0.19-0.48)
MP shock stdev 0.77 (0.71-0.83) 0.76 (0.70-0.81) 0.75 (0.69-0.81) 0.75 (0.70-0.81)

Table 9: Posterior mean of the parameters - Bayesian Impulse Response Matching
as in Christiano, Trabandt, and Walentin (2010). 95% HDP interval in parenthesis.
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