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Abstract

Only half of all startups survive past the age of �ve and surviving businesses

grow at vastly di�erent speeds. Using micro data on employment in the population

of U.S. businesses, we estimate that the lion's share of these di�erences is driven

by ex-ante heterogeneity across �rms, rather than by ex-post shocks. We embed

such heterogeneity in a �rm dynamics model and study how ex-ante di�erences

shape the distribution of �rm size, �up-or-out� dynamics, and the associated gains

in aggregate output. �Gazelles� �a small subset of startups with particularly high

growth potential� emerge as key drivers of these outcomes. Analyzing changes in

the distribution of ex-ante �rm heterogeneity over time reveals that gazelles are

driven towards extinction, creating substantial aggregate losses.
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1 Introduction

High-growth �rms are widely seen as pivotal contributors to economic prosperity, if only

for the large number of jobs that they create, see e.g. Haltiwanger, Jarmin, Kulick, and

Miranda (2016). But what is it that distinguishes such �rms from others that stay

small throughout their lives? One view is that, following entry, �rms are hit by ex-post

shocks to productivity or demand; some startups are lucky and grow into large �rms. An

alternative view is that there are ex-ante di�erences in the growth pro�les of startups.

Some types of startups are poised for growth, for example due to a highly scalable

technology or business idea, whereas others are destined to stay small. Although both

views seem plausible, there is little empirical evidence on the relative importance of the

two in shaping �rm dynamics.

While their origins are not yet fully understood, �rm dynamics have long been rec-

ognized in the literature as a key determinant of macroeconomic outcomes (Hopenhayn

and Rogerson (1993), Melitz (2003), Klette and Kortum (2004)). More recently, Decker,

Haltiwanger, Jarmin, and Miranda (2016) have documented a downward trend in the

skewness of �rm growth rates, and put forward the idea that a disappearance of high-

growth �rms might have driven the slump in U.S. employment and productivity growth,

observed over the last decade. However, the origins and implications of the trend are

still unclear. Possibly, the U.S. no longer o�er a fertile ground for entrepreneurs to cre-

ate high-potential startups, founded on ambitious business models. Clearly, this would

have important repercussions for the U.S. macro economy. Alternatively, the trend

could re�ect a mere change in the distribution of ex-post shocks faced by individual

�rms, which might largely wash out at the aggregate level.

This paper uses the Longitudinal Business Database (LBD), an administrative panel

covering nearly all private employers in the United States from 1976 to 2012, to dissect

the �rm growth process and changes thereof. We follow startups for twenty years after

they enter and estimate the extent to observed di�erences across �rms are driven by

ex-ante heterogeneity and to what extent they are formed by ex-post shocks.1 We do so

1Another important dimension of heterogeneity, on which we do not focus in this paper, relates
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using both a reduced-form model and a structural �rm dynamics model, both of which

allow for heterogeneous ex-ante pro�les as well as di�erent types of ex-post shocks. The

reduced-form model has the bene�t of simplicity and yields analytical formulas which

help us understand the identi�cation of the key parameters, whereas the structural

�rm dynamics model accounts for endogenous selection. In addition, the structural

model allows us to distinguish between types of startups with di�erent ex-ante growth

and survival pro�les, to analyze how their prevalence has changed over time, and to

quantify the aggregate consequences of such changes.

Our central piece of empirical evidence is the cross-sectional autocovariance function

of business-level employment by age. We thereby take inspiration from the earnings dy-

namics literature, which has long recognized that autocovariances help to distinguish

shocks from deterministic pro�les (see e.g. MaCurdy, 1982; Abowd and Card, 1989;

Guvenen, 2009; Guvenen and Smith, 2014). Perhaps surprisingly, the literature on �rm

dynamics does not have a similar tradition. To the best of our knowledge, the basic au-

tocovariance structure of employment by age has not been systematically documented.

Instead, the �rm dynamics literature has emphasized the pro�les of average size and exit

by age, see e.g. Haltiwanger, Jarmin, and Miranda (2013), Hsieh and Klenow (2014)

and Akcigit, Alp, and Peters (2017).2 We also target these important moments in the

structural model, but highlight the wealth of additional information that is embodied

in the autocovariance structure.

A central �nding of our study is that ex-ante heterogeneity accounts for a large share

of the cross-sectional dispersion in employment, conditional on age, ranging from more

than ninety percent in the �rst year after entry to around forty percent twenty years

later. This �nding relates to several earlier studies. Abbring and Campbell (2005) use

sales data of Texas bars in the �rst year after entry. They specify a sophisticated model

tailored to this industry and estimate that pre-entry scale decisions account for about

40 percent of the variation in sales in the �rst year. Campbell and De Nardi (2009) and

to the role of supply versus demand factors. For evidence on this, see e.g. Hottman, Redding, and
Weinstein (2016) and Foster, Haltiwanger, and Syverson (2016).

2Cabral and Mata (2003) document the evolution of the skewness of the size distribution with age.
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Hurst and Pugsley (2011) present survey evidence that many nascent entrepreneurs do

not expect their business to grow large.3 Sedlá£ek and Sterk (2017) document strong

cohort e�ects in �rm-level employment, depending on the state of the business cycle

in the year of entry. The importance of the composition of the �rm population is also

emphasized by Pugsley and �ahin (2016), who document a strong trend in the U.S.

towards older �rms, which is the result of accumulating startup de�cits.

The structural �rm dynamics model we employ in our analysis follows the tradition

of Hopenhayn (1992), Melitz (2003), and Luttmer (2007), and features endogenous entry

and exit and general equilibrium forces. We introduce a multi-dimensional idiosyncratic

process into this framework, to allow not only for persistent and transitory ex-post

shocks, but also for heterogeneity in ex-ante growth and survival pro�les. This relatively

rich process aligns with the reduced-form evidence and is needed to obtain a good �t

with the empirical autocovariance structure. As such, our empirical evidence points

towards models allowing for ex-ante di�erences in growth across �rms, along the lines

of e.g. Luttmer (2011).

After taking the structural model to the data, we show that ex-ante heterogeneity is

not only an important determinant of size dispersion, but also of the well-documented

�up-or-out� dynamics. That is, the fact that many young �rms shut down while surviv-

ing businesses grow quickly is in large part driven by ex-ante heterogeneity. The impact

of this materializes via selection on ex-ante growth pro�les: �rms with little growth

potential exit, allowing �rms with high potential to blossom. Indeed, we �nd that se-

lection on ex-ante heterogeneity, as well as its interaction with ex-post shocks, makes

the age pro�le of average size substantially more upward-sloping. Associated with this

steeper slope is a large gain in aggregate output. By contrast, ex-post shocks alone

create only small selection e�ects and hence by themselves matter little for aggregate

output.

We also examine speci�cally the contribution of startups with high growth potential,

known as �gazelles� in the literature. The model allows us to back out the distribution of

3Guzman and Stern (2015) and Belenzon, Chatterji, and Daley (2017) show that �rm growth is
partly predictable based on observable characteristics at the time of startup.
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ex-ante growth pro�les, which we exploit to identify a subset of high-potential startups

with projected annual growth of more than twenty percent in the �rst �ve years after

entry. We �nd that such ex-ante gazelles account for only about �ve percent of all

startups. Nonetheless, they contribute greatly to the positive slope of the age pro�le of

average size, and to the associated gains in aggregate output.

Finally, we use the model to understand the sources and consequences of an apparent

structural change in the growth dynamics of U.S. �rms. We consider two subsamples of

the data (1976-1996 and 1992-2012). Across these two subsamples, the autocovariance

matrix has remained remarkably stable, and so has the pro�le of exit by age. However,

what has changed is the pro�le of average size by age. This pro�le has �attened,

implying less growth on average in the recent sample. This �nding relates to the evidence

presented by Hsieh and Klenow (2014) who document that the average size pro�le in

India and Mexico is much �atter than in the U.S., and �nd large implications for

aggregate productivity.

Examining the �attening of the average size pro�le more closely, we observe that it

occurred in a staggered manner. That is, it happened due to �atter pro�les of incoming

cohorts of startups since the late 1980's, rather than as a simultaneous decline in the

size of older �rms. This observation suggests that a change in the distribution of ex-ante

growth pro�les was responsible for the �attening.

To study the underlying changes and their implications directly, we re-estimate the

model on the two subsamples. We then evaluate how the ex-ante growth pro�les of

startups has changed over time. We �nd a substantial decline in the prevalence of

ex-ante gazelles in the population of startups, and that the growth pro�le of gazelles

beyond age �fteen has �attened. These changes together account for about half of the

�attening of the average size pro�le across all �rms, despite the fact that gazelles make

up only a small fraction of all startups.

Our �ndings thus con�rm with the concerns raised by Decker, Haltiwanger, Jarmin,

and Miranda (2016) on the disappearance of high-growth �rms. Moreover, our results

show that this phenomenon is primarily due to a change in ex-ante pro�les of startups,
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dating back three decades. Finally, we �nd that the aggregate output loss implied by

the change in �rm dynamics between the two samples is about 4.5 percent, with larger

losses to follow if the observed trend continues.

The remainder of this paper is organized as follows. Section 2 presents the data, the

reduced-form model, and initial estimates of the importance of ex-ante heterogeneity

for size dispersion. Section 3 describes the structural �rm dynamics model and the

parametrization procedure. Baseline results from the structural model are presented

in Section 4, after which Section 5 presents the results from the split-sample analysis.

Finally, Section 6 concludes.

2 Reduced-form evidence

This section estimates to what extent cross-sectional variation in employment is driven

by ex-ante heterogeneity and to what extent it is formed by ex-post shocks. We begin by

describing our data set and the central piece of empirical evidence used in the estimation:

the autocovariance function of logged employment, at the establishment- and �rm-

level. Next, we specify and estimate a �exible employment process incorporating both

ex-ante heterogeneity and ex-post shocks. We show analytically that all the relevant

model parameters can be identi�ed from the autocovariance function, and we use the

analytical formulas to understand which features of the data drive the results.

2.1 Data

The analysis is based on administrative micro data on employment in the United States,

taken from the from Census Longitudinal Business Database (LBD). The data cover

almost the entire population of employers over the period between 1979 and 2012. As

the unit of analysis we consider logged employment in both establishments and �rms.4

We construct a panel of employment at the establishment- and �rm-level in the year of

4Establishments are the physical units of a �rm, located a speci�c addresses. A �rm can consist of
one or multiple establishments. The data are a snapshot taken in the month of March of each year.
The age of an establishment is computed as the current year, minus the �rst year an establishment
came into existence. The age of a �rm is computed as the age of its oldest establishment.
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startup (age zero) up to age nineteen. Prior to the analysis, we take out a �xed e�ect

for the birth year of the establishment (or �rm) and for its industry classi�cation at

the 4-digit level. In order to streamline the discussion, we will use the term �business�

whenever we refer to both establishments and �rms simultaneously.

2.2 The autocovariance structure of employment

Figure 1 presents our main piece of empirical evidence: the cross-sectional autocovari-

ance structure of logged employment, conditional on age (a). In order to understand

this structure more easily, we break down the autocovariances into standard deviations,

displayed in the left panels, and autocorrelations, shown in the right panels. The �gure

presents this information for both establishments (top panels), and for �rms (bottom

panels), as well as for a balanced panel, containing businesses surviving at least up

to age 19, and an unbalanced panel, including all businesses in our data set. Clearly,

di�erences in autocovariances between the balanced and unbalanced panels originate

primarily from di�erent cross-section dispersion by age, while the autocorrelations are

remarkably similar across the two panels.

Let us �rst focus on the cross-sectional standard deviations by age, shown in the left

panels. Standard deviations are between 1 and 1.4 log points for both establishments

and �rms, indicating large size di�erences even at young ages. Also, the cross-sectional

dispersion generally increases with age and this is true for both the balanced and unbal-

anced panels. The latter indicates that the observed fanning out of the size distribution

with age is not purely driven by selective exit of certain businesses.5

The right panels of Figure 1 depict the associated autocorrelations of logged employ-

ment across businesses, by age. Keeping the initial age h �xed, the autocorrelations

decline convexly with lag length a − h. Importantly, the autocorrelations appear to

stabilize at relatively high levels. For instance, the autocorrelations between logged

employment at ages zero and ten and zero and nineteen are 0.55 and 0.44, respectively.

On the other hand, for a �xed lag length, the autocorrelations are increasing in age.

5The exception to this pattern is the �at age pro�le of cross-sectional dispersion for establishments
below age �ve in the balanced panel.
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Figure 1: Standard deviations and autocorrelations of log employment by age
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Note: The left panels show cross-sectional standard deviations of log employment by age (a) for es-
tablishments (top left panel) and �rms (bottom left panel). The right panels show autocorrelations of
log employment between ages a and 0 ≤ h ≤ a for establishments (top right panel) and �rms (bottom
right panel). �Balanced� refers to a panel of establishments (�rms) which survived at least up to age
19, while �unbalanced� refers to a panel of all establishments (�rms).

For instance, the correlation of log employment between age zero and age nine is 0.56,

whereas the corresponding correlation between age ten and nineteen is 0.73. These

empirical patterns contain important information on the relative importance of ex-ante

heterogeneity and ex-post shocks, as we will discuss below in detail.

2.3 Employment process

To understand what we can learn from the autocovariances about the importance of ex-

ante versus ex-post heterogeneity, we now consider a reduced-form model of employment

which includes both sources of heterogeneity. As will become clear, the model is �exible

enough to provide a good description of the observed patterns in the data. It also

nests as special cases reduced-form representations of several prominent structural �rm

dynamics models in the literature, such as the models of Hopenhayn and Rogerson
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(1993) and Melitz (2003).

Let ni,a be the employment level of an individual business i at age a and consider

the following process for this variable:

lnni,a = lnnEXAi,a + lnnEXPi,a , (1)

lnnEXAi,a = ui,a + vi,a, (ex-ante component)

lnnEXPi,a = wi,a + zi,a, (ex-post component)

where

ui,a = ρuui,a−1 + θi, ui,−1 ∼ iid(µũ, σ
2
ũ), θi ∼ iid(µθ, σ

2
θ), ρu ∈ [0, 1),

vi,a = ρvvi,a−1, vi,−1 ∼ iid(µṽ, σ
2
ṽ), ρv ∈ [0, 1),

wi,a = ρwwi,a−1 + εi,a, wi,−1 = 0, εi,a ∼ iid(0, σ2
ε), ρw ∈ [0, 1),

zi,a ∼ iid(0, σ2
z).

Here, all shocks are drawn from distributions which are i.i.d. across time and across

�rms, and we let µ denote a mean and σ2 a variance.

In the above process, lnnEXAi,a = ui,a + vi,a captures the ex-ante component, which

is governed by three stochastic, business-speci�c parameters which are drawn indepen-

dently just prior to startup, at age a = 0. The parameter θi is a permanent component

which accumulates gradually with age at rate ρu. The second parameter, ui,−1, is a

transitory ex-ante draw which allows for the possibility that the path of the ex-ante

component starts away from zero. The third parameter, vi,−1, is a second initial condi-

tion which is allowed to die out at its own speed, as the business ages.

In the long run, the ex-ante component reaches a steady state level given by lnnEXAi,∞ =

θi/(1 − ρu). Since this level di�ers across businesses, the process admits heterogeneity

in long-run steady states. Moreover, since initial conditions di�er across businesses, we

allow for heterogeneity in the paths from initial employment towards the steady states.

Finally, since the process includes two separate initial conditions, each with their own

persistence parameter, we allow businesses to gravitate towards their steady-state levels

at di�erent speeds. We thus allow for rich heterogeneity in ex-ante growth pro�les.
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The ex-post shocks enter the model via a second component, lnnEXPi,a = wi,a +

zi,a. Here, wi,a captures persistent ex-post shocks, and is modeled as an autoregressive

process of order one, with i.i.d. innovations given by εi,a and a persistence parameter

denoted by ρw. The initial level of wi,a is normalized to zero for all businesses. We

further introduce purely transitory ex-post shocks via an i.i.d. component denoted by

zi,a. The process for the ex-post component is constructed such that the unconditional

mean is zero at any age, so that it does not capture any of the heterogeneity in ex-ante

pro�les.

The process postulated above nests various speci�cations commonly used in the �rm

dynamics literature to model �rm-level shocks. For example, Hopenhayn and Rogerson

(1993) assume an AR(1) for �rm-level productivity, with a common constant across

�rms and heterogeneous initial draws. In their baseline model without distortions, the

�rm-level shocks map one-for-one into employment. We obtain their speci�cation by

setting σu = σθ = σz = 0 and ρv = ρw. By contrast, Melitz (2003) and Hsieh and

Klenow (2009) allow, like us, for heterogeneity in steady-state levels, but abstract from

ex-post shocks and assume that steady states are immediately reached. We obtain their

process by setting σu = σv = σz = 0, which implies that lnni,a = θi at any age.6

Our baseline process also aligns with models with richer heterogeneity ex-ante pro�les

and/or ex-post shocks, as proposed by for example Luttmer (2011) and Arkolakis (2016)

and Arkolakis, Papageorgiou, and Timoshenko (forthcoming).

2.4 Parameter identi�cation

We now demonstrate the usefulness of the autocovariance matrix in quantifying the

role of ex-ante versus ex-post heterogeneity. We do so by showing analytically that

6Our process also nests speci�cations commonly assumed in the econometrics literature on dynamic
panel data models, see for example Arellano and Bond (1991). This literature typically assumes an
autoregressive process, like Hopenhayn and Rogerson (1993), but allow for heterogeneity in the constant
θi and thus in steady-state levels. Commonly, however, θi is di�erenced out and hence no estimate is
provided for σθ, a key parameter in our application. Moreover, the panel data econometrics literature
commonly assumes that ρu = ρv = ρw. In our application, it turns out that this assumption is
too restrictive to provide a good �t of the observed autocovariance matrix. Our results thus caution
against the use of standard panel data estimators when applied to employment dynamics of young
establishments.
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all the key parameters can be identi�ed from the autocovariance matrix. Given the

process postulated above, the covariance of employment of a business at age a and at

age h = a− j, where 0 ≤ j ≤ a is the lag length, can be expressed as:

Cov (lnni,a, lnni,a−j) = ρjuρ
2(a−j+1)
u σ2

ũ + ρjvρ
2(a−j+1)
v σ2

ṽ (2)

+
(
1− ρa+1

u

) (
1− ρa−j+1

u

) σ2
θ

(1− ρu)2 + ρjw
1− ρ2(a−j+1)

w

1− ρ2
w

σ2
ε + 0jσ2

z .

This result is derived in Appendix A.1. The autocovariance function is a nonlinear

function of the persistence and variance parameters of the components of the underlying

process. Given that in total there are eight such parameters, we need an autocovariance

matrix with at least eight elements for identi�cation.7

To understand the identi�cation, it is useful to consider the autocovariance at an

in�nite lag length, i.e. letting the age a approach in�nity keeping the initial age h = a−j

�xed:

lim
a→∞

Cov (lnni,a, lnni,h) =
1− ρh+1

u

(1− ρu)2σ
2
θ .

When σθ equals zero, i.e. when there is no heterogeneity in steady-state levels, the au-

tocovariance is zero. Thus, long-horizon autocovariances contain valuable information

on the presence of ex-ante heterogeneity in steady-state levels. In Figure 1, autocorre-

lations appear to stabilize at long lag lengths, i.e. at high levels of a given h = a − j,

suggesting that such heterogeneity is indeed a feature of the data.

We can obtain further insight into the identi�cation by considering the �t of an

AR(1) process with a homogeneous constant.8 This restricted process features no het-

erogeneity in steady state levels (σθ = 0) and hence autocovariances become zero at

in�nite lag lengths. In order for the model to �t the high autocovariances observed in

the data, the persistence parameter ρw needs to be close to one. As can be seen from

the second-to-last term in Equation (2), however, this implies that the autocovariance

7Note that the mean parameters µθ, µũ and µṽ are not identi�ed by the autocovariance function.
These parameters, however, are also not needed to quantify the importance of ex-ante versus ex-post
heterogeneity.

8The considered AR(1) process is consistent with the Hopenhayn and Rogerson (1993) model without
adjustment costs.
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function becomes close to being linear in age, a, and in lag length, j. Figure 2 shows

that such linear patterns are in contrast with the data, in which the autocovariance

function is convex in age and concave in lag length.9

In contrast to the AR(1) model, our richer baseline process admits steady-state

heterogeneity. This relaxes the need for the persistence parameters of being close to

one in order to match the long-run autocovariances in the data. Identi�cation of the

various components of the process derives from the fact that each has its own speci�c

impact on how the autocovariance function depends of age and the lag length, as can

be seen from Equation (2).

2.5 Estimation procedure

We estimate the parameters of the process using a minimum distance procedure, as pro-

posed by Chamberlain (1984). Speci�cally, we minimize the sum of squared deviations

of the upper triangular parts of the autocovariance matrix implied by the process, from

its counterpart in the data. Because there is a very large number of observations un-

derlying each element in the empirical autocovariance matrix, we assign equal weights

to all elements in the estimation procedure. See Appendix A.2 for more details. Our

baseline results apply to the balanced panel data set.

2.6 Model �t and parameter estimates

Let us begin by inspecting the model �t of our baseline speci�cation, depicted in the

left panels of Figure 2. The top left panel shows the empirical and model-generated

autocovariance function for establishments and the bottom left panel shows the same

for �rms. In both cases the �t is very good, correctly capturing the convexly declining

pattern of the autocovariances in the lag length, given the initial age h, and the concavely

increasing pattern in age given the lag length j > 0. Finally, the model �ts the non-

monotonic pattern in cross-sectional dispersion by age.

9Note that ρw = 1 would introduce a random walk component, consistent with Gibrat's law. How-
ever, violation of Gibrat's law in the data has been documented in the literature, in particular among
new and young �rms, see e.g. Haltiwanger, Jarmin, and Miranda (2013).

11



Figure 2: Autocovariance matrices: reduced-form models versus data
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Note: Autocovariance of log employment between age a = h + j and age h ≤ a in the data, and in
the baseline model (left panels) and an AR(1) model (right panels). Results are shown for �rms (top
panels) and establishments (bottom panel). Autocovariances in the data are from the balanced panel.

The corresponding parameter estimates are shown in Table 1. A key feature of

our baseline process is the presence of dispersion in long-run steady states, governed

by σθ and ρu. The point estimates imply a standard deviation of long-run steady-

state employment levels of 0.76 for establishments and 0.71 for �rms. These values are

substantial when considering that the overall cross-sectional dispersion of twenty year

old businesses is about 1.4 (see Figure 1).

As discussed above, we also �t an AR(1) process for illustrative purposes. The �t

of this model is considerably worse compared to the baseline, with a root mean squared

error that is two to four times as high as in our baseline (see the bottom line of Table

1). In the literature, the failure of an AR(1) to �t the data well has been established
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Table 1: Parameter estimates from reduced-form model

Establishments Firms

Baseline AR(1) Baseline AR(1)

ρu 0.2059 0.2183
(0.0015) (0.0018)

ρv 0.8415 0.9752 0.8323 0.9771
(0.0010) (0.0001) (0.0014) (0.0001)

ρw 0.9489 0.9752 0.9625 0.9771
(0.0003) (0.0001) (0.0003) (0.0001)

σθ 0.6031 0.5545
(0.0014) (0.0015)

σũ 2.0461 1.7425
(0.0174) (0.0145)

σṽ 0.7378 0.9069 0.6951 0.8304
(0.0017) (0.0009) (0.0021) (0.0009)

σε 0.2554 0.2610 0.2548 0.2676
(0.0004) (0.0002) (0.0004) (0.0003)

σz 0.2623 0.2716
(0.0006) (0.0006)

RMSE 0.0100 0.0387 0.0120 0.0259

Note: RMSE is the root-mean squared error of the autocovariance matrix in the model, relative to
the data.

by Lee and Mukoyama (2015), who study manufacturing plants.

2.7 The importance of ex-ante and ex-post heterogeneity

With the estimated model at hand, we can quantify the relative importance of ex-ante

pro�les and ex-post shocks for the cross-section dispersion in employment. This is done

based on Equation (2). With the lag length j set to zero, this equation provides a

decomposition of the variance of size (log employment), at any given age a, into the

contributions of the ex-ante and ex-post components. Figure 3 plots the fraction of the

total variance that is accounted for by the ex-ante component. Thick lines denote the

age groups used in the estimation, i.e. age zero to nineteen, whereas thin lines represent

an extrapolation for businesses at age 20 or above using the point estimates.10

10The lines in the �gure are point estimates. We have also computed con�dence bands for this
decomposition, but these are extremely narrow due to the very large number of data points used in
the estimation. This is also re�ected in very small standard errors around the point estimates for the
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Figure 3: Contribution of ex-ante heterogeneity to cross-sectional employment disper-
sion
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Note: Contribution of the ex-ante component, lnnEXAi,a , to the cross-sectional variance of log employ-
ment, by age. Thin lines denote age groups not directly used in the estimation. The decomposition is
based on Equation (2) with j = 0.

Figure 3 shows that for businesses in the year of startup, that is at age zero, the ex-

ante component accounts for about 85 percent of the cross-sectional variance in size. The

remainder is due to ex-post shocks that materialized in the �rst year. Considering older

age groups, the contribution of ex-ante heterogeneity declines, but remains high. At age

twenty, ex-ante factors account for 47 percent of the size variance among establishments,

and around 40 among �rms. In the data, more than seventy percent of the businesses

are twenty years old or younger. Our results show that, among these businesses, ex-ante

factors are a key determinant of size. Increasing age towards in�nity, the contribution of

ex-ante heterogeneity stabilizes at around 45 percent for establishments and 35 percent

for �rms. Therefore, even among very old businesses ex-ante factors contribute to a

large chunk of the dispersion in size.

Figure 3 also plots the decomposition for the AR(1) process. While the estimated

contribution of ex-ante heterogeneity among young �rms is comparable to the baseline,

discrepancies arise beyond age �ve. In the long run, the contribution of ex-ante hetero-

parameters, as can be observed from Table 1.
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geneity converges to zero. This happens by construction, as the AR(1) does not admit

heterogeneity in steady-state levels.

3 Structural model

In this section we estimate a structural �rm dynamics model, which has several ad-

vantages relative to the reduced-form analysis. First, the structural model accounts

for selective entry and exit, which might a�ect the estimated importance of ex-ante

and ex-post heterogeneity. Importantly, �rm selection is a multifaceted process which

occurs along various dimensions of heterogeneity. Second, the structural model allows

us to compute aggregates, and quantify the importance of ex-ante and ex-post hetero-

geneity for aggregate outcomes. Finally, since the structural model speaks not only to

the autocovariance structure, but also to the pro�les of average size and exit, by age,

it enables us to fully characterize the population of startups according to their ex-ante

growth and survival potential. We estimate the model for �rms, and report results for

establishments in Appendix B.4.

3.1 The model

We consider a closed general equilibrium economy with heterogeneous �rms and endoge-

nous entry and exit, as in Hopenhayn and Rogerson (1993). Following Melitz (2003) and

others, each �rm is monopolistically competitive and faces a demand schedule which is

downward-sloping in the price they set. To model heterogeneity across �rms, we em-

bed an idiosyncratic process with the same structure as in the reduced-form analysis,

thereby allowing for di�erences in both ex-ante pro�les and ex-post shocks.

Households. The economy is populated by an in�nitely-lived representative house-

hold who owns the �rms and supplies a �xed amount of labor in each period, denoted

by N . Household preferences are given by
∞∑
t=0

βtCt, where β ∈ (0, 1) is the discount
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factor. Ct is a Dixit-Stiglitz basket of di�erentiated goods given by:

Ct =

(∫
i∈Ωt

ϕ
1
η

i,tc
η−1
η

i,t

) η
η−1

,

where Ωt is the measure of goods available in period t, ci,t denotes consumption of good

i, η is the elasticity of substitution between goods, and ϕi,t ∈ [0,∞) is a stochastic and

time-varying demand fundamental speci�c to good i. We consider a stationary economy

from now on and simplify notation by dropping time subscripts.

The household's budget constraint is given by
∫
i∈Ω pici = WN+Π, where pi denotes

the price of good i, W denotes the nominal wage and Π denotes �rm pro�ts. Utility

maximization implies a demand schedule given by ci = ϕi (pi/P )−η C, where P is a price

index given P ≡
(∫

i∈Ω ϕip
1−η
i

) 1
1−η

, so that total expenditure satis�es PC =
∫
i∈Ω pici.

Incumbent �rms. There is an endogenous measure of incumbent �rms, each of which

produces a unique good. Firms are labeled by the goods they produce i ∈ Ω. The

production technology of �rm i is given by yi + f = ni, where yi is the output of the

�rm, ni is the amount of labor input (employment) and f is a �xed cost of operation

common to all �rms, denominated in units of labor. It follows that �rms face the

following pro�t function:

πi = piyi −Wni.

Additionally, given the market structure, each �rm faces a demand constraint given by

yi = ϕi (pi/P )−η Y, (3)

which is the demand schedule of the household combined with anticipated clearing of

goods markets, which implies ci = yi and Y = C.

At the beginning of each period, a �rm may be forced to exit exogenously with

probability δ ∈ (0, 1). If this does not occur, the �rm has the opportunity to exit

endogenously and avoid paying the �xed cost. If the �rm chooses to remain in operation,

it must pay the �xed cost and in turn it learns its demand fundamental ϕi. Given its
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production technology and demand function, the �rm sets its price pi (and implicitly

yi, ni and πi ) to maximize the net present value of pro�ts. The price-setting problem

is static and the �rm sets prices as a constant markup over marginal costs W :

pi =
η

η − 1
W.

We let labor be the numeraire so that W = 1, and de�ne the real wage w ≡ W/P as

the price of labor in terms of the Dixit-Stiglitz consumption basket C. Using this result,

we can express pro�ts as πi = ϕiw
−ηCχ− f , where χ ≡ (η−1)η−1

ηη , and labor demand as

ni = ϕi

(
η
η−1

)−η
w−ηC+f . Note that �uctuations in the demand fundamental directly

map into the �rms' employment.

The demand fundamental ϕi is a function of an exogenous underlying Markov state

vector, denoted si. The value of a �rm at the moment the exit decision is taken, denoted

V , can now be expressed as:

V (si) = max
{
E
[
π
(
s′i
)

+ β (1− δ)V
(
s′i
)∣∣ si] , 0} .

In the above equation s′i denotes the value of the state after the continuation decision

is taken. Accordingly, we can express the pro�t, output, employment and exit policies

as πi = π (s′i), yi = y (s′i), ni = n (s′i), and xi = x (si), respectively.

Firm entry. Firm entry is endogenous and requires paying an entry cost fe, denom-

inated in units of labor. After paying the entry cost at the beginning of a period, the

�rm observes its initial level of si, at which point it becomes an incumbent. Free entry

implies the following condition:

wPfe =

∫
V (s)G (ds) ,

where G is the distribution from which the initial levels of si are drawn.
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Aggregation and market clearing. Let µ (S) be the measure of �rms in S ∈ S,

where is S is the Borel σ−algebra generated by s. Given the exit policy, µ (S) satis�es:

µ
(
S′
)

=

∫
[1− x (s)]F

(
S′|s

)
[µ (ds) +M eG (ds)] ,

whereM e denotes the measure of entrants and F (S′| s) is consistent with the transition

law for si. The total measure of active �rms is given by:

Ω =

∫
µ (ds) .

Labor market clearing implies that total labor supply equals total labor used for pro-

duction, for the �xed cost, and for the entry cost:

N̄ =

∫
y
(
s′
)
µ
(
ds′
)

+

∫
f [1− x (s)] [µ (ds) +M eG (ds)] +M efe.

Stochastic driving process. In line with the reduced-form analysis we integrate the

following exogenous idiosyncratic process for the demand fundamental ϕi,t:

lnϕi,t = ui,t + vi,t + wi,t + zi,t

ui,t = ρuui,t−1 + θi, ui,−1 ∼ iid(µũ, σ
2
ũ) θi ∼ iid(µθ, σ

2
θ) ρu ∈ [0, 1)

vi,t = ρvvi,t−1, vi,−1 ∼ iid(µṽ, σ
2
ṽ) ρv ∈ [0, 1)

wi,t = ρwwi,t + εi,t, wi,−1 = 0 εi,a ∼ iid(0, σ2
ε) ρw ∈ [0, 1)

zi,t ∼ iid(0, σ2
z),

where we re-introduced time indices. Note that the �rm-level state is given by si,t =

[ui,t, vi,t, wi,t, zi,t]. The above process implies that the level of demand faced by a �rm

is determined by both a idiosyncratic ex-ante pro�le, captured by ui,t and vi,t, as well

as ex-post shocks, which enter via wi,t and zi,t.

Discussion: adjustment costs and selection. Ex-post demand shocks are a stan-

dard feature of �rm dynamics models, since demand conditions may change for various

reasons that are beyond the control of the �rm. Considering ex-ante heterogeneity
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across �rms also has a strong tradition in the literature. While in certain models ex-

ante heterogeneity across �rms materialize immediately (see e.g. Melitz, 2003), other

studies consider a gradual accumulation of di�erence, for instance through customer

base accumulation (see e.g. Arkolakis, 2016; Luttmer, 2011; Drozd and Nosal, 2012;

Gourio and Rudanko, 2014; Perla, 2015). While our baseline model allows only for

�passive� accumulation of ex-ante di�erences, we consider endogenous adjustment costs

in Appendix B.3.11 Importantly, incorporating adjustment costs does not change the

main results.

As in any �rm dynamics model with endogenous entry and/or exit, a key channel via

which heterogeneity may impact on aggregate outcomes is selection. Since we integrate

a multi-dimensional idiosyncratic process into the model, selection occurs along several

di�erent competing margins. Importantly, there is no one-to-one mapping between a

particular a value of demand and the survival probability of the respective �rm. For

example, a currently small and unpro�table startup may survive with high probability

if it has su�ciently promising long-run growth potential and only faces poor initial

conditions or ex-post shocks.

3.2 Parametrization and model �t

We now match the model to our data for �rms. Before doing so, we set three parameters

a priori, assuming a model period of one year, which corresponds to the frequency of

our data. First, the discount factor is set to β = 0.96, which implies an annual real

interest rate of about four percent. Second, we set the elasticity of substitution between

goods to η = 6, which is in the ballpark of values common in the literature. Third, we

set the entry cost fe such that the ratio of the entry cost to the operational �xed cost

is fe/f = 0.82, following estimates of Barseghyan and Dicecio (2011).

The remaining parameters are estimated using the the Simulated Method of Mo-

11Our baseline model also abstracts from di�erences in technologies, another form of heterogeneity
often considered in the �rm dynamics literature. However, given that we match our model to em-
ployment data, our model is observationally equivalent to one with heterogeneity in TFP. Moreover,
Hottman, Redding, and Weinstein (2016) and Foster, Haltiwanger, and Syverson (2016) have recently
investigated the relative importance heterogeneity in demand versus technology. They conclude that
demand factors are a major driver of heterogeneity in the data.
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Figure 4: Targeted moments: data and structural model (�rms)
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Notes: Top panel: Autocovariances of log employment between age a = h + j and age h ≤ a in the
data and the model, for a balanced panel of �rms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.

ments. Details of the numerical solution and simulation procedure are provided in

Appendix B.1. Again, we target the upper triangular of the autocovariance matrix of

logged employment, by age, for a balanced panel of �rms surviving up to at least age

nineteen. Now, however, we also target the the age pro�les of the exit rate and average

employment (in an unbalanced panel). In doing so, we assume that all shock innova-

tions are drawn from normal distributions and we normalize the level parameters µu

and µv to zero. In contrast to the reduced-form setup, we further assume that ρv = ρw,

which eases the computational burden substantially.12

Figure 4 illustrates the �t of the model. The upper panel shows that the model �ts

the autocovariance matrix very well, although it overshoots on the variance of logged

employment at age zero. The lower left panel shows average employment by age. In

the data, this pro�le is upward sloping, increasing between about 7 at age zero to 18 at

12This restriction reduces the number of state variables as �rms no longer need to keep track of
wi,t and vi,t separately. Moreover, Table 1 shows that the reduced form estimates of these persistence
parameters are close to each other.
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age nineteen. The model captures this pattern well, although it somewhat undershoots

on the size of very young �rms. The lower right panel shows the annual exit rate

by age. In the data, about eighteen percent of �rms exit between age zero and one.

Subsequently, the exit rate gradually declines, stabilizing at older age categories. The

model matches this pattern, predicting relatively high exit rates at young ages, but

somewhat undershoots on the exit rates of young �rms. Overall, the model provides

a good �t of the three sets of empirical comments, considering that 10 parameters are

used to target 249 moments.

Additionally, we consider how the model �ts the employment distribution by age

and size, which is not directly targeted. Figure 5 shows employment shares of di�erent

age/size bins, in the model and in the data. Overall, the model �ts this distribution

well. The model also provides a similarly good �t of the fractions of �rms in each of

these bins (not shown).

The associated parameter values are shown in Table 2. The �xed cost is estimated

to be 0.54, which is about half the wage of a single employee. The exogenous exit rate

is estimated to be about 4.1 percent. Thus, a substantial fraction of �rms exits for

reasons unrelated to their fundamentals. However, Figure 4 makes clear that there is

also a substantial amount of endogenous exit, as the overall exit rate in the model varies

between 15.5 percent at age zero to 5.8 percent at age nineteen.

The remaining parameters are somewhat di�cult to interpret individually, espe-

cially since the parameter values are for the unconditional distributions, whereas the

equilibrium distributions are truncated by selection. Below, however, we will quantify

the model's implications for the importance of ex-ante heterogeneity and make a direct

comparison to the reduced-form model along this dimension.

4 The importance of ex-ante versus ex-post heterogeneity

In this section we use the structural model to study the importance of ex-ante het-

erogeneity for a number of outcomes highlighted in the literature. We �rst quantify

its importance for cross-sectional dispersion in �rm size, as we did in the reduced-form
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Table 2: Parameter values (�rms)

parameter value

set a priori

β discount factor 0.96
η elasticity of substitution 6.00
fe entry cost 0.44

estimated

f �xed cost of operation 0.539
δ exogenous exit rate 0.041
µθ permanent component θ, mean −1.762
σθ permanent component θ, st. dev. 1.304
σũ initial condition u−1, st. dev. 1.572
σṽ initial condition v−1, st. dev. 1.208
σε transitory shock ε, st. dev. 0.307
σz noise shock z, st. dev. 0.203
ρu permanent component, persistence 0.393
ρv transitory component, persistence 0.988

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The
remaining parameters are set such that the model matches the empirical autocovariance of employment
and the age pro�les of average size and exit rates from age 0 to 19.

model. However, an advantage of the structural model is that it accounts for endogenous

selection of �rms, which potentially has an impact on this quanti�cation.

Next, we study �up-or-out dynamics�, the phenomenon that low-growth �rms tend

to exit, whereas surviving �rms tend to grow quickly. In the literature, such dynamics

have been emphasized as a sign of a well-functioning economy and as an important

contributor to aggregate output and productivity, see for example Haltiwanger, Jarmin,

and Miranda (2013). We use our model to examine the sources of up-or-out dynamics,

by quantifying the importance of ex-ante heterogeneity for the age pro�les of the exit

rate and of average size. This helps us understand whether up-or-out dynamics should

be thought of as a process which sifts out �rms with high ex-ante growth potential, or

as one that re�ects the idiosyncratic risk that �rms face after they enter.

Finally, we evaluate aggregate outcomes, and in particular the aggregate gains that

result from up-or-out dynamics.
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Figure 5: Employment shares of di�erent age/size bins: model versus data (�rms)
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LBD over the corresponding time period.

4.1 Cross-sectional dispersion in employment

We �rst revisit the importance of ex-ante heterogeneity for the cross-sectional dispersion

in employment, conditional on age. De�ning χ ≡ ((η − 1) /η)η w−ηY , the employment

level of �rm i can be expressed as:

ni = χϕEXAi ϕEXPi , (4)

where ϕEXAi = eui+vi is the ex-ante component of demand and ϕEXPi = ewi+zi is

the ex-post component. As in the reduced-form exercise, we can now compute the

contribution of ex-ante heterogeneity to the cross-sectional variance of employment by

shutting down variation in ϕEXPi . In contrast to the reduced-form model, however, the

ex-ante and ex-post component are no longer orthogonal, due to endogenous selection

which tends to induce a negative correlation between the two. This occurs because

�rms with relatively poor ex-ante conditions can survive only if they were exposed to
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favorable ex-post shocks and vice versa. Accounting for this correlation, we decompose

the variance of logged employment as:

V ar (lnni) = V ar(lnϕEXAi ) + V ar(lnϕEXPi ) + 2Cov(lnϕEXAi , lnϕEXPi ),

= Cov(lnϕEXAi , lnni) + Cov(lnϕEXPi , lnni). (5)

In the reduced-form model, the covariance term Cov(lnϕEXAi , lnϕEXPi ) in the �rst

equality is zero, due to the assumption of independently distributed shocks. However,

in the structural model selection induces a non-zero covariance term which, as men-

tioned above, tends to be negative. We therefore decompose the variance according

to the second equality in Equation (5).13 Figure 6 depicts the contribution of ex-ante

heterogeneity in the structural model (solid line), i.e. Cov(lnϕEXAi , lnni)/V ar (lnni),

together with the reduced-form decomposition (dashed line). Both decompositions at-

tribute a similarly large fraction of size dispersion to ex-ante heterogeneity, at any age.

Figure 6 also plots a �selection band� based on the �rst equality in Equation (5).

This band is constructed by attributing, in turn, the covariance term either fully to

the ex-ante component or fully to the ex-post component. This gives us a sense of how

much selection matters in the model. The widening band indicates that selection has an

increasingly important impact on the cross-sectional dispersion of �rm size as �rms age.

Overall, however, the various decompositions re-establish our earlier conclusion that

ex-ante heterogeneity is a key source of size dispersion, in particular among younger

�rms.

4.2 Firm exit

Next, we study the importance of ex-ante heterogeneity for exit, the �out� part of up-

or-out dynamics. One might think that exit is entirely triggered by unexpected ex-post

13Note that when Cov(lnϕEXAi , lnϕEXPi ) = 0, it holds that V ar(lnϕEXAi ) = Cov(lnϕEXAi , lnni)
and V ar(lnϕEXPi ) = Cov(lnϕEXPi , lnni). The decomposition then exactly coincides with the one we
used in the reduced-form analysis.
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Figure 6: Contribution of ex-ante heterogeneity to cross-sectional employment disper-
sion
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shocks. However, exit might also be the result of ex-ante heterogeneity. For example,

if a �rm has an ex-ante demand pro�le that is downward sloping in age, it may be

economically viable in the initial years, but not later on. Hence, the �rm would exit at

some point even without ex-post shocks.

To quantify the importance of ex-ante heterogeneity for exit, we run a counterfactual

simulation in which we use the �rms' baseline decision rules but we completely shut down

ex-post shocks to demand, while preserving exogenous exit shocks. Figure 7 shows the

age pro�le of the exit rate in this counterfactual, together with the exit pro�le in the

baseline model, and the exogenous component of the exit rate, δ. The di�erence between

the latter two is the endogenous component of the exit rate, i.e. the part that is driven

by selection.

As expected, the exit rate is lower without ex-post demand shocks. However, there is
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Figure 7: Exit rates
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ex-post demand shocks (but with exogenous exit), and the exogenous exit rate δ.

still selection and the exit rate in the counterfactual declines with age, as in the baseline.

We can interpret the di�erence between the exit rate without ex-post shocks and the

exogenous exit rate δ as the amount of endogenous exit that is driven by selection on

ex-ante pro�les. Figure 7 then implies that, depending on age, between 30 and 45

percent of overall endogenous exit is driven by selection on ex-ante pro�les. Thus, we

�nd that ex-ante heterogeneity is an important contributor to �rm exit.

4.3 Average size

We now turn to the importance of ex-ante heterogeneity for the �up� part of up-or-

out dynamics. In particular, we consider the age pro�le of average size. The impact

of heterogeneity on this average size pro�le materializes via selection: if small and

low-growth �rms are more likely to exit the economy, then this increases the average

size of the remaining �rms. However, selection is a multifaceted process which is not

only a�ected by a �rm's current fundamentals but also by expectations about how

fundamentals will evolve in the future. This evolution is in turn driven by both the

ex-ante pro�le and by ex-post shocks.
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Figure 8: Average size and selection
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To examine the e�ect of selection on the age pro�le of average size, we conduct

three counterfactuals based on Equation (4), which expresses �rm-level employment as

a function of the �rm's demand fundamentals. In the �rst counterfactual, we shut down

selective exit on the ex-post component ϕEXPi . We do so by considering the stationary

distribution of �rms in the baseline model, but re-draw for each �rm ϕEXPi randomly,

but conditional on age, from the distribution of ex-post components that would be

obtained in the absence of exit. In the second counterfactual we shut down selection

on the ex-ante component ϕEXAi . Again, we consider the stationary distribution in

the baseline, but now redraw the ϕEXAi from the distribution without exit, leaving

the baseline ex-post component intact. In the third counterfactual, we shut down all

selective exit altogether by jointly redrawing both ϕEXAi and ϕEXPi from the distribution

without exit.

Figure 8 shows the average size pro�le in the baseline and the three counterfactu-

als. As expected, shutting down margins of selection generally reduces average size.

However, shutting down selective exit on the ex-post component has a relatively small
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impact on the average size pro�le, which di�ers from the baseline only after age seven.

By contrast, selection on the ex-ante component has a much larger dampening e�ect on

the average size pro�le. Moreover, the gap with the baseline arises already in the early

years following entry. Finally, shutting down selective exit altogether has the largest

impact on the average size pro�le, lowering average by almost 50 percent by age twenty.

This gap indicates that there is a large interaction associated with joint selection on the

ex-ante and the ex-post component.

We thus �nd that ex-ante heterogeneity is not only an important driver of dispersion

in size, but also of the age pro�les of exit and average size, especially among younger

�rms. Thus, up-or-out dynamics largely re�ect the separation of �rms with high and

low long-run growth potential. An important driver of di�erences in up-or-out dynam-

ics across countries or di�erent time periods within a country might therefore re�ect

di�erences in the types of startups that enter the economy. We will return to this issue

in the next section.

4.4 Aggregate output

We now explore some the aggregate implications of our �ndings. For this purpose we

use the same counterfactuals, in combination with the following expression for aggregate

output:

Y = Ω
η
η−1χ

1
1−ηn

η
η−1

where n is the average size across all �rms; see Appendix B.1 for a derivation. We re-

compute average �rm size in each of the three counterfactuals described in the previous

subsection and then compute aggregate output based on the above equation.14 We �nd

that without selective exit on ex-post shocks, output is about 4 percent lower than in

the baseline. In the second counterfactual, in which selection on the ex-ante component

is shut down, output is about 15 percent lower than in the baseline. Shutting down

selective exit altogether, output is 38 percent lower than in the baseline.

These results imply that up-or-out dynamics are indeed an important contributor

14These are partial-equilibrium counterfactuals since we do not recompute χ and Ω.
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Figure 9: The importance of high-potential startups
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Note: Average size, unbalanced panel and by age, in the baseline in two counterfactuals. See the main
text for a description of these counterfactuals.

to aggregate output. Moreover, a key factor driving these dynamics is selection based

on �rms' ex-ante growth pro�les, as well as interaction between ex-ante pro�les and

ex-post shocks. By contrast, ex-post shocks alone matter relatively little, especially at

younger ages. Note further that our counterfactual exercises are based on distributions

conditional on �rm entry, i.e. based on demand fundamentals of �rms which have

already decided to begin operating. The impact of ex-ante heterogeneity would likely

be even larger if selection before entry were to be included in the counterfactuals.

4.5 The importance of high-potential startups

Our estimates show a large amount of heterogeneity in ex-ante pro�les: some high-

potential startups are on steep ex-ante age pro�les of demand growth, whereas others

are on �at or even downward-sloping age pro�les.

We now quantify the importance of high-growth startups. Such �rms, labeled

�gazelles� since Birch and Medo� (1994), have been emphasized in the literature as

important engines of aggregate job creation. We classify �rms according to their ex-

ante growth pro�les, i.e. the individual age pro�les of size that �rms would follow
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in the absence of ex-post shocks. We then de�ne gazelles as those startups with an

ex-ante projected growth rate of at least 15 percent annually, over the �rst �ve years,

and an associated employment level that exceeds 10 workers at some point during their

lifetimes.15

While our de�nition of gazelles is in line with the literature, we di�er from existing

studies in an important way: we classify �rms according to their ex-ante pro�les at

startup. By contrast, the existing literature has classi�ed �rms based on ex-post real-

izations, since ex-ante pro�les are not directly observed in the data. Thus, the gazelles

as de�ned in the literature include �rms which at startup were not expected to grow

very much, but ex post were hit by positive shocks and grew as a result. It then follows

almost by de�nition that gazelles contribute disproportionately to aggregate job cre-

ation. By contrast, in our de�nition �rms that grow just because of favorable ex-post

shocks are not counted as gazelles. A priori, it then becomes less clear that gazelles will

contribute disproportionately to job creation.

Having classi�ed �rms on an ex-ante basis, we re-compute the average size pro�le

leaving out the gazelles, see Figure 9. Without gazelles, average size is considerably

smaller and the di�erence remains large up to at least age twenty. At that age, average

size is more than 25 percent lower than in the baseline. This di�erence is striking

when compared to the roughly 8 percent share of gazelles among startups. In a second

counterfactual we leave out only �large gazelles�, which are de�ned as gazelles with a

startup size of at least 10 workers. In this counterfactual, average size is about 15

percent lower at age twenty than in the baseline, even though large gazelles account for

about 1 percent of all startups.

These counterfactuals make clear that high-potential startups are indeed important

contributors to aggregate output and employment. Moreover, it follows that seemingly

small shifts in the distribution of ex-ante pro�les of startups may have large conse-

quences, as suggested also by Sedlá£ek and Sterk (2017). Our results further provide a

perspective on the �ndings of Hsieh and Klenow (2014), who report that average size

15De�ning gazelles using not only growth rates but also size excludes �rms which grow quickly but
nevertheless always stay small.
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pro�les are much �atter in India and Mexico than in the United States. A �at pro�le

can indicate that there are few startups that operate a high-potential business model,

or that high-potential startups have relatively low chances of survival.

5 Changes in the �rm dynamics process

Finally, we investigate how �rm dynamics have changed over time. Such changes have

attracted attention in the light of the disappointing evolution of employment and pro-

ductivity growth in the US over the last ten to �fteen years. A disconcerting trend that

has been witnessed over the same period is that the skewness of �rm growth rates has

declined, suggesting that high-growth �rms are becoming increasingly rare, see Decker,

Haltiwanger, Jarmin, and Miranda (2016).

We analyze the changes in �rm dynamics by splitting our data into an early sample,

including �rms born between 19XX and 19XX, and a late sample with �rms born

between 19XX and 19XX. We �rst document changes in the three sets of key moments,

the autocovariance function, the average size pro�le, and the exit pro�le. Next, we re-

estimate our model on the split sample and interpret the changes in the data through

the lens of our model. In particular, we study whether these patterns were driven by a

change in ex-post shocks or whether the fraction of ex-ante �gazelles� among startups

has changed over time and how this a�ected aggregate outcomes.

5.1 Changes in the data

Figure 10 plots the three sets of key moments in the two samples. The top panel shows

that the autocovariance function of logged employment of �rms (balanced panel), which

has remained remarkably stable over time. This suggests that the relative importance

of ex-ante and ex-post heterogeneity has not change much over time. The bottom right

panel shows that exit rates have also remained stable across the two samples, see also

Pugsley and �ahin (2016).

What has changed, however, is the pro�le of average size by age, which is shown in

the bottom left panel of Figure 10. Over time, this pro�le has �attened. At startup,
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Figure 10: Split-sample data moments
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average size is about 7 employees in both the early and the late sample. However, by

age nineteen, average employment has declined by almost 25 percent from an average

22 workers in the early sample to 17 employees in the late sample. In addition, this

divergence in size pro�les seems to set in gradually and not occur only for old �rms.

Finally, recall that that the exit pro�le is predominantly driven by �rms at the

bottom of the distribution, i.e. those with low growth potential. The fact that the age

pro�le of average size has decline but that of exit rates remained stable across the two

subsamples suggests that changes in the �rm distribution have taken place not at the

bottom but at the top of the growth pro�le distribution, where the gazelles are located.

To better understand the �attening of the age pro�le, we consider in more detail

how it occurred. Figure 11 plots average �rm size in di�erent �ve-year age bins.16 The

left panel plots these by year of observation. The �gure clearly shows the decline in

16The �gure uses the Business Dynamics Statistics data, which is a publicly available aggregated
version of the underlying LBD data set used in our estimations.

32



average size among older �rms. However, it also shows that the decline occurred in a

staggered way, taking place later in older age bins. In particular, the average size time

paths of the three oldest age categories clearly move in lock-step with �ve year gaps

between them. This also makes clear that the �attening of the average size pro�le was

set into motion before the Great Recession. Finally, note that average size declined also

for �rms 0− 5 and 6− 10 years of age by 3 and 15 percent, respectively.17

The right panel of Figure 11 plots the same data but now by cohort de�ned by the

birth year of the youngest �rms in each age category. The �gure shows very clearly

that the �attening occurred by cohort. In addition, this change was not gradual, but

it happened rather abruptly around the mid 1980's. Speci�cally, cohorts born since the

late 1980's had a much �atter average size pro�le compared to cohorts of �rms born

earlier. These changes gradually fed through the economy as more cohorts with lower

growth potential came into existence. This link to di�erent cohorts of �rms suggests

that the �attening of the (aggregate) average size pro�le was an ex-ante phenomenon,

rather than the result of changes in the character of ex-post shocks that would a�ect

all �rms.

5.2 Are gazelles dying out?

Our previous analysis suggests that the �attening of the average size pro�le might be

related to ex-ante characteristics of startups. To investigate the underlying changes

more directly, we re-estimate the model on the two subsamples. The parameter values

and model �t are shown in Appendix B.2.

Within the two estimated models, we compute the fraction of gazelles in the popula-

tion of �rms, by age. This is shown in the left top panel of Figure 12. Among startups,

the fraction of gazelles has declined by 17 percent from a share of 6.4 percent in the

early sample to 5.3 percent in the late sample. As �rms age, the fraction of gazelles

increases because gazelles are relatively unlikely to shut down compared to other �rms

with lower growth potential. Therefore, the gap in the share of gazelles widens with age

17These values are based on averages in the �rst and last 15 years of the sample period.
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Figure 11: Flattening of the average size pro�le in the data
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Figure 12: Characteristics of gazelles in the early and late sample
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between the two samples. At age twenty, the fraction of gazelles is 12.5 percent in the

early sample but only 10.4 in the late sample.

A similar picture is painted by the top right panel which shows the employment

shares, by age. Among startups at age zero, gazelles account for around 9 percent of

employment in both the early and the late samples. Again, however, a gap emerges

between the two samples as �rms age and start ful�lling their ex-ante growth potential.

The bottom left panel shows the average size pro�le of gazelles. In both sub-samples,

gazelles start with around 7 employees, but grow quickly to reach on average about 46

employees by age �ve. Around age 10, however, the two sub-samples diverge, and a

reduction in the average size between the two sub-samples becomes apparent. Thus,

in the late sample gazelles on average do not grow as large as in the early sample.

Finally, the exit pro�le, plotted in the bottom right panel, is essentially the same in

both samples, as gazelles exit practically only for exogenous reasons.

Our �ndings thus con�rm the concerns that high-growth �rms are becoming increas-

ingly rare. While Decker, Haltiwanger, Jarmin, and Miranda (2016) document that the

decline in the skewness of �rm growth rates occurred around 2000 and primarily in the

Services, Information and High-tech sectors, the sources of these secular changes remain

to be identi�ed. While our framework does not provide a de�nitive answer to this ques-

tion, it does o�er additional new insights. First, we document that the disappearance

of gazelles is related to ex-ante factors, suggesting that high-growth �rms are in fact

dying out. Second, not only are there fewer gazelles, but those that nevertheless start

up tend to expand less than high-growth �rms of the past. Third, our results suggest

that the decline in average size and the disappearing skewness of growth rates was set

in motion already in the late 1980's, as opposed to the early 2000's when the patterns

became apparent.

The above insights point to potential future avenues of research attempting to iden-

tify the reasons behind the disappearance of gazelles. For instance, while many existing

studies focus on how �rms operate in the economy, much less is known about which

35



individuals start businesses and what type of �rms are founded.18 Alternatively, an

intriguing connection may be made between the demise of gazelle startups and the de-

cline in the aggregate labor share of income, which also started in the late 1980's. For

example, Autor, Dorn, Katz, Patterson, and Reenen (2017) suggest that the decline in

the labor share was due to an increase in product market concentration, giving rise to

�superstar �rms�. Increased domination of incumbent superstar �rms might have made

it more di�cult for high-potential startups to enter the economy. Or vice versa, a lack

of competitive pressure from gazelle startups might have contributed to the increase

in market concentration. These and other research questions may contribute to our

understanding of why high-growth startups are becoming increasingly rare.

5.3 Aggregate implications

We now explore some aggregate implications of our �ndings. Figure 13 plots the average

size pro�le, in the estimated model over the two sub-samples. As noted before, this

pro�le has �attened. To assess the contribution of disappearing gazelles to this shift,

we conduct a simple counterfactual exercise. In particular, we note that at any age, the

average size among all �rms is the mean of the average size of gazelles and non-gazelles,

weighted by their respective �rm share. We then construct a counterfactual in which

we re-compute the average size in the early sample, but with the average size and �rm

share pro�les of the gazelles in the late sample.

The dashed line in Figure 12 plots this counterfactual. It shows that the change in

the fraction of gazelles and their average size pro�le accounts for roughly half of the

decline in the average size pro�le. This is remarkable, given that gazelles account for

only about �ve percent of the startups.

Finally, we evaluate the aggregate implications of the overall shift in the �rm growth

process. We �nd that between the two samples, aggregate output declines by 4.5 per-

cent. Thus, seemingly small changes in the distribution of �rms, such as the decline in

the (already low) share of high-potential startups as well as a reduction in their growth

18See Guzman and Stern (2015) and Belenzon, Chatterji, and Daley (2017) for evidence on how
startup characteristics are informative about future �rm growth.
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Figure 13: The impact of disappearing gazelles
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potential, emerge as important drivers of aggregate changes.19,20

6 Conclusions

We have used data on the population of U.S. �rms over several decades to better un-

derstand why startups grow rapidly whereas others remain stagnant or exit quickly. To

this end, we documented the autocovariance structure of employment and exploited this

structure to estimate �rm dynamics models, which allowed us to disentangle heteroge-

neous ex-ante pro�les from ex-post shocks. We found a dominant role for heterogeneous

ex-ante pro�les, which capture unrealized potential present at the moment of startup.

Most of the dispersion in �rm size, at a given age, is driven by such ex-ante potential.

Moreover, we found that that ex-ante heterogeneity also drives much of the �up-or-out�

dynamics observed in the data: high-potential �rms, �gazelles�, grow quickly and sur-

19Within the model, this decline is entirely driven by a change in output per worker, i.e. labor
productivity, since we keep labor supply �xed. In a model version with endogenous labor supply, there
could be an associated decline in aggregate employment as well.

20Shifts in the number of startups may also have important macroeconomic consequences, see
Sedlá£ek (2015).
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vive at high rates, whereas low-potential �rms tend to exit quickly. These dynamics

lead to substantial gains in aggregate output.

We have also investigated potential changes in the �rm dynamics process, following

up on recent concerns that high-growth �rms are disappearing. We documented a

dramatic �attening of the age pro�le of average size, among cohorts of �rms born since

the late 1980's. Re-estimating the model using this information, we found a decline in

the presence of high-potential �gazelles� in the population of startups, with important

repercussions for aggregate output.

Our results highlight the need for future research on which individuals become en-

trepreneurs and what decisions such aspiring entrepreneurs make before or at startup,

as opposed to their behavior after the �rm has become operational. While the macroe-

conomic implications of the latter have been studied extensively in the literature, much

less is known about how institutional conditions change who becomes an entrepreneur

and what types of �rms are being created. Our results show that such changes can be

of �rst-order importance for macroeconomic outcomes.
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Appendix

A Reduced-form model

A.1 Derivation of the Autocovariance formula

Consider the employment process given in Section 2.3 in the main text. Note that we

can write the components as:

ui,a = ρa+1
u ui,−1 +

a∑
k=0

ρkuθi

vi,a = ρa+1
v vi,−1

wi,a =
a∑
k=0

ρkwεi,a−k = ρjwwi,a−j +
a∑

k=a−j+1

ρa−kw εi,k

Using this, the level of employment of �rm i at age a can be written as:

lnni,a = ρa+1
u ui,−1 +

a∑
k=0

ρkuθi + ρa+1
v vi,−1 +

a∑
k=0

ρkwεi,a−k + zi,a

= ρa+1
u ui,−1 +

a∑
k=0

ρkuθi + ρa+1
v vi,−1 + ρjwwi,a−j +

a∑
k=a−j+1

ρa−kw εi,k + zi,a

We can now write the autocovariance as:

Cov (lnni,a, lnni,a−j)

= ρ2(a+1)−j
u σ2

ũ + ρ2(a+1)−j
v σ2

ṽ +

(
a∑
k=0

ρku

)(
a−j∑
k=0

ρku

)
σ2
θ + ρjwV ar (wi,a−j) + 0j

= ρ2(a+1)−j
u σ2

ũ + ρ2(a+1)−j
v σ2

ṽ +

(
a∑
k=0

ρku

)(
a−j∑
k=0

ρku

)
σ2
θ + ρjw

a−j∑
k=0

ρ2k
w σ

2
ε + 0j

= ρ2(a+1)−j
u σ2

ũ + ρ2(a+1)−j
v σ2

ṽ +
(
1− ρa+1

u

) (
1− ρa−j+1

u

) σ2
θ

(1− ρu)2 + ρjw
1− ρ−2(a−j+1)

w

1− ρ2
w

σ2
ε + 0j

This gives Equation (2) in the main text.
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A.2 Estimation details

The reduced-form model is estimated using a minimum distance procedure, following

Chamberlain (1984). Let ϑ be an arbitrary parameter vector in compact parameter

space. Since we use ages a = 0, . . . , 20, we de�ne the K = 21·(21+1)
2 -length vector

function, for any arbitrary observation i:

f (ni, ϑ) = [(lnni,a − E [lnni,a]) (lnni,a−j − E [lnni,a−j ])− Cov(lnni,a, lnni,a−j ;ϑ)] ,

where j ≤ a and where Cov(lnni,a, lnni,a−j ;ϑ) is computed from Equation (2) in the

main text, for a parameter vector ϑ. The moment condition we exploit in the estimation

is E [f (ni;ϑ)] = 0. To operationalize the estimator we de�ne

f̃ (ni, ϑ) ≡ (lnni,a−
1

N

∑
i

lnni,a)(lnni,a−j−
1

N

∑
i

lnni,a−j)−Cov(lnni,a, lnni,a−j ;ϑ),

and

g̃N (ϑ) ≡ 1

N

∑
i

f̃ (ni, ϑ) .

The minimum distance estimator solves minϑ g̃N (ϑ)′Ag̃N (ϑ), where A is a K × K

weighting matrix. Following Guvenen (2009) and many others, we choose A to re�ect

only di�erences in the number of data observations underlying the various moments.

The estimator ϑ̂ follows, asymptotically, a normal distribution with a mean equal to the

true value of ϑ and a covariance matrix given by Σ = (D′D)D′ΩD (D′D)−1, where D =

E[∂f(ni,ϑ)
∂ϑ ] is the Jacobian of the moment vector and Ω = E[f (ni, ϑ) f (ni, ϑ)′]. The sam-

ple analogues of the latter two are D̃ = 1
N

∑
i
∂f̃(ni,ϑ)

∂ϑ , and Ω̃ = 1
N

∑
i f̃ (ni, ϑ)′ f̃ (ni, ϑ),

where we take numerical derivatives to compute D̃.
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B Structural model

B.1 Numerical solution of the structural model

Let us de�ne µ̂ (S) ≡ µ(S)
Me , which evolves as:

µ̂
(
S′
)

=

∫ (
(1− x (s))F

(
S′|s

)
(µ̂ (ds) +G (ds))

)
.

and note that in the stationary equilibrium µ (S′) = µ (S). The labor market clearing

condition in the stationary equilibrium can now be written as:

N̄ = M e

(
η

η − 1

)−η
w−ηY ϕ̃+M ef̃ +M efe,

where ϕ̃ ≡
∫
ϕ (s) µ̂ (ds) and f̃ ≡

∫
f (1− x (s)) (µ̂ (ds) +G (ds)). Note further that

pi = η
η−1 and that the wage is given as

w = P−1 =
η − 1

η
(M eϕ̃)

1
η−1

We solve the model using the following algorithm (following Hopenhayn and Roger-

son, 1993):

1. Solve for Q ≡ w−ηY from the free entry condition (i.e. guess Q, solve for the

�rm value functions, evaluate the free-entry condition, update the guess for Q

and iterate until the condition holds with equality).

2. Normalize M e = 1, simulate the model and compute µ̂ (S) , ϕ̃ and f̃ .

3. Solve for M e from the labor market clearing condition. Compute w, Y , and Y
N .

To derive Equation (4.4), note that aggregate output can be written as:

Y = Qwη = χ (M eϕ̃)
η
η−1 = χ

(∫
ϕ (s)µ (ds)

) η
η−1

= Ω
η
η−1χ

(∫
ϕ (s) µ̃ (ds)

) η
η−1
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where µ̃ (ds) ≡ µ (ds) /Ω is the density of �rms at state s. It now follows that

Y = Ω
η
η−1χ

1
1−ηn

η
η−1

where n =
∫
n (s) µ̃ (ds) is average �rm size and where we have used that ni = χϕi.

The state variables for an individual �rm consist of the separate components of its

demand fundamental: ui,t, vi,t and wi,t.
21 As mentioned in the main text, we restrict

ρv = ρw, in which case the �rm only needs to keep track of the sum vi,t + wi,t, rather

than the two terms separately.

We allow for 31 grid points (equally spaced between −3 and 4) for the permanent

component of the demand fundamental, θ. Similarly, we allow for 31 grid points (equally

spaced between −5 and 7) for the initial condition ũ. Finally, the transitory, AR(1)

process wi,t, is discretized using the method of Rouwenhorst (1995) allowing for 31 grid

points. We use value function iteration to solve the �rm's maximization problem on the

grid speci�ed above.

In simulating the economy, we use 100, 000 startups (i.e. �rms which endogenously

decide to remain in operation in the �rst period) and we follow these until the age of

20, consistent with the autocovariance data. Aggregate model variables are constructed

using all surviving �rms in the model.

B.2 Details on split-sample results

This Appendix presents details on the parametrization and model �t of the model

in the split-sample analysis presented in Section 5 of the main text. Tables 3 and 4

show the parameter values for the two subsamples and Figures 14 and 15 document

the model's �t across the two subsamples. From the two tables, it is apparent that

most of the parameters remain relatively stable across the two sub-samples. However,

the distribution of the permanent component θ, a key determinant of long-run size,

is estimated to have changed. In particular, both the mean and the dispersion have

21Note that zi,t is purely transitory and therefore its past values do not a�ect the decision of the
�rm.
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Table 3: Parameter values (early sample)

parameter value

set a priori

β discount factor 0.96
η elasticity of substitution 6.00
fe entry cost 0.447

estimated

f �xed cost of operation 0.545
δ exogenous exit rate 0.042
µθ permanent component θ, mean −1.770
σθ permanent component θ, st. dev. 1.322
σũ initial condition u−1, st. dev. 1.540
σṽ initial condition v−1, st. dev. 1.208
σε transitory shock ε, st. dev. 0.304
σz noise shock z, st. dev. 0.153
ρu permanent component, persistence 0.394
ρv transitory component, persistence 0.987

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The
remaining parameters are set such that the model matches the empirical autocovariance of employment
and the age pro�les of average size and exit rates from age 0 to 19.

Figure 14: Targeted moments: data and structural model (early sample)
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Notes: Top panel: Autocovariances of log employment between age a = h + j and age h ≤ a in the
data and the model, for a balanced panel of �rms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.

declined going from the early to the late sample.
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Table 4: Parameter values (late sample)

parameter value

set a priori

β discount factor 0.96
η elasticity of substitution 6.00
fe entry cost 0.434

estimated

f �xed cost of operation 0.530
δ exogenous exit rate 0.043
µθ permanent component θ, mean −1.846
σθ permanent component θ, st. dev. 1.303
σũ initial condition u−1, st. dev. 1.563
σṽ initial condition v−1, st. dev. 1.209
σε transitory shock ε, st. dev. 0.301
σz noise shock z, st. dev. 0.195
ρu permanent component, persistence 0.393
ρv transitory component, persistence 0.987

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The
remaining parameters are set such that the model matches the empirical autocovariance of employment
and the age pro�les of average size and exit rates from age 0 to 19.

Figure 15: Targeted moments: data and structural model (late sample)
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Notes: Top panel: Autocovariances of log employment between age a = h + j and age h ≤ a in the
data and the model, for a balanced panel of �rms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.

B.3 Adjustment costs

This Appnedix introduces adjustment costs in the accumulation of the �permanent�

ex-ante component u. One interpretation of this speci�cation are costs of accumulating
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customers (as in e.g. Arkolakis, 2016; Sedlá£ek and Sterk, 2017).

Formally, the process for the demand fundamental can now be written as

lnϕi,t = ui,t + vi,t + wi,t + zi,t

ui,t = ρuui,t−1 + θi [λ+ (1− λ)qi,t] , ui,−1 ∼ iid(µũ, σ
2
ũ) θi ∼ iid(µθ, σ

2
θ) ρu ∈ [0, 1), λ[0, 1]

vi,t = ρvvi,t−1, vi,−1 ∼ iid(µṽ, σ
2
ṽ) ρv ∈ [0, 1)

wi,t = ρwwi,t + εi,t, wi,−1 = 0 εi,a ∼ iid(0, σ2
ε) ρw ∈ [0, 1)

zi,t ∼ iid(0, σ2
z),

The above therefore generalizes the baseline speci�cation in that the permanent

component of the demand fundamental accumulates exogenously at the rate of λ and

endogenously at the rate of 1 − λ, where gi,t is a choice variable for incumbent �rms.

The parameter λ therefore introduces the the distinction between �active� and �passive�

demand accumulation or �demand accumulation by being� as in Foster, Haltiwanger,

and Syverson (2016). Importantly, active investment in to demand accumulation comes

at a cost, κ2g
2
i,t. Firms, therefore, maximize �rm value not only by choosing prices, em-

ployment, output as in the baseline model, but also by choosing demand accumulation

(all subject to remaining in the economy). The rest of the model is identical to that in

the main text.

The parametrization also follows the same principles as described in Section 3.2.

That is, we estimate the majority of the parameters (including the adjustment cost

level, κ) by matching the model predicted autocovariance matrix, average size and exit

rates by age to their empirical counterparts. The rest of the parameters are set a

priori.22 Table 5 shows the model parameters and Figure 16 displays the model �t.

Intuitively, the dispersion of the permanent component of the demand fundamental,

σθ is somewhat narrower than in the benchmark model. This is because part of the

cross-sectional dispersion in �rm sizes at old ages is now also driven by adjustment costs

and not only �rm types. Nevertheless, the variance decomposition of the cross-sectional

variation in �rm size in Figure 17 shows that the importance of ex-ante heterogeneity

22The share of active accumulation, λ, is set to 0.5.
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Table 5: Parameter values (model with adjustment costs)

parameter value

set a priori

β discount factor 0.96
η elasticity of substitution 6.00
fe entry cost 0.82
λ share of active demand accumulation 0.5

estimated

f �xed cost of operation 1.000
δ exogenous exit rate 0.0252
µθ permanent component θ, mean −1.447
σθ permanent component θ, st. dev. 0.768
σũ initial condition u−1, st. dev. 2.586
σṽ initial condition v−1, st. dev. 1.000
σε transitory shock ε, st. dev. 0.214
σz noise shock z, st. dev. 0.203
ρu permanent component, persistence 0.388
ρv transitory component, persistence 0.986
κ adjustment cost level 6.152

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The
remaining parameters are set such that the model matches the empirical autocovariance of employment
and the age pro�les of average size and exit rates from age 0 to 19.
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Figure 16: Targeted moments: data and structural model (model with adjustment costs)
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Notes: Top panel: Autocovariances of log employment between age a = h + j and age h ≤ a in the
data and the model, for a balanced panel of �rms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.

is at least as important as in the benchmark speci�cation. This holds true also for

the importance of ex-ante heterogeneity for �rm selection, as depicted in Figure 18.

Therefore, while adjustment costs introduce an additional margin of adjustment, they

do not alter the main qualitative or quantitative conclusions regarding the relative

importance of ex-ante heterogeneity and ex-post shocks.

B.4 Results for establishments

While the main text uses both �rm and establishment data in the reduced form analysis

of Section 2, for simplicity the structural model sections focus only on �rms. This

Appnedix provides results for the structural model using establishment-level data. Table

6 shows the parameter estimates and Figure 19 depicts the model �t.

Figures 20 and 21 then establish that, also for establishments, ex-ante factors are a

dominant force when it comes to the cross-sectional variation in employment and the

establishment selection by age, respectively.

Intuitively, the dispersion of the permanent component of the demand fundamental,

σtheta is somewhat narrower than in the benchmark model. This is because part of the

cross-sectional dispersion in �rm sizes at old ages is now also driven by adjustment costs
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Figure 17: Contribution of ex-ante heterogeneity to cross-sectional employment disper-
sion (model with adjustment costs)
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Note: Contributions to total cross-sectional variance by age. �Reduced-form� refers to the estimates
from Figure 3, �model: covariance decomposition� is the decomposition based on the second line in
Equation 5. The shaded areas (�model: selection band�) is constructed based on the �rst equality in
Equation 5 by attributing, in turn, the term 2Cov(lnϕEXAi , lnϕEXPi ) fully to the ex-ante component
and to the ex-post component.

and not only �rm types. Nevertheless, the variance decomposition of the cross-sectional

variation in �rm size in Figure 17 shows that the importance of ex-ante heterogeneity

is at least as important as in the benchmark speci�cation. This holds true also for

the importance of ex-ante heterogeneity for �rm selection, as depicted in Figure 18.

Therefore, while adjustment costs introduce an additional margin of adjustment, they

do not alter the main qualitative or quantitative conclusions regarding the relative

importance of ex-ante heterogeneity and ex-post shocks.
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Figure 18: Exit rates (model with adjustment costs)
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Note: exit rates by age in the baseline model, exit rates in and a counterfactual economy in with no
ex-post demand shocks (but with exogenous exit), and the exogenous exit rate δ.

Figure 19: Targeted moments: data and structural model (establishments)
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Notes: Top panel: Autocovariances of log employment between age a = h + j and age h ≤ a in the
data and the model, for a balanced panel of �rms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.
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Table 6: Parameter values (establishments)

parameter value

set a priori

β discount factor 0.96
η elasticity of substitution 6.00
fe entry cost 0.448

estimated

f �xed cost of operation 547
δ exogenous exit rate 0.044
µθ permanent component θ, mean −1.758
σθ permanent component θ, st. dev. 1.309
σũ initial condition u−1, st. dev. 1.541
σṽ initial condition v−1, st. dev. 1.206
σε transitory shock ε, st. dev. 0.303
σz noise shock z, st. dev. 0.211
ρu permanent component, persistence 0.393
ρv transitory component, persistence 0.987

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The
remaining parameters are set such that the model matches the empirical autocovariance of employment
and the age pro�les of average size and exit rates from age 0 to 19.
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Figure 20: Contribution of ex-ante heterogeneity to cross-sectional employment disper-
sion (establishments)
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Note: Contributions to total cross-sectional variance by age. �Reduced-form� refers to the estimates
from Figure 3, �model: covariance decomposition� is the decomposition based on the second line in
Equation 5. The shaded areas (�model: selection band�) is constructed based on the �rst equality in
Equation 5 by attributing, in turn, the term 2Cov(lnϕEXAi , lnϕEXPi ) fully to the ex-ante component
and to the ex-post component.

Figure 21: Exit rates (establishments)
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Note: exit rates by age in the baseline model, exit rates in and a counterfactual economy in with no
ex-post demand shocks (but with exogenous exit), and the exogenous exit rate δ.
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