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1 Introduction

The idea that changes in agents’ beliefs about the future may be an important driver of

economic fluctuations has fascinated many scholars over the years. While the applica-

tion to technology news is relatively recent, and has been revived following the seminal

contributions of Beaudry and Portier (2004, 2006), the insight that changes in agents’

expectations about future fundamentals could be a dominant source of economic fluctua-

tions is a long-standing one in Economics (see e.g. Pigou, 1927). The news-driven business

cycle hypothesis posits that business cycle fluctuations can arise because of changes in

agents’ expectations about future economic fundamentals, and absent any actual change

in the fundamentals themselves. If the arrival of favorable news about future productivity

can generate an economic boom, lower than expected realized productivity can set off

a bust without any need for a change in productivity having effectively occurred. The

plausibility of belief-driven business cycles is, however, still a hotly debated issue in the

literature (see e.g. the extensive review in Ramey, 2016).1

In this paper, we set out to answer the following question: ‘How does the aggregate

economy react to a shock that raises expectations about future productivity growth?’ We

provide an empirical answer to this question in an information-rich quarterly VAR that

incorporates many relevant aggregates, such as output, consumption, investment and la-

bor inputs, as well as forward looking variables such as asset prices, interest rates, and

consumer expectations. The novelty in our approach resides in the identification of tech-

nology news shocks. We construct an external instrument for identification by using the

unforecastable component of all patent applications filed at the U.S. Patents and Trade-

mark Office (USPTO) over the past forty years. The intuition behind our identification

1The empirical literature on technology news shocks is vast, and we review it when discussing our
results in Sections 4 and 5. At the poles of the debate are the advocates of the news-driven business cycle
hypothesis such as e.g. Beaudry and Portier (2006, 2014); Beaudry and Lucke (2010), and its opponents,
such as e.g. Barsky and Sims (2011, 2009); Kurmann and Otrok (2013); Barsky et al. (2015); Kurmann
and Sims (2017). In Beaudry and Portier (2006) news shocks are orthogonal to current productivity,
but are the sole driver of TFP in the long run (e.g. Gaĺı, 1999; Francis and Ramey, 2005). Other works
have identified technology shocks as those maximizing the forecast error variance of productivity at some
long finite horizon (e.g. Francis et al., 2014), or over a number of different horizons (e.g. Barsky and
Sims, 2011). Other contributions have highlighted the differences arising from e.g. modeling variables in
levels rather than in first differences, allowing for cointegrating relationships among variables (together
with their number and their specification), accounting for low frequency structural breaks, accounting
for other policy-related concomitant factors, and enriching the information set in the VAR. Examples
include Christiano et al. (2003); Francis and Ramey (2009); Mertens and Ravn (2011); Forni et al. (2014).
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is simple: Patent applications, by their very nature, are a potential promise of future

technological change. However, they may themselves be the result of current economic

booms, or of past news. We account for this endogeneity by controlling for expectations

about the economy that were formed prior to the filing dates, other contemporaneous

policy changes, and lagged applications.

Specifically, we recover the external instrument as the component of patent applica-

tions that is orthogonal to (i) its own lags; (ii) a selection of forecasts at different horizons

intended to capture pre-existing expectations about macroeconomic developments that

may influence the decision of filing a patent in the time unit, and which we take from the

Survey of Professional Forecasters; and (iii) other contemporaneous unanticipated mon-

etary and fiscal policy changes. The starting point for the construction of our external

instrument are the monthly ‘USPTO Historical Patent Data Files’ assembled in Marco

et al. (2015) that provide a comprehensive record of all publicly available applications and

granted patents registered at the USPTO since 1981. To the best of our knowledge, the

properties of these data have not been previously explored in empirical macroeconomics,

or in the context of identifying technology news shocks.2 Our instrument is associated

with large increases in the aggregate measure of innovation of Kogan, Papanikolaou, Seru

and Stoffman (2017). The index measures the expected economic importance of techno-

logical innovations, and correlates strongly and positively with forward citation counts,

in turn a measure of their scientific value.

Contrary to the existing literature, our identification strategy allows us to dispense

from potentially strong a priori assumptions related to the duration of the effects of news

shocks, the long-run drivers of technology, or the length of time that is required for the

news to affect the current level of technology. Because of the minimal set of restrictions

required for identification, our framework allows us to investigate whether news shocks

generate the type of behavior that was assumed in earlier identification schemes. In other

words, what constituted an assumption in earlier studies becomes instead a result in our

2Earlier studies that have similarly employed patent applications to measure the effects of technology
shocks (reviewed below) have typically relied on annual data. The use of patent data to measure tech-
nological advancements at industry level dates back at least to Lach (1995). Griliches (1990) provides
a review of the uses of patent data as indicators for technological change in economic analysis. Hall
and Trajtenberg (2004) use the annual NBER patent citations data file described in Hall et al. (2001)
to show that granted patents, and their citations, can be used to measure evidence of General Purpose
Technologies.
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setting. Moreover, our approach is robust to mismeasurements in commonly used empir-

ical estimates of aggregate technology (see e.g. discussions in Fernald, 2014; Kurmann

and Sims, 2017). The identifying assumptions in our SVAR-IV (Mertens and Ravn, 2013;

Stock and Watson, 2012, 2018) are that the instrument is informative about contempo-

raneous technology news, and that this is the only channel through which the instrument

and the VAR innovations are related (Miranda-Agrippino and Ricco, 2018). Importantly,

because innovations can in principle be released to the public under a ‘patent-pending’

status, our identification scheme does not warrant imposing orthogonality with respect

to the current level of technology, which is a typical assumption in the news literature

(see e.g. Beaudry and Portier, 2006; Barsky and Sims, 2011, among many others). In this

respect, our identification is akin to Barsky et al. (2015); Kurmann and Sims (2017).

While such orthogonality condition is not imposed a priori, our external instrument

recovers news shocks that have essentially no effect on TFP either on impact, or in the

four years immediately afterwards. TFP then rises robustly following a persistent hump

that reaches a peak after 6 to 7 years.3 Both the shape and timing of the TFP response

are consistent with the S-shaped pattern that is typical of the slow diffusion of new

technologies documented, among many others, in Griliches (1957); Rogers (1962) and

Gort and Klepper (1982).

By the time TFP materially departs from its initial level, all other variables in our

VAR have reached the peak of their dynamic response to the shock. The arrival of news

about future technological improvements triggers a sustained, albeit somewhat delayed,

economic expansion: output, consumption, investment, hours worked and capacity uti-

lization all rise to peak at the two-year horizon. Hence, the pattern of impulse response

functions that we recover does lend credit to a ‘news-view’ in the spirit of what is de-

scribed in e.g. Beaudry and Portier (2006). In recent influential work, Chahrour and

Jurado (2018) have proven that any model with news has an observationally equiva-

lent noise representation. Seen through this lens, news – that are realized on average –,

confound the effects of ‘pure beliefs’ with those associated with changes in future funda-

mentals. Conversely, noise, orthogonal to fundamentals at all leads and lags, captures the

3The time that it takes for news to translate into meaningful changes in future TFP is sensibly longer
than the two-year anticipation lag that is typically assumed in the literature (see e.g. Schmitt-Grohé and
Uribe, 2012; Beaudry and Portier, 2014; Faccini and Melosi, 2018).
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essence of ‘pure beliefs’. The large asynchronicity in the timing of the estimated dynamic

responses seems to suggest that the aggregate effects of technology news that we unveil

may be predominantly (if not entirely) driven by beliefs. The shock that we recover,

however, is not a main driver of economic fluctuations. At business cycle frequencies,

about a tenth (on average) of aggregate fluctuations is accounted for by the estimated

news shock; importantly, it accounts for at most a third of the variation of TFP in the

very long run.

The pattern of dynamic responses that we recover is consistent with the predictions

of New Keynesian models with nominal rigidities, particularly those where such frictions

arise due to imperfect common knowledge (e.g. Mankiw and Reis, 2002; Woodford, 2003).

After an inertial initial reaction, prices eventually decline. Conversely, real wages rise

at medium horizons, but contract on impact. The monetary authority endogenously

responds to the fall in (expected) inflation by lowering nominal rates on impact, and more

than proportionally. Hence, real short-term rates decline at a time when the natural

rate of interest, proportional to the expected growth rate of technology, is rising (see

e.g. Christiano et al., 2010). This suboptimal response of the central bank can also

be rationalized in terms of information rigidity: the central bank responds to its best

forecast of current and future fundamentals, that may diverge from actual realizations

(see e.g. discussion in Lorenzoni, 2011; Sims, 2012). The monetary easing also offers a

potential amplification channel for news shocks that works through the compression of

risk (term) premia (see also Crump et al., 2016). A noisy signal about future technological

changes can also be responsible for agents overweighting current conditions when forming

expectations about the future (see e.g. Coibion and Gorodnichenko, 2015). In this sense,

the initial rise in consumers’ expectations about future unemployment that we document

is consistent with the initial deterioration in labor market conditions, reflected in the fall of

both hours worked, and wages. In turn, this can help explain the initial negative reaction

of consumers’ expectations about current conditions, and about the expected business

outlook five years hence. In this respect, our results suggest caution in interpreting

innovations in consumer confidence indicators as a ‘pure’ measure of news (e.g. Cochrane,

1994; Barsky and Sims, 2012). In fact, when we compare responses to our news shock with

those triggered by a positive contemporaneous TFP innovation, we find that consumer
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confidence jumps up on impact only in the latter case.

Our work is closely related to a stream of studies that have relied on empirical mea-

sures of technological changes in order to identify the effects of technology shocks. The

first such study is Shea (1999). Here annual patent applications and R&D expenditures

are used to estimate the effects of technology shocks on industry aggregates. Identifica-

tion is achieved by ordering either measure last in a battery of small-scale VARs that

also contain labor inputs and productivity. Christiansen (2008) extends on the previ-

ous study by using over a century of annual patent application data. The benchmark

specification is a bivariate VAR with labor productivity and patents ordered first. Alex-

opoulos (2011) uses the number of book titles published in the field of technology to

construct a measure for technological changes intended to capture the time in which the

novelty is effectively commercialized. Responses of aggregate variables are estimated in

a set of bivariate VARs with the publication index ordered last. More recently, Baron

and Schmidt (2014) have used technology standards and a recursive identification to in-

fer on the aggregate implications of anticipated technology shocks. For what concerns

the chronological placement in terms of anticipation lag, for each technological improve-

ment, industry standardizations sit somewhere in between patent applications and the

publication of the relevant title.4 Our paper differs from these contributions in several

ways. First, these studies address the fundamental endogeneity of empirical measures of

technological changes only to the extent that it is captured in the reminder of variables

included in the bi/tri-variate VARs. Other than relying on a richer VAR specification, in

the construction of our instrument we recognize that the cyclical nature of patent appli-

cations may also be influenced by pre-existing expectations about the future, which we

capture using an array of survey forecasts at different horizons, and by other contempo-

raneous policy changes. We argue that this is a crucial step for the correct identification

of contemporaneous news as opposed to a convolution of current and past news, and

current innovations to the technology process. Second, and related, these studies have

all implicitly assumed the empirical measure of technology being a near perfect measure

of news shocks. In fact, their identifying assumptions amount to effectively retrieving

4In an international context, Arezki et al. (2017) use giant oil discoveries as a directly observable
measure of technology news shocks and estimate their effects in a dynamic panel distributed lag model.
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the transmission coefficients by running a distributed lag regression (with some controls)

of the variables on the patent data. In contrast, our identifying assumptions explicitly

account for the possible presence of measurement error in the constructed instrument.

Finally, these studies have all relied on annual data potentially overlooking important

higher frequency variation which instead we exploit for the identification.

The structure of the paper is as follows. Section 2 introduces the external instrument

that we design for the identification of technology news shocks, and describes the patent

data that we use for its construction. Section 3 lays out the identification assumptions

in our SVAR-IV. Section 4 collects the results, which we discuss in detail in Section 5

against the main transmission mechanisms proposed in the literature. Finally, Section 6

concludes. Additional material is reported in the Appendix.

2 A Patent-Based Instrument for News about Fu-

ture Technological Changes

In the vast majority of industries, and particularly since the 20th century, the introduction

of technological innovations follows a relatively standardized process. Typically, before

an invention – intended as either a brand new product or production process, as well

as an amelioration to existing ones – is disclosed, the owner proceeds to file a patent

application in order to protect her creation. The legal protection that is granted to

patent holders ensures that an individual or business has a set number of years in which

to capitalize on the invention. Hence, the incentive to protect new inventions through

appropriate patent registrations is high. The length of time that elapses from the time in

which a patent application is filed to when it is then granted, and the invention eventually

diffuses within the economy, can be in the order of several years, depending on the type

of patent and the characteristics of the industry sector. Therefore, patent applications at

any given time contain information about technological changes that may occur at some

point in the future (see e.g. Lach, 1995; Hall and Trajtenberg, 2004). At the same time,

although the bulk of informativeness of patent applications lies in the future, and patented

products cannot be copied by others during the protected period, some inventions are
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released under a ‘patent-pending’ status. This initial diffusion of the invention spreads

new knowledge to the public, some of whom may be able to improve upon that invention

themselves. Thus, it is possible in principle that patent applications may also embed a

signal for current technological changes.

The decision to file a patent application at any given time is, however, a fundamen-

tally endogenous one. Hence, the direction of causality could run both ways, with patent

applications being induced by current economic booms, and/or past favorable news. Sep-

arately, not all patent applications are ultimately granted, and therefore the signal about

future productivity changes is necessarily only a partial one.

2.1 Information in Patent Data

We use the ‘US Patents and Trademark Office (USPTO) Historical Patent Data Files’

compiled by Marco et al. (2015) as a follow up and extension of Hall et al. (2001).

The dataset records the monthly stocks and flows of all publicly available applications,

published and unpublished, and granted patents registered at the USPTO from January

1981 to December 2014. The stocks include pending applications and patents-in-force;

flows include new applications, patent grants and abandonments.5

Our starting point for the analysis is the monthly flow of all new utility patent ap-

plications.6 Utility patents, also known as ‘patents for invention’, cover the creation of

new or improved, and useful, products, processes or machinery. We then construct quar-

terly variables by summing up the monthly flows within each quarter. The left panel of

Figure 1 plots the time series of quarterly patent applications from 1981 to 2014, across

all NBER categories (Marco et al., 2015). In the figure, shaded areas denote NBER

recession episodes, and we normalize 1981-I to be equal to 0 to highlight the different

trends across different categories. Patent applications have increased substantially over

the past 40 years and, as visible from the chart, patents classified under ‘computers and

5See also Hall et al. (2001). The dataset is available at http://www.ustpo.gov/economics.
6We discard information relative to both abandonments and patents granted. While granted patents

can potentially provide a stronger signal about future technological changes, they tend to be significantly
more cyclical than patent applications. Also, the production of the invention may already have started
while the application was pending. Hence, most of the ‘news content’ in patent applications may be
exhausted by the time it is granted. Moreover, as Christiansen (2008) discusses, the issuance highly
depends on the intensity of labor and administrative cycles at the USPTO. Further details on patent
data are in Appendix D.
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Figure 1: Patent Applications & Aggregate Innovation
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Note: [left] Patent applications across all NBER categories. Quarterly figures obtained as sum of
monthly readings, 1981-I=0. Thousands. [right] Total number of applications (sum across categories),
thousands, left axis. Kogan et al. (2017) aggregate measure of economic value of innovations, GDP
weighted, log scale, USD, right axis. Shaded areas denote NBER recession episodes.

communications’ have enjoyed a faster trend. Patent applications across all categories

tend to slide after recessionary episodes, providing some preliminary evidence of their

cyclical nature.

There have been three important regulatory changes in patenting in 1982, 1995, and

2013. All these regulations affected the number of applications when they came into

effect, as shown by the spikes in Figure 1. In 1982, the old Court for Customs and Patent

Appeals was abolished and a new Court of Appeals for the Federal Circuit was established;

the new court provided more protection to the owners of patents against infringement.

In 1995, the U.S. implemented the changes agreed upon in the Agreement on Trade-

Related Aspects of Intellectual Property Rights (TRIPS) as part of the Uruguay Round

Agreements Act. The TRIPS agreement’s main purpose was to harmonize patenting rules

among all members of the World Intellectual Property Organization. The large impact

on the number of patent filings was due to a change in patent terms; as of June 1995,

patent terms were set to 20 years from filing, and away from the previous practice of

17 years after issuance. Finally, in March 2013, the U.S. implemented the rules under

the America Invents Act. These sets of rules were designed to address the right to file a

patent application, and implied that applications filed on or after March 2013 were to be
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governed under the new priority rule ‘first-inventor-to-file’, rather than the pre-existing

‘first-to-invent’.7 All these three regulatory changes led to an increase in applications

prior to their implementation. However, since they were not legislated in response to

considerations related to either current or anticipated economic conditions, they provide

us with important sample variation which we exploit for the identification.

As an additional piece of evidence, the right panel of Figure 1 plots the total number of

applications (sum across the NBER categories) against the aggregate index of innovation

of Kogan et al. (2017) (dashed line). Using their data, we have constructed a quarterly

equivalent of the index as a GDP-weighted sum of the economic value of all patents

granted within each quarter. The data cover up to 2010-III. At the firm-patent level, the

value of each patent is measured based on the change in the firm stock price in a three-day

window that brackets the date in which the patent is granted to the firm. Because it is

based on financial data, this is a forward looking measure of the private, economic value

of innovations. Kogan et al. (2017) document that their measure is strongly positively

correlated with forward citations. This in turn refers to the number of citations that the

patent receives in the future, and is hence regarded as a proxy of the scientific value of the

patented invention. We note that in the relevant sample, the large spikes in the number of

applications tend to correspond to substantial increases in the innovation index, and this

is particularly true in the nineties. Hence, while only a subset of the applications in our

data are eventually granted, we confirm that the exogenous sample variation introduced

by the changes in legislation is also informative about the overall ‘innovation content’.

We investigate the endogeneity of quarterly patent applications in Table 1. Here

we regress the quarterly growth rate of all patent applications on its first four lags,

and on pre-existing expectations about the state of the economy at different forecast

horizons taken from the Survey of Professional Forecasters (SPF). The vector of forecasts

Et[wt+h] includes real output growth, the unemployment rate, inflation (GDP deflator),

real federal government spending, real non-residential investments, and real corporate

profits net of taxes.8 The forecast horizon is expressed in quarters, such that Et[wt]
7For a detailed description of the Leahy-Smith America Invents Act the reader is referred to https:

//www.uspto.gov/sites/default/files/aia_implementation/20110916-pub-l112-29.pdf
8SPF respondents forecast nominal corporate profits net of taxes. We construct a series for real

corporate profits forecasts by deflating with the forecasts for the GDP deflator (our measure of inflation,
see Section 4) at the relevant forecast horizons.
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Table 1: Endogeneity of Patent Applications

(1) (2) (3) (4)
pat−1 −0.849 −0.941 −0.932 −0.894

(0.095) (0.091) (0.094) (0.087)
pat−2 −0.480 −0.638 −0.639 −0.592

(0.105) (0.099) (0.099) (0.098)
pat−3 −0.273 −0.439 −0.428 −0.389

(0.085) (0.081) (0.077) (0.068)
pat−4 0.002 −0.076 −0.079 −0.067

(0.094) (0.077) (0.076) (0.074)

Et[wt] 5.59
[0.000]

Et[wt+1] 7.94
[0.000]

Et[wt+4] 4.19
[0.001]

regulation
dummy

✓ ✓ ✓

constant ✓ ✓ ✓ ✓
Adj-R2 0.465 0.811 0.810 0.787
N 131 131 131 131

Notes: Granger Causality. Dependent variable: pat = 100 × (lnPAt − lnPAt−1). Et[wt+h] denotes SPF
forecast for quarter t+h published at t conditional on t−1. wt contains real output growth, unemployment
rate, inflation (GDP deflator), real federal government spending, real non-residential investments, and
real corporate profits net of taxes. Top panel: robust standard errors in parentheses. Middle panel:
Wald test statistics for joint significance of SPF forecasts and associated p-value in square brackets.

denotes SPF forecasts for the current quarter and the time index in Et refers to the

publication date of the survey. Because of the publication schedule of the SPF, the

information set conditional on which forecasts are made is in fact relative to the previous

quarter; hence, the collection of forecasts in Et[wt+h] captures pre-existing beliefs about

the macroeconomic outlook.9 Regressions include a constant and a regulatory dummy

intended to capture the legal changes discussed above. We report standard errors for

the autoregressive coefficients, and Wald test statistics for the joint significance of SPF

forecasts at each horizon. Standard errors are HAC-corrected.

Patent applications exhibit a strong autocorrelation pattern. Moreover, as antici-

9SPF forecasts are published in the middle of the second month of each quarter. The information set
of the respondents at the time of compiling the survey includes the advance report on the national income
and product accounts of the Bureau of Economic Analysis, which is published at the end of the first
month in each quarter, and contains advance releases for macroeconomic aggregates referring to the pre-
vious quarter. For further information see https://www.philadelphiafed.org/research-and-data/

real-time-center/survey-of-professional-forecasters.
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pated, there is evidence that current and expected economic conditions can influence the

decision of filing patent applications in any given quarter. Patent applications also corre-

late with the first (lagged) factor extracted from the large collection of US macroeconomic

and financial data assembled in McCracken and Ng (2015).10 Typically, the first such

factor is interpreted as a measure of economic activity. This too reinforces the evidence

on the fundamentally cyclical nature of patent applications.

2.2 Instrument Construction

We recover an external instrument for the identification of technology news shocks as

the component of quarterly utility patent applications that is orthogonal to agents’ pre-

existing beliefs about the state of the economy, and is unpredictable given its own history.

Intuitively, we seek to remove endogenous variation in applications filings that results from

anticipation of current or future economic conditions.

Specifically, we recover an instrument for identification of news shocks using the resid-

uals of the following regression, estimated at quarterly frequency

pat = c + γ(L)pat + ∑
h=1,4

βhEt[xt+h] + zt. (1)

pat is the quarterly growth rate of all utility patent applications in a given quarter t, i.e.

pat = 100×(lnPAt−lnPAt−1). γ(L) = ∑4
j=1 γjLj, and Et[xt+h] is an m×1 vector of forecasts

compiled at t for the vector of economic variables xt+h, where h is equal to one and four

quarters. Again, we use median SPF forecasts conditional on the previous quarter to

capture expectations about the state of the economy that pre-date the application filing.

The vector xt contains the unemployment rate (ut), inflation (πt), and the growth rates

of real non-residential fixed investments (It), and of real corporate profits net of taxes

(Πt). ∀t, xt ⊂ wt used in Table 1 in the previous subsection.

The procedure in Eq. (1) removes both the autocorrelation and the dependence on

pre-existing beliefs about macroeconomic conditions as captured by the survey forecasts

by construction. In Tables 2 and 3 we check for correlation of the recovered instrument

both with other forecasts at different horizons (i.e. Et[wt+h]), and with the same factors

10Results are reported in Table D.1 in the Appendix.
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Table 2: Dependence of Instrument on Economic Forecasts

Et[wt] Et[wt+1] Et[wt+4]

Wald Test 0.270 0.850 0.290

p-value 0.949 0.531 0.882

Adj R2 0.582 0.587 0.583

N 127 127 127

Notes: Dependent variable is the residual of Eq. (1). Et[wt+h] denotes SPF forecast for quarter t + h
published at t conditional on t − 1. wt contains real output growth, unemployment rate, inflation (GDP
deflator), real federal government spending, real non-residential investments, and real corporate profits
net of taxes. Numbers reported are Wald test statistics for joint significance of the SPF forecasts at each
horizon. All the regressions include own 4 lags, regulation dummy and constant.

of Table D.1. In both cases, we do not find evidence against the null of no correlation

(i.e. the null that the instrument is Granger caused by the variables in the tables).

Table 3: Dependence of Instrument on Lagged States

F1 F2 F3 F4 F5 F6 F7

Wald Test 0.880 1.160 0.290 0.810 1.040 0.190 0.290

p-value 0.481 0.330 0.882 0.521 0.389 0.945 0.885

Adj R2 0.583 0.584 0.583 0.587 0.596 0.580 0.582

N 127 127 127 127 127 127 127

Notes: Dependent variable is the residual of Eq. (1). Ft are factors extracted from the quarterly dataset
of McCracken and Ng (2015). Numbers reported are Wald test statistics for the joint significance of the
first 4 lags of each factor. All the regressions include own 4 lags, regulation dummy and constant.

A final concern may relate to the potential correlation of patent application filings

with other contemporaneous shocks occurring in the current quarter. In order to account

for this, we augment Eq. (1) with a set of further controls intended to capture policy

changes in the current quarter, as follows

pat = c + γ(L)pat + ∑
h=1,4

βhEt[xt+h] +
2

∑
j=0
δjηt−j + zt. (1’)

ηt in Eq. (1’) includes unexpected and anticipated exogenous tax changes occurring in

quarter t, as classified by Romer and Romer (2010) and Mertens and Ravn (2012), and

the series of unanticipated changes to the intended Fed funds rate target of Romer and
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Figure 2: Instrument for News Shocks
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(1), (green, solid); instrument for news shocks (blue, solid), residuals of Eq. (1’). Shaded areas denote
NBER recession episodes.

Romer (2004).11

The variables pat and zt are plotted in Figure 2. The grey dash-dotted line is the

quarterly growth rate of patent applications pat. The green solid line shows the residuals

of Eq. (1) where there is no control for current and lagged policy changes. The solid

blue line depicts the residuals of Eq. (1’). Due to the availability of the narrative tax

series, the latter is available only up to 2006-IV. We use this as our preferred instrument.

Results obtained when not controlling for contemporaneous policy changes are largely

equivalent to our benchmark and discussed in Section 4.

11We use a series of narrative changes in monetary policy extended to 2007. Controlling for the changes
in tax policy follows from the intuition in Uhlig (2004) who noted that changes in capital income taxes
would lead to permanent effects on labor productivity and hence be a confounding factor in the analysis
of technology shocks. This intuition was further developed in Mertens and Ravn (2011).
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3 Identification of Technology News Shocks

In the news literature, it is common to think of the process for technology as a random

walk with drift subject to two stochastic disturbances

lnAt = ∆lnA + lnAt−1 + eA1,t + eA2,t−k , (2)

where ∆lnA is the steady state growth rate of technology, and eA1,t and eA2,t−k are zero-

mean normally distributed i.i.d. processes with variance equal to σ2
A1 and σ2

A2 respectively.

At is typically understood as a shifter to the aggregate production function of the econ-

omy, and intended to capture a concept of technology related to the efficiency with which

the factors of production are utilized, or the introduction of new processes altogether.

eA2,t is the news shock.12 The standard identifying assumption in the news litera-

ture is that agents learn about eA2,t−k before it hits the technology process, i.e. k > 0

(see e.g. Beaudry and Portier, 2006; Barsky and Sims, 2011, among many others). How-

ever, a number of more recent papers have argued that a news shock is also in principle

compatible with k = 0, which would affect technology also on impact (see e.g. Barsky

et al., 2015; Kurmann and Sims, 2017). This may happen because news about future

productivity arrives along with an innovation in current technology, because innovations

to current technology may signal significant improvements in the following years, or be-

cause technology slowly diffuses across sectors. We remain agnostic, hence, empirically,

we do not constrain news shocks to be orthogonal to the current level of technology.

Allowing for k = 0 naturally makes the task of telling apart a news shock with effects on

current technology from an innovation in current technology (eA1,t) a daunting one. In

this respect, we rely on the information content of the instrument constructed in Section

2. As discussed, while patent applications are most informative for future technological

changes (k > 0), the fact that innovations can be distributed under a patent-pending sta-

tus does not rule out the k = 0 case a priori. Hence, the use of the patent-based external

instrument does not warrant imposing orthogonality with respect to the current level of

technology. However, as we shall see in Section 4, while no assumption on the impact

12An alternative equivalent formalization assumes technology to be the sum of a stationary and a
permanent component, with news shocks affecting the latter (see e.g. Blanchard et al., 2013; Kurmann
and Sims, 2017).
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responses is made, the instrument recovers a shock which leads to an effectively muted

response of total factor productivity (TFP) upon realization, while eliciting a strong and

sustained response at further ahead horizons. This gives us some confidence that the

recovered shock has a large element of news embedded in it.

We use our patent-based external instrument to back out the dynamic causal effects

of technology news shocks on a collection of macroeconomic and financial variables in a

structural Vector Autoregression (SVAR-IV, Mertens and Ravn, 2013; Stock and Watson,

2012, 2018). Let yt denote the n-dimensional vector of economic variables of interest,

whose dynamics follow a VAR(p)

Φ(L)yt = ut, ut ∼WN (0,Σ), (3)

where Φ(L) ≡ In − ∑pj=1 ΦjLj, L is the lag operator, Φj j = 1, . . . , p are conformable

matrices of autoregressive coefficients, and ut is a vector of zero-mean innovations, or

one-step-ahead forecast errors, i.e. ut ≡ yt −Proj(yt∣yt−1, yt−2, . . .).

For our purpose, we require that the information in the VAR be sufficient for the

identification of eA2,t. Specifically, we assume that there exists a 1 × n vector λ such that

eA2,t = λut, (4)

or, in other words, that there exists a suitable rotation of the VAR innovations that

reveals the shock of interest eA2,t. Forni et al. (2019) and Miranda-Agrippino and Ricco

(2018) show that conditional on a correct identification scheme and a VAR specification

that correctly captures the dynamics of yt, the estimated IRFs to the shock of interest

converge to the ‘true’ ones, provided that the VAR is partially invertible in the shocks of

interest, i.e. that Eq. (4) holds. Miranda-Agrippino and Ricco (2018) discuss in particular

the conditions required for identification with external instruments in SVAR-IVs under

partial invertibility. Let zt denote the external instrument used for the identification of

eA2,t, and let ⊥ denote the component of a process that is orthogonal to the space spanned

by the lags of yt up to t − 1, such that z⊥t = zt −Proj(zt∣Hyt−1). Recall here that results in

Table 3 show that our patent-based instrument is uncorrelated with lagged state variables,
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and hence with lagged yt. The required conditions are:

E[eA2,tz
⊥
t ] = ρ, ρ ≠ 0 (Relevance) (5)

E[ei,tz⊥t ] = 0, ∀i ≠ A2 (Contemporaneous Exogeneity) (6)

E[ei,t+τz⊥t ] = 0, ∀i ≠ A2, τ ≠ 0 ∶ E[ei,t+τu′t] ≠ 0. (Limited Lead −Lag Exogeneity) (7)

Under these conditions, the impact responses to eA2,t of all variables in yt are consistently

estimated (up to scale and sign) from the projection of the VAR innovations ût onto

the instrument zt (Mertens and Ravn, 2013; Stock and Watson, 2012, 2018).13 The first

two conditions are the standard conditions for instruments’ validity in IV identification.

The third condition arises because of the dynamics, and essentially requires that the

instrument and the VAR innovations are only related via contemporaneous realizations

of the shock of interest, therefore allowing the instrument to be potentially contaminated

by leads or lags of other shocks, so long as these are ‘filtered out’ by the VAR (i.e.

those for which E[ei,t+τu′t] = 0). Hence, with a potentially imperfect instrument –i.e.

likely to fail the limited lead-lag exogeneity condition–, these conditions call for the use

of information-rich VARs which make Eqs. (4) and (7) more plausible.14 Furthermore,

Forni et al. (2019) show that if the VAR is informationally sufficient for eA2,t but not for

the other shocks, then estimates of the forecast error variance contribution of eA2,t are

distorted.

4 Results: News Shocks and Business Cycle

We study the transmission and importance of technology news shocks in a 16-variable

quarterly VAR that includes a rich and heterogeneous set of variables intended to both

cover the relevant variables of interest, and capture possible anticipation of future events

that is at the core of the transmission mechanism of news shocks. A complete descrip-

tion of our data is reported in Appendix A. Variables enter the VAR in log levels, with

13We compare our identification with the prominent ones in the literature proposed by Beaudry and
Portier (2006) and Barsky and Sims (2011) in an illustrative VAR in Appendix C.

14Cascaldi-Garcia (2018) suggests the use of growth forecast revisions as instruments for news shocks.
While theoretically appealing, the limited availability of sufficiently long-horizon forecasts makes survey-
based forecast revisions problematic in relation to conditions (6) and (7).
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the exception of interest rates and corporate spreads, and are deflated and expressed in

per-capita terms where appropriate. We use the GDP deflator to measure inflation. The

VAR is estimated with 4 lags and standard Normal-Inverse Wishart priors (Doan et al.,

1983; Litterman, 1986; Kadiyala and Karlsson, 1997). The optimal priors’ tightness is es-

timated as in Giannone et al. (2015). Minor perturbations to the number of lags included

do not change the results.15 The 16-variable VAR(4) is informationally sufficient.16 We

present our empirical results in the form of impulse response functions (IRFs) to a news

shock identified using our patent-based external instrument and following the two-step

procedure of Mertens and Ravn (2013). We refer to the sample used for the VAR estima-

tion as the estimation sample, and the one used for the projection of the VAR residuals

on the instrument as the identification sample respectively. For comparison, we report

responses to a contemporaneous TFP innovation in Appendix E.

Our benchmark estimation sample is 1971-I:2016-IV, where the start date is con-

strained by the availability of the Nasdaq Composite stock market index, and by the

quarterly series for capacity utilization.17 Our preferred specification uses the patent-

based external instrument that also controls for contemporaneous policy changes, which

gives us an identification sample running from 1982:I to 2006-IV.18 Robustness tests are

discussed below and reported in Appendix F.

The IRFs to a positive technology news shock are reported in Figures 3 to 7. We

discuss each in turn. These are IRFs at the mode of the posterior distribution of the

parameters and are scaled such that the peak response of TFP equals 1%.19 Shaded

15We address concerns in e.g. Canova et al. (2009) and Fève et al. (2009) by re-estimating our baseline
VAR with 12 lags. The richer parametrization substantially increases the computational burden but
does not materially change our results. IRFs are not reported but available upon request.

16We use the test for informational sufficiency of Forni and Gambetti (2011) and do not find evidence
of any of the lagged state variables Granger causing the VAR residuals. Quarterly factors are extracted
from the McCracken and Ng (2015) quarterly FRED-MD dataset. The p-value associated with the null
hypothesis of informational sufficiency is 0.98.

17We prefer to work with the Nasdaq index since this is more directly linked to developments in
the industrial sector than the S&P 500. In fact, the latter also includes financial institutions including
investment banks, and other entities such as insurance companies which can act as confounding elements,
particularly in light of the financial crisis of late 2007-2008. We discuss results relative to the response
of the S&P 500 below.

18Figure F.4 in the Appendix compares it with responses obtained without directly controlling for
contemporaneous policy changes (i.e. the green line in Figure 2). Results are qualitatively the same,
but estimated with a slightly larger degree of uncertainty. Error bands for both specifications are not
reported for ease of readability, but available upon request.

19Median responses across the draws are virtually the same.
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Figure 3: The Slow Diffusion of Technology
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Note: Modal response of Utilization-Adjusted TFP to a technology news shock identified with patent-
based external instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification sample 1982-I :
2006-IV. Shaded areas denote 68% and 90% posterior coverage bands.

areas correspond to 68% and 90% posterior coverage bands.

Figure 3 plots the response of TFP to the identified technology news shock over a

period of 32 quarters. We use the quarterly series of total factor productivity corrected

for input utilization of Fernald (2014). TFP rises mildly on impact, then contracts slightly,

and finally rises robustly following a persistent hump that reaches a peak between 6 and

7 years after the shock hits. The response is not significant for the first four years. The

shape of the TFP response resembles the S-shaped pattern that is typical of the slow

diffusion of new technologies documented, among others, in Griliches (1957); Mansfield

(1961); Rogers (1962) and Gort and Klepper (1982). Technology diffuses slowly at first.

This initial phase is then followed by a fast diffusion period that ends once the new

technology has been fully absorbed, and diffusion reaches its maximum. A similarly

shaped response is reported in Barsky et al. (2015) and Kurmann and Sims (2017). Both

these papers identify technology news shocks based on the forecast error variance of TFP,

and do not restrict the impact response of TFP to be zero.20

The responses of the variables related to economic activity are reported in Figure 4.

20Kurmann and Sims (2017) consider the case in which TFP measures true technology with an error
that correlates with economic conditions. Assuming that the measurement error albeit systematic is
nevertheless transient, identification based on the long-run forecast error variance of TFP avoids reliance
on its short term fluctuations, and is thus robust to such mis-measurements.
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Figure 4: Quantities
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Note: Modal response of quantities to a technology news shock identified with patent-based external
instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification sample 1982-I : 2006-IV. Shaded
areas denote 68% and 90% posterior coverage bands.

Consumption rises immediately following the shock, and remains elevated throughout.

Output, investment, and capacity utilization stay mostly put on impact, and then rise

persistently to reach a peak after about two years after the shock hits. Impact modal

responses are negative, but only marginally significant at conventional levels, and fully

reabsorbed in the span of two to three quarters. The magnitude of the responses is

economically important. Output reaches almost half a percentage point at peak, while

investment increases by 1.5%. The labor market witnesses similarly significant improve-

ments at the two year horizon. Here, however, we note that the initial decline in labor

inputs, albeit short-lived, is strongly significant, and more robust to changes to either the

sample size or the VAR specification than the other negative impact responses of Figure

4. We explore the source of the contraction in total hours worked more in detail in the

next section. R&D expenditures (as a component of output) do not seem to respond

to the shock in significant ways. While modal reactions suggest R&D to be somewhat
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Figure 5: Shares of Explained Variance
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Note: Share of error variance accounted for by technology news shock identified with patent-based
external instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification sample 1982-I : 2006-
IV. Shaded areas delimits business cycle frequencies (between 8 and 32 quarters). Frequencies on the x
axis cover a period from 1 (highest) to 100 (lowest) years.

higher following the shock, the response is only significant at the two-year horizon. This

could be entirely driven by the rise in output.

Hence, the identified technology news shock can induce comovements among variables

that are typical of business cycle fluctuations over medium horizons, but does not seem

to do so on impact. In this respect, our findings align with some of the results in e.g.

Francis and Ramey (2005); Basu et al. (2006) and Barsky and Sims (2011), although the

responses in Figure 4 (and with the notable exception of hours worked) point towards

a muted initial response of real activity, rather than a fully recessionary episode. The

timing of the responses in Figure 4 does lend credit to a ‘news view’ in the spirit of what

is described in e.g. Beaudry and Portier (2006); Beaudry and Lucke (2010), to the extent

that the movements in the quantity variables substantially anticipate the actual increase

in TFP. Hence, there seems to be evidence in favor of news triggering business cycle-type

fluctuations before any significant change in technology is effectively realized.

The shock, however, is not the main driver of fluctuations in economic variables at

business cycle frequencies. Figure 5 plots the share of variance of TFP, consumption,

and hours that is accounted for by the identified technology news shock at all frequencies

between 1 (highest frequency) and 100 (lowest frequency) years.21 The algorithm used

21Recall ω = 2π/t, where t denotes time and ω denotes the frequency. A period of 1 year (4 quarters)
corresponds to ω ≃ 1.57, while 100 years yield ω ≃ 0.02. Business cycle frequencies, typically set between
8 and 32 quarters, correspond to frequencies between [0.2 0.8].
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for the decomposition is described in detail in Appendix B.22 The advantage of looking

at variance decompositions in the frequency domain is that it allows us to separate long,

medium, and short-run fluctuations in the variables in our VAR; importantly, this allows

us to isolate the contribution of news shocks to business cycle fluctuations more clearly

than with a standard forecast error variance decomposition in the time domain.23 The

identified shock explains at most a third of the variation of TFP in the very long run (100

years). Table 4 reports the shares of explained variation at selected frequency intervals for

all variables. The recovered news shock is responsible for virtually none of the variation

in TFP either in the short-run (i.e. area under the curve in rightmost section of the

left panel of Figure 5, corresponding to a period of 1 to 2 years), or at business cycle

frequencies (2 to 8 years), and accounts for about 10% of its variation in the long-run

(8 to 25 years, see Table 4). At the same time, it is responsible for about 15% of the

fluctuations in both consumption and hours at business cycle frequencies, and accounts

for over a fifth of the variation in consumption, and about 15% of that in labor inputs in

the long-run. These shares are sizeable and economically relevant, but far from capturing

the bulk of variation in these variables.

The responses of prices are reported in Figure 6. Similarly to what is found in Barsky

and Sims (2011); Kurmann and Otrok (2013) and Barsky et al. (2015), we find that

technology news shocks are disinflationary. Importantly, however, while these authors

document a sudden and persistent drop, we unveil a rather sluggish response of prices

upon realization of the shock. The GDP deflator contracts only marginally on impact,

but keeps sliding over the subsequent quarters, reaching a peak response of about -0.3%

at the two year horizon, consistent with a sluggish adjustment of prices over time. A

similarly sluggish adjustment is characteristic of the relative price of investment goods,

that suffers a minor contraction already on impact, but keeps adjusting over time. The

22The algorithm builds on Altig et al. (2011). We discuss the contribution of the news shock to
fluctuations in the remaining variables in our VAR at the end of this section (see Table 4). Variance
decompositions for all variables at all frequencies between 1 and 100 years are in Figure B.1 in the
Appendix.

23Intuitively, even at relatively short forecast horizons, FEVDs in the time domain combine fluctuations
at all frequencies. Because each horizon is a mixture of short, medium and long term components,
evaluating the contribution of shocks at business cycle frequencies is more problematic in the time
domain. For comparison, time-based forecast error variance decompositions are reported in Figure B.2
in the Appendix.
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Figure 6: Prices & Wages
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Note: Modal response of price variables to a technology news shock identified with patent-based external
instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification sample 1982-I : 2006-IV. Shaded
areas denote 68% and 90% posterior coverage bands.

response indicates that the identified news shock makes investment goods cheaper relative

to consumption goods. Hence, the shock has some of the flavor of the investment-specific

technology improvements of e.g. Fisher (2006) and Justiniano et al. (2010, 2011).24 Figure

6 also reports the response of real wages. We find that wages significantly contract on

impact, to increase at longer horizons. We discuss the response of real wages in greater

detail in the next section.

Lastly, we collect responses of asset prices and measures of consumers’ expectations in

Figure 7. The stock market prices in the news shock strongly and significantly on impact

– the Nasdaq index jumps up by 5% upon realization of the shock.25 The strong response

of the stock market is more notable when the Nasdaq is used, due to the index com-

position being heavily weighted towards information-technology companies. These are

presumably those mostly affected by these types of shocks over the identification sample

considered (1982-I:2006-IV). Figure F.2 in the appendix compares IRFs in our benchmark

sample with those obtained when estimating the VAR from 1962-I, and substituting the

Nasdaq Composite with the S&P 500 (same identification sample). The response of the

S&P is positive on impact, but the magnitude is about a third of that of the Nasdaq.26

24See also Ben Zeev and Khan (2015).
25Bretscher et al. (2019) use a New Keynesian DSGE model to study the implications of news shocks

for asset pricing, and find that macroeconomic risk factors that derive from agents’ accounting of news
also help price the cross-section of expected returns.

26In this case we drop the capacity utilization variable which is unavailable prior to the 1970s, and
substitute the Nasdaq with the S&P 500. The start date coincides with the availability of daily data for
interest rates (DGS1 and DGS10) that enter the VAR in quarterly averages. We note that in this case
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Figure 7: Expectations & Financial Markets
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Note: Modal response of consumers’ expectations and financial markets to a technology news shock iden-
tified with patent-based external instrument. VAR(4). Estimation sample 1971-I : 2016-IV. Identification
sample 1982-I : 2006-IV. Shaded areas denote 68% and 90% posterior coverage bands.

Consistent with a world in which companies only slowly adjust to the introduction of

new technologies, the BAA-AAA corporate bond spread slightly increases on impact, to

improve at medium horizons. This response is however not particularly significant.

The significant disinflationary characteristic of the identified news shock induces an

endogenous strong response of the monetary authority, that responds more than pro-

portionally to the decline in inflation. Due to the sample considered including the zero-

lower-bound (ZLB) period, we use the one year nominal interest rate as our measure for

the short term policy rate. In Figure F.1 we verify that neither the global financial crisis

nor the ZLB sample drive or affect our results. The one year rate falls by about 30 basis

points on impact, which is roughly the same magnitude as the peak decline of prices (see

Figure 6). This implies that shorter maturity interest rates are likely to fall by more,

and hence that short-term real interest rates fall following the shock. The slope of the

the magnitude of the peak responses of both prices and interest rates is larger.
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Table 4: Error Variance Decomposition

short run business cycle long run

[ 4 - 8 quarters ] [ 8 - 32 quarters ] [ 32 - 100 quarters ]

TFPL Utilization-Adj TFP 1.68 1.03 9.57

RGDP Real GDP 8.39 10.68 14.04

RCONS Real Consumption 8.66 13.28 20.39

RINV Real Investment 6.64 11.78 10.94

RDGDP R&D Expenditures (Y) 0.56 3.85 7.27

HOURS Hours 9.58 13.39 14.32

CAPUTIL Capacity Utilization 5.55 10.59 13.65

GDPDEF GDP Deflator 2.23 7.24 12.87

RPINV Price of Investment 3.46 2.33 6.02

RWAGE Real Wages 8.40 4.59 11.89

SHORTR Short Rate 15.39 9.87 1.88

YCSLOPE Term Spread 12.93 10.56 5.38

EQY2 Nasdaq 22.57 20.46 21.11

CCONF Consumer Confidence 7.34 11.88 12.66

BCE5Y Business Conditions E5Y 8.47 8.04 8.77

CBSPREAD Corporate Bond Spread 2.05 4.58 1.55

Notes: Share of error variance accounted for by the identified technology news shock over different
frequency intervals. Numbers are percentage points.

yield curve, here measured as the spread between the 10-year and the 1-year Treasury

rates, rises by about 15 bps on impact, mainly driven by changes at the short end, and

implying a 15 bps fall in long term yields. Similar types of impact responses are reported

in Kurmann and Otrok (2013), where the identified news shock is also responsible for

most of the unexplained variation in the slope of the term structure of interest rate. We

do not find this to be the case. Table 4 shows that the shock is most explanatory over

the short-run, where it can account for about 15% of movements in the term structure,

but it captures very little variation in interest rates in the long run. The impact response

of the short term rate also contrasts with findings in Kurmann and Sims (2017), where

the response of the monetary authority is mildly contractionary.27

Finally, Figure 7 reports responses of a consumer confidence indicator and a business

confidence indicator reflecting expectations about economic conditions over a horizon of

27For a broader discussion on the role played by different vintages of TFP data on the response of the
term structure slope to technology news shocks see Cascaldi-Garcia (2017); Kurmann and Otrok (2017).
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5 years, both taken from the Michigan Survey of Consumers. Interestingly, we find that

while both measures of confidence robustly rise at medium horizons, they do not do so

on impact. In fact, the responses tend to be negative upon realization of the shock.

This finding is consistent with agents overweighting the responses of current economic

conditions discussed in Figure 4 when forming their expectations about the future, and

echoes the implications of models in which agents are subject to strong informational

rigidities. We return to this issue in greater detail in the next section.

5 Discussion of the Results: the Propagation of News

about Future Technology

Equipped with the empirical results reported in Section 4, in this section we try to shed

some light on the likely transmission mechanisms by evaluating our findings against the

different models proposed in the literature.

Total Factor Productivity As noted, the impulse response function of TFP to the

identified news shock supports the hypothesis of slow diffusion of technology over time

(see e.g. Rotemberg, 2003, and references therein).28 While there is evidence of some

(non-significant) positive spillover to current TFP, productivity does not materially move

away from zero before the first 4 years after the shock hits. Hence, the effect of a news

shock on current TFP is estimated to be effectively zero, even if we have not imposed

such restriction ex ante. Moreover, by the time the TFP response becomes positive,

and perhaps with the exception of real wages and the relative price of investment, all the

other variables in the VAR have reached the peak of their dynamic adjustment. This large

asynchronicity in the timing of the responses favors the hypothesis that macro aggregates

can in fact move as a result of a change in expectations about future productivity growth,

and before the change in aggregate technology materializes. The ensuing business cycle

28Among others, Rogers (1962); David (1990), and Hall (2006), have rejected the RBC view and have
produced evidence that suggests a slow S-shaped diffusion of technology. While the implications of the
slow diffusion for the modeling of productivity is discussed extensively in e.g. Rotemberg (2003); Comin
and Gertler (2006); Lindé (2009), much of the business cycle literature has modeled productivity as a
jump process. Other papers that build models of costly adoption of new technologies that are consistent
with a slow diffusion pattern are e.g. Comin et al. (2009) and Comin and Hobijn (2010).
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expansion is not estimated to be immediate, and we return to this point below. Hence,

while it appears that business-cycle types of comovements can in fact be triggered, here

we note that the relatively small share of explained variance that is accounted for by the

identified news shock at business cycle frequencies casts substantial doubts on it being

a main driver of economic fluctuations.29 Importantly, this also holds true for the TFP

process itself. Our estimates suggest that technology news account at best for a third of

the variance of TFP at very low frequencies (see Figure 5).

Quantities: Output, Consumption, Investment, and Hours In our VAR output,

investment, consumption and hours worked are all significantly higher a few quarters after

the shock hits, with peak effects realized in the span of two years. On impact, consump-

tion rises strongly, hours decline, and although modal responses are negative, investment

and output do not meaningfully move away from zero before they start increasing. Ca-

pacity utilization also rises after staying still on impact. These types of responses are

hard to rationalize under the standard neoclassical real business cycle (RBC) paradigm.

The rise in consumption is understood to be the result of a wealth effect: expectations of

future higher productivity raise expectations about future income, which in turn induce

households to smooth consumption towards higher current levels. The same wealth effect

also increases the desire for leisure, while higher expected future productivity redirects

the capital stock away from investment and towards consumption until the higher pro-

ductivity level is realized. Hence, consumption, labor effort and investment must in this

case move in opposite directions (Barro and King, 1984; Cochrane, 1994). Moreover, in

the classical RBC setting, a fixed labor demand implies that the fall in hours worked must

come from a shift in the labor supply curve, which in turn requires an increase in wages.

This too contrasts with our findings: real wages significantly contract upon realization of

the shock, and only slowly increase over time.

We interpret the delayed business cycle expansion that is triggered by the news shock

as indicative of the presence of potentially different sources of inertia that delay the

29Similar conclusions have been reached in a DSGE framework in e.g. Fujiwara et al. (2011); Schmitt-
Grohé and Uribe (2012) and Khan and Tsoukalas (2012). Sims (2016) argues that earlier empirical works
may be confounding current and past news shocks, hence implying a potentially systematic overstatement
of the relative importance of news shocks.
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adjustments. In fact, the responses of quantities documented here is consistent with New

Keynesian models with nominal rigidities that influence the setting of prices, wages, or

both (e.g. Barsky and Sims, 2009; Christiano et al., 2010; Barsky et al., 2015), and with

RBC models augmented with real rigidities such as e.g. habit formation in consumption,

and adjustment costs associated with changes in either the stock of capital or the rate

of investment, and equipped with a system of preferences that allows to fine-tune the

wealth elasticity of labor supply (e.g. Jaimovich and Rebelo, 2009; Schmitt-Grohé and

Uribe, 2012). A weakened short-run wealth effect can in fact induce a right shift in the

labor supply. At the same time, the presence of adjustment costs and variable capital

utilization can induce positive shifts in labor demand if the price of capital decreases as a

consequence of the shock. However, while these types of mechanisms can account for the

positive comovements, they cannot reproduce other important effects, such as e.g. the

increase in asset prices. In fact, these models predict that asset prices will move with the

cost of capital, and will hence decrease (see e.g. Christiano et al., 2010).30

Prices: Inflation and Wages New Keynesian models with nominal rigidities, includ-

ing those where such frictions arise endogenously due to imperfect common knowledge

(e.g. Mankiw and Reis, 2002; Woodford, 2003) seem to offer a more varied array of mech-

anisms through which our findings can be rationalized. This is because they allow the

dynamics to be dominated by the demand side, at least in the short-run (see discussion

in e.g. Lorenzoni, 2009, 2011). In the VAR, the shock triggers a sudden and marked

contraction of real wages followed by a slow, but significant deflationary episode. Prices

drop mildly on impact, and continue to slide over time to reach a peak contraction two

years after the shock. Real wages eventually increase; the time taken for the wage in-

flationary pressure to materialize goes from 8 to 16 quarters depending on the chosen

significance level. The deflationary effect of news shocks is a robust finding, and has been

documented in Christiano et al. (2010); Jinnai (2013); Kurmann and Otrok (2014) and

Barsky et al. (2015) among others. However, contrary to findings in e.g. Barsky and

Sims (2009, 2012) and Kurmann and Otrok (2014), we find that the bulk of the drop in

inflation is not realized on impact. Rather, and consistent with nominal rigidities pre-

30Business cycle comovements are also reproduced in standard RBC frameworks augmented with
dispersed information (see e.g. Angeletos and La’O, 2010).
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venting an immediate impact adjustment, the response of prices is subdued initially, and

only slowly builds up over time. Christiano et al. (2010) and Barsky and Sims (2011)

interpret the fall in prices as a manifestation of the forward-looking nature of inflation

in the New Keynesian model, where current inflation is a function of both current and

future expected marginal costs. As also discussed in Barsky et al. (2015), expected fu-

ture productivity improvements lower expected real marginal costs. If real wages do not

rise too sharply, the expectation that marginal costs will be lower in the future creates

downward pressure on current inflation. Whether this happens in practice depends on

the persistence of the news process, the monetary policy rule, and the potency of nominal

rigidities. For a given news process, and leaving temporarily aside the role of the mone-

tary authority, the fall in inflation following the news shocks can be obtained under two

different specifications of nominal frictions: a case of pure sticky prices as in e.g. Calvo

(1983), and one in which prices are flexible, but wages are staggered like in e.g. Erceg

et al. (2000). Christiano et al. (2010) show that while both scenarios give rise to a defla-

tion, the range of parameters across which this happens in a sticky wage environment is

larger (see also Barsky and Sims, 2009; Jinnai, 2013).

Monetary Policy, the Natural Rate of Interest, and the Term Premium Ex-

pectations that productivity will be higher in the future, but that do not change the level

of current technology, give rise to an inefficient rise in current spending, primarily driven

by the desire to increase current consumption. In order to keep spending anchored to

the current (unchanged) level of technology, the natural rate of interest, proportional to

the expected growth rate of technology, rises sharply. Consider now a central bank that

sets the nominal interest rate as a function of expected inflation. This is the situation

analyzed in detail in Christiano et al. (2010). Expectations that inflation will be lower

in the future lead the central bank to lower the nominal interest rate precisely when the

natural rate is increasing, thus creating an amplification mechanism for the propagation

of the news shock.31 The dynamic responses from our VAR abide by this narrative. As

discussed, the one year rate moves by roughly the same amount as the deflator at peak,

implying an even larger drop of shorter maturity interest rates. Hence, in our empiri-

31See also discussion in Sims (2012).
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Figure 8: Long Rate Response
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Note: Implied modal responses of the 10-year Treasury yield and VAR-based expectation and term
premium components. VAR(4). Estimation sample 1971-I:2016-IV; Identification sample 1981-1:2006-
IV.

cal setting the monetary authority responds to the news shock by aggressively reacting

to the fall in (expected) inflation. The suboptimal response of the central bank can be

rationalized in terms of information rigidities: the monetary authority may have to cali-

brate its response based on its best forecasts for (current and future) technology, which

may diverge from the realized values (see e.g. Lorenzoni, 2011).32 Finally, comparing the

responses of the short and long term rates, we note that the 1-year rate returns to trend

relatively quickly, and is hence likely not to fully account for the impact fall in the 10-year

Treasury yield. This implies that following the news shock term premia decline.

We confirm this intuition in Figure 8. Here we plot the responses of the long term

rate implied by Figure 7, and use the VAR to decompose it into its expectation and term

premium components.33 About 3/5 of the impact decline in the long term interest rate is

estimated to be due to a fall in term premia; and the response dies out relatively slowly.

32As a partial solution to this issue, Christiano et al. (2010) suggest introducing variables that help to
proxy for the natural rate, such as e.g. credit growth, in the reaction function.

33The 10-year yield can be decomposed into the expected 1-year rate over 10 years, plus a term
premium ζt. If t denotes quarters,

y
(10)
t = Et [

1

10

10

∑
τ=1

y
(1)

t+4×(τ−1)
] + ζ(10)t . (8)

Net of risk considerations, holding a 10-year bond should be equivalent to rolling 1-year bonds over 10
years. We calculate horizon h term premium responses as the difference between the horizon h response
of the 10-year rate, and the average expected response of the 1-year rate at horizons h,h + 4, . . . , h + 36.
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These findings align with those in Crump et al. (2016).

Consumer Expectations We lastly turn to analyze the response of consumer expecta-

tions. As discussed, upon realization of the shock both the index of consumer confidence

and the component of the Michigan Survey of Consumers that relates to business con-

ditions expected 5 years hence decline. The decline is short-lived, and both indicators

robustly rise above trend within a year after the shock hits. While the negative responses

are only marginally significant at conventional levels, they are nevertheless somewhat puz-

zling. We offer an interpretation for this finding that builds on the presence of information

rigidities. In fact, a potential explanation for this result is that agents only imperfectly

observe future fundamentals, and overweigh current economic conditions when forming

their expectations about the future when the signal-to-noise ratio is low.

In a comprehensive study, Coibion and Gorodnichenko (2012, 2015) analyze survey

forecasts of consumers, firms, professional forecasters and central banks, and find that

economic agents face strong information rigidities, irrespective of their type. The empir-

ical regularities unveiled in these works describe frictions to information processing that

seem to be more coherent with frameworks in which agents continuously update their

information set, but only receive noisy signals about the state of the economy (noisy in-

formation, Woodford, 2003; Sims, 2003; Mackowiak and Wiederholt, 2009), as opposed to

alternatives in which the update itself is sluggish (sticky information, Mankiw and Reis,

2002). In the noisy information environment, agents never fully observe the true states,

and form expectations about fundamentals via a signal extraction problem. Hence, at

any given time agents’ forecasts are a combination of existing beliefs and new informa-

tion received, with relative weights determined by the degree of information rigidity (i.e.

noise in the signal). Coibion and Gorodnichenko (2015) estimate that new information

receives less than half the weight it would otherwise have under full-information. News

about future technological changes can be thought of as a quintessential signal extraction

problem (see also Chahrour and Jurado, 2018). Blanchard et al. (2013) consider the case

in which technology is driven by both temporary and permanent shocks (i.e. shocks that

have long-lasting effects on the level of technology), and agents observe a noisy signal of

the permanent component of technology. Agents are not able to disentangle news from
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Figure 9: Role of Unemployment and Unemployment Expectations

Unemployment Rate

horizon
 0  4  8 12 16 20 24

%
 
p
o
i
n
t
s

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

frequency
0 0.5 1 1.5

s
h
a
r
e

0

0.1

0.2

0.3

0.4

0.5

Labor Participation

horizon
 0  4  8 12 16 20 24

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

frequency
0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

Unemployment E1Y

horizon
 0  4  8 12 16 20 24

-3

-2

-1

0

1

2

3

4

5

6

frequency
0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

Note: Impulse response functions (top panels) and shares of explained variance (bottom panels) for the
unemployment rate, the rate of labor participation, and the 1-year-ahead unemployment expectation.
Survey forecasts are from the Michigan Survey of Consumers. VAR(4). Estimation sample 1971-I:2016-
IV; Identification sample 1981-1:2006-IV.

noise; moreover, the noisier the signal, the slower the consumption adjustment, the more

likely that shocks to the permanent component result in an initial fall in employment.

To offer some additional insights, in Figure 9 we look more in detail at the response

of the labor market, and report IRFs and variance shares for the unemployment rate,

the rate of labor participation, and consumers’ expectations about one year ahead un-

employment, again extracted from the Michigan Survey of Consumers.34 Following the

positive news shock, the unemployment rate rises on impact. Given the muted response

of labor participation at all horizons, it seems to be the case that the initial fall in to-

tal hours (Figure 4) is essentially the result of an increase in the unemployment rate.

Consistently, consumers’ expectations about unemployment rise, and do so very signif-

icantly. The peak is realized well within the first year, and the shock explains a non

trivial fraction of variation of unemployment forecasts at business cycle frequencies and

34We augment the VAR of Section 4 with these three variables and remove total hours worked. All
other details of the VAR specification stay the same. Full IRFs are in Figure F.3.
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about 20% of the short-run fluctuations in the unemployment rate (see also Faccini and

Melosi, 2018, for the role played by technology news on employment and its forecasts).

We think of the rise in expected unemployment as compatible with such noise-ridden

environment, and with agents (consumers) overweighting the negative impact response

of labor market variables to the shock. In turn, this can help explain the initial fall in

consumer confidence about both current and expected economic conditions. Barsky and

Sims (2009, 2012) use innovations in consumer confidence to infer on the effect of news

shocks, arguing that measures of confidence aggregate information about future income

that is otherwise unavailable in current consumption data, an intuition first offered in

Cochrane (1994). The responses in Figure 7 suggest that confidence ‘innovations’ may in

fact be anticipated. Indeed, Figure E.1 in Appendix E shows that consumer confidence

robustly rises on impact only following a positive contemporaneous TFP innovation.

6 Conclusions

‘How does the aggregate economy react to a shock that raises expectations about future

productivity growth?’ In this paper we have provided an answer to this question by

introducing a novel external instrument for the identification of technology news shocks

based on patent counts. Importantly, by controlling for expectations about current and

future macroeconomic developments formed prior to the patent filings, as well as for other

contemporaneous policy changes, we were able to account for the endogeneity in patent

applications, and isolate contemporaneous news. We have evaluated the effects of news

shocks on an array of macro aggregates, financial market data, and expectations. Our re-

sults are consistent with the predictions of New-Keynesian models with nominal rigidities,

particularly those that arise endogenously due to noisy-information environments.

Our main conclusions are as follows. (i) Our IRFs support a ‘news view’ whereby

an economic expansion is realized in anticipation of future technological improvements.

The identified news shock has no effect on TFP during the first four years, while all

other variables in our VAR reach the peak of their dynamic adjustment within two years.

This suggests that the shift in economic aggregates is likely to be predominantly driven

by a change in beliefs. (ii) While economically relevant, the shock is not a main driver
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of business cycles: it accounts, on average, for about a tenth of aggregate fluctuations

at business cycle frequencies, and for about a third of the variation of TFP in the very

long run. (iii) While the stock market prices-in technology news strongly on impact,

consumers expectations take longer to adjust. In fact, the complexity of the signal ex-

traction problem leads consumers to overweigh the initial deterioration in labor market

conditions when forming expectations about the future, leading to an initial fall in con-

fidence. Similarly, the central bank reacts to the positive news by easing the monetary

stance in response to the fall in expected inflation, potentially acting as an amplifier of

its effects through the compression of premia.

The reactions of consumers, market participants and the central bank to the identified

news shock seem to point towards a substantial degree of heterogeneity in their expecta-

tion formation process. All concur to highlight the role that dispersed information about

the future may have in shaping the response of different types of agents to such types of

disturbances. We leave further investigation of these relevant issues to future research.

References

Alexopoulos, Michelle (2011) “Read All about It!! What Happens Following a Technology
Shock?,” American Economic Review, Vol. 101, No. 4, pp. 1144–1179, June.

Altig, David, Lawrence Christiano, Martin Eichenbaum, and Jesper Linde (2011) “Firm-Specific
Capital, Nominal Rigidities and the Business Cycle,” Review of Economic Dynamics, Vol.
14, No. 2, pp. 225–247, April.

Angeletos, George-Marios and Jennifer La’O (2010) “Noisy Business Cycles,” NBER Macroe-
conomics Annual, Vol. 24, No. 1, pp. 319–378.

Arezki, Rabah, Valerie A. Ramey, and Liugang Sheng (2017) “News Shocks in Open Economies:
Evidence from Giant Oil Discoveries,” The Quarterly Journal of Economics, Vol. 132, No. 1,
pp. 103–155.

Baron, J. and J. Schmidt (2014) “Technological Standardization, Endogenous Productivity and
Transitory Dynamics,” Working Papers 503, Banque de France.

Barro, Robert and Robert G. King (1984) “Time-Separable Preferences and Intertemporal-
Substitution Models of Business Cycles,” The Quarterly Journal of Economics, Vol. 99, No.
4, pp. 817–839.

Barsky, Robert B. and Eric R. Sims (2009) “News Shocks,” Working Paper 15312, National
Bureau of Economic Research.

34



(2011) “News shocks and business cycles,” Journal of Monetary Economics, Vol. 58,
No. 3, pp. 273–289.

(2012) “Information, Animal Spirits, and the Meaning of Innovations in Consumer
Confidence,” American Economic Review, Vol. 102, No. 4, pp. 1343–77, June.

Barsky, Robert B., Susanto Basu, and Keyoung Lee (2015) “Whither News Shocks?,” NBER
Macroeconomics Annual, Vol. 29, No. 1, pp. 225–264.

Basu, Susanto, John G. Fernald, and Miles S. Kimball (2006) “Are Technology Improvements
Contractionary?” American Economic Review, Vol. 96, No. 5, pp. 1418–1448, December.

Beaudry, Paul and Bernd Lucke (2010) “Letting Different Views about Business Cycles Com-
pete,” NBER Macroeconomics Annual, Vol. 24, No. 1, pp. 413–456.

Beaudry, Paul and Franck Portier (2004) “An exploration into Pigou’s theory of cycles,” Journal
of Monetary Economics, Vol. 51, No. 6, pp. 1183–1216, September.

(2006) “Stock Prices, News, and Economic Fluctuations,” American Economic Review,
Vol. 96, No. 4, pp. 1293–1307, September.

(2014) “News-Driven Business Cycles: Insights and Challenges,” Journal of Economic
Literature, Vol. 52, No. 4, pp. 993–1074, December.

Ben Zeev, Nadav and Hashmat Khan (2015) “Investment-Specific News Shocks and U.S. Busi-
ness Cycles,” Journal of Money, Credit and Banking, Vol. 47, No. 7, pp. 1443–1464.

Blanchard, Olivier J., Jean-Paul L’Huillier, and Guido Lorenzoni (2013) “News, Noise, and
Fluctuations: An Empirical Exploration,” American Economic Review, Vol. 103, No. 7, pp.
3045–3070, December.

Bretscher, Lorenzo, Aytek Malkhozov, and Andrea Tamoni (2019) “News Shocks and Asset
Prices,” March. SSRN 2367196.

Calvo, Guillermo A. (1983) “Staggered prices in a utility-maximizing framework,” Journal of
Monetary Economics, Vol. 12, No. 3, pp. 383 – 398.

Canova, Fabio, David Lopez-Salido, and Claudio Michelacci (2009) “The effects of technology
shocks on hours and output: a robustness analysis,” Journal of Applied Econometrics, Vol.
25, No. 5, pp. 755–773.

Carley, Michael, Deepak Hedge, and Alan C. Marco (2015) “What is the Probability of Receiving
a U.S. Patent?” Yale Journal of Law and Technology, Vol. 17, No. 1, pp. 201–223.

Cascaldi-Garcia, Danilo (2017) “News Shocks and the Slope of the Term Structure of Interest
Rates: Comment,” American Economic Review, Vol. 107, No. 10, pp. 3243–49, October.

(2018) “Forecast Revisions as Instruments for News Shocks.” FRB, Unpublished.

Chahrour, Ryan and Kyle Jurado (2018) “News or Noise? The Missing Link,” American Eco-
nomic Review, Vol. 108, No. 7, pp. 1702–36, July.

Christiano, Lawrence J., Martin Eichenbaum, and Robert Vigfusson (2003) “What Happens
After a Technology Shock?,” NBER Working Papers 9819, National Bureau of Economic
Research, Inc.

35



Christiano, Lawrence J., Cosmin Ilut, Roberto Motto, and Massimo Rostagno (2010) “Monetary
policy and stock market booms,” Proceedings - Economic Policy Symposium - Jackson Hole,
pp. 85–145.

Christiansen, Lone Engbo (2008) “Do Technology Shocks Lead to Productivity Slowdowns?
Evidence from Patent Data,” IMF Working Papers 08/24, International Monetary Fund.

Cochrane, John H. (1994) “Shocks,” Carnegie-Rochester Conference Series on Public Policy,
Vol. 41, No. 1, pp. 295–364, December.

Coibion, Olivier and Yuriy Gorodnichenko (2012) “What Can Survey Forecasts Tell Us about
Information Rigidities?” Journal of Political Economy, Vol. 120, No. 1, pp. 116 – 159.

(2015) “Information Rigidity and the Expectations Formation Process: A Simple
Framework and New Facts,” American Economic Review, Vol. 105, No. 8, pp. 2644–78.

Comin, Diego and Mark Gertler (2006) “Medium-Term Business Cycles,” American Economic
Review, Vol. 96, No. 3, pp. 523–551, June.

Comin, Diego and Bart Hobijn (2010) “An Exploration of Technology Diffusion,” American
Economic Review, Vol. 100, No. 5, pp. 2031–2059, December.

Comin, Diego A., Mark Gertler, and Ana Maria Santacreu (2009) “Technology Innovation and
Diffusion as Sources of Output and Asset Price Fluctuations,” NBER Working Papers 15029,
National Bureau of Economic Research, Inc.

Crump, Richard K., Stefano Eusepi, and Emanuel Moench (2016) “The term structure of ex-
pectations and bond yields,” Staff Reports, revised 2018 775, Federal Reserve Bank of New
York.

David, Paul A. (1990) “The Dynamo and the Computer: An Historical Perspective on the
Modern Productivity Paradox,” The American Economic Review, Vol. 80, No. 2, pp. 355–
361.

Doan, Thomas, Robert B. Litterman, and Christopher A. Sims (1983) “Forecasting and Condi-
tional Projection Using Realistic Prior Distributions,” NBER Working Papers 1202, National
Bureau of Economic Research, Inc.

Erceg, Christopher J., Dale W. Henderson, and Andrew T. Levin (2000) “Optimal monetary
policy with staggered wage and price contracts,” Journal of Monetary Economics, Vol. 46,
No. 2, pp. 281–313, October.

Faccini, Renato and Leonardo Melosi (2018) “The Role of News about TFP in U.S. Recessions
and Booms,” Working Paper Series WP-2018-6, Federal Reserve Bank of Chicago.

Fernald, John G. (2014) “A quarterly, utilization-adjusted series on total factor productivity,”
Working Paper Series 2012-19, Federal Reserve Bank of San Francisco.
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Appendix: Not For Publication

A Data in VAR

Table A.1 lists the variables included in the VAR. The construction of real consumption

(RCONS), real investment (RINV), the relative price of investment (RPINV), and hours

worked (HOURS) follows Justiniano et al. (2010, 2011); specifically,

RCON = 100 × ln( PCND + PCESV
CNP16OV ×GDPDEF

)

RINV = 100 × ln( GPDI + PCDG
CNP16OV ×GDPDEF

)

RPINV = 100 × ln( DDURRD3Q086SBEA +A006RD3Q086SBEA

DNDGRD3Q086SBEA +DSERRD3Q086SBEA
)

HOURS = 100 × ln(HOANBS
2080

) ,

where 2080 is the average numbers of hours worked in a year (i.e. 40 hours a week times 52

weeks). Consumption includes personal consumption expenditures in non-durable goods

(PCND) and services (PCESV), whereas investment is constructed as the sum of private

gross domestic investment (GPDI) and personal consumption expenditures in durable

goods (PCDG). The relative price of investment goods is constructed as the ratio of the

deflators of investment and consumption. Consistent with the definition above, these are

constructed as the implicit price deflator for durable and investment, and the implicit

price deflators for non-durable and services consumption respectively.

The level of Utilization-Adjusted TFP is obtained by cumulating the series in Fernald

(2014). The short term rate and the yield curve slope are expressed in annualized terms.

The yield curve slope (YCSLOPE) is constructed as the difference between the 10-year

(DGS10) and 1-year (DGS1) Treasury constant-maturity rates. Variables are deflated

using the GDP deflator, and transformed in per-capita terms by dividing for the trend

in population (population variable: CNP16OV).
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Table A.1: Variables Used

treatment

Label Variable Name Source FRED Codes log pc

TFPL Utilization-Adj TFP Fernald (2014)† – ● ●
RGDP Real GDP FRED GDPC1 ● ●
RCONS Real Consumption FRED PCND; PCESV ● ●
RINV Real Investment FRED GPDI; PCDG ● ●
RDGDP R&D Expenditures (Y) FRED Y694RC1Q027SBEA ● ●
HOURS Hours FRED HOANBS ● ●
UNRATE Unemployment Rate FRED UNRATE ●
LPR Labor Force Participation Rate FRED CIVPART ●
CAPUTIL Capacity Utilization FRED TCU ●
GDPDEF GDP Deflator FRED GDPDEF ●
RPINV Price of Investment FRED DDURRD3Q086SBEA; ●

DNDGRD3Q086SBEA;
DSERRD3Q086SBEA;
A006RD3Q086SBEA

RWAGE Real Wages FRED COMPRNFB ●
SHORTR Short Rate FRED DGS1

YCSLOPE Term Spread FRED DGS1; DGS10

EQY Equity Index FRED∗ SP500 ●
EQY2 Nasdaq FRED NASDAQCOM ●
CCONF Consumer Confidence UMICH – ●
BCE5Y Business Conditions E5Y UMICH – ●
UE1Y Unemployment E1Y UMICH – ●
CBSPREAD Corporate Bond Spread FRED AAA; BAA

Notes: Sources are: St Louis FRED Database (FRED); University of Michigan (UMICH)
Survey of Consumers https://data.sca.isr.umich.edu/charts.php; † Latest vintage of
Fernald (2014) TFP series https://www.frbsf.org/economic-research/indicators-data/

total-factor-productivity-tfp/; ∗ Older data are retrieved from WRDS. pc = per-capita.

B Error Variance Decomposition

The content of this appendix extends on Altig et al. (2011). Let the Structural VAR be

B(L)yt = B0et, et ∼WN (0, In), (B.1)

where B(L) ≡ In −∑pj=1BjLj, et are the structural shocks, and B0 contains the contem-

poraneous transmission coefficients. Recall that under full invertibility

Σ = E[utu′t] = B0Q[ete′t]Q′B′
0 (B.2)

for any orthogonal matrix Q. ut are the reduced-form VAR innovations. The external

instrument of Section 3 allows identification of only one column b0 of B0, which contains
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Figure B.1: Error Variance Decomposition: Frequency
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Note: Share of error variance accounted for by technology news shock identified with patent-based
external instrument. VAR(4) with standard macroeconomic priors. Estimation sample 1971-I : 2016-IV;
Identification sample 1982-I : 2006-IV. Shaded areas delimits business cycle frequencies (between 8 and
32 quarters).

the impact effects of the identified technology news shock eA2,t on yt.

The spectral density of yt is

Sy(e−iω) = [B(e−iω)]−1Σ [B(e−iω)⊺]−1, (B.3)

where i ≡
√
−1, we use ω to denote the frequency, and B(e−iω)⊺ is the conjugate transpose

of B(e−iω). Let SA2
y (e−iω) denote the spectral density of yt when only the technology news

shock eA2,t is activated. This is equal to

SA2
y (e−iω) = [B(e−iω)]−1b0σA2b

′
0 [B(e−iω)⊺]−1. (B.4)
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Figure B.2: Forecast Error Variance Decomposition: Time

Utilization-Adj TFP
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Note: Share of forecast error variance accounted for by technology news shock identified with patent-
based external instrument. VAR(4). Estimation 1971-I : 2016-IV; Identification 1982-I : 2006-IV.

σA2 is the variance of eA2,t for which an estimator is given by σA2 = (b′0Σ−1b0)−1
(see Stock

and Watson, 2018). Hence, the share of variance due to eA2,t at frequency ω can be

calculated as

γA2(ω) =
diag (SA2

y (e−iω))
diag (Sy(e−iω))

, (B.5)

where the ratio between the two vectors is calculated as the element-by-element division.

The share of variance due to eA2,t over a range of frequencies is calculated using the

following formula for the variance

1

2π ∫
π

−π
Sy(e−iω)dω = lim

N→∞
1

N

N/2
∑

k=−N/2+1

Sy(e−iωk), (B.6)

where ωk = 2πk/N, k = −N/2, . . . ,N/2.
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Recall that the spectrum is symmetric around zero. Let the object of interest be

the share of variance explained by eA2,t at business cycle frequencies. These are typically

between 2 and 8 years which, with quarterly data, correspond to a period between 8

and 32 quarters. Recall the mapping between frequency and period ω = 2π/t. Business

cycle frequencies are then in the range [2πk/N 2πk̄/N], where k = N/32 and k̄ = N/8. It

follows that the share of fluctuations in yt that is accounted for by eA2,t at business cycle

frequencies is equal to

∑k̄k=k diag (SA2
y (e−iω))

∑k̄k=k diag (Sy(e−iω))
. (B.7)

Figure B.1 plots the share of variance that is due to eA2,t for all the variables included

in our benchmark VAR at all frequencies between 1 (highest frequency) and 100 (lowest

frequency) years. Grey areas highlight business cycle frequencies. Table 4 in Section

4 reports the share of variance due to eA2,t over three different ranges of frequencies.

Figure B.2 reports for comparison the share of forecast error variance accounted for by

the identified shocks; forecast horizons, a mixture of high, medium and low frequencies,

make isolating business cycle fluctuations more problematic.
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C Comparison with Standard Identifications: 5-Variable VAR

Figure C.1 compares responses to a news shock identified with our patent-based instru-

ment with two prominent identification schemes in the literature.

Figure C.1: Different Identifications in 5-variable VAR
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Note: Modal response to a technology news shock identified with (1) patent-based external instrument
(SVAR-IV in blue), (2) long-run restrictions (LR/EQY in green dashed), and (3) maximum forecast
error variance share (Max-FEV in purple dotted). Estimation sample 1971-I : 2016-IV. Identification
sample 1982-I : 2006-IV. Shaded areas denote 68% and 90% posterior coverage bands for the SVAR-IV.

The first one is the one proposed in Beaudry and Portier (2006), denoted ‘EQY/LR’,

and implemented as an innovation to the stock market index that is orthogonal to the

current level of TFP. Beaudry and Portier (2006) show that, at least in their bivariate

VAR, this is equivalent to identifying the news shock as being orthogonal to current

TFP, but responsible for its long run variance. The second identification strategy is the

one proposed in Barsky and Sims (2011), denoted ‘Max-FEV’. Here the news shock is

identified as being orthogonal to current TFP, and the one that maximizes the forecast

error variance of TFP at all horizons between 0 and 40 quarters. All responses are scaled

such that the peak response of TFP is equal to 1% across all identification schemes.

The vector of endogenous variables includes output, consumption, investment, total

hours worked, and the stock market index. The variables are chosen as to encompass the
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sets used in the original VARs in both Beaudry and Portier (2006) and Barsky and Sims

(2011).

D Additional Details on Patent Data

Figure D.1: Allowance Rates

Note: [left]: Allowance rates (proportion of patents granted out of submitted applications) across
the six NBER patent-technology fields for applications filed at the USPTO for the first time between
1996 and 2005 and examined before mid2013. (i) first-action allowance rate: proportion of progenitor
applications allowed without further examination; (ii) progenitor allowance rate (or simply, allowance
rate): proportion of progenitor applications allowed without any continuation procedure, and (iii) family
allowance rate: proportion of progenitor applications that produce at least one patent, including the
outcomes of continuation applications that emerge from progenitor applications. [right]: Trends in
allowance rates from 1991 to 2010, all categories. Source: Carley et al. (2015).

Table D.1: Lagged Information in Patent Applications

F1 F2 F3 F4 F5 F6 F7

Wald Test 9.215 1.252 1.835 0.642 1.437 0.256 0.209

p-value 0.000 0.293 0.126 0.634 0.226 0.905 0.933

Adj R2 0.790 0.732 0.738 0.732 0.736 0.727 0.726

N 131 131 131 131 131 131 131

Notes: Numbers reported are Wald test statistics for joint significance of the first 4 lags of each factor
Ft. The factors are extracted from the quarterly dataset of McCracken and Ng (2015). The dependent
variable is the quarterly growth rate of utility patent applications: pat = 100(lnPAt − lnPAt−1). All the
regressions include own 4 lags, regulation dummy and constant.

47



Figure D.2: Cumulative disposal proportion by NBER category

Source: Marco et al. (2015).

E Contemporaneous TFP Innovations

Figure E.1 reports impact responses for a selection of the variables in our VAR to a

contemporaneous TFP innovation that raises TFP on impact by 1%, and obtained with

a standard Cholesky factorization with TFP ordered first. The VAR is the same one

used in Section 4. This identification scheme assumes that TFP is exogenous and only

driven by technology shocks, and that the quarterly series of Fernald (2014) measures true

technology without systematic error. Both these assumptions have been questioned in the

literature (e.g. in Kurmann and Sims, 2017). This is however inconsequential; here we

rely on standard Cholesky ordering only to highlight the differences between the impact

effects of the two types of shocks. Full IRFs are not reported for space considerations,

but available upon request.

The pattern of impact responses in Figure E.1 is fundamentally different from those

elicited by the news shock. A positive contemporaneous TFP innovation significantly

moves up output, consumption and investment on impact, while the response of hours

is muted. Real wages increase robustly, and so do consumer expectations. Finally, there
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Figure E.1: Impact Responses to a Contemporaneous TFP Innovation
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Note: Impact responses of selected variables to a TFP innovation that increases Utilization-Adjusted
TFP by 1%. VAR(4). Estimation sample 1971-I:2016-IV. Grey bars delimit 68% and 90% posterior
coverage bands.

seems to be no appreciable impact reaction of the price level.

F Additional Material

The impulse response functions reported in this Appendix are all scaled such that the

peak response of utilization adjusted TFP equals to 1%.
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Figure F.1: IRFs Full vs Pre-Crisis Sample
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sample 1982-I : 2006-IV. Solid Lines: Instrument also controls for contemporaneous policy changes,
benchmark. Dash-Dotted Lines: Instrument controls for SPF forecasts and lagged pat. Shaded areas
denote 68% and 90% posterior coverage bands.
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Figure F.2: IRFs Longer Sample
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Note: Response of all variables to a technology news shock identified with patent-based external instru-
ment. VAR(4) with standard macroeconomic priors. Solid Lines = Estimation sample 1971-I : 2016-IV;
Identification sample 1982-I : 2006-IV. Dash-dotted Lines: Estimation sample 1962-I : 2016-IV; Identi-
fication sample 1982-I : 2006-IV. The equity index on the longer sample is the S&P 500 shown in the
Nasdaq sub-plot as a dashed-dotted line. Shaded areas denote 68% and 90% posterior coverage bands.
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Figure F.3: IRFs with Unemployment Expectations
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Note: Response of all variables to a technology news shock identified with patent-based external instru-
ment. VAR(4) with standard macroeconomic priors. Instrument controls for contemporaneous policy
changes. Estimation sample 1971-I : 2016-IV; Identification sample 1982-I : 2006-IV. Shaded areas denote
68% and 90% posterior coverage bands.
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Figure F.4: IRFs Pre-Crisis Sample: Instruments
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Note: Response of all variables to a technology news shock identified with patent-based external in-
strument. VAR(4) with standard macroeconomic priors. Solid Lines = Estimation sample 1971-I :
2007-IV; Identification sample 1982-I : 2006-IV. Dash-dotted Lines: Estimation sample 1971-I : 2007-IV;
Identification sample 1982-I : 2007-IV. Shaded areas denote 68% and 90% posterior coverage bands.
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