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Abstract

This paper integrates models of empirical asset pricing with structural vector
autoregressions (VAR) to explore the macroeconomic forces behind the cross-sectional
and time-series variation in expected excess returns. First, I use an unconditional as-
set pricing framework to find an orthogonal shock in a macroeconomic VAR that best
explains the cross-sectional variation in expected returns. The obtained “λ-shock”
closely resembles identified monetary policy surprises and does not explain the recent
US recessions. Second, I integrate return-forecasting methods to construct a second
shock in the VAR, which best explains time-variation in expected returns. The ob-
tained “γ-shock” turns out to be virtually orthogonal to the λ-shock, closely resembles
demand-type financial shocks identified by macroeconomists, and explains most US
recessions. I find that the λ-shock and the γ-shock jointly explain up to 80% of ag-
gregate consumption fluctuations in the US.
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1 Introduction
“In sum, we face two main questions. First, the equity premium question: What

is there about recessions, or some other measure of economic bad times, that makes
people particularly afraid that stocks will fall during those bad times—and so people
require a large upfront premium to bear that risk? Second, the predictability question:
What is there about recessions, or some other measure of economic bad times, that
makes that premium rise—that makes people, in bad times, even more afraid of taking
the same risk going forward? These are two separate questions...” (p. 947, Cochrane
(2017))

Understanding the macroeconomic forces behind the cross-sectional and time-series variation
in expected excess asset returns continues to pose a challenge for both the macroeconomics
and asset pricing literatures. Numerous variables have been proposed as pricing factors in
cross-sectional asset pricing models or as predictors in return forecasting regressions, with
the aim to better understand the drivers of risk premia. However, most of the variables
proposed by the finance literature have been reduced-form objects, which makes it difficult
to establish robust relationships between structural macroeconomic forces and asset prices.
In turn, the macroeconomics literature on structural vector autoregressions (VAR) has long
been concerned with linking fluctuations in reduced-form variables to primitive aggregate
shocks, leading to the development of numerous orthogonalisation techniques. However,
most VAR models have ignored asset price information on the cross-sectional and time-series
variation in expected returns, thereby remaining silent on how the identified macroeconomic
shocks are related to the determination of risk premia. Reducing this gap between the
finance and macroeconomic literatures is therefore needed to get a better understanding of
the empirical linkages between asset prices and economic fluctuations.

The objective of this paper is to address this challenge. To that end, and to answer
the two questions in the opening quote, I propose an empirical framework that combines
information both on the cross-sectional and time-series variation in expected returns with
structural VAR techniques. I approach the problem from two different angles. First, I
use the cross-section of asset prices, in a linear unconditional asset pricing framework with
constant price of risk, to approximate innovations in the stochastic discount factor (SDF)
with an orthogonal shock in a macroeconomic VAR model. This shock, which I refer to as the
λ-shock, is constructed to explain the cross-sectional variation in expected returns. Second,
I use the time-series variation in expected returns and look for an orthogonal shock in the
VAR which drives the fluctuations in the macroeconomic variables that have the highest
predictive power of future excess returns. This shock, which I refer to as the γ-shock, is
constructed to explain time-variation in expected returns. I then study the dynamic effects
of these shocks on the macroeconomy by making full use of the standard VAR toolkit, e.g. by
inspecting impulse response functions (IRFs), forecast error variance (FEV) decomposition,
historical decomposition and the estimated time-series of the shocks.
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Using a standard macroeconomic VAR and benchmark test portfolios for the US, my
paper yields four main empirical results. First, I find that the λ-shock generates a neg-
ative comovement between the short-term interest rate and consumption, with the latter
exhibiting a delayed response, consistent with the recent consumption-CAPM literature.
Importantly, the λ-shock closely resembles monetary policy surprises as identified by the
macroeconomics literature, often using very different methodologies (Romer and Romer
2004; Sims and Zha 2006; Gertler and Karadi 2015). This result highlights the overlap
between linear pricing models of the cross-section of average returns (Fama and French,
1993) and structural shocks identified by the macroeconometric literature (Sims, 1980).

Second, the estimated γ-shock induces a sharp response in consumption and a positive
comovement between the short-term interest rate and aggregate quantities. I find that the
economic characteristics make the γ-shock resemble demand-type shocks as identified by the
recent macroeconomic literature. Specifically, Christiano, Motto, and Rostagno (2014) used
a linearised structural equilibrium model with financial frictions to show that exogenously
fluctuating uncertainty related to the cross-section of risk (“risk shocks”) can explain around
60% of US business cycle fluctuations. Though I use an empirical model and rely solely on
information regarding time-variation in risk premia, I find a close empirical relationship
between risk shocks and the estimated γ-shock. This result highlights the overlap between
recent explanations of business cycle fluctuations, offered by the macroeconomic literature,
and the drivers of time-varying risk premia, long studied by the asset pricing literature.

Third, even though the λ-shock and the γ-shock are not restricted to be orthogonal to
each other, but a key empirical finding of this paper is that they are close to being orthogonal
in the data. This implies that the stochastic macroeconomic drivers of average risk premia
are empirically orthogonal to the stochastic drivers of variation in risk premia. I will discuss
the link of this result with consumption-based asset pricing theories.

Fourth, given the orthogonality of the λ-shock to the γ-shock in the data, I compute FEV
and historical decompositions to assess the contribution of these shocks to the US business
cycle. I find that the γ-shock explains most US recessions in my sample and most of the high-
frequency variation in aggregate consumption. In turn, the λ-shock is important in driving
lower-frequency variation in aggregate consumption, and it made a large contribution only
to the recession in the early 1980s. Importantly, the γ-shock and the λ-shock jointly account
for up to 80% of aggregate consumption fluctuations over the past 50 years.

The (cross-sectional) method to construct the λ-shock connects two simple ideas: (i) a
basic fact of the empirical finance literature (Cochrane, 2005) is that β-pricing models of the
cross-section of asset prices imply a linear model of the stochastic discount factor (SDF);
(ii) a basic fact of the macroeconometrics literature (Sims, 1980) is that orthogonalised
shocks in a VAR model are linear combinations of the reduced-form innovations. These two
facts imply that, given the space spanned by the innovations of a linear VAR and the space
spanned by the cross-section of asset returns, one can construct orthogonal shocks in the
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VAR that are best linear approximations of the SDF (with all other shocks in the VAR
demanding zero average risk premia).

The (time-series) method to construct the γ-shock builds on the asset pricing literature
which found empirical evidence on the predictability of excess returns by financial and mac-
roeconomic variables, implying that expected excess returns vary with the business cycle
(Cochrane 2011). This literature typically employed univariate time-series techniques to
regress realised excess returns on lagged values of valuation ratios (Campbell and Shiller
1988; Fama and French 1988) or macroeconomic variables (Fama and French 1989; Fer-
son and Harvey 1991; Lettau and Ludvigson 2001a), and assessed the forecasting power of
the proposed predictors based on the regression R2 statistic. Given that most of the pro-
posed predictor variables are reduced-form objects, their forecasting power could in theory
be decomposed to the historical contribution of primitive economic shocks that generated
fluctuations in the given predictors. I take this idea to the limit, and search for a single
orthogonal shock in my macroeconomic VAR with the following property: the historical
contribution of this shock to predictor variables in the VAR would generate counterfactual
variation in these predictors, which would have the highest possible R2 statistic when using
them in return forecasting regressions. To the extent that time-variation in expected returns
is linked to economic booms and busts (Lettau and Ludvigson, 2010; Cochrane, 2011), the
γ-shock can be thought of as the stochastic driver of recessions in the VAR.

It is to note that constructing the λ-shock and the γ-shock does not classify as identi-
fication in the classical macroeconometric sense. The methods do not build on assumptions
typically used in VARs to identify structural primitives such as aggregate supply or demand
shocks. One interpretation of these shocks is via the generalisation of the discount factor
(Mt+1) implied by consumption-based asset pricing:

Mt+1 = β
(
Ct+1

Ct

)−σ
Yt+1, (1.1)

where Ct is consumption of the representative household, β is the subjective discount rate, σ
is the risk aversion coefficient, and Yt+1 is a key state variable, directly related to recessions
and to time-varying risk-bearing ability, as discussed in Cochrane (2017). Inspecting through
the lens of this framework, as will be discussed in further detail, the λ-shock can be thought
of as innovations in the consumption growth process (Ct+1

Ct
) which explain the average level of

expected returns; the γ-shock can be thought of as innovations in the recession-related state
variable (Yt+1) which explain time-variation in expected returns. Numerous papers in both
the asset pricing and macroeconomics literatures have provided theoretical explanations of
the drivers of the discount factor (1.1).1 A key advantage of my framework is its reverse

1In general equilibrium models, used to study risk premia, the λ-shock was traditionally linked to tech-
nology shocks (Mehra and Prescott 1985; Jermann 1998). The γ-shock in the asset pricing literature
could represent shocks to the volatility of the consumption process (Bansal and Yaron, 2004) or shocks to
time-varying cross-sectional variance of individual consumption growth (Constantinides and Duffie, 1996),
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engineering nature: it provides a simple and agnostic way to estimate the stochastic drivers
of the discount factor, and their effects on the business cycle, without having to specify the
functional form of the household’s utility function (1.1) and the corresponding structural
model. I will show that this reverse direction may be preferred to the more obvious direction
– using structural shocks (identified by macroeconomists) directly in asset pricing tests.

In addition, modelling the macroeconomic dynamics as a VAR (the space from which I
recover the λ-shock) separately from the cross-section of asset prices (the space that induces
the λ-shock) provides further applications. One can explore how different test portfolios
may proxy different macroeconomic risks in a linear unconditional asset pricing framework.
In the proposed framework, this can be done by changing the test assets while keeping the
state-variables in the VAR fixed and merely rotating the reduced-form VAR innovations.2

I find that the impulse response functions of the λ-shock is similar across standard equity
portfolios.3 Importantly, the λ-shock implied by government bond returns is similar to that
implied by equities as well. This evidence adds to the growing literature on the joint pricing
of stocks and bonds (Lettau and Wachter 2011; Bryzgalova and Julliard 2015; Koijen, Lustig,
and Van Nieuwerburgh 2017).

An inverse exercise is to fix the test assets (thereby controlling for the proxied aggregate
risk) and change the state variables in the VAR. This can serve two purposes. First, given
the proliferation of asset pricing factors in the finance literature (Harvey, Liu, and Zhu,
2016), the proposed VAR framework could model the joint dynamics of any reduced-form
variables that individually have been found to price the cross-section of returns, and to link
the common stochastic driver of these variables to a single or multiple orthogonal shocks.
Second, one can explore how the realisation of aggregate risks proxied by the given test
assets may affect different parts of the macroeconomy. To illustrate both these points, I will
add to the VAR the aggregate capital ratio of the financial intermediary sector, constructed
by He, Kelly, and Manela (2017): this endogenous variable4 has been successful in explaining
the cross-section of excess returns; and the Great Recession sparked increasing interest in
the role of financial intermediaries in affecting risk premia (Adrian, Etula, and Muir, 2014)

amongst other alternative theories. In the macroeconomics literature, the γ-shock typically corresponds to
“preference shocks” that were found to be important contributors to short-term business cycle fluctuations
in quantitative New Keynesian models (Smets and Wouters, 2007).

2This way I control for the macroeconomic information set when changing the test assets which presents
an advantage over standard no-arbitrage estimation of the SDF using observed prices. As explained in the
next Section, my method exploits the fact that structural VARs are not identified, i.e. there are infinite
combinations of possible orthogonalisations that conform to the reduced-form variance-covariance matrix of
the VAR. This is the degree of freedom which allows me to estimate a different λ-shock each time I change
the test portfolios without having to change the space that I recover the estimates of λ-shock from. See
Section A.3 of the Appendix for further discussion and Figure 8 for a pictorial illustration.

3This is in spite of the fact that changing test assets can substantially change the pricing performance
of the given VAR model, as discussed in Section B.8 of the Appendix.

4A simple illustration of this fact is that (according to my calculation) the intermediary capital risk factor
and excess returns on the market (the second pricing factor in He, Kelly, and Manela (2017)’s two-factor
model) have a 78% correlation with one another.
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and the business cycle in general (Gertler and Kiyotaki 2010; Brunnermeier and Sannikov
2014; He and Krishnamurthy 2014). I find that about two-third of the variation in financial
intermediary capital can be explained jointly by the λ-shock and the γ-shock. Importantly,
the contributions of both shocks (inducing very different macroeconomic dynamics) to the
historical volatility of the capital ratio are about equally important. This highlights that
by purely focusing on the reduced-form unforecastable component in the capital ratio, one
cannot accurately detect the nature of the macroeconomic force responsible for the observed
fluctuations in intermediary balance sheets and their implications for asset prices and the
wider economy.

A number of additional robustness exercises will be included in the paper. Import-
antly, I propose a third orthogonalisation scheme (in addition to constructing the λ-shock
and the γ-shock), which is explicitly designed to explain recessions without any reference
to time-variation in expected returns. This shock, which I refer to as a Recession-shock,
uses an agnostic identification scheme in the spirit of Ludvigson, Ma, and Ng (2017) and
Antolin-Diaz and Rubio-Ramirez (2018) based on the historical decomposition of aggregate
consumption growth during the Great Recession. The identifying assumption is that the
historical contribution of the Recession-shock explains the collapse of consumption over the
2008Q1-2009Q4 period. Given that the countercyclical relationship between recessions and
risk premia is by now an established sylised macro-finance fact (Cochrane, 2011, 2017), this
third method should deliver a shock which behaves very similarly to the γ-shock, whose
construction is solely based on variation in excess market return, without any reference to
recessions. My empirical evidence indeed confirms this.

Further, I check whether my results are robust to countries other than the US. I apply
the proposed methodology to UK data, and find that the behaviour of the λ-shock and the
γ-shock is similar across the two countries.

Related Literature My paper is related to the literature on finding macroeconomic
factors that drive the cross-sectional and time-series variation in expected returns. A par-
tial list includes Chen, Roll, and Ross (1986), Fama and French (1989), Ferson and Har-
vey (1991), Campbell (1996), Cochrane (1996), Lettau and Ludvigson (2001a,b), Petkova
(2006), Piazzesi, Schneider, and Tuzel (2007), Liu and Zhang (2008), Maio and Santa-Clara
(2012), Boons and Tamoni (2015), He, Kelly, and Manela (2017) and Koijen, Lustig, and
Van Nieuwerburgh (2017) amongst others. My findings are consistent with the recent fin-
ance literature emphasising the role of monetary policy in explaining the cross-section of
expected return (Lucca and Moench 2015; Weber 2015; Ozdagli and Velikov 2016).

The method to construct the λ-shock draws on the structural VAR literature that uses
sign restrictions to identify structural shocks (Uhlig 2005; Rubio-Ramirez, Waggoner, and
Zha 2010; Fry and Pagan 2011; Baumeister and Hamilton 2015). The method to construct
the γ-shock draws on the macroeconomic literature on the identification of news shocks (Uh-
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lig 2004; Barsky and Sims 2011; Kurmann and Otrok 2013); I combine the ideas from this
literature with predictive regressions of the asset pricing literature (Campbell and Shiller
1988; Goyal and Welch 2008; Pastor and Stambaugh 2009). The method to identify a
Recession-shock based on matching historical decompositions is inspired by papers match-
ing impulse response functions (Christiano, Eichenbaum, and Evans, 2005) and the recent
structural VAR literature (Ludvigson, Ma, and Ng, 2017; Antolin-Diaz and Rubio-Ramirez,
2018).

The remainder of the paper is as follows: Section 2 explains the method, Section 3
presents the empirical results, Section 4 briefly discusses the link to asset pricing theories,
Section 5 provides robustness checks and extensions, and Section 6 concludes.

2 The Econometric Framework

2.1 The λ-Shock

Assume that the macroeconomy evolves according to a k-variable reduced-form VAR:

Xt = c+ A1Xt−1 + · · ·+ ApXt−p + ηt, ηt ∼ N (0,Ω) , (2.1)

where the reduced form innovations, ηt, are related to the structural shocks et by an invertible
matrix B, ηt = Bet. Following Uhlig (2005), I refer to the columns of B as impulse vectors.

Finance papers using VARs (Campbell, 1996; Petkova, 2006; Hansen, Heaton, and Li,
2008; Boons, 2016) often used Cholesky decomposition (B = chol (Ω)) to obtain orthonor-
malised shocks as pricing factors as estimates of sources of aggregate risks.5 Building
on these papers, I explore the whole space of possible orthonormalisations to approxim-
ate the SDF from linear combinations of residuals ηt. Specifically, I select a single or
multiple impulse vectors such that the shocks associated with all other impulse vectors
are orthogonal to the SDF. To implement the method, I first estimate the reduced-form
VAR (2.1) and apply Cholesky decomposition to the estimated variance-covariance matrix
B̂ = chol

(
Ω̂
)
. One can take any orthonormal matrix Q to obtain a new structural impact

matrix B̂
? = B̂Q, thereby obtaining a new set of orthogonal shocks, which conforms to

Ω̂, i.e. Ω̂ = B̂
? (

B̂
?)′ = B̂Q

(
B̂Q

)′
= B̂B̂

′. One could think of Q as a rotation matrix,

e.g. Q =
 cos θ − sin θ

sin θ cos θ

 with the associated Euler-angle θ. The next proposition for the

two-dimensional R2 case highlights how to find the rotation which generates the λ-shock.

5Originally, Sims (1980) applied Cholesky decomposition to obtain a triangular structure in the spirit
of Wold (1954). A plethora of new techniques have been proposed by the macroeconometrics literature to
provide full or partial identification of B, involving both point and set identification of the elements of B.
See Kilian and Lutkepohl (2016), Ramey (2016), and Ludvigson, Ma, and Ng (2017) for a recent review of
the literature.
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Proposition 1 Given the linear combination: m = λ1f1+λ2f2, where λ1, λ2 ∈ R, m, f1, f2 ∈

R2, ‖f1‖ = ‖f2‖ = 1 and 〈f1, f2〉 = 0, ∃ matrix Q =
 cos θ − sin θ

sin θ cos θ

 such that m =

λ?1f
?
1 + λ?2f

?
2 , where λ?1 = ‖m‖ 6= 0, λ?2 = 0 and f ?i = Qfi for i = 1, 2.

All proofs are in Appendix A. Figure 1 provides a graphical illustration via an example,
whereby a linear model m = 2f1 + f2 with f1⊥f2 is transformed to m = ‖m‖f ?1 + 0 · f ?2 with

Q =
 cos θ? − sin θ?

sin θ? cos θ?

, θ? = arctan
(

1
2

)
, ‖f1‖ = ‖f2‖ = ‖f ?1‖ = ‖f ?2‖ = 1 and ‖m‖ =

√
5.

Figure 1: Graphical Illustration of the Orthonormalisation Method
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Notes: the 2-dimensional coordinate system illustrates the space spanned by reduced-form VAR innovations.
The space contains vector m, which is the best linear approximation of the SDF, according to some test
assets. The red perpendicular arrows (f1⊥f2) illustrate an arbitrary orthonormalisation of the reduced-
form VAR innovations, e.g. Cholesky decomposition as in Campbell (1996), Petkova (2006), Boons (2016)
amongst others. Rotation and orthonormalisation do not change the spanned space, thereby leaving the
information set and m unchanged. Therefore there exists θ? such that m = ‖m‖f?1 and m⊥f?2 .

While the proposition is a trivial piece of linear algebra, it has important implications for
using orthonormalised shocks from VARs as pricing factors in linear pricing models. Given
that β-pricing models are equivalent to linear models of the SDF (Section A.2 of the Ap-
pendix), finding the Euler-angle θ and the associated rotation in a VAR (of any dimension)
that delivers an orthonormalised shock with the highest price of risk (

√
5 and f ?1 in Figure

1) when pricing given test assets is equivalent to finding the best linear approximation of the
SDF that lies in the innovation space of the VAR. By construction, all other orthonormalised
shocks in the VAR (f ?2 in Figure 1) will be orthogonal the implied SDF and demand zero
risk premia. Importantly, one can apply structural VAR tools to the obtained Euler-angles
to study the link between the shock and macroeconomic dynamics. Given the VAR model,
the rotation Q naturally depends on the test assets that induce the SDF. Section A.3 of the
Appendix provides further illustration and highlights the geometric nature of the idea.
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To find a k × k Q matrix in the VAR model 2.1, I span the space with Givens rotations
to construct an orthonormal shock such that, given the test assets, the corresponding λ̂

estimate in the second-pass Fama and MacBeth (1973) regression is maximised.6 Example
(2) illustrates the mechanics.

Example 2 (A Bivariate VAR Model) Let R be a T × n matrix of excess returns of n
test portfolios. Take a two-variable VAR model (k = 2) where the pricing factors are or-
thonormalised shocks given by Cholesky decomposition (ft = [f1t |f2t] = ηtB

−1 = ηt (chol (Ω))−1).
The implied model of the SDF (m) is:

mt = λ1f1t + λ2f2t, (2.2)

where λ1 and λ2 are the prices of risk associated with f1 and f2. The λs can be estimated
with the two-stage procedure of Fama and MacBeth (1973).7 Because f1 ⊥ f2 and var(f1) =
var (f2) = 1, the variance of the SDF is simply the sum of the squared values of the estimated
prices of risk associated with the two shocks:

var (m̂t) = λ̂2
1 + λ̂2

2. (2.3)

Rotation does not change the information set: the volatility of the implied SDF is determined
by the specification of the VAR and not by rotating the variance-covariance matrix of the
residuals. The main implication of proposition 1 is that the information in the VAR residuals
can be summarised by only one orthogonal shock after an appropriate rotation, i.e. there

exists matrix Q =
 cos θ − sin θ

sin θ cos θ

 such that using f ?i = Qfi for i = 1, 2 as pricing factors,

one of the estimated prices of risk is λ?1 =
√
var (m̂), as the other one is zero, λ?2 = 0. This

implies that the best approximation of the SDF is found, f ?1 = m̂, and Q can be used to
perform structural analysis in the VAR, i.e. B̂

? = B̂Q can be used to compute IRFs.8

A linear model of the SDF, that uses arbitrarily orthonormalised VAR residuals, uniquely
pins down one of the rows of the matrix

(
B̂
?)−1

. However, this is not sufficient to carry out
structural VAR analysis, because to do so one needs to know the column in the structural
impact matrix B̂

? (and not its inverse
(
B̂
?)−1

). Building on Example (2), the following

6See Section A.5 of the Appendix and the sign restrictions literature (Uhlig 2005; Rubio-Ramirez, Wag-
goner, and Zha 2010; Fry and Pagan 2011; Kilian and Murphy 2012; Baumeister and Hamilton 2015) for
more information on Givens rotations and QR decompositions.

7First, estimate n time series regressions, Rit = ai+ftβi+ εit, i = 1 . . . n. Then, estimate a cross-section
regression, R̄i = β̃i× λ+αi, where R̄i = 1

T

∑T
t=1 Rit, β̃i is the OLS estimate obtained in the first stage and

αi is a pricing error.
8It is worth noting that finding Q is not needed to find the time-series λ-shock. Applying the Fama

and MacBeth (1973) procedure to any linear combinations of the VAR innovations will produce a unique
time-series of the λ-shock that can be obtained as the fitted values of the second-stage regression. This is
highlighted by lemma 8 of the Appendix.
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proposition establishes the relationship between the angle θ needed to compute the impulse
vector associated with the λ-shock.

Proposition 3 Given the VAR model in Example (2) with variance-covariance matrix

Ω =
 ω11 ω12

ω12 ω22

, the column of B? =
 B?

11 B?
12

B?
21 B?

22

 corresponding to the contempor-

aneous effect of the λ-shock is given by: B?
11 = √ω11 cos (θ) and B?

21 = ω12√
ω11

cos (θ) +√
ω22 − ω2

12/ω11 sin (θ), with the rotation angle θ given by the prices of risks, θ = arcsin
(
λ2/

√
(λ2

1 + λ2
2)
)
.

As an empirical illustration of this statement, consider the following example.

Example 4 (A Bivariate VAR and the Consumption-CAPM) Let the two variables
in a quarterly VAR(2) be the log of consumption and the term spread, and let the test assets
be the 25 Fama-French (FF25) portfolios. An OLS regression using data from 1970Q1 to

2012Q2 yields an estimated variance-covariance matrix Ω̂ =
 0.38 −0.07
−0.07 0.78

. Given the

reduced-form residuals, uCt and uTermt , the implied linear model of the SDF is m̂t = 0.21uCt +
1.14uTermt , implying that term-spread innovations load more on the SDF than consumption
innovations. Consider the contemporaneous impact of the shock on the variables. Using the
appropriate angle θ, the elements of the B̂? are:

B̂?
11 = 0.006 B̂?

12 = 0.61

B̂?
21 = 0.88 B̂?

22 = −0.12.
(2.4)

The first column shows that a s.d. λ-shock induces a large (0.88pp) jump in the term
spread, but has virtually no contemporaneous effect (<0.01%) on consumption. The second
column shows the contemporaneous effect of the shock that is by construction orthogonal
to the implied SDF, thus demanding zero risk premia. This shock has a large (0.61%)
contemporaneous effect on consumption which implies that virtually all of the one period
ahead FEV in consumption is explained by a shock, exposure to which demands zero risk
compensation according to the FF25.

This simple example highlights the empirical relevance of the Consumption-CAPM lit-
erature which emphasises that news about current consumption growth are irrelevant to
determining the level of risk premia (Bansal and Yaron 2004; Parker and Julliard 2005;
Hansen, Heaton, and Li 2008; Bryzgalova and Julliard 2015; Boons and Tamoni 2015). To
estimate the effect of the λ-shock on consumption dynamics at longer horizons, one needs
to compute impulse response functions.

Definition 5 (Impulse Response Functions) Consider a VAR(2) model Xt = c+A1Xt−1+
A2Xt−2 + ηt with response matrices Φ0 = I, Φ1 = Φ0A1, Φ2 = Φ1A1 + Φ0A2, . . . , Φh =
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Φh−1A1 +Φh−2A2 for h-period ahead. Define a k×1 vector eλ, all of whose elements are zero
except for a unit corresponding to the λ-shock. Given the impact matrix B?, the impulse
vector corresponding to the λ-shock is aλ = B?eλ and the associated IRFs at horizon h are
given by Γλ,h = Φhaλ.

2.2 The γ-Shock

To construct the γ-shock, I integrate the return-forecasting framework of the empirical
finance literature (see Lettau and Ludvigson (2010); Cochrane (2011) for a review) with the
VAR model 2.1. To estimate variation in the conditional mean of excess returns, the finance
literature typically estimated the following predictive regression model:

rHt+1 = a+ βX?
t + εt+1, (2.5)

where rHt+1 is the cumulative log excess market return between t + 1 and t + H; X?
t is a

vector of variables at the end of t used to predict the excess returns, and εt+1 is a zero-mean
disturbance term. Horse race among predictors is typically assessed using the R2-statistic of
the estimated regression 2.5. In my empirical model, X?

t will be a subset of the state vector,
Xt in 2.1. I partition the state vector as Xt =

[
X̄t; X?

t

]
(in the spirit of Adrian, Crump,

and Moench (2015)), where X̄t are the remaining variables in the VAR that are not used
in the predictive regression 2.5. Constructing the γ-shock is then based on the historical
decomposition of X?

t in the VAR.

Definition 6 (Historical Decomposition) Consider the general VAR(p) model 2.1, and
let υi,t (h) = Xi,t+h−Et−1Xi,t+h be the h-step ahead forecast error in the i-th variable of the
VAR. Given a structural impact matrix B and corresponding orthogonal shocks ft = ηtB

−1,
the historical decomposition of υi,t (h) can be computed as the sum of the contribution of the
k orthogonal shocks:

υi,t (h) =
k∑
j=1

Γj,hfj,t+h, (2.6)

where Γj,h is the impulse response function corresponding to the j-th orthogonal shock in the
VAR.

The γ-shock is constructed to be an orthogonalised shock in the VAR which generates coun-
terfactual variation X̂?

t in the predictor variables, such that when X̂?
t is used in the predictive

regression 2.5, the associated R2-statistic is maximised. In essence, this method finds the
γ-shock by using the return-predictability step to restrict the historical decomposition of
X?
t . I now briefly discuss how the γ-shock and the method in general can be connected to

the macroeconometrics and finance literatures.
In terms of the link to the macroeconometrics literature, this strategy blends elements

of recent developments on the identification of news shocks (Uhlig 2004; Barsky and Sims
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2011; Kurmann and Otrok 2013). These papers identify news shocks about future economic
fundamentals, based on maximising the contribution of these shocks to the forecast error
variance of a selected variable in the VAR over a pre-specified future horizon. My ortho-
gonlisation scheme is based on finding counterfactual variation in selected variables in the
VAR that have maximal forecasting power as return predictors. In essence, the return-
predictability step serves as an external reference point which restricts the entire sequence
of historical decompositions in the VAR.

In terms of the link to the finance literature, the method aims to uncover the stochastic
macroeconomic drivers of time-variation in risk premia. Since Fama and French (1989) and
Ferson and Harvey (1991), growing empirical evidence points to the countercyclical nature
of expected excess returns, implying that risk premia are high in recessions and low in
expansions. While reduced-form macroeconomic variables such as the term spread (Fama
and French, 1989) or the short-term interest rate (Fama and Schwert, 1977) have been found
to forecast excess returns, it is clear that not all time-series variation in the term spread
or the interest rate is driven by unexpected macroeconomic shocks that would ultimately
lead to recessions and to spikes in risk premia. By constructing the γ-shock, the aim is to
use a non-restrictive way to find the portion of variation in predictor variables that can be
directly attributed to macroeconomic disturbances which cause recessions.

2.3 The Recession-Shock

As discussed above, finding the γ-shock which drives time-variation in expected returns may
uncover the macroeconomic drivers of recessions. As a robustness exercise, I propose a third
orthogonalisation scheme which directly looks for the drivers of recessions without using
information on the time-variation in risk premia. The obtained Recession-shock is assumed
to be the sole orthogonal macroeconomic contributor to a given historical event, e.g. to
the Great Recession. One can then check how this macroeconomic force compares to the
γ-shock, i.e. the driver of time-varying risk premia.

Methodologically, the identification of the Recession-shock is based on finding a rotation
matrix Q such that one of the impulse vectors associated with the structural impact matrix
B will deliver an orthogonal shock with the following property: the historical contribution
of this shock to a variable of interest in the VAR is as close as possible to the realised
path of this variable over a given horizon. More formally, let Θ denote the set of possible
rotations, Yj is one of the variables in the VAR whose realised path the identified shock
is to explain over a pre-specified period, with t1 and t2 denoting the start and end of the
period. Let Ŷ Recession−Shock

j,t1:t2 denote the counterfactual path of variable Yj which would have
realised between time t1 and t2, if the only source of business cycle fluctuations had been
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the Recession-shock. The algorithm is then written as:

Qopt = arg min
Q∈Θ

∣∣∣Yj,t1:t2 − Ŷ Recession−Shock
j,t1:t2 (Q)

∣∣∣ . (2.7)

In my application, Yj will be aggregate consumption growth and the period of interest will
be t1=2008Q1, t2=2009Q4. The problem 2.7 can be solved using numerical optimisation
techniques. The method draws on the technique of matching impulse response functions
(Christiano, Eichenbaum, and Evans, 2005), as well as on recent orthogonalisation schemes
that use event-related restrictions (Ludvigson, Ma, and Ng, 2015, 2017; Antolin-Diaz and
Rubio-Ramirez, 2018). The proposed orthogonalisation scheme is general, and could be used
to explore whether the driving force of one particular historical event can account for the
causes of other, seemingly similar, historical events as well.

3 Empirical Results

3.1 Data

The VAR includes quarterly data on output, consumption, price level, the short-term interest
rate, the default spread, and the term spread. Output is measured as real GDO (FRED code:
GDPC1). Consumption is total personal consumption expenditure from Greenwald, Lettau,
and Ludvigson (2015). Output is seasonally adjusted real GDP (FRED code: GDPC1).
Price level is the consumer price index for all urban consumers (FRED code: CPIAUCSL).
Interest rate is the Federal Funds Rate (code: FEDFUNDS). Default spread is the difference
between the AAA (FRED code: AAA) and BAA (FRED code: BAA) corporate bond yields.
The term spread is the difference between the ten-year Treasury and T-bill rates as in Goyal
and Welch (2008). The full sample period is 1963Q3-2015Q3, but I will also experiment
with a shorter sample (1963Q3-2008Q3) that excludes the period of zero lower bound on
the nominal interest rates. This brings my analysis closer to the information set that the
monetary policy literature typically used to estimate policy shocks.

For test assets, I combine the standard 25 Size-B/M portfolios of Fama and French
(1993) with the 30 industry portfolios. Returns are quarterly, in excess of the T-bill rate.
Augmenting the FF25 with the 30 industry portfolios follows prescription 1 (pp. 182) of
Lewellen, Nagel, and Shanken (2010), thereby relaxing the tight factor structure of Size-
B/M. For robustness, I will also use the 25 portfolios double sorted on size-profitability
and size-investment, as these portfolios feature prominently in recent empirical asset pricing
studies (Fama and French, 2015, 2016).

As return predictors, I use the short-term interest rate (Fama and Schwert, 1977), the
term spread and the default spread (Fama and French, 1989); these macroeconomic variables
featured prominently in predictive regressions. To construct the γ-shock, I use CRSP based
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S&P 500 return over the corresponding T-bill rate (from Goyal and Welch (2008)) as the
regressand in the return predictability step is 2.5. I will compare the return predictability
performance (of the counterfactual time-series of the interest rate, the term spread and the
default spread, implied by the γ-shock) to the model which uses the CAY variable proposed
by Lettau and Ludvigson (2001a,b).9

The VAR is estimated in levels as most monetary policy VARs (Sims 1980; Christiano,
Eichenbaum, and Evans 1999; Uhlig 2005; Gertler and Karadi 2015), thereby I avoid making
any transformation to detrend the data (Sims, Stock, and Watson, 1990). My results change
very little when I include a linear trend in the VAR. The model has two lags, based on the
SIC. I will also cross-check that my results are robust to changing the lag length in the VAR.

3.2 The λ-Shock

The Aggregate Effects of the λ-Shock First, I present the results for the VAR es-
timates of the λ-shock, implied by standard equity portfolios. Using the OLS estimates, I
compute IRFs for the λ-shock along with the IRFs associated with interest rate innovations
using Cholesky-orthogonalisation.

The blue crossed lines in Figure 2 display the IRFs of the six-variables to a λ-shock that
induces a 100bp increase in the interest rate.10 The black circled lines correspond to a 100bp
interest rate shock using Cholesky factorisation. This orthogonalisation method has been
frequently used in the macroeconomics literature to identify monetary policy shocks (Sims
1980; Christiano, Eichenbaum, and Evans 1999). The lines in Figure 2 are difficult to tell
apart, as the point estimates of the two sets of IRFs are virtually identical. The striking
resemblance between the two sets of IRFs occurs in spite of the fact that constructing the
λ-shock does not rely on any of the strong restrictions that Cholesky-identified monetary
policy shocks traditionally relied on.11

The response of all variables is persistent. Note that the λ-shock has virtually no effect
on consumption on impact, but the effect increases substantially with the horizon, reaching
a peak impact of about -0.5% approximately 12-15 quarters after the shock hits. This is
consistent with the consumption dynamics implied by recent asset pricing models that high-
lighted the irrelevance of short-term consumption innovations to pricing (Bansal and Yaron,
2004; Parker and Julliard, 2005). The recent empirical evidence confirmed that slow moving
consumption risk can explain the cross-sectional variation of average returns (Bryzgalova
and Julliard, 2015; Boons and Tamoni, 2015). My framework adds to the literature by (i)

9This variable measures deviations from a cointegrating relation for log consumption (C), log asset wealth
(A) and log labour income (Y ), and has proved to be successful in predicting excess stock market returns.

10As shown by Figure 10 in the Appendix, the shape of these IRFs is similar when the lag length is
changed or when the Great Recession is excluded from the sample.

11The zero-restrictions under Cholesky-identification imply that the variables ordered before the monetary
policy instrument do not respond to the monetary policy shock contemporaneously. See Section 4.1 of
Christiano, Eichenbaum, and Evans (1999) for a detailed discussion of this recursiveness assumption.
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accounting for possible general equilibrium relationships between consumption growth and
other macroeconomic variables, (ii) quantifying the relevance of the aggregate consumption
risk for business cycle fluctuations, (iii) while jointly explaining the cross-section of average
returns. To that extent, the framework sheds further light on the macroeconomic drivers of
the (reduced-form) slow consumption adjustment shocks, recently analysed by Bryzgalova
and Julliard (2015), that can explain the cross-section of average returns.

Figure 2: Impulse Responses to a λ-shock and to a Cholesky Interest Rate Shock
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on a subsample 1963Q3-2008Q3. I use the FF55 to construct the λ-shock, whose IRFs are depicted by the black circles lines.
The blue crossed lines are λ-shock, and the blacked circles lines are Cholesky-orthogonalised interest rate shock with the
associated 95% confidence band (using wild-bootstrap). The IRFs are normalised to increase the interest rate by 100bp.

An other important feature of Figure 2, that extends results from reduced-form con-
sumption based asset pricing models, is that the λ-shock generates a negative comovement
between the nominal interest rate and consumption. In contrast, the recent macroeconomics
literature on business cycles (Smets and Wouters, 2007; Christiano, Motto, and Rostagno,
2014; Negro, Eggertsson, Ferrero, and Kiyotaki, 2017) has found that the main drivers of
business cycles (including the Great Recession) generate a positive comovement between the
nominal interest rate and consumption. Figure 2 is therefore important because it points
to a possible dichotomy between the macroeconomic drivers of the cross-section of average
returns and the drivers of recessions. This will be further investigated in the next Section.

Relation to Identified Monetary Policy Shocks To highlight the relation of the λ-
shock to the monetary policy literature, I compare the time-series of the λ-shock to other
benchmark estimates of monetary policy shocks. Figure 3 plots the time-series of the λ-
shock against the policy shock series identified by Sims and Zha (2006). The correlation
between the two series is 0.84. As a robustness exercise, I also check the correlation with
narrative measures of monetary policy shocks: based on the overlapping estimation period
1969Q1–2007Q4, the correlation coefficient between the monetary policy shock series as
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identified in Romer and Romer (2004) [and updated by Tenreyro and Thwaites (2016)] and
the λ-shock series is 0.75.

Figure 3: The λ-shock and Monetary Policy Shocks
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Notes: The λ-shock is from a six-variable VAR which includes quarterly data on consumption, GDP, CPI, Fed Funds rate, the
term spread, and the default spread. The sample period is 1963Q3-2015Q3.Details of the orthogonalisation scheme are explained
in the text below. The test assets are the 25 portfolios of Fama and French (1993) augmented with the 30 industry portfolios
as prescribed by Lewellen, Nagel, and Shanken (2010). The monetary policy shock series are from Sims and Zha (2006), as
documented in Stock and Watson (2012), and transformed to have unit standard deviation. The correlation coefficient is 0.84.

As an additional cross-check, I also employ the latest methodology of the monetary policy
literature that uses high frequency asset price movements around policy announcements
(Gurkaynak, Sack, and Swanson, 2005) as instruments for monetary policy shocks in a
proxy-SVAR framework (Stock and Watson, 2012; Mertens and Ravn, 2013). To that end,
I use the monthly VAR(12) model of Gertler and Karadi (2015) estimated over the 1979m7-
2012m6 period. The correlation between the monetary policy shocks series from their four-
variable VAR(12) model that generated their baseline Figure 1 (p. 61 of Gertler and Karadi
(2015)) and the λ-shock implied by the FF55 is about 0.79.

Relation to Other Identified Macroeconomic Shocks The high empirical correlation
between the λ-shock and VAR-based monetary policy shocks is non-trivial given that the
number of other structural shocks that the literature has identified (such as technology
shocks, tax shocks, government spending shocks amongst others, as recently reviewed by
Ramey (2016)) are assumed to be orthogonal to policy shocks and, in theory, they all
should affect the representative household’s utility function and thereby correlate with SDF
innovations. Based on my investigation of these shocks as collected by Ramey (2016), the
estimated λ-shock has little empirical correlation with these shocks.12

12For example, the delayed expansion of aggregate quantities in Figure 2 makes the shock clearly distinct
from unanticipated technology shocks that would have an immediate impact on consumption and output,
as studied for long by the Real Business Cycle (RBC) literature.
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However, a notable exception is news-type shocks to total factor productivity (TFP), as
identified by Kurmann and Otrok (2013). Their Figure 4 shows IRFs for identified TFP
news shocks that are similar to Figure 2. Based on my calculation for the overlapping
sample (1963Q4–2005Q2), the correlation between their estimated TFP news shock series
and the λ-shock series is 0.79. The ambiguity evoked by this result may seem an awkward
outcome: after all, how can the λ-shock have such a high correlation with two, seemingly
distinct structural disturbances? One simple explanation for such an ambiguity: TFP news
shocks and monetary policy shocks are highly correlated in the data. Section B.9 of the
Appendix provides strong evidence for this which, to the best of my knowledge, has not
been documented in the literature yet. It is to note that my paper does not take a stand
on the correct identification of monetary policy shocks or TFP news shocks, therefore this
empirical conundrum is somewhat unrelated to the main focus of this paper. However, given
the importance of this issue and its usefulness for providing macroeconomic interpretations
of the λ-shock, Section B.9 of the Appendix comments on the possible drivers of this result.
My analysis suggests that this empirical regularity is a possible symptom of an identification
problem in the macroeconomics literature.

Overall, my results so far can be interpreted as supportive of the importance of monetary
policy surprises in driving cross-section of average returns (Ozdagli and Velikov, 2016).
Alternatively, a negative reading is that standard measures of monetary policy shocks are
not very well identified: “In the absence of an empirically useful dynamic monetary theory,
at least we can require the impulse-response functions to conform to qualitative theory such
as Friedman (1968). Most VARs do not conform to this standard. Prices may go down, real
interest rates go up, and output may be permanently affected by an expansionary shock.”
(Cochrane, 1994, p. 300)

Further Discussion Two additional points are worth mentioning about the results so
far. First, as mentioned in the Introduction, my method can separately control for the
macroeconomic information set that I recover the estimated SDF innovations from, and for
the aggregate risks that the given test portfolios proxy. The λ-shock and the interest rate
shock in Figure 2 are estimated on the same macroeconomic information set, which enables
me to draw conclusions that Cholesky-identified interest rate shocks closely resemble SDF
innovations in an unconditional linear asset pricing framework. In contrast, by simply
comparing SDF innovations implied by the 3-factor model of Fama and French (1993) (or in
fact any other empirical finance models of the SDF) to monetary policy shocks estimated by
macroeconomists, it would be difficult to tell the reason for any possible lack of comovement
between tho series. Identified monetary policy shocks and SDF innovations implied by the
3-factor model may have very little comovement simply because the 3-factor model does
not span the macroeconomic information space that would be an important input for the
monetary policy reaction function and thereby for the identification of the non-systematic,
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surprise element of monetary policy.
Second, related to the last point, the price level response in Figure 2 is counter to how

monetary policy in New Keynesian models tend to affect prices (Gali, 2008; Woodford,
2003). This is the well-known ’price puzzle’ associated with Cholesky orthogonalisation
in VAR models (Sims, 1992).13 As mentioned, this paper does not take a stand on the
right identification of monetary policy shocks; it simply shows that monetary policy shocks,
identified in various ways by macroeconomists, resemble the orthogonal shock which explains
the cross section of expected excess returns. To investigate the price response further and

Figure 4: The VAR Model of Uhlig (2005): Monetary Policy Shocks and λ-shocks
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in months. The monthly VAR(12) is
estimated over 1965m1-2003m12, using the dataset of Uhlig (2005). The black lines and associated 16-84 bands are identical to
Figure 6 of Uhlig (2005) that shows the responses to a monetary policy shock identified by the ’pure sign restriction approach’.
To construct the λ-shock, I use the FF25 (purple lines) and the FF55 (red lines) portfolios. The blue lines are the are Cholesky-
orthogonalised (Sims, 1980) interest rate shock. The IRFs are normalised to have the same contemporaneous effect on the
interest rate.

carry out the first robustness check, I revisit the seminal paper of Uhlig (2005) that imposed
sign restrictions on the impulse responses of prices, nonborrowed reserves and the Federal
Funds Rate in response to a monetary policy shock, thereby fixing the price puzzle anomaly
while remaining agnostic about the effect of monetary policy shocks on other macrovariables
of interest. The black lines and the associated error bands in Figure 4 replicate Figure
6 of Uhlig (2005), using his dataset. The blue line shows the response to a Cholesky-
orthogonalised innovation in the federal funds rate that is ordered before nonborrowed and
total reserves (Figure 5 of Uhlig (2005)). The red and purple lines show the responses to a
λ-shock that is constructed using the FF55 and FF25 portfolios, respectively.

While using a different dataset at monthly (instead of quarterly) frequency, the estimated
λ-shock continues to induce business cycles similar to that caused by monetary policy shocks.
Note, however that the λ-shocks generate a more contractionary GDP response than the

13See Ramey (2016) for a recent discussion.
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monetary policy shock identified by Uhlig (2005). However, recent papers (Antolin-Diaz
and Rubio-Ramirez, 2018; Arias, Rubio-Ramirez, and Waggoner, 2018) have argued that the
original identification of Uhlig (2005) retains many structural parameters with improbable
implications for the systematic response of monetary policy to output, and the updated
empirical evidence delivers more contractionary impulse responses of output. Overall, Figure
4 suggests that the dynamics generated by the λ-shock are in-between those generated by
sign restrictions and Cholesky-orthogonalisation. The ’price puzzle’ is present in the case of
the Cholesky-shock and λ-shock induced by the FF55 portfolios, but it is absent in the case
of sign restrictions (by construction) and the λ-shock induced by the FF25 portfolios.

3.3 The γ-Shock

I will now analyse the economic properties of the γ-shock. Recall that this is an ortho-
gonalised shock in the VAR which is constructed to explain time-variation in risk premia.
The main component in this methodology is the nested estimation of the return forecasting
regression (2.5). Given their popularity as return predictors since at least Fama and French
(1989), I will employ the last three variables in the VAR (FFR, default spread and term
spread) as predictors of the conditional mean of excess stock market returns.

Forecasting Excess Returns Before analysing the dynamic effects of the γ-shock on the
macroeconomy, I first discuss the results of the predictive regression step, summarised in
Table 1. I construct the γ-shock by maximising the corresponding return forecasting power
at 4-quarter horizon, and (using the same γ-shock) I compute the results for different hori-
zons ranging from one quarter ahead up to two years ahead. Table 1 reports the regression
coefficients, t-statistics using the Hansen and Hodrick (1980)-correction, and the adjusted
R2 statistics for each regression. Panel A reports the results using the actual VAR variables
as predictors; Panel B shows the results using the CAY variable of Lettau and Ludvigson
(2001a,b); Panel C reports the results using the three counterfactual VAR variables induced
by the γ-shock; Panel D reports the results using the counterfactual variables induced by
all other shocks that are orthogonal to the γ-shock.

Panel A and Panel B of Table 1 confirm the evidence of the macro-finance literature
(reviewed by Lettau and Ludvigson (2010) recently) on the superiority of CAY, as a return
predictor, over the short-term interest rate, the default spread and the term spread. For
example, the last column of the table shows that the CAY variable explains around 23% of
two-year ahead excess stock market returns. In contrast, the regression that includes the
last three variables of my baseline VAR only explains 11% of excess returns at the same
horizon.

However, as discussed above, not all variation in the these macroeconomic variables are
related to future recessions; and using all the variation in these reduced-form variables may
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Table 1: Forecasting Excess Returns

Forecast Horizon H
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

Model A: Actual VAR Variables
FFR -0.22 -0.32 -0.27 -0.22 -0.07 0.20 0.49 0.74

(-0.86) (-0.76) (-0.50) (-0.36) (-0.10) (0.25) (0.51) (0.68)
DEF 1.53 3.46 3.92 4.15 3.80 3.44 2.75 1.83

(0.77) (1.18) (1.13) (1.10) (0.92) (0.72) (0.45) (0.25)
TERM 0.19 0.54 1.36 2.11 2.90 4.05 4.98 5.95

(0.37) (0.60) (1.10) (1.38) (1.70) (2.22) (2.51) (2.85)
[0.01] [0.02] [0.04] [0.06] [0.07] [0.08] [0.09] [0.11]

Model B: CAY
CAY 0.55 1.12 1.77 2.52 3.17 4.00 4.92 5.77

(2.18) (2.25) (2.33) (2.46) (2.59) (3.00) (3.58) (4.25)
[0.01] [0.03] [0.05] [0.09] [0.11] [0.14] [0.19] [0.23]

Model C: Counterfactual VAR Variables Induced by the γ-Shock
FFR 0.59 1.14 1.66 2.15 2.61 3.15 3.66 4.20

(1.21) (1.14) (1.19) (1.25) (1.32) (1.44) (1.52) (1.66)
DEF -9.14 -16.87 -23.42 -29.06 -33.96 -38.78 -43.34 -48.31

(-2.01) (-1.73) (-1.78) (-1.86) (-1.92) (-2.04) (-2.15) (-2.33)
TERM 3.22 6.47 9.63 12.66 15.46 18.41 21.07 23.65

(2.53) (2.42) (2.42) (2.46) (2.53) (2.63) (2.73) (2.93)
[0.04] [0.08] [0.14] [0.20] [0.25] [0.30] [0.34] [0.39]

Model D: Counterfactual VAR Variables Induced by All Other Shocks
FFR -0.16 -0.21 -0.13 -0.06 0.10 0.36 0.62 0.84

(-0.64) (-0.47) (-0.21) (-0.08) (0.11) (0.33) (0.47) (0.55)
DEF 1.76 3.67 3.80 3.49 2.52 1.63 0.53 -0.64

(0.88) (1.20) (0.93) (0.73) (0.48) (0.28) (0.07) (-0.07)
TERM -0.18 -0.43 -0.27 -0.23 -0.16 0.25 0.51 0.97

(-0.30) (-0.39) (-0.17) (-0.12) (-0.07) (0.10) (0.18) (0.31)
[-0.01] [-0.00] [-0.00] [-0.01] [-0.01] [-0.01] [-0.01] [-0.00]

Notes: The table reports results from regressions of excess returns on lagged variables. H denotes the return horizon in
quarters. The dependent variable is the sum of H log excess returns on the CRSP based S&P Composite Index. The regressors
are one-period lagged values of actual time-series of the federal funds rate (FFR), the term-spread (TERM) and the default
spread (DEF) in Model A, the CAY measure of Lettau and Ludvigson (2001a,b) in Model B, and the counterfactual time-
series of FFR, TERM and DEF (induced by the γ-shock) from a six-variable VAR(2) estimated over 1963Q3-2015Q3. The
γ-shock is constructed so that the corresponding forecast power at the four-quarter horizon is maximised. For each of the
three regressions, the table reports the OLS estimates of the regressors, the t-statistics using the Hansen and Hodrick (1980)
correction (as implemented in Cochrane (2011)) are in parentheses, and adjusted R2 statistics are in the bolded square brackets.
Both the CAY measure and the counterfactual predictors are treated as known variables.

therefore not predict future returns very well. Panel C of Table 1 confirms that using the
counterfactual time-series, induced by the γ-shock, as predictors, substantially improves the
forecasting power of the predictive regression, explaining around 40% of two-year ahead
excess returns. At almost every horizon, the variation in the interest rate, default spread
and the term spread, induced by the γ-shock, explains more than twice as much of future
excess returns as the regression model which uses CAY. Panel D shows the results when
all the remaining variation in the three macroeconomic variables (not explained by the γ-
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shock) is used in predicting future excess returns. As expected, this variation is not useful in
predicting returns with all adjusted R2 statistics being around zero at all forecast horizons.14

To further illustrate the reduced-form nature of return predictors, Figure 13 in Appendix
B.3 plots the time-series of the term spread along with the counterfactual time-series of
the term spread induced by the γ-shock – the variation most relevant to predicting excess
returns. While the two series are correlated (0.75), the correlation clearly breaks down
in certain periods such as the 1980s. In fact, the historical decomposition will show that
aggregate fluctuations during this period were mainly driven by the other orthogonal force
in the model, the λ-shock. Overall, Figure 13 illustrates that, while the term spread “tends
to be low near business-cycle peaks and high near troughs” (Fama and French, 1989), not all
business cycles (and variation in return predictors) have been caused by the macroeconomic
force which drives time-variation in expected returns.

Naturally, the same logic applies to the estimated time-series of expected excess returns
implied by the given predictors. The lower panel of Figure 13 shows the time-series of real-
ised cumulative 8-quarter excess returns (dashed line) against the return forecast implied by
the actual time-series of the predictors (dotted line) and the forecast implied by the coun-
terfactual time-series of the predictors induced by the γ-shock (solid line). The coefficients
of correlation between realised returns and the data-based forecast and the counterfactual-
based forecast are 0.36 and 0.63, respectively. This is another way of conveying the message
summarised in Table 1: variations in return predictors are driven by a range of macroeco-
nomic forces, and not all these forces change the conditional mean of excess returns.

The Aggregate Effects of the γ-Shock and Relation to the Macroeconomic Lit-
erature To analyse the macroeconomic properties of the γ-shock, I compute impulse re-
sponses. Recall that, to the extent that time-variation in expected returns is linked to
economic booms and busts (Lettau and Ludvigson, 2010; Cochrane, 2011), the γ-shock can
be thought of as the stochastic driver of recessions in the VAR. Figure 5 shows the impulse
responses for the γ-shock along with the responses for the λ-shock. Both shocks are set to
be contractionary in the Figure. The behaviour of the γ-shock is distinct: it causes a sharp
drop in consumption and output, and generates a positive comovement among quantities
and short-term interest rate. The fall in the short-term rate is indicative of the monetary
policy authority endogenously responding to the recessionary γ-shock by loosening policy
(Taylor, 1993). Moreover, the default spread and the term spread immediately jump up in
response to a γ-shock, whereas the λ-shock causes a delayed increase in both quantity vari-
ables and in the default spread, and generates a fall (rather than a rise) in the term spread.

14 Similarly, one could apply this type of analysis to investigating the macroeconomic shocks underlying
time-varying bond premia. My investigation of the dataset of Ludvigson and Ng (2009) suggests that using
the counterfactual variation in their principal components, induced by the corresponding γ-shock, increases
their R2 statistics by about 30%; and the λ-shock continues to generate a sharp response in their first
principal component (related to real activity). These results are available on request.
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Overall, the dynamics generated by the γ-shock resemble features of recent US recessions.

Figure 5: Impulse Responses to a γ-Shock and to a λ-Shock
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The VAR(2) is estimated
on the sample 1963Q3-2015Q3. I use the FF55 to construct the λ-shock, and use the CRSP based aggregate SP500 stock
market return (over the corresponding T-bill rate) to construct the γ-shock.

I now briefly discuss how the γ-shock is related to recent macroeconomic explanations of
the business cycle. This literature has long sought to construct general equilibrium models
that could generate the type of comovements that are induced by the γ-shock, as in Figure
5. The seminal macroeconomic paper by Smets and Wouters (2007) built a New Keynesian
general equilibrium model which was among the first that could explain these empirical
features of the data. In this model, a large fraction of short-term consumption fluctuation
is driven by demand-type shocks including disturbances (“preference shocks”) that directly
distort the representative household’s marginal utility (analogous to Yt+1 in equation 1.1).15

The most recent macroeconomic papers such as Christiano, Motto, and Rostagno (2014)
combined standard New Keynesian features with a model of financial intermediation, and
also used financial data (in addition to macroeconomic data) for the model estimation. This
paper shows that fluctuations in the severity of Bernanke, Gertler, and Gilchrist (1999)-
type agency problems associated with financial intermediation explain up to 60% of US
business cycle fluctuations. While the model of Christiano, Motto, and Rostagno (2014) is
linearised and thereby absent of time-varying risk premia, the driving force in their model is
exogenously fluctuating uncertainty related to the cross-section of idiosyncratic production
risk, which they refer to as “risk shocks”. Their results suggest that risk shocks are the
primitive macroeconomic force that is proxied by preference shocks in models without a

15The role of demand-type preference shocks (i.e. innovations in the state variable Yt+1 in equation 1.1)
in driving the business cycle is also important in other New Keynesian models (without a financial sector
and financial shocks) such as Christiano, Eichenbaum, and Evans (2005). The estimates shown in Table
5 of Christiano, Motto, and Rostagno (2014) suggest that these shocks explain about 67% of aggregate
consumption at business cycle frequency.
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financial sector.

Figure 6: γ-Shocks and Risk-shocks of Christiano, Motto, and Rostagno (2014)
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Notes: The figure shows the four-quarter moving average of the risk shock of CMR (2014) and the (inverse of the) γ-shock,
estimated from my baseline six-variable VAR over 1963Q2-2015Q3, using the CRPS based aggregate SP500 stock market return
(over the corresponding T-bill rate). The correlation coefficient is 0.67.

Given the ability of risk shocks to explain most recent US recessions, I compare the time-
series of the risk shock series of Christiano, Motto, and Rostagno (2014) to the estimated
time-series of the γ-shock from my VAR model. Figure 6 shows that estimated time-series of
risk shocks bear a close resemblance with the γ-shock. This is despite the fact that the two
shocks series are estimated using different information sets and very different methodologies.
Both shocks made a sharp contribution to the recessions in the early 1990s, early 2000s and
in the Great Recession. These results suggest that risk shocks are not only important
in contributing to macroeconomic fluctuations but also drive time-variation in aggregate
risk premia. At a more general level, these results highlight that integrating the return
forecasting framework of the empirical finance literature (Campbell and Shiller 1988; Fama
and French 1989; Goyal and Welch 2008; Pastor and Stambaugh 2009; Lettau and Ludvigson
2010; Cochrane 2011) with the structural VAR methodology (Sims, 1980) via the γ-shock
can be useful for business cycle analysis.

The Orthogonality of the γ-Shock to the λ-Shock So far, I have analysed the λ-shock
and the γ-shock separately, without making assumptions about the covariance structure of
these two shocks. The corresponding IRFs (Figure 5) suggest that they capture different
macroeconomic forces. To formally check the possible orthogonality of these two shocks with
respect to one another, I compare the IRFs obtained by implementing the orthogonalisation
schemes separately to the IRFs obtained by implementing the orthogonalisation schemes
jointly. Figure 14 in the Appendix shows that both sets of IRFs are virtually identical,
confirming that the two shocks can be regarded as orthogonal to each other.
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This is an important empirical result because it shows that the macroeconomic shocks
that determine the level of risk premia are distinct from the shocks that determine time-
variation in risk premia. Moreover, the orthogonality of the λ-shock and the γ-shock enables
the use of structural VAR decompositions, which can help quantify the historical contribu-
tion of these shocks to business cycle fluctuations.

3.4 Explaining the Business Cycle

To assess the contribution of the λ-shock and the γ-shock to US business cycles, I com-
pute FEV decompositions over different forecast horizons. Table 2 shows that the λ-shock
explains less than 1% of consumption fluctuations over the one-quarter horizon, but the
contribution rapidly increases with the horizon and the shock explains around 60-65% of
fluctuations over the longer (4-8 years) horizon. The λ-shock explains more than 70% of
interest rate fluctuations over the 1-4 quarter horizon and the contribution falls only little at
longer-frequency. This provides additional illustration that λ-shocks are empirically related
to interest rate innovations studied by macroeconomists (Sims 1980; Christiano, Eichen-
baum, and Evans 1999; Ramey 2016).

Table 2: The Contribution of the λ-shock and γ-shock to Business Cycles: FEV Decompos-
ition

Consumption Federal Funds Rate
λ-Shock γ-Shock λ&γ Unexpl. λ-Shock γ-Shock λ&γ Unexpl.

1Q 0.3 67.4 67.7 32.3 77.6 11.6 89.2 10.8
2Q 6.0 66.4 72.3 27.7 73.4 16.1 89.6 10.4
3Q 11.9 61.6 73.5 26.5 71.0 18.3 89.4 10.6
4Q 18.7 55.6 74.3 25.7 69.4 19.6 89.0 11.0
8Q 40.8 36.8 77.6 22.4 66.4 21.6 88.0 12.0
16Q 60.5 21.2 81.7 18.3 64.9 22.0 86.9 13.1
32Q 66.2 14.8 81.0 19.0 64.0 21.6 85.7 14.3

Notes: The table shows the % fraction of the total forecast error variance that is explained by the λ-shock and the γ-shock
over different forecast horizons. The FF55 portfolios are used as test portfolios for the VAR model.

In contrast, the γ-shock explains a large fraction of short-term fluctuations in consump-
tion, and only moderately contributes to the forecast error variance in the short-term interest
rate. Overall, the joint contribution of the λ-shock and the γ-shock to consumption and
interest rate fluctuations amounts to 70-90% at business cycle frequency.

Another way to assess the importance of these two shocks to business cycle fluctuations
is to compute historical decompositions. This is shown in Figure 7. The black solid line
in Panel A shows year-on-year consumption growth after removing the deterministic trend
implied by the VAR. The contribution of the λ-shocks and the γ-shocks is represented by
the blue and red bars, respectively; whereas the green bars show the contribution of the
remaining residual disturbances in the VAR. The results show that the λ-shock contributed
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largely to the recession in the early 1980s, and to a smaller extent to the recession in 1974-
75. All other downturns including the Great Recession can be explained by the γ-shock.
Moreover, consistent with the FEV results, Panel B of Figure 7 shows that most historical
fluctuations in consumption growth, over the past 50 years, can be jointly explained by the
λ-shock and the γ-shock.

Figure 7: Decomposing Year-on-year US Consumption Growth: the Role of λ-Shocks and
γ-Shocks

(a) Historical Decomposition
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(b) Counterfactual Consumption Series Explained by λ-Shocks and γ-Shocks
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Notes: The figure shows the results from the historical decomposition implied by the baseline six-variable VAR(2) estimated
on the sample 1963Q3-2015Q3. I use the FF55 to construct the λ-shock, and the CRSP based SP500 return (in excess of the
corresponding T-bill rate) to construct the γ-shock. The contribution of the other four unrestricted orthogonalised shocks is
depicted as residuals. The deterministic trend component, implied by the VAR, is removed from the time-series.

The fact that merely two orthogonal macroeconomic forces can explain the bulk of ag-
gregate consumption fluctuations is a notable result. However, in quantitative models of the
business cycle it is not atypical to have two dominant shocks explaining such a large fraction
of fluctuations. This is true for more atheoretical, VAR models such as Blanchard and Quah
(1989) or highly structural models such as Christiano, Motto, and Rostagno (2014). What
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is more important about my results is that these two dominant shocks are constructed based
exclusively on asset price information and not on macroeconomic assumptions.

At a deeper level, these results highlight the importance of asset pricing explorations
for macroeconomics (Cochrane and Hansen, 1992). Modern macroeconomic models have
mainly focused on understanding the dynamics of aggregate quantities, and information on
the level of and variation in expected returns has been largely ignored. Since Mehra and
Prescott (1985), these models have struggled to explain the level of and variation in risk
premia.16 Via its more atheoretical nature, the macroeconometric framework proposed in
this paper is able to cut this Gordian knot. It continues to capture the rich dynamics of
macroeconomic time-series (Sims, 1980) while connecting it with the study of asset prices.

I carry out a number of robustness checks. First, I check how the FEV decomposition
changes as I increase the lag length of the VAR from two to three and four. Table 5 in the
Appendix confirms that my results are robust to these perturbations. I also recompute the
historical decomposition implied by a VAR(4) model (Figure 11) and find little difference
in the model’s interpretation of history. Moreover, I explore the contribution of the λ-shock
and the γ-shock to variation in aggregate consumption at a lower frequency. In addition to
decomposing year-on-year consumption growth (as in Figure 7), I also compute the historical
decomposition of the deviation of the level of aggregate consumption from the trend implied
by my baseline VAR model. Figure 12 in Appendix B.2 shows that, consistent with the FEV
results (Table 2), the λ-shock explains more of the low-frequency variation in consumption,
including the persistent expansion above trend in the run-up to the Great Recession.

4 Relation to Asset Pricing Theories

An important empirical finding of my paper is that the λ-shock and the γ-shock seem
orthogonal to each other in the data. While the λ-shock explains the average level of risk
premia, the γ-shock drives variation in it. As discussed in the Introduction, my results can
be connected to consumption based asset pricing theories via the generalised discount factor
(1.1). Take, for example, the long run risk model of Bansal and Yaron (2004), where the
exogenous driving force is linked to the following reduced-form consumption process:17

∆ct+1 = µ+ xt + σtηt+1

xt+1 = ρxt + ψσtet+1

σ2
t+1 = σ̄2 + υ

(
σ2
t − σ̄2

)
+ σwwt+1,

(4.1)

16As Cochrane (2011) explains: “The job is just hard. Macroeconomic models are technically complicated.
Macroeconomic models with time-varying risk premia are even harder” (p. 1090).

17As reviewed recently by Cochrane (2017), Yt+1 in the discount factor (1.1) is replaced by innovations in

the utility index, Yt+1 =
{

Ut+1

[Et(U1−σ
t+1 )]

1
1−σ

}ρ−σ
, where Ut =

[
(1− β)C1−ρ

t + β
[
Et
(
U1−σ
t+1

)] 1−ρ
1−σ

] 1
1−ρ

with σ

and 1/ρ denoting the risk aversion coefficient and the elasticity of intertemporal substitution, respectively.
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where σt+1 represents time-varying economic uncertainty in consumption growth rate ∆ct+1

and σ̄2 is the unconditional mean. xt is a small persistent predictable component which
determines the conditional expectation of ∆ct+1. Importantly, the three shocks ηt, et+1 and
wt+1 are assumed to be uncorrelated. A key implication of these models is that news about
future consumption growth (et+1) is what explains the level of the equity premium. Sub-
sequent empirical evidence (Parker and Julliard 2005; Bryzgalova and Julliard 2015; Boons
and Tamoni 2015) confirmed that it is indeed innovations in the consumption process, that
generate a delayed response in consumption, which can explain the cross-section of average
returns. This suggests a connection between the λ-shock implied by my macroeconomic
VAR and et+1 in the partial equilibrium asset pricing model 4.1. However, as highlighted by
Cochrane (2017), et+1 by itself cannot produce time-varying risk premia in models of long-
run risk, and shocks to economic uncertainty (wt+1) are needed to generate time-variation
in expected returns. Recent empirical evidence (Bansal, Shaliastovich, and Yaron 2014)
confirmed that shocks to economic uncertainty have large immediate effect on consumption
growth and strongly co-move with US recessions. This suggests a connection between the
γ-shock implied by my macroeconomic VAR and wt+1 in the partial equilibrium asset pricing
model 4.1.

Note that my results can also be interpreted through other asset pricing theories as
well. As argued by Cochrane (2017), “Many of the models also capture the same intuitions
(...) Each of the models suggests different candidates for the state variable Yt+1. But these
candidates are highly correlated with each other, and each sensibly indicative of fear or
bad economic times. Telling them apart empirically is not easy, and possibly not that
productive.” (p. 982) For example, Yt+1 may proxy time-varying cross-sectional variance
of individual consumption growth (Constantinides and Duffie, 1996). This interpretation
of the γ-shock also has advantages, as it may explain the close empirical relationship with
risk shocks of Christiano, Motto, and Rostagno (2014) which is directly related to the time-
varying volatility of cross-sectional idiosyncratic uncertainty.

Overall, a key advantage of my empirical methodology is its reverse engineering nature:
it uses asset prices to construct the drivers of business cycles, instead of first having to take
a stand on the theoretical framework before testing the implied asset price predictions.

5 Robustness and Extensions

I carry out a number of additional robustness checks, summarised by paragraphs in the main
text and explained in detail in Appendix B.

The Recession-Shock and the γ-Shock To further explore the relation between reces-
sions and time-varying risk premia, I study the effects of the Recession-shock and compare
them to those implied by the γ-shock. Recall that the Recession-shock is engineered to ex-
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plain the consumption collapse during the Great Recession (without any reference to asset
prices). This identification theme provides an agnostic way (i) to explore the dynamic effects
of the shock that triggered the Great Recession without directly restricting the impact of the
shock on macroeconomic variables, and (ii) to check whether previous recessions had been
caused by the same macroeconomic force that triggered the Great Recession. It remains
an empirical question whether the Recession-shock behaves similarly to the γ-shock. My
findings are reported in Section B.5. Both the IRF analysis (Figure 15) and the historical
decomposition (Figure 16) confirm that the two shocks proxy the same macroeconomic force.

Other Equity Portfolios and Government Bond Returns I check how the behaviour
of the λ-shock changes when the same VAR model and the orthogonalisation method are
applied to other test assets. A natural choice is the 25 portfolios double sorted on size-
profitability and size-investment. These portfolios feature prominently in the most recent
empirical asset pricing studies (Fama and French, 2015, 2016). In addition, I compute the
IRFs for the λ-shock implied by the benchmark FF25 portfolios, sorted on size-B/M, that
have been the most studied test assets to date.18 Moreover, I also study the λ-shock implied
by the excess returns on US government bonds. Section B.6 of the Appendix confirms that
the results are similar to the baseline. This is consistent with the relatively small but growing
literature on the joint pricing of stocks and bonds (Lettau and Wachter 2011; Bryzgalova
and Julliard 2015; Koijen, Lustig, and Van Nieuwerburgh 2017).

Changing the VAR: an Example via Financial Intermediary Balance Sheets One
can also change the state-variables in the VAR which can serve two purposes. First, given
the proliferation of asset pricing factors in the finance literature (Harvey, Liu, and Zhu,
2016), the proposed VAR framework could model the joint dynamics of any reduced-form
variables that individually have been found to price the cross-section of returns, and to link
the common stochastic driver of these variables to a single or multiple orthogonal shocks.
Second, one can explore how the realisation of aggregate risks proxied by the given test
assets may affect different parts of the macroeconomy. To support both these points, I will
add to the VAR the aggregate capital ratio of the financial intermediary sector (constructed
by He, Kelly, and Manela (2017)). The health of financial intermediary balance sheets
has be a focus of attention in the asset pricing (Adrian, Etula, and Muir, 2014) and the
macroeconomics literatures (Gertler and Kiyotaki 2010; Brunnermeier and Sannikov 2014;
He and Krishnamurthy 2014). Section B.7 of the Appendix analyses the effects of the λ-
shock and the γ-shock on the intermediary capital ratio. This aims to illustrate, how the
present framework could increase our understanding of the macroeconomic drivers behind
any reduced-form asset pricing factor.

18An earlier version of this paper (Pinter, 2016) contains further analysis of the λ-shock implied by
momentum returns (Asness, 1994; Jegadeesh and Titman, 1993).
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Pricing the Cross-section of Stock Returns It is worth noting that the focus of this
paper is not the asset pricing performance of the λ-shock. Conditional on the proposed VAR
model being an accurate representation of the economy, λ-shocks are SDF innovations by
construction. Put it differently, the pricing performance of the given λ-shock can easily be
improved by augmenting the VAR (e.g. including standard pricing factors such as the excess
return on the market19) but not by changing the orthogonalisation assumption. Though the
baseline six-variable VAR is far from being an accurate representation of the economy, it is a
standard and parsimonious way of summarising macroeconomic dynamics. For the interested
reader, I do summarise in Section B.8 of the Appendix the asset-pricing performance of the
λ-shock implied by each test portfolios studied above. Overall, the pricing performance of
the VAR (or equivalently, the λ-shock) is comparable with the 3-factor model of Fama and
French (1993).

Using Identified Macroeconomic Shocks Directly for Pricing A further question
relates to the use of established external shock series (identified by the macroeconomics lit-
erature) to price the cross-section, instead of using the cross-section of asset prices to back
out the λ-shock and comparing it to external macroeconomic shocks. The reverse direction,
taken in this paper, is motivated by the fact that identification of macroeconomic shocks
may suffer from overly restrictive identifying assumptions and from mis-measurement of
macroeconomic data. This has particularly relevant asset pricing implications, given that
different ways of identifying the same macroeconomic shock can lead to different estimated
time-series of the given structural shock (thereby leading to hugely different pricing perform-
ance) in spite of the fact that the given identification schemes may lead to similar impulse
response functions, as discussed in the debate between Rudebusch (1998) and Sims (1998).
These problems make it likely for the given macroeconomic shock to be rejected as a pricing
factor, even though the shock may be truly correlated with SDF innovations. To illustrate
this point, Section A.6 provides a Monte-Carlo simulation whereby I gradually increase the
measurement error in the SDF, and show that mis-measurement in the candidate factor leads
to a more rapid deterioration (and increasing uncertainty) in pricing performance than in
the reduction of its correlation with the true SDF.

Results from the UK To check whether the results are robust to countries other than the
US, I re-estimate my empirical model using data for the UK by making use of the availability
of comparable test assets (Dimson, Nagel, and Quigley, 2003) across the two countries, and
building on recent empirical work on return predictability in the UK (Chin and Polk, 2015).
Section B.10 of the Appendix shows the results for the λ-shock and the γ-shock implied by
the UK data. The results are similar to those found for the US. Moreover, the estimated
time-series of the λ-shock continuous to be empirically related to monetary policy shocks,

19These results are available upon request.
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as constructed by Cloyne and Hurtgen (2016) for the UK.

6 Summary and Conclusion

To conclude, my paper makes economic as well as methodological contributions that can
help narrow the gap between finance and macroeconomics, and also help answer two main
questions of macro-finance, as posed by Cochrane (2017) in the opening quote.

The first economic contribution is to highlight the overlap between unconditional linear
pricing models proposed by the empirical finance literature (Fama and French, 1993) and
structural shocks identified by the macroeconometric literature (Sims, 1980). I find that
the macroeconomic force that drives the cross-sectional variation in expected returns closely
resembles VAR-based estimates of monetary policy shocks, as identified by the macroeco-
nomics literature. A positive reading of this finding is that it provides further evidence on
the importance of monetary policy surprises in driving risk premia (Ozdagli and Velikov,
2016). A negative reading of this finding is that standard measures of monetary policy
shocks may not be well identified.

The second economic contribution of this paper is to show that time-variation in expected
returns can be explained by a demand-type macroeconomic shock that can account for
most recent US recessions, and which closely resembles risk shocks, identified recently by
Christiano, Motto, and Rostagno (2014). Moreover, I provided empirical evidence that the
macroeconomic drivers of the level risk premia are orthogonal to the drivers behind the time-
variation in risk premia, and argued that this is consistent with consumption-based asset
pricing models. While the construction of the λ-shock and the γ-shock relies exclusively on
asset price information and not on macroeconomic assumptions, I find that these two shocks
jointly explain up to 80% of aggregate consumption fluctuations in the US.

The main methodological contribution of this paper is to propose a unified empirical
framework whereby structural VAR methods can be combined with asset price information
on the cross-sectional and time-series variation in expected asset returns, in order to study
the stochastic drivers of business cycle fluctuations and their links with the dynamics of
risk premia. A smaller methodological contribution is the proposed method to identify
Recession-shocks in a VAR, which allows one to explore whether the driving force of one
particular recession can account for the causes of other recessions as well. Applying these
methods to data from other markets and other countries would be an interesting avenue for
future research.
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Appendix

A Additional Theoretical Results

A.1 Finding the λ-shock

Proof of Proposition 1. It suffices to find an angle θ? and associated rotation rθ? such
that m will be a scaled multiple of any one of the rotated vectors denoted by f ?1 . If θ?

exists then λ?2 = 0 because f1⊥f2 and rθ? is an orthonormal transformation. The angle
θ? = arctan

(
λ2
λ1

)
satisfies f ?1 = rθ?f1 so that m = λ?1f

?
1 + λ?2f

?
2 with the associated scalars

λ?1 = ‖m‖
‖f?1 ‖

= ‖m‖ and λ?2 = 0.

A.2 Equivalence between β-pricing Models and Linear Models of the SDF

Theorem 7 (Cochrane 2005) Denoting the SDF, the pricing factor, the excess returns
and the first- and second-stage regression coefficients from a linear pricing model by m, f ,
Re, β and λ, respectively, and given the model

m = 1 + [f − E (f)]′ b

0 = E (mRe) ,
(A.1)

one can find λ such that
E (Re) = β′λ, (A.2)

where β are the multiple regression coefficients of excess returns Re on the factors. Con-
versely, given λ in A.2, we can find b such that A.1 holds.

Proof of Theorem 7. See p. 106-107 of Cochrane (2005).
Cochrane (2005) shows that λ and b are related λ = −var (f) b. This result simplifies

greatly when working with pricing factors (such as orthonormalised VAR residuals) that have
zero mean and unit variance. In this case, λ = −b and E (f) = 0. As a result of the linearity
of the pricing model and the linearity of the VAR model, finding the orthonormalised shock
in a VAR of any dimension that demands the highest price of risk (λ) when pricing a given
portfolio of assets is equivalent to finding a single time series that is a linear combination of
the reduced form innovations of the VAR which summarises all the information relevant to
pricing the given portfolio.20

20Another way of saying this is that the cross-sectional R2-measure associated with a pricing model that
includes all the reduced-form residuals from the VAR is the same as the R2-measure associated with the
one-factor model which uses the appropriately orthonormalised shock. This will be confirmed during the
empirical application of the method (Panel A and B of Tables 6–9.)
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A.3 The Geometry of the λ-shock

To highlight the geometric nature of the orthonormalisations method and the interplay
between the VAR model and the test assets, I illustrate the relevant mathematical back-
ground in a three-dimensional graph (Figure 8). There is an underlying probability space,
and L2 denotes the collection of random variables with finite variances defined on that space.
L2 is a Hilbert-space with the associated norm ‖p‖ = (E (p2))1/2 for p ∈ L2. Let P denote
the space of portfolio excess returns (zero-price payoffs) that is a closed linear subspace of
L2.21 P is represented by the red plane in Figure 8. An admissible SDF is a random variable
m in L2 such that 0 = E (mp) for all p ∈ P . The set of all admissible SDFs denoted by M
is represented by the black line perpendicular to the red plane.22

Figure 8: A Simplified Geometry of Finding the λ-shock

Let S denote the set of reduced-form VAR innovations (the blue solid arrows) and denote
D the space spanned by these innovations. D is assumed to be a closed subspace of L2,
and it is represented by the blue plane in the Figure. The Gram-Schmidt orthogonalisation
procedure allows the reduced-form innovations that span D to be transformed into a set of
orthonormal vectors that also span D. The blue dashed arrows in Figure 8 represent two
possible elements of the infinite sequence of orthonormalisations. The set of all admissible
orthonormalisations is denoted by O and is represented by the blue circle with unit radius
in the Figure.

The space of VAR innovations is unlikely to contain an SDF because of model mis-
specification or measurement error associated with observing SDFs (Roll, 1977). Loosely
speaking, the tilted nature of the blue plane prevents all elements of O to be orthogonal

21See Hansen and Jagannathan (1991, 1997) for a detailed discussion.
22As is well known, all SDFs can be represented as the sum of the minimum norm SDFs (the intersection

of the black line and the red plane in Figure 8) and of a random variable that is orthogonal to the space P
of excess returns (Hansen and Richard (1987); Cochrane (2005)).
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to the space of excess returns, i.e. M ∩ O = ∅. Yet, one can find an element in O that
is closest to M in the spirit of Hansen and Jagannathan (1997) by applying the classical
Projection Theorem.23 This implies that the reduced-form VAR residuals induce one partic-
ular orthonormal shock, which is closer to the SDF than all the other orthonormal shocks.
This is the blue arrow labelled as the λ-shock in Figure 8, whose projection onto the space
of SDFs is the magenta line. This shock is the best possible approximation of the SDF: it
summarises all the relevant information contained in all the reduced-form residuals of the
VAR, i.e. in the blue plane.

Figure 8 highlights how the modelling of the macroeconomic dynamics (the VAR in-
novation space from which I recover the SDF) is somewhat disjointed from the modelling
of the cross-section of asset prices (the space that induces the SDF), as mentioned in the
Introduction. The link between the two spaces is the orthogonality condition 0 = E (mp).
Changing the test portfolios can be thought of as tilting the red plane while fixing the blue
plane in Figure 8. In turn, augmenting the VAR with additional state variables in order to
better explain/price the given test assets can be thought of as tilting the blue plane while
fixing the red plane in the Figure. For example, a VAR with good (bad) pricing performance
would imply a flatter (steeper) blue plane with respect to the red plane.

A.4 Additional Results

Lemma 8 Suppose the SDF is modelled in an unconditional asset pricing framework as
linear combinations of orthogonalised shocks from a VAR. The estimated prices of risk are
dependent on identifying assumptions about B?, but the estimated time-series of the SDF is
independent of them.

This statement highlights that orthogonalised shocks in a VAR are merely different linear
combinations of the reduced-form residuals, thereby containing the same information set
as the reduced-form innovation when pricing the cross-section of returns. In the language
of empirical asset pricing: assumptions about VAR identification determine risk exposures
and factor risk premia, but they do not affect the overall cross-sectional (R2-type) fit of
the transformed residuals, if all the orthogonalised shocks were to be used for pricing the
cross-section of returns.
Proof of Lemma 8. The proof proceeds in three simple steps: (i) I apply arbitrary
identifying assumptions to obtain a set of orthogonalised shocks (ii) I derive the estimator
of the price of risk associated with the orthogonalised shocks as pricing factors (iii) and show
that the implied SDF is independent of the identifying assumptions.

23That is, assuming that O is a complete linear subspace of H, there exists a unique vector m0 ∈ O,
corresponding to any vector x ∈ M , such that ‖x − m0‖ ≤ ‖x − m‖ for all m ∈ O. See pp. 50-51 of
Luenberger (1969) for a classic treatment and pp. 608-609 of Hansen and Richard (1987) for a conditional
version of the theorem.
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Let Y be an 1×n vector of average excess returns, Ỹ is a T×n matrix of demeaned time-
series of excess returns, and η is a T × k matrix of reduced-form residuals from a k-variable
VAR of any order with variance-covariance matrix Ω. Apply Cholesky decomposition to
obtain triangularised innovations as pricing factors Z = η

(
(B)−1

)′
= η

(
(chol (Ω))−1

)′
.

The estimated risk exposures are given by the first-stage βs from time-series regressions:

β̂ = (Z ′Z)−1
Z ′Ỹ .

To estimated prices of risk are obtained by the second-stage cross-sectional regression:

λ̂ = (ββ′)−1
βY
′

=
[
(Z ′Z)−1

Z ′Ỹ
(
Ỹ ′Z

) (
(Z ′Z)−1)]−1

(Z ′Z)−1
Z ′Ỹ Y

′

= (Z ′Z)
(
Z ′Ỹ

(
Ỹ ′Z

))−1
Z ′Ỹ Ȳ ′.

(A.3)

Express the reduced-form innovations in terms of orthogonalised shocks, Z = η
(
(B)−1

)′
≡

η∆ re-write A.3:

λ̂ = (∆′η′η∆)
(
∆′η′Ỹ

(
Ỹ ′η∆

))−1
∆′η′Ỹ Y ′

= ∆′ (η′η) ∆ (∆)−1
((
η′Ỹ Ỹ ′η

))−1
(∆′)−1 ∆′η′Ỹ Y ′

= ∆′ (η′η)
(
η′Ỹ Ỹ ′η

)−1
η′Ỹ Y

′
,

(A.4)

which proves that the estimated prices of risk depend on ∆ ≡
(
(B)−1

)′
which in turn

depends on the identifying assumptions imposed on the structural impact matrix B. The
implied linear model for the SDF is written as:

m = Zλ̂

= η∆∆′ (η′η)
(
η′Ỹ Ỹ ′η

)−1
η′Ỹ Ỹ ′Y

′

= ηΩ (η′η)
(
η′Ỹ Ỹ ′η

)−1
η′Ỹ Ỹ ′Y

′
,

(A.5)

which shows that the implied SDF depends on the reduced-form variance covariance matrix,
Ω, and does not depend on orthogonalisation assumptions.

Proof of Proposition 3. The proof proceeds in three simple steps: (i) I derive a general
form of the structural impact matrix B? and its inverse B?−1 without any reference to asset
pricing; (ii) I use the linear model of the SDF (2.2) to express the elements in the row of
B?−1 corresponding to the λ-shock, i.e. this row determines the linear relationship between
the reduced form residuals and SDF innovations; finally (iii) I match the values obtained in
step (i)-(ii).
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Step 1 Apply the Cholesky algorithm to the reduced form variance covariance matrix

Ω =
 ω11 ω12

ω12 ω22

 to obtain a candidate for B. Because Ω is positive definite, B exists and

can be written as:

B = chol (Σ) =


√
ω11 0
ω12√
ω11

√
ω22 −

(
ω12√
ω11

)2

 . (A.6)

It is known (Fry and Pagan, 2011) that one can take any orthonormal matrix Q to obtain
a new structural impact matrix B? = BQ, with the associated set of orthogonalised shocks
e?t = ηt

(
B?−1

)′
, which conforms to the reduced-form variance covariance matrix, i.e. Ω =

B? (B?)′ = BQ (BQ)′ = BQ (Q′B′) = BB′. Let Q be a rotation rθ =
 cos θ − sin θ

sin θ cos θ

,
so B? = BQ = Brθ implies:

B? =
 √

ω11 cos (θ) −√ω11 sin (θ)
ω12√
ω11

cos (θ) + ξ sin (θ) − c√
ω11

sin (θ) + cos (θ) ξ

 , (A.7)

where ξ =
√
ω22 − ω2

12/ω11. Matrix inversion yields:

B?−1 = 1
ω11ψ

 −ω12 sin(θ) +√ω11 cos(θ)ψ ω11 sin(θ)
−ω12 cos(θ)−√ω11 sin(θ) ψ ω11 cos(θ)

 , (A.8)

where ψ ≡ ω11

√
ω11ω22−ω2

12
ω11

.

Step 2 The linear model of the SDF (2.2) can be re-written in terms of the reduced form
residuals, ηt = [η1t |η2t], by using the identity ft = [f1t |f2t] = ηtB

−1 = ηt (chol (Ω))−1 and the
definition A.6:

mt = λ1f1t + λ2f2t

=
(
λ1

1
√
ω11
− λ2

ω12

ψ

)
η1t +

(
λ2

1
ψ

)
η2t.

(A.9)

Applying proposition 1 implies that the SDF can be expressed by a single orthogonalised
shock, e?1t, where e?t = [e?1t |e?2t] = ηtB

?−1:

mt = λ1f1t + λ2f2t

=
(√

λ2
1 + λ2

2

)
e?1t + 0 · e?2t.

(A.10)

[Note that designating the λ-shock to be the first column of e?t is arbitrary, but this does
not play a role given the orthogonality of the columns of e?t .] Hence A.9 together with A.10
determines the first row of B?−1 written as:

B?−1
1,1:1,2 =

[
λ1

1√
ω11
−λ2

ω12
ψ√

λ2
1+λ2

2

λ2
1
ψ√

λ2
1+λ2

2

]
. (A.11)
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Step 3 Matching values of the top right elements of A.8 and A.11 yields:

θ = arcsin
 λ2√

(λ2
1 + λ2

2)

 .

A.5 Rotation Matrices

To select matrix Q in a n-variable VAR model (Subsection 2), one needs to span the n-
dimensional space of rotations. See Golub and Loan (1996) for a textbook treatment and
Zhelezov (2017) for a recent algorithm to generate n-dimensional rotation matrices. As an
example, consider the case of a four-variable VAR model, I write Q as the product of three
auxiliary Givens matrices:

Q = Q1 ×Q2 ×Q3, (A.12)

where:

Q1 =


cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 cos(θ2) − sin(θ2)
0 0 sin(θ2) cos(θ2)



Q2 =


cos(θ3) − sin(θ3) 0

0 cos(θ4) 0 − sin(θ4)
sin(θ3) 0 cos(θ2) 0

0 sin(θ4) 0 cos(θ4)



Q3 =


cos(θ5) − sin(θ5)

0 cos(θ6) − sin(θ6) 0
sin(θ6) cos(θ6) 0

sin(θ5) 0 0 cos(θ5)

 .

The six Euler-angles θ1, θ2, θ3, θ4, θ5, θ6 are then chosen appropriately so that the objective
function is satisfied. A similar construction can be used for higher dimensions. The general
formula for even number of dimensions, k ≥ 4, is written as:

1
2k

k/2∏
s=2

(2s− 1) , (A.13)

which implies that the number of angles needed to span the space rapidly increases as we
add more variables to the VAR. For example, while a 4-variable VAR requires merely six
angles (A.12), an 8-variable VAR requires 420 angles, whereas a 10-variable VAR requires
4725 angles to be found.
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A.6 Mismeasured Factors and Pricing Performance

This section presents a Monte-Carlo exercise to illustrate why using well-known identified
macroeconomic shocks to price the cross-section of returns may lead to the rejection of these
shocks as valid pricing factors, even though these shocks may in fact be correlated with the
true SDF innovations. As mentioned in the main text, identification of macroeconomic
shocks may suffer from overly restrictive identifying assumption and from mis-measurement
of macroeconomic data. As a consequence, mis-measured candidates for SDF innovations
can lead to drastic deterioration in pricing performance. This is the justification behind the
somewhat reverse direction taken in this paper, whereby I start with asset prices and then
work “backwards”.

To illustrate these measurement problems, I first take n test assets to construct the SDF,
x?, from the corresponding payoff space (Section 4 of Cochrane (2005)).24 As test assets, I
use the FF55 for the sample period 1963Q3-2015Q3 as in my baseline analysis. I then define
the distorted SDF, x̃, by introducing a noise term, εt:

x̃ = x? + εt, εt ∼ N
(
0, σ2

)
(A.14)

where σ is the standard deviation of the measurement error εt. To assess the pricing perform-
ance of the distorted SDF, I first estimate n time series regressions, Rit = x̃βi+εit, i = 1 . . . n.
Second , I estimate a cross-section regression, R̄i = β̃i × λ + αi, where R̄i = 1

T

∑T
t=1Rit, β̃i

is the OLS estimate obtained in the first stage and αi is a pricing error. The model’s fit is
then assessed using the following statistic (Burnside, 2011):

R2 = 1−

(
R̄− β̃λ̃

)′ (
R̄− β̃λ̃

)
(
R̄− R̂

)′ (
R̄− R̂

) , (A.15)

where R̂ = 1
n

∑n
i=1 R̄i is the cross-sectional average of the mean returns in the data. Moreover,

I compute the correlation between the true and distorted SDFs:

ρ? = corr (x?, x̃) . (A.16)

Then I explore how the cross-sectional fit A.15 and the correlation coefficient A.16 change
as I add more noise to the SDF, i.e. I aim to estimate the derivatives ∂R2/∂σ and ∂ρ?/∂σ.

For the Monte-Carlo exercise, I use a grid σ = [0 : 0.05 : 0.75] to control for the amount
measurement error, and for each value of σ, I generate 5000 time-series of x̃, and compute
the statistics using A.15 and A.16. Figure 9 shows the median values (solid lines) of the
statistics together with 10-90% simulation bands (shaded areas).

24Specifically, I follow Section 4.1. of Cochrane (2005) and construct the discount factor x? from the
payoff space using x? = p′E (xx′)−1

x, where x denotes the test assets with payoffs p.
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Figure 9: Role of Mis-measurement in Macroeconomic Shocks: Results from a Monte-Carlo
Exercise
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Notes: The Figure illustrates how adding noise to the SDF (constructed from the space of test assets, following 4.1. of Cochrane
(2005)) changes the correlation with the true SDF (blue line) and the cross-sectional fit (red line). The cross-sectional fit is
measured using the R2 measure A.15, and the correlation measure is based on A.16. The shaded areas correspond to the
10-90% bands based on 5000 Monte-Carlo simulations of A.14. The construction of the SDF is based on the FF55 portfolios,
covering the sample period is 1963Q3-2015Q3.

The results show that adding noise to the SDF deteriorates the pricing performance
more quickly than it reduces the correlation between the noisy and true SDFs. Importantly,
the uncertainty around the estimated R2 increases much more rapidly than the uncertainty
around the estimated ρ?. For example, for σ = 0.75, the correlation between distorted SDF
and the true SDF is still above 80%, whereas the cross-sectional fit of the corresponding
pricing model can result in close to zero explanatory power.

These results provide a justification for (i) why using noisy estimates of macroeconomic
shocks (identified by the macroeconomics literature) directly in asset pricing tests may lead
the rejection of these shocks as valid pricing factors, and (ii) why the reverse direction taken
in this paper may be more successful in uncovering the empirical linkages between business
cycle fluctuations and asset prices.
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B Additional Empirical Results

B.1 Robustness to Alternative Lag Structure of the VAR

Figure 10: Impulse Responses to a λ-shock: Robustness to Lag Structure

(a) Sample: 1963Q3-2008Q3
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(b) Sample: 1963Q3-2015Q3

5 10 15 20 25 30
−0.6

−0.4

−0.2

0

Quarters

Consumption

%

5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

Quarters

GDP

%

5 10 15 20 25 30

0.5

1

Quarters

Price Level

%

5 10 15 20 25 30

0.5

1

Quarters

Federal Funds Rate

%

5 10 15 20 25 30
0

0.02
0.04
0.06
0.08

Quarters

Default Spread

%

5 10 15 20 25 30
−0.4

−0.2

0

Quarters

%

Term Spread

 

 

VAR(1)
VAR(2)
VAR(3)

Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The IRFs are computed
from VAR(1), VAR(2) and VAR(3) models. In all cases, the FF55 portfolios were used as test assets, and the IRFs are
normalised to increase the federal funds rate by 100bp.
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Table 3: Forecasting Excess Returns: Results from a VAR(3) Model

Forecast Horizon H
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

Model A: CAY
CAY 0.55 1.12 1.77 2.52 3.17 4.00 4.92 5.77

(2.18) (2.25) (2.33) (2.46) (2.59) (3.00) (3.58) (4.25)
[0.01] [0.03] [0.05] [0.09] [0.11] [0.14] [0.19] [0.23]

Model B: Counterfactual VAR Variables Induced by the γ-Shock
FFR 0.47 1.00 1.50 1.87 2.24 2.75 3.31 3.80

(1.14) (1.19) (1.37) (1.45) (1.56) (1.77) (2.03) (2.29)
DEF -7.76 -14.53 -20.40 -24.42 -28.36 -32.55 -37.35 -41.47

(-1.84) (-1.68) (-1.91) (-2.04) (-2.19) (-2.42) (-2.70) (-2.94)
TERM 3.01 6.41 9.72 12.40 14.99 17.87 20.81 23.16

(2.71) (2.72) (2.90) (2.96) (3.09) (3.27) (3.53) (3.87)
[0.04] [0.10] [0.17] [0.23] [0.28] [0.33] [0.38] [0.42]

Model C: Counterfactual VAR Variables Induced by All Other Shocks
FFR -0.18 -0.28 -0.25 -0.21 -0.09 0.11 0.32 0.50

(-0.70) (-0.64) (-0.43) (-0.30) (-0.11) (0.11) (0.25) (0.34)
DEF 1.82 3.71 3.91 3.71 2.94 2.27 1.32 0.27

(0.90) (1.23) (0.97) (0.79) (0.57) (0.39) (0.18) (0.03)
TERM -0.22 -0.64 -0.58 -0.45 -0.28 0.17 0.38 0.96

(-0.37) (-0.58) (-0.36) (-0.23) (-0.12) (0.07) (0.14) (0.32)
[-0.01] [-0.00] [-0.00] [-0.01] [-0.01] [-0.01] [-0.01] [-0.01]

Notes: The table reports results from regressions of excess returns on lagged variables. H denotes the return horizon in quarters.
The dependent variable is the sum of H log excess returns on the CRSP based S&P Composite Index. The regressors are
one-period lagged values of actual time-series of the federal funds rate (FFR), the term-spread (TERM) and the default spread
(DEF) in Model A, the CAY measure of Lettau and Ludvigson (2001a,b) in Model B, and the counterfactual time-series of
FFR, TERM and DEF (induced by the γ-shock) from six-variable VAR(3) and VAR(4) models, estimated over 1963Q3-2015Q3.
The γ-shock is constructed so that the corresponding forecast power at the four-quarter horizon is maximised. For each of
the three regressions, the table reports the OLS estimates of the regressors, the t-statistics using the Hansen and Hodrick
(1980) correction (as implemented in Cochrane (2011)) are in parentheses, and adjusted R2 statistics are in the bolded square
brackets. Both the CAY measure and the counterfactual predictors are treated as known variables.
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Table 4: Forecasting Excess Returns: Results from a VAR(4) Model

Forecast Horizon H
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

Model A: CAY
CAY 0.55 1.12 1.77 2.52 3.17 4.00 4.92 5.77

(2.18) (2.25) (2.33) (2.46) (2.59) (3.00) (3.58) (4.25)
[0.01] [0.03] [0.05] [0.09] [0.11] [0.14] [0.19] [0.23]

Model B: Counterfactual VAR Variables Induced by the γ-Shock
FFR 0.40 0.74 1.07 1.35 1.64 2.02 2.47 2.98

(1.06) (0.94) (1.02) (1.09) (1.20) (1.39) (1.62) (1.92)
DEF -7.01 -12.02 -16.29 -19.46 -22.33 -24.99 -28.18 -32.25

(-1.88) (-1.52) (-1.65) (-1.77) (-1.94) (-2.15) (-2.38) (-2.68)
TERM 2.80 5.66 8.55 11.08 13.47 16.03 18.63 21.04

(2.71) (2.54) (2.68) (2.75) (2.90) (3.10) (3.38) (3.77)
[0.04] [0.09] [0.15] [0.20] [0.25] [0.30] [0.34] [0.39]

Model C: Counterfactual VAR Variables Induced by All Other Shocks
FFR -0.20 -0.29 -0.23 -0.18 -0.04 0.20 0.44 0.63

(-0.78) (-0.67) (-0.40) (-0.25) (-0.04) (0.19) (0.34) (0.41)
DEF 2.38 4.59 4.86 4.69 3.86 2.98 1.84 0.84

(1.15) (1.55) (1.25) (1.01) (0.73) (0.50) (0.23) (0.09)
TERM -0.18 -0.45 -0.26 -0.05 0.20 0.79 1.13 1.77

(-0.31) (-0.42) (-0.16) (-0.03) (0.10) (0.37) (0.46) (0.65)
[-0.00] [0.00] [0.00] [-0.00] [-0.01] [-0.01] [-0.01] [-0.00]

Notes: The table reports results from regressions of excess returns on lagged variables. H denotes the return horizon in quarters.
The dependent variable is the sum of H log excess returns on the CRSP based S&P Composite Index. The regressors are
one-period lagged values of actual time-series of the federal funds rate (FFR), the term-spread (TERM) and the default spread
(DEF) in Model A, the CAY measure of Lettau and Ludvigson (2001a,b) in Model B, and the counterfactual time-series of
FFR, TERM and DEF (induced by the γ-shock) from six-variable VAR(3) and VAR(4) models, estimated over 1963Q3-2015Q3.
The γ-shock is constructed so that the corresponding forecast power at the four-quarter horizon is maximised. For each of
the three regressions, the table reports the OLS estimates of the regressors, the t-statistics using the Hansen and Hodrick
(1980) correction (as implemented in Cochrane (2011)) are in parentheses, and adjusted R2 statistics are in the bolded square
brackets. Both the CAY measure and the counterfactual predictors are treated as known variables.
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Table 5: The Contribution of the λ-shock and γ-shock to Business Cycles: FEV Decompos-
ition from VAR(3) and VAR(4) Models

VAR(3) Model
Consumption Federal Funds Rate

λ-Shock γ-Shock λ&γ Unexpl. λ-Shock γ-Shock λ&γ Unexpl.
1Q 0.5 72.3 72.8 27.2 64.1 3.2 67.3 32.7
2Q 3.9 72.1 76.0 24.0 54.1 9.0 63.1 36.9
3Q 10.7 70.4 81.1 18.9 51.4 11.0 62.4 37.6
4Q 15.1 66.5 81.6 18.4 50.7 14.1 64.8 35.2
8Q 32.4 44.5 76.9 23.1 47.1 20.8 67.9 32.1
16Q 43.0 25.9 68.9 31.1 43.9 24.1 68.0 32.0
32Q 42.2 20.7 62.8 37.2 42.8 24.5 67.3 32.7

VAR(4) Model
Consumption Federal Funds Rate

λ-Shock γ-Shock λ&γ Unexpl. λ-Shock γ-Shock λ&γ Unexpl.
1Q 0.2 75.8 76.0 24.0 73.3 2.4 75.7 24.3
2Q 4.0 75.8 79.8 20.2 62.3 8.2 70.5 29.5
3Q 10.9 74.0 84.8 15.2 60.0 10.1 70.1 29.9
4Q 13.7 70.3 84.0 16.0 60.7 12.5 73.3 26.7
8Q 33.5 46.3 79.8 20.2 58.3 18.1 76.4 23.6
16Q 48.7 27.2 75.9 24.1 56.8 18.7 75.5 24.5
32Q 47.6 24.0 71.7 28.3 56.3 18.3 74.6 25.4

Notes: The table shows the % fraction of the total forecast error variance that is explained by the λ-shock and the γ-shock
over different forecast horizons. The FF55 portfolios are used as test portfolios for the VAR models. The estimation period is
1963Q3-2015Q3.
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Figure 11: Results from a VAR(4) – Decomposing Annual US Consumption Growth: the
Role of λ-Shocks and γ-Shocks

(a) Historical Decomposition
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(b) Counterfactual Consumption Series Explained by λ-Shocks and γ-Shocks
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Notes: The figure shows the results implied by the historical decomposition from a VAR(4) estimated on the sample 1963Q3-
2015Q3. I use the FF55 to construct the λ-shock, and the CRSP based SP500 return (in excess of the corresponding T-bill
rate) to construct the γ-shock. The deterministic trend component, implied by the VAR, is removed from the time-series.
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B.2 Decomposing Lower Frequency Variation in Consumption

This subsection explores the contribution of the λ-shock and the γ-shock to variation in
aggregate consumption at a lower frequency. Instead of decomposing annual consumption
growth (as in Figure 7 of the main text), I now decompose the deviation of the level of
aggregate consumption from the trend implied by the baseline six-variable VAR model. The
results are shown in Figure 12. Consistent with FEV decomposition, the λ-shock contributes
to the lower frequency dynamics much more than to the higher frequency dynamics proxied
by annual consumption growth.

Figure 12: Decomposing Level Deviations of US Consumption: the Role of λ-Shocks and
γ-Shocks

(a) Historical Decomposition
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(b) Counterfactual Consumption Series Explained by λ-Shocks and γ-Shocks
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Notes: The figure shows the results implied by the historical decomposition from a VAR(2) estimated on the sample 1963Q3-
2015Q3. I use the FF55 to construct the λ-shock, and the CRSP based SP500 return (in excess of the corresponding T-bill
rate) to construct the γ-shock. The deterministic trend component, implied by the VAR, is removed from the time-series.

Specifically, in addition to largely affecting the early 1980s consumption decline, the λ-
shock made a sizeable contribution to the persistent expansion of consumption in the 2000s
above the long-run trend.
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B.3 The γ-Shock and Time-varying Risk Premia

Figure 13: The γ-Shock Induced Counterfactual Term Spread and Forecasting Excess Re-
turns
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Notes: The upper panel of the figure shows the term spread (measured as the difference between the 10-year yield and the
short-term Treasury bill rate, taken from Goyal and Welch (2008)) along with the counterfactual term spread implied by the
γ-shock from a VAR(2) estimated on the sample 1963Q3-2015Q3. The lower panel shows realised 8-quarter cumulative excess
returns along with the fitted values from the regression (based on 2.5) rHt+1 = a+β1FFRt+β2DEFt+β3TERMt+ εt+1 with
H = 8 (blue dotted line), and also the fitted values from the regression rHt+1 = a + β1F̂FRt + β2D̂EFt + β3 ̂TERMt + εt+1

with H = 8 (red solid line), wherêdenotes the counterfactual time-series implied by the γ-shock. The correlation between
realised returns and the data-based predicted series and the γ-shock-based predicted series are 0.36 and 0.63, respectively.

B.4 The Orthogonality of the λ-Shock to the γ-Shock
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Figure 14: Illustrating the Orthogonality of the λ-Shock with respect to the γ-Shock

(a) The λ-Shock
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(b) The γ-Shock
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Notes: The Figure illustrates the orthogonality of the λ-Shock with respect to the γ-Shock. In the upper panel, the λ-Shock
is constructed with and without simultaneously constructing the γ-Shock. In the lower panel, the γ-Shock is constructed with
and without simultaneously constructing the λ-Shock. The vertical axes are %-deviations from steady-state, and the horizontal
axes are in quarters. The FF55 portfolios were used as test assets, and the sample period is 1963Q3-2015Q3.
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B.5 Recession-Shocks, γ-Shock and λ−Shocks

Figure 15: Impulse Responses to a Recession-Shock, γ-Shock and to a λ-Shock
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The VAR(2) is
estimated over the 1963Q3-2015Q3 period. The shocks are 1 sd.The FF55 portfolios were used as test assets.
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Figure 16: Decomposing Level Deviations of US Consumption: the Role of λ-Shocks and
Recession-Shocks

(a) Historical Decomposition
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(b) Counterfactual Consumption Series Explained by λ-Shocks and Recession-Shocks
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Notes: The figure shows the results implied by the historical decomposition from a VAR(2) estimated on the sample 1963Q3-
2015Q3. I use the FF55 to construct the λ-shock. The maximisation of the price of risk and the minimisation of 2.7 are done
jointly. The blue (red) line is the contribution of the λ-shock (Recession-shock) to the data. The purple line in the bottom
panel is the sum of the contributions of the λ-shock and the Recession-shock to the data. The deterministic trend component,
implied by the VAR, is removed from the time-series.
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B.6 Other Equity Portfolios and Government Bond Returns

To check the robustness of the baseline results I explore how the behaviour of the λ-shock
changes when the same VAR model and the orthogonalisation method are applied to other
test assets. A natural choice is the 25 portfolios double sorted on size-profitability and size-
investment. These portfolios feature prominently in the most recent empirical asset pricing
studies (Fama and French, 2015, 2016). In addition, I also compute the IRFs for the λ-shock
implied by the benchmark FF25 portfolios, sorted on size-B/M, that have been the most
studied test assets to date.

The upper panel of Figure 17 shows the IRFs for these three sets of equity portfolios
along the benchmark FF55 used in the main text. The results suggest that the economic
behaviour of the λ-shock implied by these portfolios is very similar to each other. The only
quantitative difference is that the baseline results imply a larger peak effect on consumption
and a more delayed effect on the default spread compared to Figure 17.

Moreover, I also use government bond returns that are calculated using the zero coupon
yield data constructed by Gurkaynak, Sack, and Wright (2007) that fit Nelson-Siegel-
Svensson curves on daily data. The parameters for backing out the cross-section of yields are
published on their website. The sample period is 1975Q2-2008Q3 so that I have sufficiently
large cross-section of yields. I use maturities for n = 18, 24, . . . , 120 months and compute
one-month holding period excess returns which I then transform into quarterly series. The
resulting 18 bond portfolios are used to construct the λ-shock. The lower panel of Figure
17 shows the results, confirming that the shock responsible for pricing equities is virtually
identical to the shock that prices government bonds. This is consistent with the relatively
small but growing literature on the joint pricing of stocks and bonds (Lettau and Wachter
2011; Bryzgalova and Julliard 2015; Koijen, Lustig, and Van Nieuwerburgh 2017).
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Figure 17: Impulse Responses to a λ-shock, Implied by other Equities vs Bonds

(a) FF25, FF55, 25 Profitability-Size and 25 Investment-Size Portfolios
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(b) FF25 and US Government Bond Returns
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The upper panel uses the
VAR(2), as estimated in Subsection 2, and employs alternative equity portfolios to the construction of the λ-shock. The lower
panel estimates the same VAR(2) on a subsample 1975Q2-2008Q3, and constructs the λ-shock implied by the FF25 and FF25
portfolios as well as by quarterly holding period excess returns on 18 US treasury bonds with maturities n = 18, 24, . . . , 120
months. I all IRFs are normalised to increase the federal funds rate by 100bp.

B.7 Adding More Variables to the VAR

One can easily add more variables to the VAR to improve the return predicting power of
the γ-shock or to improve the cross-sectional pricing performance of the λ-shock.25 This is
particularly useful, given that most pricing factors (316 of them listed in Harvey, Liu, and

25Increasing the size of the VAR introduces only computational challenges. For example, in an 8-variable
(10-variable) VAR one needs to find 420 (4725) angles to span the 8-dimensional space of rotations. See
section A.5 of the Appendix.
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Zhu (2016)) are reduced-form objects and often exhibit high correlations with one another.
For example, consumption innovations and output innovations extracted from individual
AR(1) models have around 66% correlation, term spread innovation and federal funds rate
innovations have around -82% correlation, the intermediary capital risk factor constructed
by He, Kelly, and Manela (2017) and excess returns on the market (their second pricing
factor) have a 78% correlation.26

To study this further, I will add to the VAR the aggregate capital ratio of the financial
intermediary sector (constructed by He, Kelly, and Manela (2017)). I then re-estimate
the VAR on a shorter sample, 1970Q1-2015Q3 (dictated by the availability of this time-
series), and calculate the dynamic effects of the λ-shock and the γ-shock on the intermediary
capital ratio. Note that this procedure could be applied to any other reduced-form pricing
variable of interest. Figure 18 summarises the results. Panel a shows the IRFs for a one
standard deviation contractionary innovation in both shocks. In response to both shocks,
the intermediary capital ratio drops immediately by about 0.3% and then gradually returns
to steady-state after about five years. Note that the rest of the variables in the VAR
exhibit very similar dynamics to the baseline (Figure 5). While GDP is replaced with the
intermediary capital ratio in the model and this VAR is estimated on a different sample,
the time-series of the λ-shock and the γ-shock have a high (around 80%) correlation across
the two VAR models.

Panel b of Figure 18 shows the FEV decomposition of the intermediary capital ratio along
with that of aggregate consumption. The results suggest that both orthogonalised shocks
are important in driving fluctuations in the capital ratio. For example, at one-year horizon,
the λ-shock and the γ-shock explain about 35% and 31% of the forecast error variance in
the capital ratio, respectively. The decomposition of aggregate consumption continues to be
similar to my baseline VAR (Table 2). It is to note that a considerable fraction of capital
ratio fluctuations is left unexplained by the λ-shock and the γ-shock. Future work could
enrich this simple VAR to increase explanatory power.

This exercise highlights that unexpected changes in the balance sheet health of financial
intermediaries cannot be interpreted as purely exogenous events. While the driving force
in macroeconomic models with financial intermediaries (Gertler and Kiyotaki 2010; He and
Krishnamurthy 2014) is often related to exogenous movements in the capital stock (“capital
quality shock”), my results show that a large fraction of the unforecastable component in
the capital ratio can be explained by at least two orthogonalised macroeconomic shocks
that have very different effects on business cycle fluctuations. This highlights that by purely
focusing on the reduced-form unforecastable component in the capital ratio, one cannot
accurately detect the nature of the macroeconomic force responsible for the observed fluc-

26These number are based on estimates of individual AR(1) models on consumption, GDP, the term spread
and the Federal Funds rate covering the period 1963Q3-2008Q3. The correlation between the intermediary
capital risk factor and market excess returns are for 1970Q1-2012Q4 as in He, Kelly, and Manela (2017).
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Figure 18: Financial Intermediary Capital Dynamics

(a) Impulse Responses to a λ-Shock and to a γ-Shock
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(b) The Contribution of the λ-shock and γ-shock to Capital Ratio Fluctuations

Intermediary Capital Ratio Consumption
λ-Shock γ-Shock λ&γ Unexpl. λ-Shock γ-Shock λ&γ Unexpl.

1Q 31.4 34.9 66.3 33.7 4.0 55.5 59.5 40.5
2Q 33.0 34.6 67.6 32.4 2.1 59.7 61.8 38.2
3Q 33.9 33.0 66.9 33.1 5.6 58.3 63.9 36.1
4Q 34.7 31.2 65.9 34.1 12.5 53.7 66.3 33.7
8Q 35.6 26.1 61.7 38.3 41.9 34.6 76.5 23.5
16Q 34.1 21.9 56.0 44.0 61.1 21.3 82.4 17.6
32Q 32.4 20.2 52.6 47.4 60.2 19.5 79.7 20.3

Notes: In panel a, the vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The VAR(2)
is estimated on a subsample 1970Q1-2015Q3 given the availability of the intermediary capital ratio series of He, Kelly, and
Manela (2017) that starts in 1970. I use the FF55 to construct the λ-shock, and use the CRSP based aggregate SP500 stock
market return (over the corresponding T-bill rate) to construct the γ-shock. The table in panel b shows the % fraction of the
total forecast error variance that is explained by the λ-shock and the γ-shock over different forecast horizons.

tuations in intermediary balance sheets and their implications for financial markets and the
wider economy.
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B.8 Pricing the Cross-section of Stock Returns

It is worth noting that the focus of this paper is not the asset pricing performance of the
λ-shock. The pricing performance of the given λ-shock can easily be improved by changing
the specification of the VAR (e.g. including additional variables such as the excess return
on the market27). Checking the asset-pricing performance of the λ-shock is therefore only a
test as to whether the variables included in the VAR contain information relevant to pricing
the given portfolios. Tables 6–9 present the results from the two-pass regression technique
of Fama and MacBeth (1973). During this exercise, I treat the uncovered λ-shock as a
known factor when estimating the two-pass regression model. To estimate the risk premium
associated with the λ-shock, I apply the GMM procedure described in Cochrane (2005) and
implemented by Burnside (2011).

Overall, the pricing performance of the VAR (or equivalently, the λ-shock) is comparable
with the 3-factor model of Fama and French (1993).28 Moreover, as explained in the main
text (Section 2), finding the λ-shock implies that the other four orthogonalised shocks have
zero covariance with the implied SDF, and therefore the associated estimated prices of
risk are numerically zero, as shown in panel B of Tables 6–9. Relatedly, the R2 statistic
(computed based on A.15) associated with the one-factor model using the λ-shock is identical
to the R2 for the model using any set of five orthogonalised shocks or in fact the model which
uses the five reduced-form VAR residuals.

Moreover, the results are also consistent with Lewellen, Nagel, and Shanken (2010) who
pointed out the strong factor structure of the FF25 portfolios which makes it relatively easy
to find factors that generate high cross-sectional R2s. Hence, they prescribed to augment
the FF25 with the 30 industry portfolios of Fama-French to relax the tight factor structure
of the FF25. Indeed, the cross-sectional R2 drops drastically from 0.82 to 0.19 for the 1-
factor model without a common constant, and it drops from 0.65 to 0.09 for the 3-factor
model of Fama-French without a common constant. This can be interpreted as the relevant
information content of the VAR being much smaller for pricing the FF55 portfolios than
for pricing the FF25 portfolios. Nevertheless, augmenting the VAR to improve pricing
performance is unnecessary: the macroeconomic shock that captures all relevant information
for pricing the cross section (irrespective of whether the information content is relatively
small or large) bears virtually the same economic characteristics as the λ-shock using the
FF25 portfolios. The IRFs are similar for the λ-shock using the FF25 and the FF55 (Figures
2 and 17), and the time-series of the shocks implied by the two portfolios have a 0.89
correlation coefficient on the 1964-2015Q3 sample.

27These results are available upon request.
28Applying the 3-factor model to the FF25 portfolios (Table 7) yields similar results to those obtained in

the literature (e.g. Petkova (2006)).
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Table 6: Results from the Two-pass Regressions, FF55 Portfolios

Factor Prices R2

Panel A: 1-factor Model with the λ-Shock
Constant λ-Shock

0.78 0.54 0.28
(0.56) [0.64] (0.23) [0.26]

0.84 0.19
(0.27) [0.35]

Panel B: 5-factor Model with the λ- and Other VAR Shocks
λ-Shock Shock2 Shock3 Shock4 Shock5 Shock6
0.84 0.00 0.00 0.00 0.00 0.00 0.19

(0.20) [0.25]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB
3.13 -1.44 0.73 0.66 0.40

(0.73) [0.76] (0.92) [0.95] (0.42) [0.43] (0.40) [0.40]
1.66 0.75 0.50 0.09

(0.60) [0.60] (0.42) [0.43] (0.40) [0.40]
Notes: This table reports the cross-sectional regressions using the excess returns on the FF55 portfolios. The coefficients are
expressed as percentage per quarter. Panel A presents results for the 1-factor model where the identified λ-shock is used as the
sole pricing factor. Panel B presents the results for five-factor model using all orthogonalised shocks from the VAR(2). Panel
C presents results for the Fama-French 3-factor model. MKT is the market factor, HML is the book-to-market factor and SMB
is the size factor. OLS standard errors are in parentheses, whereas standard errors using the Shanken (1992) procedure are in
brackets. The R2 statistic is computed based on A.15. The sample period is 1964Q1-2015Q3.

Table 7: Results from the Two-pass Regressions, FF25 Portfolios

Factor Prices R2

Panel A: 1-factor Model with the λ-Shock
Constant λ-Shock

0.22 1.10 0.83
(0.71) [1.07] (0.25) [0.38]

1.21 0.82
(0.35) [0.56]

Panel B: 5-factor Model with the λ- and Other VAR Shocks
λ-Shock Shock2 Shock3 Shock4 Shock5 Shock6
1.21 0.00 0.00 0.00 0.00 0.00 0.82

(0.22) [0.34]
Panel C: The Fama-French 3-factor Model
Constant MKT HML SMB
3.26 -1.62 1.14 0.65 0.73

(0.95) [1.00] (1.12) [1.16] (0.41) [0.41] (0.39) [0.40]
1.55 1.21 0.69 0.65

(0.60) [0.60] (0.41) [0.42] (0.39) [0.40]
Notes: See notes under Table 6.
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Table 8: Results from the Two-pass Regressions, 25 Profitability-Size Portfolios

Factor Prices R2

Panel A: 1-factor Model with the λ-Shock
Constant λ-Shock

0.03 1.46 0.61
(0.65) [1.17] (0.49) [0.88]

1.48 0.61
(0.47) [0.86]

Panel B: 5-factor Model with the λ- and Other VAR Shocks
λ-Shock Shock2 Shock3 Shock4 Shock5 Shock6
1.48 0.00 0.00 0.00 0.00 0.00 0.61

(0.44) [0.79]
Panel C: The Fama-French 3-factor Model

MKT HML SMB
2.78 -1.09 1.03 0.65 0.65

(1.00) [1.04] (1.17) [1.20] (0.64) [0.65] (0.40) [0.40]
1.50 1.97 0.63 0.56

(0.60) [0.60] (0.73) [0.78] (0.40) [0.41]
Notes: See notes under Table 6.

Table 9: Results from the Two-pass Regressions, 25 Investment-Size Portfolios

Factor Prices R2

Panel A: 1-factor Model with the λ-Shock
Constant λ-Shock

0.41 1.01 0.59
(0.61) [0.89] (0.31) [0.45]

1.21 0.56
(0.37) [0.58]

Panel B: 5-factor Model with the λ- and Other VAR Shocks
λ-Shock Shock2 Shock3 Shock4 Shock5 Shock6
1.21 0.00 0.00 0.00 0.00 0.00 0.56

(0.20) [0.31]
Panel C: The Fama-French 3-factor Model

MKT HML SMB
1.68 0.06 1.77 0.46 0.76

(1.05) [1.11] (1.19) [1.24] (0.52) [0.53] (0.40) [0.40]
1.68 2.10 0.43 0.74

(0.60) [0.60] (0.49) [0.51] (0.40) [0.40]
Notes: See notes under Table 6.
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B.9 The λ-shock, Monetary Policy Shocks and TFP News Shocks

An application of the proposed orthogonalisation strategy to the standard equity portfolios
lead to the result that the estimated λ-shock bears a close empirical relationship both with
TFP news shocks and with monetary policy shocks. As briefly discussed in the main text,
a simple explanation for such an ambiguity is that TFP news shocks and monetary policy
shocks are highly correlated in the data.

To provide evidence for this, I use the VAR model of Kurmann and Otrok (2013) to
identify a monetary policy shock using Cholesky orthogonalisation as done by Sims (1980),
Christiano, Eichenbaum, and Evans (1999) and many others in the monetary policy literat-
ure. In this case, I deliberately use exactly the same VAR specification as used by Kurmann
and Otrok (2013) when they identified a TFP news shock so that I can learn about differ-
ences and similarities across the two identification themes without changing the information
set. The upper panel of Figure 19 plots the estimated time-series of the TFP news shocks
(black dashed line) against the monetary policy shock series identified with Cholesky or-
thogonalisation (red solid line). The correlation between the two series is strikingly high
(0.96), raising serious questions about the orthogonality of these shocks with respect to one
another.

Figure 19: Comparing TFP News Shocks against Monetary Policy Shocks: Results from
Kurmann and Otrok (2013)’s VAR and from Smets and Wouters (2007)’s DSGE Model.
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Notes: The TFP news shock series (black dashed line) are the ones plotted in Figure 5 on pp. 2625 of Kurmann and Otrok
(2013) who apply the method of Uhlig (2004) to identify a TFP news shock over the period 1959Q2-2005Q2. The monetary
policy shock series in the upper panel (red solid line) are identified with Cholesky identification as in Christiano, Eichenbaum,
and Evans (1999), using the same variables and lag length as Kurmann and Otrok (2013). The monetary policy shock series
in the lower panel (blue solid line) are the estimated time-series of innovations in the Taylor-rule in the DSGE model of Smets
and Wouters (2007).
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Of course, the identification of monetary policy shocks with Cholesky orthogonalisation is
only one of the many possible identification strategies. Therefore, I provide additional evid-
ence from the structural model of Smets and Wouters (2007) which is a dynamic stochastic
general equilibrium (DSGE) model estimated with Bayesian methods. Monetary policy
shocks in this framework are the estimated innovations in a Taylor-type monetary policy
rule. The estimated time-series of these structural innovations from the DSGE model are
plotted in the lower panel of Figure 19 (blue solid line) against the TFP news shocks (black
dashed line) of Kurmann and Otrok (2013). The correlation between these two series is still
remarkably high (0.81).

I interpret these findings that the ambiguous characterisation of the estimated λ-shock
does not reflect the weakness of my orthogonalisation theme, but is a result of the high
empirical correlation between the two, well-known structural disturbances that the λ-shock
resembles. To the best of my knowledge, this empirical regularity has not been documented
in the literature yet, and it could be subject to further research. For example, the high
empirical correlation may be because of the true correlatedness of these structural disturb-
ances (Curdia and Reis, 2010). An alternative, negative reading of this finding is that
it is an identification problem in the literature. To provide some suggestive evidence for
this, it is instructive to first review the main assumption of Kurmann and Otrok (2013)’s
identification, which builds on the premise that observed technology follows the exogenous
process:

log TFPt = v (L) εcurrentt + d (L) εnewst , (B.1)

which assumes that technology is driven by two uncorrelated innovations: one related to
current innovations affecting TFP in t (εcurrentt ), and the other one (εnewst ) which affects
TFP only in t + 1 onwrads. The exogeneity assumption B.1 is used together with zero
restrictions on contemporaneous movement on observed TFP. They implement the iden-
tification theme following Barsky and Sims (2011) which in turn builds on Uhlig (2004).
This entails searching for a structural shock in the VAR which (i) does not move TFP on
impact, and (ii) explains the maximal amount of the forecast error variance in TFP over
some forecast horizon (40 quarters).

The question then is whether a small amount of violation of assumption B.1 could deliver
“TFP news shocks” that can act as monetary policy shocks. I find that assumption B.1 does
seem to be violated empirically. For example, the observed utilisation-adjusted TFP measure
of Fernald (2012) that Kurmann and Otrok (2013) uses is considerably cyclical in the data.
They use vintages of TFP growth that can have about 0.4–0.5 correlations with output
growth, compared to most recent vintages that have a lower contemporaneous correlation
(Sims, 2016). Of course, correlation coefficients are only crude measures of cyclicality, and
it is more instructive to analyse the conditional dynamic relationship in a VAR.
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Figure 20: Assessing the Conditional Cyclicality of the Observed TFP measure: The Effect
of a Monetary Policy Shock Using the Romer and Romer (2004) Narrative Measure
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Notes: The Figure shows the IRFs for TFP and the cumulative sum of the Romer and Romer (2004) series (updated by
Tenreyro and Thwaites (2016)) from a VAR(4) model. The sample period is 1969Q1-2005Q2. The model includes a constant,
but results with a constant and a linear/quadratic trend are very similar. The shaded areas show 95% wild-bootstrapped
confidence bands.

Therefore I re-estimate the five-variable VAR model of Kurmann and Otrok (2013) after
replacing the short-term interest rate with the cumulative sum of the monetary policy in-
novations of Romer and Romer (2004) and apply Cholesky orthogonalisation in order to
measure the cyclicality of TFP conditional on exogenous monetary policy shocks. Thereby
I follow the most recent practice of estimating monetary policy effects in VAR models using
narrative measures (Cloyne and Hurtgen, 2016). To focus the attention to the response of
TFP, Figure 20 shows only two of the five sets of the IRFs in response to a one standard
deviation contractionary shock to monetary policy. Just like in the case of TFP news shock,
the monetary policy shock induces a delayed response in TFP. Moreover, the peak response
(based on the point estimate) is around 0.2% in absolute value, which is also very similar to
the peak effect of a TFP news shock on TFP. The endogenous reaction of TFP to monetary
policy shocks displayed by Figure 20 (i) can make it difficult to apply assumption B.1 to
identifying a TFP news shock, and as a result (ii) it may be that the ’identified’ TFP news
shock (εnewst ) is actually picking up some of these monetary policy effects. This could be
one of the explanations behind the large empirical correlations displayed by Figure 19.

B.10 Results from the UK

To check whether the results are similar when looking at countries other than the US, I
apply the proposed VAR methodology to UK data, covering the period 1970Q1-2012Q4. One
advantage of using data for the UK is related to the availability of both comparable monetary
policy shock series and comparable test assets across the two countries in question. To
estimate the λ-shock, I use the cross-section of 16 equity portfolios (FF16UK), constructed
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by Dimson, Nagel, and Quigley (2003). Their portfolio formation closely follows Fama and
French (1993), by creating portfolios sorted on size-B/M, whereby breakpoints were applied
to the 40th, 60th and 80th percentiles of market capitalisation and to the 25th, 50th and
75th percentiles of book-to-market. To estimate the γ-shock, I use excess returns on the
FTSE All-Share index from Chin and Polk (2015), and I also use their series of the Price-
Earnings (PE) ratio, as an alternative predictor (given the lack of available CAY measure
for the UK).

To keep the empirical model close to the US counterpart presented above, I estimate
a VAR(2) model with five macroeconomic variables: log of consumption, log of GDP, log
of CPI, the Bank of England policy rate, and the term spread defined as the difference
between the ten-year and one-year constant maturity Gilt rates. Given the open-economy
nature of the UK and also the lack of available time-series for the default spread, I use the
dollar-sterling exchange rate as the sixth variable in the VAR.

Forecasting Excess Returns in the UK As in my baseline model for the US (Table
1), I construct the γ-shock for the UK by maximising the corresponding return forecasting
power at 4-quarter horizon, and using the same γ-shock, I compute the results for different
horizons ranging from one quarter ahead up to two years ahead. Panel A reports the results
using the actual VAR variables as predictors; Panel B shows the results using the Price-
Earnings (PE) ratio used by Chin and Polk (2015); Panel C reports the results using the
three counterfactual VAR variables induced by the γ-shock; Panel D reports the results
using the counterfactual variables induced by all other shocks that are orthogonal to the
γ-shock.

Panel A and Panel B of Table 10 are consistent with my baseline results for the US
(Table 1) and also corroborate previous evidence for the US on the relevance of valuation
ratios to predicting excess results. For example, the last column of the table shows that the
PE variable explains around 26% of two-year ahead excess stock market returns; whereas
the regression that includes the last three variables of my baseline VAR only explains 16%
of excess returns at the same horizon. In contrast, variation in the same VAR variables that
is induced by the γ-shock explains about 29% of excess returns at the two-year horizon.

Impulse Response for the UK The upper panel of Figure 21 shows the IRFs for the
λ-shock and for Cholesky-orthogonalised interest rate innovations, implied by the UK data.
The results are quantitatively very similar to my baseline Figure 21, implied by the US data,
with the IRFs of λ-shock being virtually identical to Cholesky interest rate innovations. The
lower panel of Figure 21 shows the results for the γ-shock along with the λ-shock. The
dynamics are qualitatively very similar to those found the US. An additional finding is that
a contractionary λ-shock causes an appreciation of the nominal exchange rate, whereas a
negative γ-shock causes a depreciation.
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Table 10: Forecasting Excess Returnsin the UK

Forecast Horizon H
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q

Model A: Actual VAR Variables
BoE 0.20 0.44 0.70 0.93 1.19 1.50 1.78 2.11

(0.84) (1.03) (1.26) (1.51) (1.73) (1.84) (2.03) (2.30)
TERM 1.07 2.29 3.39 4.23 4.73 5.26 6.03 6.75

(1.32) (1.66) (1.94) (2.16) (2.21) (2.27) (2.46) (2.59)
EXCH -0.06 -0.14 -0.21 -0.27 -0.32 -0.38 -0.45 -0.51

(-1.41) (-1.32) (-1.25) (-1.15) (-1.10) (-1.22) (-1.43) (-1.70)
[0.01] [0.04] [0.07] [0.08] [0.09] [0.11] [0.14] [0.16]

Model B: PE
PE -0.37 -0.79 -1.23 -1.68 -2.10 -2.50 -2.95 -3.30

(-1.33) (-1.58) (-2.13) (-2.99) (-3.80) (-3.80) (-3.69) (-3.77)
[0.02] [0.04] [0.07] [0.11] [0.14] [0.18] [0.22] [0.26]

Model C: Counterfactual VAR Variables Induced by the γ-Shock
BoE 0.18 0.31 0.47 0.61 0.75 0.94 1.14 1.35

(0.76) (0.69) (0.75) (0.79) (0.84) (0.95) (1.10) (1.30)
TERM 1.28 2.75 4.20 5.59 6.70 7.83 8.97 10.02

(1.13) (1.43) (1.83) (2.27) (2.52) (2.70) (2.98) (3.22)
EXCH -0.12 -0.24 -0.35 -0.46 -0.56 -0.67 -0.78 -0.88

(-2.00) (-1.53) (-1.32) (-1.23) (-1.23) (-1.36) (-1.58) (-2.03)
[0.02] [0.06] [0.09] [0.13] [0.16] [0.20] [0.24] [0.29]

Model D: Counterfactual VAR Variables Induced by All Other Shocks
BoE 0.11 0.24 0.39 0.49 0.63 0.86 1.08 1.39

(0.50) (0.58) (0.69) (0.72) (0.81) (0.93) (1.05) (1.23)
TERM 0.23 0.39 0.47 0.00 -0.74 -1.14 -0.93 -0.64

(0.31) (0.29) (0.27) (0.00) (-0.26) (-0.31) (-0.24) (-0.16)
EXCH -0.02 -0.04 -0.07 -0.07 -0.06 -0.09 -0.13 -0.17

(-0.29) (-0.34) (-0.38) (-0.29) (-0.21) (-0.29) (-0.41) (-0.52)
[-0.02] [-0.01] [-0.01] [-0.01] [-0.00] [0.01] [0.02] [0.03]

Notes: The table reports results from regressions of excess returns on lagged variables. H denotes the return horizon in
quarters. The dependent variable is the sum of H log excess returns on the CRSP based S&P Composite Index. The regressors
are one-period lagged values of actual time-series of the Bank of England base rate (BoE), the term-spread (TERM) and the
dollar-sterling nominal exchange rate (EXCH) in Model A, the Price-Earnings (PE) ratio of Chin and Polk (2015) in Model B,
and the counterfactual time-series of BoE, TERM and EXCH (induced by the γ-shock) from a six-variable VAR(2) estimated
over 1970Q1-2012Q4. The γ-shock is constructed so that the corresponding forecast power at the four-quarter horizon is
maximised. For each of the three regressions, the table reports the OLS estimates of the regressors, the t-statistics using the
Hansen and Hodrick (1980) correction (as implemented in Cochrane (2011)) are in parentheses, and adjusted R2 statistics are
in the bolded square brackets. Both the PE measure and the counterfactual predictors are treated as known variables.

Moreover, similar to the US case, the estimated time-series of the λ-shock is empirically
related to monetary policy shocks. The monetary policy shock series of Cloyne and Hurtgen
(2016) and the estimated λ-shock series have around 60% correlation on the overlapping
sample (1975Q1-2007Q4).29 Overall, the results obtained for the UK are similar to those
obtained for the US.

29The methodology of Cloyne and Hurtgen (2016) follows that of Romer and Romer (2004) by trying to
eliminate much of the endogenous movement between the interest rate and other macroeconomic variables
as well as to control for the effects related to current expectations of future economic conditions.
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Figure 21: Results from the UK

(a) Impulse Responses to a λ-shock and to an Interest Rate Shock

Consumption

%

5 10 15 20 25 30

−1

−0.5

0

GDP

%

5 10 15 20 25 30
−1

−0.5

0

Price Level

%

5 10 15 20 25 30
0

0.5
1

1.5

Interest Rate

%
5 10 15 20 25 30

0

0.5

1

Term Spread

Quarters

%

5 10 15 20 25 30

−0.4

−0.2

0

Quarters

%
Exchange Rate

 

 

5 10 15 20 25 30
−1

0

1

2 Cholesky Interest Rate Shock
λ−Shock

(b) Impulse Responses to a γ-Shock and to a λ-Shock
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. The VAR(2) is estimated
on a subsample 1970Q1-2012Q4. The FF16UK is (Dimson, Nagel, and Quigley, 2003) to construct the λ-shock. While the
VAR is estimated on full sample, the rotation of the variance-covariance matrix is based on the 1970Q1-2001Q4, because the
FF16UK series end in 2001Q4. The excess returns on the FTSE All-Share index (Chin and Polk, 2015) are used to constructed
the γ-shock. In the upper panel, the blue crossed lines are λ-shock, and the blacked circles lines are Cholesky-orthogonalised
interest rate shock with the associated 95% confidence band (using wild-bootstrap). The IRFs are normalised to increase the
interest rate by 100bp. In the lower panel, the magnitude of both shocks is one standard deviation.
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