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Abstract

We start by presenting the general model of dynamic coordination with timing frictions and some

key theoretical results. We prove the model features a unique rationalizable equilibrium, present a

method to solve the social planner problem and derive expressions for the equilibrium threshold in

limiting cases. With this toolkit in hand, we get analytical results for a case with linear preferences

and present several applications, ranging from network externalities to statistical discrimination and

to macroeconomics. Besides generating insights for specific questions, the applications illustrate the

potential of the model to accommodate a large set of economic problems. Last, we show extensions of

the framework that allow for endogenous hazard rates, preemption motives and ex-ante heterogeneous

agents.
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1 Introduction

Several economic problems exhibit strategic complementarities: one’s payoff from some

action is larger if others take this action as well. For example, in a scenario of bank

runs, withdrawing deposits from the bank might be the optimal action only if others also

do so; the decision about joining and posting on Facebook depends crucially on whether

other people are doing the same; for firms considering whether to invest or not, one

important factor is the demand for their goods, which in turn depends on whether other

firms choose to invest; adopting a new technology may not be the best decision if others

in the production chain will keep working with an old technology.

A variety of models that capture these economic problems gives rise to multiple equi-

libria. In a range of parameters, different outcomes can arise in equilibrium depending on

what agents expect others will do. For example, in models of bank runs, for an interme-

diate range of fundamentals, there is an equilibrium where agents attempt to withdraw

their deposits and banks go bankrupt and another one where runs do not occur; in models

of network externalities, equilibria predicting the prevalence of different networks coex-

ist; in macroeconomic models, economic activity might depend on arbitrary shifts on

expectations.

One important question left unanswered by models with multiple equilibria is what

determines which equilibrium will be played. Will there be a bank run or not? Will

people coordinate on Facebook, Orkut or Google+? Will economic activity recover next

year?

This survey focuses on a stream of the literature that looks at the problem from a

dynamic point of view. In the model of Frankel and Pauzner (2000), the seminal contri-

bution to this literature, agents choose between two states (say, low and high) and get

opportunities to revise their behavior according to a Poisson clock. Their instantaneous

utility gain from being in the high state increases on a exogenous fundamental variable

and on the fraction of agents in the high state. The fundamental moves according to a

Brownian motion.1

As an illustration, agents might be on Facebook or not. The utility from being on

Facebook depends on how good Facebook is (the exogenous fundamental) and how many

people are on Facebook. At some random points in time, agents decide whether they want

to be on Facebook or not. Here, the Poisson clock can be seen as an attention friction

modeled in a reduced-form way. In other applications, the Poisson clock could be related

to the maturity of a bond or an investment, or to the obsolescence of a machine.
1See also Burdzy, Frankel and Pauzner (2001).
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Section 2 presents the framework proposed by Frankel and Pauzner (2000) and some

results for the general model. First, it presents results on equilibrium multiplicity and

equilibrium uniqueness. Then, it shows a method to solve the social planner problem.

Last, it applies mathematical results about bifurcation probabilities from Burdzy, Frankel

and Pauzner (1998) to derive expressions for the equilibrium threshold in the limiting cases

of vanishing shocks and vanishing frictions.

With this toolkit in hand, Section 3 shows analytical results for a case with linear pref-

erences and presents applications of the basic framework to a variety of settings, such as

network externalities, statistical discrimination and stimulus policies in macroeconomics.

Besides generating insights for specific questions, the applications illustrate the potential

of the model to accommodate a large set of economic problems. Last, Section 4 discusses

extensions of the framework that allow for endogenous hazard rates, preemption motives

and ex-ante heterogeneous agents.

Some of the material in this survey is not in the existing literature. Examples include:

the general formulation for the social planner problem (Section 2.3); the model with

asymmetric network externalities (Section 3.1.4); the study of efficiency in the model of

statistical discrimination (Section 3.2.2); and the numerical solution for the macroeco-

nomic model (Section 3.3.4).

Related strands of the literature. Among the alternative ways to understand agents’

behavior in settings with strategic complementarities, the so-called global games literature

is a particularly popular one (See Carlsson and Van Damme (1993), Morris and Shin

(1998) and Morris and Shin (2003)). Models in this literature assume that agents have

access to noisy private information about the economy. This removes the assumptions

that all information is common knowledge and agents know what others are doing in

equilibrium. One important result of this literature is that this can remove multiplicity

of equilibria and lead to a unique outcome. Building on the theory of global games, a

large literature has evolved. Angeletos and Lian (2016) offer a comprehensive survey of

this literature.

Another strand of literature addresses this problem by incorporating dynamic and evo-

lutionary processes. Examples include Matsui and Matsuyama (1995), Kandori, Mailath

and Rob (1993) and Fudenberg and Harris (1992)). In simple 2x2 games, these different

strands of the literature lead to similar predictions, but this is not true more generally

(see Kim (1996) for a discussion).
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2 The framework

Time is continuous and runs forever. There is a continuum of agents with unit mass

indexed by i. There are two possible actions ai ∈ {0, 1}.

Payoffs. An agent’s payoff depends on her own action, the action of others and on some

exogenous fundamental θt. The action of other players is summarized by the proportion

of players in action 1, denoted by nt. The instantaneous payoff of action 0 is given by

a function u0(θt, nt) and the payoff of action 1 is written as u1(θt, nt), both continuously

differentiable. We define the instantaneous relative gain of action 1 as

∆u(nt, θt) = u1(θt, nt)− u0(θt, nt).

Throughout these notes, we assume that ∆u(·) is increasing in both arguments. It means

that agents’ incentives to choose action 1 are increasing on the exogenous fundamental

and on the action of others (there are strategic complementarities).

Timing frictions. Agents cannot choose their actions at every period. They receive op-

portunities to revise their actions according to a Poisson clock (independent across agents)

with arrival rate δ. Once they choose an action they are locked in the chosen action until

the Poisson shock hits again.

Simple examples. In a model where agents choose whether to participate in a given

network or not, action 1 corresponds to taking part in the network and θ is a variable

summarizing the intrinsic quality of the network. Thus u1(θt, nt) is the utility from par-

ticipating, increasing in the quality of the network and in the number of people taking

part, and u0(θt, nt) can be normalized to 0. Alternatively, actions 0 and 1 can refer to two

competing networks, agents choose between them. In this case, u1(θt, nt) is increasing in

nt and u0(θt, nt) is decreasing in nt. In a model of occupational choice along the lines

of Matsuyama (1991), action 1 corresponds to an occupation that benefits from others

choosing it as well (in the example, industry) and action 0 corresponds to an occupation

with no such externalities (in the example, agriculture). In these examples, the timing

frictions can be thought of as attention frictions.

The discounted expected gain of choosing 1 instead of zero at some date τ is given by

Vτ =

∫ ∞
τ

e−(ρ+δ)(t−τ)E [∆u(θt, nt)] dt, (1)
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where ρ > 0 is the discount rate of agents. Notice that an agent’s decision today only

affects her payoffs until she gets selected again. That is why the probability of not getting

selected from τ to t, which is given by e−δ(t−τ), shows up in the expression above. Hence

agents effectively discount the future at rate ρ + δ. They choose 1 if Vτ > 0 and 0 if

Vτ < 0.

An action is dominant if it is optimal for an agent to choose that action regardless of his

beliefs about the action of others. Throughout this notes, we assume that the assumption

below holds.

Assumption 1 (Existence of dominance regions). There exists θ̃ and θ˜ such that: if

θt > θ̃ choosing 1 is a strictly dominant action; if θt < θ̃ choosing 0 is a strictly dominant

action.

2.1 Multiple equilibrium benchmark

Here we analyze the case where the fundamental is constant and deterministic, i.e., θt = θ.

Take an agent deciding whether or not to choose action 1 when nt = nτ . Suppose it is

optimal for her to choose action 1 if she believes everyone that will choose after her will

do the same. Then, players choosing after her have even an higher incentive to choose

action 1 (because at time τ > t, nτ will be larger than nt). Therefore, everyone choosing

action 1 forever is an equilibrium. Conversely, if it is optimal for an agent to choose 0

if she believes everyone will do the same, then everyone choosing action 0 forever is an

equilibrium.

To find the values of θ for which everyone choosing action 1 is an equilibrium, we

compute two boundaries: (i) the boundary where an agent is indifferent between 0 and 1

if she believes that everyone will choose 1 in the future; (ii) the boundary where an agent

is indifferent if she believes no one will choose action 1 in the future. Those are given by

the solution of ∫ ∞
τ

e−(ρ+δ)(t−τ)∆u(θ, n↑t )dt = 0 (2)

and ∫ ∞
τ

e−(ρ+δ)(t−τ)∆u(θ, n↓t )dt = 0, (3)

where n↑t = 1− (1− nτ )e−δ(t−τ) and n↓t = nτe
−δ(t−τ).

For any τ > t, n↑t > n↓t . Hence, for a given θ and nτ , the LHS in (2) is larger than the

LHS in (3). Therefore, for a given nτ , the value of θ that satisfies (2) must be smaller

than the value of θ that satisfies (3). Intuitively, if agents expect all others to choose to

action 1, they are willing to do the same for lower values of θ.
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Moreover, since n↑t is increasing in nτ and ∆u(θ, n↑t ) is increasing in both arguments,

the value of θ that satisfies (2) is decreasing in nτ . Likewise, since n↓t is increasing in nτ ,

the value of θ that satisfies (3) is also decreasing in nτ .

The solutions of (2) and (3) are represented by the curves θ and θ, respectively, in

Figure 1. To the right of θ choosing 1 is a dominant action; to the left of θ choosing 0

is the dominant action; between the boundaries θ and θ we have multiple equilibria and

agents’ choices depend on their expectations about the actions of others.

Figure 1: Multiple equilibria with no shocks

Multiple
equilibria

All choose
action 1

All choose
action 0

n = 1

n = 0
θ

θ θ

In this setting, agents can perfectly anticipate the future actions of others. Hence there

is no strategic uncertainty. As we see next, this has important implications.

2.2 Equilibrium uniqueness

Now we assume that the fundamentals are subject to stochastic shocks. The key difference

from the case without shocks is that now agents may not be able to perfectly anticipate

the action of others in the future. Assume that

dθt = µdt+ σdZt,

where dZt is a standard Brownian motion, µ is a constant drift and σ > 0 is the volatility.

The process above have two properties that are convenient. First, shocks are frequent:

for any interval of length dt > 0 we have that Prob(θt = θt+dt) = 0. Second, their

increments are independent of history, i.e., θt+dt − θt is independent of (θs)s≤t. With

shocks, multiplicity disappears.

Theorem 1 (Frankel and Pauzner, 2000). In the model with shocks, there is a unique

equilibrium. Agents choose 1 when θt > θ∗(nt) and 0 when θt < θ∗(nt), where θ∗(·) is a

decreasing function.

Figure 2 illustrates the result. An agent choosing an action at some point on the

equilibrium threshold must be indifferent between both actions. Formally, for every nτ ∈
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Figure 2: Unique equilibrium with shocks

All choose
action 1

All choose
action 0

n = 1

n = 0
θ

θ∗

[0, 1], θ∗(nτ ) must solve:∫ ∞
τ

e−(ρ+δ)(t−τ)E [∆u(θt, nt)| θ∗, θ∗(nτ ), nτ ]dt = 0, (4)

where the operator E
[
·|θ̃, θτ , nτ

]
denotes agents’ expectation when the current state is

(θτ , nτ ) and they expects others to play according to the threshold θ̃.

To understand the intuition behind the result, it is useful to go through the proof. The

proof here is slightly different from the original proof in Frankel and Pauzner (2000) and

a bit more similar to the proof of equilibrium uniqueness in Frankel, Morris and Pauzner

(2003), even though that is a static global-game model.

2.2.1 Proof of equilibrium uniqueness

A key assumption is that we have dominance regions, as represented by the boundaries

θ0 and θ0 in Figure 3. Instead of looking for a strategy profile that is a Nash equilibrium,

we are going to look for strategy profiles that survive the iterated elimination of strictly

dominated strategies (hereafter, IESDS). This is a less restrictive equilibrium concept,

since every Nash Equilibrium also survives IESDS (but not all strategy that survive

IESDS is a Nash Equilibrium).

A strategy here is a map from every possible history to a probability of choosing action

1 (i.e., a map that prescribes what an agent selected by the Poisson process will choose

in every contingency).

Iterations from the left. Let’s start a process of elimination of strictly dominated strate-

gies. Notice that any strategy that prescribes playing 1 to the left of θ0 is strictly dom-

inated. Therefore, we can remove those strategies from our game (we can also remove

strategies that prescribe playing 0 to the right of θ0, but let’s leave them there for a while).

We can now ask the same question we asked to construct the boundary θ0: when

is an agent indifferent between actions 0 and 1 under the most optimistic belief about

8



Figure 3: Dominance regions

n = 1

n = 0
θ

θ0 θ0

Action 0
is dominant

Action 1
is dominantP

(nt)t≥τ? The difference now is that, after eliminating the strictly dominated strategies,

the meaning of ‘most optimistic belief’ changed. It is no longer possible to assume that

agents will play action 1 always, since we eliminated strategies that prescribed playing

1 to the left of θ0 and the probability of θt crossing the boundary θ0 at some point is

positive. Thus, the most optimistic belief now is the one in which other agents play 1

in any state (θt, nt), except in those states to the left θ0. Under those beliefs, an agent

choosing at the point P in Figure 3 will no longer be indifferent between action 1 and 0.

She will strictly prefer to choose action 0 (if she was indifferent under a more optimistic

belief, now she is strictly preferring to choose action 0). Thus, the boundary where an

agent is indifferent under the most optimistic belief shifts to the right, as illustrated by

the boundary θ1 in Figure 4.

Figure 4: First round of elimination of dominated strategies

n = 1

n = 0
θ

θ0 θ0θ1

Now we can move to the second round of elimination of strictly dominated strategies.

After eliminating the strategies that imply playing 1 in the dark gray area in Figure 4,

the strategies that imply playing 1 in the light gray area also become strictly dominated

strategies (agents wouldn’t choose it even under the most optimistic belief possible).

Thus, we further eliminate the strategies that imply playing 1 to the left of θ1 and we get

a boundary θ2. Continuing this process indefinitely we get a boundary θ∞, as illustrated

in Figure 5. Notice that θ∞ must be to the left of θ0, since in the latter agents believe

everyone will always choose 0, while in the former they believe that everyone to the left
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of θ∞ will choose 0 (and thus they require a lower initial θ to be indifferent).

Figure 5: Convergence of iterations from the left

n = 1

n = 0
θ

θ0 θ0θ1 θ2 θ∞

All choose action 0

So far we know that in any strategy that survives the iterated elimination of strictly

dominated strategies agents play 0 to the left of θ∞. Notice also that an agent making a

decision on the threshold θ∞ must be indifferent between 0 and 1 (otherwise the iterations

could continue). Thus, everyone playing 1 to the right of θ∞ and 0 to the left of it must

be a Nash equilibrium. We have just proved equilibrium existence.

Iterations from the right. We can repeat an analogous procedure starting from the bound-

ary θ0, by first eliminating the strategies in which agents play 0 to the right of θ0. The

only difference is that now we will always consider the most pessimistic beliefs possible

about nt in each iteration, given the strategies that we have already eliminated. This

process will yield a boundary θ∞. In any equilibrium that survives the iterated elimina-

tion of strictly dominated strategies, agents must play 0 to the left of θ∞. As for θ∞,

notice that everyone playing according to θ∞ is an equilibrium, since agents are indifferent

between both actions on the threshold θ∞ if they believe others will play according to

this threshold.

Limit of iterations coincide. Notice that θ∞ cannot be to the left of θ∞, otherwise there

would be no strategy that survives IESDS (we know it cannot be true since a Nash

Equilibrium exists and every Nash equilibrium survives IESDS).2

If θ∞ and θ∞ coincide for every n, then we have an essentially unique equilibrium.3

Suppose by contradiction that it is not the case, as exemplified in Figure 6. Then, we

can always get a translation of θ∞ that lies entirely to the left of θ∞, but touches it in at

least one point, as represented by the curve θ
′

∞ in the figure.

2If θ∞ is to the left of θ∞, then there is a subset V of the state space such that: (i) every strategy that survives

IESDS requires playing 1 when (θt, nt) ∈ V ; (ii) every strategy that survives IESDS requires playing 0 when (θt, nt) ∈ V .

Obviously, no strategy can satisfy (i) and (ii) at the same time.
3The word “essentially” appears because agents can do whatever they want on the threshold, but those states have zero

mass.
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Figure 6: Translations

n = 1

n = 0
θ

θ∞θ∞

All choose
action 0

All choose
action 1

θ
′
∞

A B

Consider a player that is choosing at point A and believes everyone will play according

to θ
′
∞. Her payoff of choosing 1 must be strictly positive, since it would be zero if she

believed everyone would play according to θ∞ and therefore choose action 1 less often for

any Brownian path (remember that θ∞ is an equilibrium).

Consider now the payoff of player B. For player B, the increments (θτ+s − θτ ) follow

the same distribution as the increments for player A, since θ
′
∞ is a translation of θ∞. In

other words, for any Brownian path (Zt)t≥τ player B observes the same fundamentals as

player A plus a positive constant (that is the distance between their thresholds). Thus,

for any Brownian path, player A will have θt to the left (right) of her threshold if, and

only if, player B also has her θt to the left (right) of her threshold. Thus, they will

always experience the same dynamics of nt, but player B always experiences a higher

fundamental. Thus, the relative payoff of player B of choosing action 1 (which we know

to be zero, since θ∞ is an equilibrium) must be higher than that of player A . Thus we

get the contradiction:

0 = (Player B’s gain of choosing 1) > (Player A’s gain of choosing 1) > 0.

2.2.2 Relation to ‘global games’

The basic global-game models are static coordination games, where agents observe a noisy

idiosyncratic signal on the fundamental variable that determines payoffs (θ).4 Owing to

this idiosyncratic noise, as long as there are dominance regions, it is never common knowl-

edge that the fundamental variable lies in a region where the equilibrium could be driven

4There are several dynamic models employing the global-game methodology. Examples include Angeletos, Hellwig and

Pavan (2007), Dasgupta (2007), Steiner (2008), Chassang (2010), Dasgupta, Steiner and Stewart (2012), Kováč and Steiner

(2013) and Mathevet and Steiner (2013). However, dynamics is not needed to generate equilibrium uniqueness and the

basic insights from the methodology. This section highlights the analogies between the dynamic framework considered here

and static global-game models.
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by self-fulfilling beliefs. Moreover, agents do not know what others are doing in equilib-

rium. Based on their own signals, agents form expectations about others’ information

and expectations about others’ expectations (higher-order expectations).

The intuition for equilibrium uniqueness in global games is similar to the intuition for

Theorem 1. An agent with a signal about fundamentals very close to the region where,

say, action 1 is dominant considers that others might think that fundamentals lie in the

dominance region and will choose action 1. Hence action 1 is the best choice for this agent.

This triggers a similar process of iterated elimination of strictly dominated strategies that

end up with a unique rationalizable strategy.

This dynamic framework seems different because all information is common knowledge.

Morris (2014) shows that this intuition is misleading: what matters is not players’ actual

beliefs but what their beliefs were at their last opportunity to switch actions. Now consider

that an event is effectively known by a player if she knew it the last time she had an

opportunity to change behavior. Then there is a tight connection between the lack of

effective common knowledge here and the lack of common knowledge in global-game

models (See Morris (2014)).

2.3 The social planner’s problem

We now study the social planner’s problem. Let’s say welfare is given by the discounted

sum of individual agents’ payoffs (which depend on others’ actions as well). Thus, the

planner maximizes:

E
[∫ ∞

t=τ

e−ρ(t−τ)W (θt, nt)dt

]
, (5)

where

W (θ, n) = nu1(θ, n) + (1− n)u0(θ, n). (6)

At each date t, the planner chooses the proportion φt ∈ [0, 1] of agents that received a

chance to switch actions that will pick action 1.

Suppose that at a given date τ it is optimal for the planner to choose φτ < 1 and

consider the following deviation: the planner increases φτ in ∆φ > 0 units today, but keeps

the future values of φt unchanged, for any realization of the Brownian path. Increasing

φt by ∆φ today, raises nτ by δ∆φdt ≡ dφ. But at a given date t > τ a proportion e−δ(t−τ)

has already been selected again. Therefore, the resulting change in n at time t ≥ τ is:

dnt = dφe−δ(t−τ).
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This deviation is not profitable if∫ ∞
τ

Eτ
[
e−ρ(t−τ)∂W (θt, nt)

∂n
e−δ(t−τ)dφ

]
dt ≤ 0,

which becomes ∫ ∞
τ

e−(ρ+δ)(t−τ)Eτ
[
∂W (θt, nt)

∂n

]
dt ≤ 0. (7)

Now assume that φτ > 0 and the planner chooses a similar deviation, but with dφ < 0.

The same reasoning implies that this deviation is not profitable if∫ ∞
τ

e−(ρ+δ)(t−τ)Eτ
[
∂W (θt, nt)

∂n

]
dt ≥ 0. (8)

This implies the following necessary conditions for optimality: if φτ = 0 then (7) holds;

if φτ = 1 then (8) holds; if φτ ∈ (0, 1) then (7) holds with equality. But those are exactly

the necessary (and sufficient) conditions for a Nash Equilibrium in the game where the

relative payoff ∆u(θ, n) is replaced by ∂W (θ,n)
∂n

(see equation (1)).

Hence, if we find the set of Nash Equilibria in this modified game, we have found all the

candidates for the planner solution. But as long as ∂W (θ,n)
∂n

satisfies the same conditions

we imposed on ∆u(θ, n) and we have shocks, the equilibrium is unique and therefore these

necessary conditions are also sufficient for optimality.

Therefore the planner plays a modified game, in which the flow gain of choosing 1 is

given by

dW (θ, n)

dn
= [u1(θ, n)− u0(θ, n)]︸ ︷︷ ︸

∆u(θ,n)

+

[
n
∂u1(θ, n)

∂n
+ (1− n)

∂u0(θ, n)

∂n

]
︸ ︷︷ ︸

Externality

. (9)

The agent considers the first term in brackets, but does not consider the externality

on others. The difference between the planner’s problem and the agents’ problem is the

second term in brackets. Looking at how they relate, we might get some intuition for how

the planner’s threshold relates to the agents’ threshold.

2.4 Bifurcation probabilities

We now discuss other results that will be useful when explicitly caracterizing the equilib-

rium in some particular cases. For simplicity of the exposition, assume µ = 0 hereafter,

unless stated otherwise. Suppose agents play according to some decreasing threshold

θ∗(n) (as we have seen, they do that in equilibrium).5 Let’s look to the limiting case

5There are additional technical requirements that are always satisfied by an equilibrium threshold. In particular, θ∗(·)
must be a Lipschitz function.
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where shocks are very small, i.e., σ → 0.6 What is the dynamics of nt when the economy

starts off at some point on the threshold θ∗(n)?

This mathematical problem is studied by Burdzy, Frankel and Pauzner (1998). They

show that, as σ → 0, the economy either bifurcates in the direction of n = 0 or in the

direction of n = 1, and never comes back. Moreover, the time it takes for the economy to

start heading off in one direction or the other goes to zero. The economy instantaneously

moves in one of the directions indicated by the arrows in Figure 7.

Figure 7: Bifurcation probabilities

n = 1

n = 0
θ

θ∗

n0

ṅ↑t = δ(1− n↑t )

ṅ↓t = −δn↓t

When the economy is at the threshold, a small positive shock pushes the economy to the

right of it and nt goes up. Negative shocks push the economy to the left of the threshold

and thus n goes down. Since the threshold is negatively sloped, once the economy stays

away for a while to the right of the threshold, as n goes up, it drifts further away from

the threshold and never comes back. The same logic applies when a sequence of negative

shocks hit. Since shocks are very small and frequent, the bifurcation happens very quickly.

Burdzy, Frankel and Pauzner (1998) shows that as σ → 0, the time until it bifurcates

converges to zero.

But what is the probability of the economy moving in either direction? Burdzy, Frankel

and Pauzner (1998) show that it is proportional to the speed that the economy moves in

either direction. More specifically:

Prob(bifurcate up)

Prob(bifurcate down)
=

initial speed of nt if bifurcates up

initial speed of nt if bifurcates down
=

∣∣∣ṅ↑0∣∣∣∣∣∣ṅ↓0∣∣∣ , (10)

which implies that

Prob(bifurcate up) = 1− n0 and Prob(bifurcate down) = n0. (11)

To understand the intuition, suppose σ ≈ 0 and that nt moves up very quickly when to

the right of the threshold and goes down very slowly when to the left of it. Then, a small

6The result presented in this section holds for µ, σ → 0, regardless of the relative speed at which µ and σ go to zero.
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sequence positive shocks moves the economy very far from the threshold, but we need a

very large sequence of negative shocks to get far away from it. If positive and negative

shocks are equally likely, it makes sense to think that it is more likely that economy will

bifurcate up.

2.5 Results for limiting cases

Although in general it is not easy to compute the equilibrium threshold θ∗(n), in two

limiting cases the model is especially tractable: (i) when σ → 0 and (ii) when δ → ∞.

Besides providing approximate results for the cases with small shocks and small frictions,

these limiting cases are interesting for helping us to understand how small departures

from the case with no shocks and/or no timing frictions affect equilibrium outcomes.

2.5.1 Vanishing shocks

When σ → 0, we can use the results from Burdzy, Frankel and Pauzner (1998), namely

that the time until bifurcation converges to zero and the bifurcation probabilities in (11),

to compute the beliefs of an agent deciding on the threshold. The indifference condition

that solves for the equilibrium threshold in (4) becomes:

(1− n0)

∫ ∞
0

e−(ρ+δ)t∆u(θ∗(n0), n↑t )dt+ n0

∫ ∞
0

e−(ρ+δ)t∆u(θ∗(n0), n↓t )dt = 0, (12)

where n↑t = 1 − (1 − n0)e−δt and n↓t = n0e
−δt. Solving the expression for θ∗ we get the

equilibrium threshold. Alternatively, we can apply the change of variables v = n↑t and

v = n↓t in the integrals above to get:∫ n0

0

(
v

n0

) ρ
δ 1

δ
∆u(θ∗(n0), v)dv +

∫ 1

n0

(
1− v
1− n0

) ρ
δ 1

δ
∆u(θ∗(n0), v)dv = 0. (13)

Figure 8 depicts the equilibrium. The curves θopt and θpes represent the two extreme

equilibria of the game with no shocks – (‘opt’ and ‘pes’ stand for optimistic and pessimistic

beliefs, respectively). Notice that the threshold θ∗ touches θopt when n = 0, since the

bifurcation probabilities imply that agents expect nt to go up forever with probability one

at the state (θ∗(0), 0). Similarly, θ∗ touches θpes when n = 1, since the system bifurcates

down with probability one at the state (θ∗(1), 1).

2.5.2 Vanishing frictions

With vanishing frictions (δ → ∞) agents are allowed to switch actions at almost every

period. To derive the equilibrium in this case, it is useful to write down our environment
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Figure 8: Equilibrium with vanishing shocks

n = 1

n = 0
θ

θopt θpes

θ∗

in a different unit of time. Suppose that date t in the new unit of time is represented by

t̃ = δt. For instance, if we were initially measuring time in years and δ = 12, it means that

we are now measuring time in months. The arrival rate of the Poisson process becomes

δ̃ = 1; the discount rate becomes ρ̃ = ρ/δ; the variance of the change in fundamentals

between t̃ and t̃+1 becomes σ̃2 = σ2/δ.7 Sending δ to infinity is thus equivalent to taking

the limit when ρ→ 0 and σ → 0.

We know from the previous section that when σ → 0, the threshold is characterized

by (13). Taking the limit when ρ → 0 in (13), we get that the threshold θ∗(n0) is given

by:8 ∫ 1

0

∆u(θ∗(n0), v)dv = 0. (14)

Notice that the expression above does not depend on n0, and thus θ∗(n0) is constant.

Figure 9 shows the equilibrium in this case.

Figure 9: Equilibrium with vanishing frictions

All choose
action 1

All choose
action 0

n = 1

n = 0
θθ∗

The equilibrium does not depend on the current value of n, just on the fundamental.

The result may seem to follow immediately from the fact that the nt moves very quickly

in this economy (true), which would imply that the current value of nt is irrelevant (false).

This intuition is incorrect because although the economy can move very quickly from a
7(θt+s − θt) ∼ N(0, σ2s), for every t and s. Thus, σ2 represents the variance of (θt+1 − θt).
8This expression coincides with the equilibrium condition in a static global game where agents have a diffuse prior, get

a noisy signal about θ and their payoffs are ∆u(θ, n). See Morris and Shin (2003).
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low n to a high n, the next opportunity to change behavior also comes very quickly, so

the agent effectively discounts the future at rate ρ+ δ.

The intuition for the irrelevance of the current value of n is the following. An agent

starting at n = 0 will experience n from 0 to h†, where h† is uniformly distributed in

[0, 1]; while an agent starting at h = 1 will experience h from 1 to 1−h†. Hence the agent

starting at n = 0 will experience a lower range of values of n than the agent starting at

n = 1 (before their next opportunity to choose again). However, for the agent starting

at n = 0, the economy moves up very quickly at lower values of n, but very slowly as n

approaches 1, so the last agents to change their decision will spend relatively more time

at high values of n. As it turns out, this effects exactly offset the previous one, so agents

at n = 0 and n = 1 are indifferent between actions 0 and 1 for the same value of θ.9

2.6 The planner’s problem with vanishing shocks

For the planner, it makes no difference whether there are no shocks or shocks are very

small (the planner does not face a coordination problem with itself). Hence the model

can be solved in two different ways: assuming vanishing shocks (σ → 0) or no shocks

(σ = 0).

The case σ → 0. As shown in section 2.3, as long as ∂W (θ, n)/∂n satisfies the same

conditions we imposed on ∆u(θ, n) and we have shocks, the planner’s problem can be seen

as analogous to the agents’ problem, only with different payoffs. Considering vanishing

shocks, we can then apply the bifurcation probabilities to solve for the planner’s threshold.

The indifference condition characterizing the planner’s threshold is given by

(1− n0)

∫ ∞
0

e−(ρ+δ)t∂W (θP , n↑t )

∂n
dt+ n0

∫ ∞
0

e−(ρ+δ)t∂W (θP , n↓t )

∂n
dt = 0,

where again n↑t = 1− (1−n0)e−δt and n↓t = n0e
−δt, and ∂W (θ, n)/∂n is given by equation

(9). Solving this equation for θP gives us the planner’s threshold as a function of n0.

The case σ = 0. We can also compute the planner’s threshold by searching for the curve

θP (n0) along which the planner is indifferent between sending agents to network 1 forever,

or to network 0 forever, assuming there are no shocks to fundamentals. Assuming σ = 0,

for a given n0 the planner is indifferent between an upward or a downward path for nt
9See also the explanation in Burdzy, Frankel and Pauzner (2001).
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when θP satisfies:∫ ∞
0

e−ρt
[
n↑tu1(θP , n↑t ) + (1− n↑t )u0(θP , n↑t )

]
dt

=

∫ ∞
0

e−ρt
[
n↓tu1(θP , n↓t ) + (1− n↓t )u0(θP , n↓t )

]
dt. (15)

The two approaches must lead to the same resulting threshold θP (n0).

3 Applications

We now consider applications of the framework presented in Section 2 to a variety of

settings. All these models can be seen as particular cases of the basic framework, but

their implications are substantially different. In particular, the efficiency results are quite

different across models.

3.1 Linear utility

We now consider a particular case of the model where the agents’ utility is a linear function

of θt and nt, as in Guimaraes and Pereira (2016). This case is particularly tractable as it

allows for closed form solutions in the limiting cases previously discussed.

Agents’ utility functions are given by

u0
t (θ

0
t , nt) = θ0

t + ν0(1− nt) and u1
t (θ

1
t , nt) = θ1

t + ν1nt,

where θjt represents the fundamentals affecting the flow-payoff of action j and follows a

Brownian motion with drift µj and variance σ2
j . The flow-utility of those choosing action

j increases linearly in the mass of agents taking the same action. We can write the relative

payoff function as

∆u(θt, nt) = θt + γnt,

where θt ≡ θt
1 − θt0 − ν0 follows a Brownian motion with drift µ = µ1 − µ0 and variance

σ = σ2
0 + σ2

1, and γ ≡ ν0 + ν1. Assume ν0 and ν1 are such that γ > 0. Notice ∆u(·)
satisfies all the assumptions listed in section 2.

This is a general linear case. When µ0 = σ2
0 = ν0 = 0, one of the actions yields a

constant payoff. When ν0 = ν1, we have a model of network externalities that are the

same for both networks.
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3.1.1 Equilibrium threshold in limiting cases

As in the general case, an agent who receives an opportunity to revise her choice at time

τ will choose action ai = 1 if the discounted relative payoff of doing so is positive:

E
∫ ∞
τ

e−(ρ+δ)(t−τ)(θt + γnt)dt > 0. (16)

If the inequality is reversed, the agent will choose ai = 0. Theorem 1 ensures there is a

unique equilibrium in which agents play according to a downward sloping threshold. If we

focus on the limiting case with µ, σ → 0, we can simply apply the bifurcation probabilities

of section 2.4 to compute the equilibrium threshold. Substituting the expression for

∆u(θt, nt) in this tractable case into (12), we have that the indifference condition for

agents is given by

(1− n0)

∫ ∞
0

e−(ρ+δ)t(θl + γn↑t )dt+ n0

∫ ∞
0

e−(ρ+δ)t(θl + γn↓t )dt = 0.

Solving for θl, we get an explicit expression for the linear equilibrium threshold:

θl(n0) = − γδ

ρ+ 2δ
− γρ

ρ+ 2δ
n0. (17)

It is also possible to explicitly characterize the equilibrium threshold in the other

tractable limiting case: when timing frictions vanish. It suffices to substitute ∆u(θ̃l,n) =

θ̃l + γn into (14) and solve for θ̃l. Analogously, one could simply take the limit of the

right-hand side of (17) as δ →∞ to find that the threshold is given by θ̃l = −γ/2.

3.1.2 The planner problem with network externalities

We now use the model with linear utility to study efficiency in an environment with

network externalities. The expression in (6) and simple algebra yield the planner’s in-

stantaneous payoff:

W (θ, n) = θ0 + ν0 + (θ − ν0)n+ γn2,

hence
dW (θ, n)

dn
= [θ + γn]︸ ︷︷ ︸

∆u(θ,n)

+ γn− ν0︸ ︷︷ ︸
Externality

.

Notice that increasing n implies a positive externality term if and only if γn > ν0, i.e, if

ν1n > ν0(1 − n). Intuitively, the choice of action 1 increases the payoff of agents locked

in action 1 but reduces the payoff of those locked in action 0. Therefore, the sign of the

externality term depends on which of those effects dominate, which in turn depends on
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the amount of agents in each action and on the relative importance of the externality for

them. From section 2.3, the planner recommends action 1 whenever∫ ∞
0

e−(ρ+δ)t
[
θt − ν0 + 2γnt

]
dt > 0.

This expression for the planner is quite similar to the condition for an agent in (16). The

only substantial difference is that γ is multiplied by 2, indicating that the planner gives

more importance to externalities.

Limiting case. Assume µ, σ → 0. From section 2.6, we know the indifference condition

for the planner becomes

(1− n0)

∫ ∞
0

e−(ρ+δ)t
[
θP − ν0 + 2γn↑t

]
dt+ n0

∫ ∞
0

e−(ρ+δ)t
[
θP − ν0 + 2γn↓t

]
dt = 0.

Solving for θP , we find that the planner plays according to the threshold:

θP (n0) = ν0 − 2γδ

ρ+ 2δ
− 2γρ

ρ+ 2δ
n0. (18)

3.1.3 Symmetric network effects

We now assume ν ≡ ν0 = ν1 so that externalities are the same for both networks. Hence

increasing n implies a positive externality term whenever n > 0.5 and a negative term

otherwise. Using ν0 = γ/2 in (18) and doing some algebra yields:

θP (n0) = − γδ

ρ+ 2δ
+

γρ

2(ρ+ 2δ)
− 2γρ

ρ+ 2δ
n0. (19)

Guimaraes and Pereira (2016) use this model to describe consumers’ choices between

two competing standards, such as the QWERTY keyboard and the alternative (and al-

legedly better) option, the Dvorak keyboard. The utility functions capture agents’ pref-

erence for higher-quality products and for using the standard that is widespread. One

can think that the QWERTY standard incidentally spread out before the higher-quality

Dvorak standard became available. We have then a conflict between the two features of

preferences: one product has the biggest network of consumers, but the other product

is the highest-quality one. Is there room for interventions such as subsidies to elimi-

nate inefficiencies in this environment? Comparing the decentralized equilibrium with

the planner’s solution shed light on this matter.

Figure 10 shows how the decentralized equilibrium relates to the planner’s solution.

To the right of θ∗, agents are willing to pick action 1, and to the left of θ∗, action 0. The

planner would mandate that action 1 is chosen whenever the economy is to the right of θP ,
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instead. We can think of a vertical line crossing (θ∗(0.5), 0.5) as a dividing line between

the regions where network 0 or network 1 are “intrinsically better”. When n = 0.5,

θ∗ = −γ/2, so along that vertical line θ1 = θ0.

Figure 10: Planner’s solution with linear utilities

n = 1

n = 0
θ

θ∗θP

The curve θP is half as steep as θ∗. The reason is that, in a decentralized economy, an

agent at a revision opportunity considers the intrinsic quality of the two standards and

the size of each network only to the extent that network effects affect her own payoff.

The social planner dictating an agent’s choice takes into account all factors that the

agent considers plus the effect of that choice on other people. Hence, the planner will

place higher weight on the coordination with the majority than the agent. Since the

net externality from choosing action 1 is positive if (and only if) n > 0.5, the planner’s

threshold rotates around the agent’s threshold so that if n < 0.5, the planner’s threshold

lies to the right of the agents’, and if n > 0.5, it lies to the left.

As a consequence, the social planner is more conservative than agents regarding the

transition to a better but smaller network. There exist quality differences such that the

transition to the best standard (Dvorak) happens in the decentralized economy, but the

social planner would choose to stay with the worst one (QWERTY). The shaded area

represents such states where inefficient shifts to the intrinsecally best network happen. If

we observe that the transition to Dvorak has not happened in the decentralized economy,

it must be that such transition would be inefficient (and thus should not be subsidized).

The model predicts that whenever the prevailing standard is the worst-quality one, this

is surely efficient.

Common wisdom would tell us that the economy gets inefficiently stuck at low-quality

networks. The results show this intuition is misleading and highlight the importance of

the transition costs.
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3.1.4 Asymmetric network effects

Now, consider the case with ν1 6= ν0. The planner’s threshold is given by (18). When the

network effect is asymmetric, the planner not only rotates the threshold around n = 0.5,

but it also shifts the threshold in order to enlarge the region in which agents choose the

action that generates more externalities.

The next figure depicts the planner’s solution when externalities are larger in network

0 than in network 1. When ν0/ν1 > (ρ + δ)/δ, the case of Figure 11a, the externality in

network 0 is so large in comparison to the externality in 1 that the planner’s threshold

lies completely to the right of the agents’ threshold.10 The smaller the value of n, the

larger the quality gap needed for the switch to network 1 to be efficient. This is because

the planner takes into account that, when n is small, a lot of agents are stuck in action

0 (due to timing frictions) and they all would benefit from the network effects generated

by an additional decrease in n.

Figure 11b depicts the case with (ρ + δ)/δ ≥ ν0/ν1 > 1. Again, the region where the

planner chooses network 0 is enlarged in comparison to the case with symmetric network

effects, but in this case the planner’s threshold crosses the agents’ at some n > 0.5.

Figure 11: Asymmetric network effects

n = 1

n = 0
θ

θ∗ θP

(a) Large asymmetry

n = 1

n = 0
θ

θ∗θP

(b) Some asymmetry

10This is the case when θP (1) > θ∗(1).
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3.1.5 Alternative interpretation: negative externalities

This result is also applicable to a case where a certain action creates negative externali-

ties, but those externalities end up generating strategic complementarities. Consider the

following variation of the model: flow-utilities from states 0 and 1 are given by

u0
t (θ

0
t , nt) = θ0

t − ν0nt and u1
t (θ

1
t , nt) = θ1

t − ν1nt,

with ν0 > ν1 ≥ 0. The relative payoff function is given by

∆u(θt, nt) = θt + γnt,

with θt ≡ θt
1− θt0 and γ ≡ ν0−ν1 > 0. These payoffs capture a situation in which action

1 harms everyone, but it is even more prejudicial to agents currently choosing action 0.

As an example, imagine that agents can adopt an aggressive behavior (action 1) or an

accommodating behavior (action 0). Action 1 is particularly harmful for those adopting

an accommodating behavior.11

Solving the planner’s problem in this case yields the same threshold as in (18), with

the feature that θP (1) > θ∗(1) as in Figure 11a. Agents do not internalize the harm

imposed on others when they opt for an aggressive behavior. A larger number of agents

choosing an accommodating behavior (a smaller n) implies a larger potential damage

of an additional agent choosing to behave aggressively, and thus the larger the gap in

fundamentals required for action 1 to be the right choice from a social perspective.

3.2 Statistical discrimination

This section shows a simplified version of the model of statistical discrimination in Levin

(2009). Individuals enter the economy at rate δ and decide whether or not to make an

investment and become skilled. The cost of investment C = −θ is known at the time of

the investment, where θ follows a Brownian motion.

Then, when a Poisson event occurs (again, rate δ), an individual is matched to an em-

ployer and receives her payoff. Employers observe (i) a noisy signal about the individual’s

skill; and (ii) the fraction nt of skilled individuals in the population. The signal about

the individual’s skill might be ‘good’ or ‘bad’. The signal is ‘good’ with probability φH if

the individual is skilled and φL if she is not, with φH > φL. We will assume that skilled

individuals always receive a good signal, i.e., φH = 1. An individual’s payoff is equal to

11As an illustration, imagine that n is the proportion of drivers driving SUVs, and 1−n is the proportion driving sedans

and smaller cars. More SUVs means more severe car crashes, especially for sedan owners.
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the probability attached to her being skilled. When the Poisson event hits, the individual

receives her payoff and leaves the model.

The investment cost −θ can be negative. One interpretation is that θ is the expected

benefit from investment received after the employment opportunity considered in the

model net of the investment cost.

3.2.1 Equilibrium

The probability an employer assigns to an individual being skilled is

γGt =
φHnt

φHnt + φL(1− nt)
and γBt =

(1− φH)nt
(1− φH)nt + (1− φL)(1− nt)

if the signal is ‘good’ and if it is ‘bad’, respectively.

The gain from investing is the increase in the probability of getting a good signal

(φH − φL) times the present value of the gain from having a good signal (γGt − γBt).

Hence an individual will decide to make the investment if

(φH − φL)E

∫ ∞
τ

e−(ρ+δ)(t−τ)δ(γGt − γBt)dt ≥ −θ.

Note that both γGt and γBt are increasing in nt. Intuitively, if nt is small, it is more

likely that a good signal is due to luck and it is more likely that a bad signal reflects the

individuals’ true level of skill. Thus the difference γGt − γBt is not necessarily increasing

in nt.
12 The assumption that φH = 1 ensures that the payoff from investing is increasing

in nt because it implies γBt = 0, meaning that individuals with a bad signal are surely

unskilled. Individuals with a good signal might be either skilled or lucky (unskilled with a

good signal) and the probability of the former is increasing in nt. Hence agents’ decisions

are strategic complements. An individual will invest if:

E

∫ ∞
τ

e−(ρ+δ)(t−τ)δ
nt(1− φL)

φL + nt(1− φL)
dt ≥ −θ (20)

Although the structure of this model is different from the framework presented in

Section 2, mathematically this model can be seen as a particular case of that one. There

is always a measure-one continuum of agents in the model, as agents enter and leave the

economy at rate δ. Agents’ decisions are given by (20), which is a particular case of (4)

and the flow payoff is increasing in nt. It is easy to throw θ inside the integral to make

the flow payoff increasing in θ as well and, finally, θ follows a Brownian motion.

12For example, suppose that φH > φL = 0. Then γGt = 1 and γBt is increasing in nt. Intuitively, an individual with a

good signal must be skilled, but an individual with a bad signal might be either unskilled or unlucky, and the probability

of the latter increases with nt. In this case, γGt − γBt is decreasing in nt.
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Agents’ decisions are thus determined by a unique downward sloping threshold θ∗.

Levin (2009) highlights that for some values of θ, individuals would be investing if nt

were large, but may get stuck in a situation with low nt, reflecting the persistence of

statistical discrimination: employers are likely to believe that a good signal is likely to

reflect luck, not skill, and individuals refrain from investing.

The model captures a situation where the rewards from investment depend on whether

others believe the investment was indeed undertaken and this belief is affected by the

choices of others in the population (or, in a particular group). Beyond labor markets, this

model could be applied to other problems where statistical discrimination is an issue.

3.2.2 Efficiency

Is the persistence of statistical discrimination inefficient? Should we be particularly con-

cerned with economies with very low nt but relatively high θt?

Using the results derived in Section 2.3, we can ask how the decentralized equilibrium

compares to the planner’s solution. Consider a social planner whose flow benefit from

investment is given by the sum of payoffs of agents that leave the game at a given point

in time. This flow benefit is then given by:

W (nt) = δ(ntγGt + (1− nt)φLγGt) = δnt

Intuitively, at a given moment of time, the average payoff of agents will be nt. If signals

are perfectly informative (φL = 0), skilled agents (that amount to a proportion nt of

individuals) will receive 1 and unskilled agents will receive 0. Less informative signals

imply a lower payoff for skilled agents and a larger payoff for unskilled ones, but the

average payoff is still the fraction of skilled agents, nt. Hence, the planner faces no

coordination problem. An extra individual investing implies a gain equal to 1, that is

distributed among the population.

Following the steps from Section 2.3, we get that the planner chooses to invest if

E

∫ ∞
τ

e−(ρ+δ)(t−τ)δdt ≥ −θ

Note that this is exactly what we would obtain from (20) in case φL = 0. If φL = 0

and φH = 1, the signal about an individual is perfectly informative, so perceptions about

an agent are not affected by the characteristics of the population (or group). Hence, an

individual’s action entails no externality.

The planner’s threshold θP is given by

θP = − δ

δ + ρ
(21)
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Investment is efficient as long as the expected present value of its benefit is larger than

the cost −θ. In the (θ, n)-space, the planner chooses according to a vertical threshold (θP

is independent of nt).

3.2.3 Example

Using (13), we get the equilibrium threshold θ∗ in the limit of vanishing shocks (θ → 0):

θ∗(n0) = −
∫ n0

0

(
v

n0

) ρ
δ (1− φL)v

φL + v(1− φL)
dv −

∫ 1

n0

(
1− v
1− n0

) ρ
δ (1− φL)v

φL + v(1− φL)
dv

Figure 12 shows an example with ρ = 0.1, δ = 0.2. The solid vertical line at the left is

the planner’s threshold, from (21). The other curves are the equilibrium thresholds for

φL = 0.1, φL = 0.5 and φL = 0.9, starting from the left.

Figure 12: Equilibrium in case of vanishing shocks
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When φL = 0.9, the private benefit from investing is small, as unskilled agents are

likely to get a good signal. Hence, in equilibrium, investment pays off only if its cost is

close to zero. Interestingly, even when the signal is very informative, there are important

inefficiencies. The leftmost dashed curve corresponds to the case φL = 0.1 (and, as in

all other cases, φH = 1). Still, the equilibrium threshold is quite far from the efficient

benchmark, especially for low n. When n = 0, agents are willing to pay no more than

0.46 for investing, but it would be efficient to pay up to 0.67. When n = 1, agents are

willing to pay up to 0.57.

In sum, the persistence of statistical discrimination is inefficient and we should indeed

be particularly concerned with economies with very low nt but relatively high θt.
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3.3 A macroeconomic model

Kiyotaki (1988) shows that in a model with monopolistic competition and some locally

increasing returns to scale, there are multiple equilibria. Guimaraes and Machado (2017)

embed a simple model that captures those insights in a dynamic framework with timing

frictions.

The demand side is standard. A continuum of risk-neutral agents produce each a

differentiated good that are aggregated by a competitive final good producer according

to:

Yt =

(∫ 1

0

y
ε−1
ε

i,t di

) ε
ε−1

, (22)

where Yt is the amount produced of the final good, yi,t is the amount purchased of the

variety produced by agent i, and ε > 1 is the elasticity of substitution. The zero profit

condition for final good producers is∫ 1

0

pi,tyi,tdi = PY, (23)

where pi,t is the price of variety i.

The intermediate good producer can operate in two regimes: 1 (High) and 0 (Low).

Chances to switch regimes arrive according to a Poisson process with arrival rate δ. Agents

in the High regime can produce up to eθtxH and agents in the low regime can produce up

to eθtxL, with xH > xL. The marginal cost is zero up to firms’ capacity, but firms must

pay a fixed cost ψ > 0 to choose the High regime when they get the chance. One should

think of moving to regime High as buying some machine that decreases the marginal cost

of production. When a producer in regime High gets the Poisson realization, the machine

fully depreciates and she gets a chance to get another one. When a producer in regime

Low gets the Poisson realization, it simply means that an investment opportunity has

arrived.

Alternatively, one could say that producers rent a machine but must pay a competitive

user cost ψ̃ = (ρ+δ)ψ that equals the expected depreciation (δψ) plus interest (ρψ). Since

agents are risk-neutral, as long as they can borrow in frictionless credit markets, they are

indifferent between buying or renting and both interpretations are equivalent.

3.3.1 Equilibrium

Let Pt be the price of the final good. Say producers of the final good will spend C on

intermediate goods. At every instant, they will choose inputs yi in order to maximize (22)
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subject to ∫ 1

0

pi,tyi,tdi = C,

taking prices of intermediate goods as given. This is a static constrained-maximization

problem. Combining the first-order conditions for intermediate goods i and j and rear-

ranging yield

pi
pj

=

(
yi
yj

)−1/ε

.

Plugging this expression into the zero-profit condition in (23) yields the usual demand for

each variety:

pi,t =

(
yi,t
Yt

) 1
ε

Pt. (24)

Using (24), and the fact that it will always be optimal to produce at maximum capacity,

we can write the profit of producers in regime High and Low as

u1 = pi,tyi,t − ψ̃ =
(
eθtxH

) ε−1
ε Y

1
ε
t Pt − ψ̃ (25)

and

u0 = pi,tyi,t =
(
eθtxL

) ε−1
ε Y

1
ε
t Pt. (26)

By market clearing we have

Yt =
(
nt
(
eθtxH

) ε−1
ε + (1− nt)

(
eθtxL

) ε−1
ε

) ε
ε−1

. (27)

Plugging (27) into (25) and (26), and normalizing Pt to 1, we get:

u1(θt, nt) = eθtx
ε−1
ε

H

(
ntx

ε−1
ε

H + (1− nt)x
ε−1
ε

L

) 1
ε−1

− ψ̃

and

u0(θt, nt) = eθtx
ε−1
ε

L

(
ntx

ε−1
ε

H + (1− nt)x
ε−1
ε

L

) 1
ε−1

,

which implies that

∆u(θt, nt) = eθt
(
ntx

ε−1
ε

H + (1− nt)x
ε−1
ε

L

) 1
ε−1
(
x
ε−1
ε

H − x
ε−1
ε

L

)
− ψ̃.

Notice that the expression above is increasing in θt and nt. To guarantee the existence of

dominance regions (assumption 1), we need to impose that σ2 < 2(ρ + δ).13 Then, this

model can be seen as a particular case of the framework presented in Section 2.

13This is because the integral
∫∞
0 e−(ρ+δ)tE[eθt ]dt =

∫∞
0 e−(ρ+δ−0.5σ2)teθ0dt diverge to ∞ if ρ+ δ − 0.5σ2 < 0, making

it always optimal to choose regime High.
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Firms have higher incentives to invest if they expect others to do the same in the future.

This is so because of the demand externality: when others increase their production,

the demand for one’s variety increases, as shown in (24). Hence firms face a dynamic

coordination problem in their investment decisions.

In what follows, it is useful to define ∆̃u(θ, n) ≡ ∆u(θ, n) + ψ̃. Notice that ∆̃u(θ, n) is

simply the instantaneous gain in revenue of operating in regime High instead of Low. The

instantaneous losses from higher costs is ψ̃. Using (4), agents choose to invest as long as:∫ ∞
τ

e−(ρ+δ)(t−τ)Eτ
[
∆̃u(θt, nt)

]
dt ≥ ψ. (28)

The equilibrium in given by the unique threshold θ∗ that satisfies (28).

The dynamic coordination problem faced by firms may lead to dynamic inefficiencies

that persist over time: firms may not invest today because they are not confident others

will invest tomorrow. But that contributes to lower investment tomorrow, since economic

activity will be low. In other words, the economy may get in a dynamic coordination

trap.

3.3.2 Optimal stimulus policies

Some natural questions that emerge are the following: what kind of investment subsidies

can implement the first-best? Does the dynamic coordination problem imply that a

social planner should provide counter-cyclical subsidies, i.e., higher subsidies in times of

low economic activity (low nt)? We can use this model to answer these questions.

Using (6), (25), (26) and (27), the social planner instantaneous payoff is given by

W (θ, n) = Yt − ψ̃nt,

which yields
dW (θ, n)

dn
=

(
ε

ε− 1

)
∆̃u(θt, nt)− ψ̃. (29)

As shown in Section 2.3, the social planner’s decision threshold must satisfy (5). The

planner thus chooses to invest as long as:∫ ∞
τ

e−(ρ+δ)(t−τ)Eτ
[(

ε

ε− 1

)
∆̃u(θt, nt)− ψ̃

]
dt ≥ 0. (30)

Rearranging and using ψ̃ = (ρ+ δ)ψ yield∫ ∞
τ

e−(ρ+δ)(t−τ)Eτ
[
∆̃u(θt, nt)

]
dt ≥ ψ − 1

ε
ψ.
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This is very similar to (28). It implies that the agents’ problem is identical to the planner’s

problem if they get an investment subsidy of 1
ε
ψ. The planner can therefore implement

the first-best by providing a constant investment subsidy. Alternatively, it could pay 1
ε−1

dollars for each unit of revenue firms get (equation 30). The important thing here is that

the planner is not more willing to incentivize investment in times of low economic activity.

Now notice that we can write agents’ payoffs as ∆u(θt, nt) = eθtg(nt)− ψ̃. Therefore,

the planner’s flow payoff can be written as:

dW (θ, n)

dn
= eθt+log( ε

ε−1)g(nt)− ψ̃.

Let bt = θt + log
(

ε
ε−1

)
. Notice that bt follows the same law of motion as θt. Thus the

planner’s problem is identical to the agent’s problem if the fundamental is bt instead of

θt. Hence, the planner’s threshold plotted in the (bt, nt)-space is identical to the agent’s

threshold plotted in the (θt, nt)-space, which implies that the planner’s threshold is a left

translation of the agent’s threshold, and the distance between the two is log
(

ε
ε−1

)
. This

result is shown in Figure 13.

Figure 13: Planner’s translation
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A similar reasoning implies that the distance between the planner’s and the agents’

threshold (for a given n) is proportional to the maximum subsidy the planner is willing

to pay (which is the subsidy required to make agents invest on the planner’s threshold).

A subsidy of x units is equivalent to increasing θ in log(1− x/ψ).

Agents always benefit if others invest (action 1), regardless of their current action.

Using (9), (29) and ∆u(θ, n) = ∆̃u(θ, n) − ψ̃, we get that the externality term is always

positive (and proportional to ∆̃u(θ, n)). The planner always has higher incentives to

choose action 1 and thus chooses a threshold that lies entirely to the left of the agent’s

threshold.

But why does not the dynamic coordination problem require higher subsidies in times

of low economic activity? To better understand the results it is useful to look at the

planner’s problem in a world without shocks and with multiple equilibria.

30



3.3.3 Optimal stimulus with no shocks

The solution to the planner’s problem when σ → 0 is the same as the solution with

σ = 0. But we know that the agent’s problem is very different. Figure 14 combines the

results depicted in Figure 8 and Figure 13, showing the agents’ threshold with σ → 0 (θ∗),

the two extreme equilibria of the game without shocks (θopt and θpes) and the planner’s

threshold.

Figure 14: Planner’s problem when σ = 0
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When agents play according to either θopt or θpes, the distance between the planner’s

and the agents’ threshold is larger when n = 0 than when n = 1. Therefore, regardless

of whether we choose the ‘good’ or ‘bad’ equilibrium, the model with multiple equilibria

predicts that the planner is more willing to pay subsidies in times of low economic activity,

while the model with a unique equilibrium prescribes a constant subsidy.

Figure 15 illustrates the intuition for this result. First, imagine we are in a world where

agents play according to the good equilibrium. In that case, it is harder to coordinate

when n = 0 for an intuitive reason. In times of low economic activity but reasonably good

fundamentals everyone would be happy to sign a contract that forces everyone to invest,

even though the instantaneous gains of doing so today are negative. This is because

higher investment will force a regime switch that will benefit everyone in the future. The

problem is that no one wants to be the first to invest, leading to a dynamic coordination

trap where one firm keeps waiting for the other to move. This is reflected by the negative

association between n and the distance between the planner’s threshold and the good

equilibrium in Figure 15. We dub it the dynamic problem.

Now suppose the economy is at some point between θopt and θpes and for some reason

agents are not investing. We know that in that region agents would invest if they were

as optimistic as possible. Thus, whenever agents are not investing in the region between

θopt and θpes we say that there is a beliefs problem. For instance, if agents play according

to the unique equilibrium with vanishing shocks the size of the beliefs problem for a given

n is the gray area in Figure 15. Notice that θ∗ touches the good equilibrium when n = 0
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and the bad equilibrium when n = 1.

When agents play according to the unique equilibrium with vanishing shocks, the dy-

namic problem is higher when n = 0, but the beliefs problem is non-existent. Conversely,

when h = 1 there is no dynamic problem, but the beliefs problem is very severe. It turns

out that the different size of the beliefs problem across different values n exactly cancels

the dynamic problem. In the equilibrium with small shocks, agents are very optimistic at

the threshold when n = 0 and very pessimistic when n = 1. Why?

Consider an agent deciding on the threshold θ∗ when n = 0. She knows that if negative

shocks hit, that will not change the level of economic activity. But if positive shocks hit,

the economy will bifurcate up and leave the investment slump. Good shocks create a

boom, while bad shocks do not worsen economic activity. Conversely, when n = 1 and

the economy is at the threshold θ∗, good shocks do not increase economic activity, while

bad shocks trigger an investment slump. The beliefs that arise in equilibrium offset the

dynamic coordination trap, eliminating the need for higher subsidies at times of low

economic activity.

Figure 15: Dynamic problem and beliefs problem σ = 0
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3.3.4 Numerical solution

In this section we discuss some of the positive implications of the model of Guimaraes and

Machado (2017) through some numerical examples. The goal here is not to provide an

extensive quantitative analysis, but only to illustrate how this class of models can be used

by macroeconomists interested in business cycles. First, it will be shown how to solve the

model numerically. Then, through some simple simulations, we discuss some properties

of the model.

Before solving the model we make a departure from our baseline framework. Instead of

assuming the dZt follows a Brownian motion, we assume that it follows a mean reverting

Ornstein-Uhlenbeck process:

dθt = η(µ− θt)dt+ dZt,

32



with η and σ larger than zero. When η = 0 we are back to the case studied throughout this

survey. The parameter η represents the strength of mean reversion on the process for θt.

The parameter µ represents the mean it reverts to. Mean reversion is a desirable property

when taking this kind of model to the data, so that cycles become frequent. Notice that

our proof for uniqueness does not work in that case. Fortunately, Frankel and Burdzy

(2005) show that under some additional technical assumptions, the equilibrium is still

unique with mean reversion. Moreover, even without additional assumptions, numerically

one can verify that if there is multiplicity, it does not seem to matter quantitatively.

Discrete approximation. In order to solve the model numerically, we work with an ap-

proximation of the model. Now time is discrete and each period has length ∆, where ∆

is a small number. Hence t ∈ {0,∆, 2∆, 3∆, ...}. The stochastic process of θt is given by

θt = θt−1 + (µ− θt−1) ∆ + σ
√

∆εt,

where εt are iid normal shocks with zero mean and unit variance. At the beginning of

each period, after θt is observed,
(
1− e−δ∆

)
individuals are randomly selected and get a

chance to switch regime. Agents discount their utility between two periods by the factor

e−ρ∆t. When ∆→ 0 this model converges to the continuous time model.

Threshold computation. Our goal is to find a threshold where agents are indifferent

between actions 1 and 0 if they believe others will play according to that threshold. The

steps are basically the following:

1. Pick an arbitrary threshold θ∗0 and choose a finite grid for n in the interval [0, 1].

2. For every point n in the grid, simulate N paths of θt and nt departing from (θ∗0(n), n),

assuming every agent will play according to θ∗0. Use those paths to estimate the gain

in utility from choosing action 1 of an agent choosing at (θ∗0(n), n).

3. If the gain in utility is close to zero in every point of the grid, stop. Otherwise,

update θ∗0 and go back to step 2.

Alternatively, we can assume every agent is choosing action 0 and find the threshold that

determines the region where choosing 1 is a dominant strategy (call it θH0 ). Then assume

all agents play according to θH0 , find again the best response and keep iterating until it

converges. Of course, we could start the iterations assuming everyone chooses action 1 in

the first iteration.
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Numerical results. We illustrate the workings of the model here through a numerical

example.14 Figure 16 shows the computed threshold. The dotted line represents a path

for (θt, nt).

Figure 16: Estimated threshold
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Note that the threshold is to the right of θ = 0 when n = 0 and to to left when n = 1.

It means that at the long-run average of θt, which is zero in this example, the economy can

be either to the right or to the left of the threshold, depending on agents’ past decisions

(which are summarized by nt). Thus, at the point (θ, n) = (0, 0), the economy will not

leave the investment slump unless sufficiently good shocks hit. Similarly, at the point

(θ, n) = (0, 1), sufficiently negative shocks are needed to trigger a regime change.

Figure 17 shows the output dynamics in this economy. The economy is simulated using

a sequence of random shocks dZt, starting at a point in which n0 = 1 and θ0 = µ = 0 (the

‘steady-state’ of θt). The solid line represents the log deviations of output relative to its

initial value. The dotted line represents the deviations of productivity θt, which would be

equivalent to the log deviations of output if firms always operated in regime High (note

that in regime High output is eθtxH).

Two important messages come from this figure. First, when shocks are large, the

coordination mechanism amplifies the shocks to productivity in this economy, as reflected

by the higher fall in output after sufficiently bad shocks. Second, the model generates

slow recoveries. Productivity returns to its initial level much earlier than output. This

illustrates the potential of this kind of framework to generate deep recessions and slow

recoveries.
14The parameters used are ε = 4, xH = 1.05, xL = 1, δ = 1, ψ = 0.0364, σ = 0.03, ρ = 0.03, η = 0.7, µ = 0.
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Figure 17: Amplification and slow recovery
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3.4 Housing and coordination

The basic framework considers a continuum of agents with measure one. However, it also

fits cases where there is a fixed supply of positions and two large groups of agents that

bid for those positions.

In the model of Frankel and Pauzner (2002), there is a measure-one continuum of

houses in a neighborhood and a larger measure of agents of two groups (they call them

‘blacks’ and ‘whites’, we will call them 0 and 1). An agent from group i ∈ {0, 1} living in

the neighborhood gets a flow utility ui(θt, nt) where θt indicates the relative attractiveness

of the neighborhood for people in group 1 (the attractiveness of other neighborhoods is

normalized to zero) and nt is the measure of houses owned by people from group 1. It is

assumed that u0 is increasing in (1− nt) and u1 is increasing in nt.

People living in the neighborhood get moving opportunities at rate δ (say they have to

go somewhere else). When this happens, they sell their houses to whoever offers a larger

price (there is a large number of people from both groups willing to buy the house).

For an individual from group i at time τ , a house in the neighborhood is worth

P i
τ =

∫ ∞
τ

e−(ρ+δ)(t−τ)E [ui(θt, nt)] dt+

∫ ∞
τ

δe−(ρ+δ)(t−τ)E
[
P S
t (θt, nt)

]
dt,

The first term is the utility the agent will get while living in the house until she has to

move. The second term is the expected price the agent gets when she sells the house,

where P S
t (θt, nt) is the price she sells a house when the state is (θt, nt). Note that the

second term does not depend on the type of agent (the value of the house does not depend

on the type of the seller, she has to sell it anyway).

An individual from group 1 will outbid individuals from group 0 if and only if P 1
τ > P 0

τ .
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That happens if: ∫ ∞
τ

e−(ρ+δ)(t−τ)E [∆u(θt, nt)] dt ≥ 0

where ∆u(θt, nt) = u1(θt, nt)− u0(θt, nt). This is equivalent to the expression in (1), and

since ∆u is increasing in θt and in nt, all results from Section 2 apply here.

4 Extensions

Frankel and Pauzner (2000) assume that fundamentals follow a Brownian motion and

allow for a deterministic drift. Frankel and Burdzy (2005) generalize the uniqueness

result allowing for seasonal and mean-reverting shocks to θ. Daniëls (2009) extends the

uniqueness result to the case where θ follows a jump diffusion process and derives an

expression analogous to (14) for the case of vanishing frictions.

Plantin and Shin (2011) extend the model to allow for payoffs that depend not only

on nt but also on ṅt. Besides showing a uniqueness result, they use the model to study

whether carry trades have a stabilizing or a destabilizing effect.

This section considers three other extensions: a model where agents choose the switch-

ing rate from a continuous set; the case with ex-ante heterogeneous agents; and an envi-

ronment with coordination and preemption motives, suitable to the study of crises.

4.1 Endogenous timing

So far agents were not allowed to decide about the timing of their opportunities to switch

actions. But in many applications this can be an important margin of adjustment. For

instance, a firm looking for a worker may decide to increase its search intensity if it faces

higher demand; a firm building a new plant may want to speed up its construction if

the economy is booming; a consumer unsatisfied with his current cell phone may want to

try to sell it on secondary markets. The framework of Frankel and Burdzy (2005) allows

agents to choose the arrival rate of their switching opportunities.

Now agents choose the switching rate instead of actions 0 and 1 directly. Agents

locked in action 0 choose an arrival rate δ0 of the Poisson process. Once the Poisson

shock hits, the agent automatically switches to action 1 (she cannot choose if she wants

to go). Similarly, agents locked in action 1 choose the switching rate δ1 of the Poisson

process that will send them to regime 0. At date t, an agent in regime 1 that chooses

some arrival rate δ1
t must pay a cost c1(δ1

t ). Therefore, the flow payoff of this agent is

given by u1(θt, nt)− c1(δ1
t ). Similarly, agents in regime 0 bear a cost c0(δ0

t ) and their flow
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payoff is u0(θt, nt) − c0(δ0
t ). We assume that cj(·) weakly increasing and left-continuous

in δj. Moreover, δjt ∈ Kj, where Kj is some closed interval in R+. The relative gain of

being in regime high is

D(θ, n, δ0, δ1) = ∆u(θ, n)−
[
c1(δ1)− c0(δ0)

]
.

It is assumed that D(·) is weakly increasing and Lipschitz in θ and n.15 Moreover, we

make the assumption below, which is simply the counterpart of Assumption 1.

Assumption 2 (Existence of dominance regions). There exists θ̃ and θ˜ such that: if

θt > θ̃, it is strictly dominant for players in regime 0 (1) to switch at the maximal

(minimal) rate; if θt < θ̃ it is strictly dominant for players in regime 0 (1) to switch at

the minimal (maximal) rate.

This framework can easily accommodate the baseline model. We can set K0 = K1 =

[0, δ] and c0(δ0) = c1(δ1) = 0, for every n, δ0 and δ1. Then, choosing action j with

probability p conditional on getting the chance in the baseline model, is equivalent to

choosing an arrival rate δjt = (1− p)δ and δ1−j
t = pδ in this model.

Let ∆Vτ denote the lifetime utility of being in regime 1 minus the lifetime utility of

being in regime 0, at date τ . This is given by

∆Vτ = Eτ
[∫ ∞

τ

e−
∫ t
τ (ρ+δ0t+δ1t )dtD

(
θt, nt, δ

0
t , δ

1
t

)
dt

]
.

Note that δ0
t and δ1

t appear on the discount factor. This is because the difference in utility

between agents in regime 1 and 0 becomes zero whenever both agents are in the same

regime. It happens either when an agent in regime 1 switches to regime 0; or when an

agent in regime 0 switches to regime 1. The probability that none of those events have

happened at some date t > τ is exp{−
∫ t
τ

(δ0
t + δ1

t ) dt}.
As shown in Frankel and Burdzy (2005), there is a unique equilibrium in this game.

At each date τ , agents in regime 1 choose a switching rate δ1 = δ1∗(nt, θt) to maximize

δ1∆(−Vτ )− c1(δ1).

Similarly, agents in regime 0 choose a switching rate δ0 = δ0∗(nt, θt) to maximize

δ0∆Vτ − c0(δ0). (31)

If the solution is interior, these expressions are simply stating that agents equalize the

marginal cost of increasing the probability of switching with the expected gain. In equi-

librium, agents take as given their own switching rate in the future and the switching rate
15Under some additional assumptions, the cost c(·) can also depend on nt. See Frankel and Burdzy (2005).
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of others (∆V is taken as given) and simply maximize the instantaneous benefit of doing

it.

4.1.1 The planner’s problem

We add the assumption that costs cj(·) are convex. This implies that the planner chooses

the same hazard rate for every agent. For simplicity, we assume a constant hazard rate

for agents locked in action 1, equal to δ1, with c1(δ1) = 0. Hence welfare in this economy

is given by

Eτ

∫ ∞
τ

e−ρ(t−τ)W (θt, nt, δ
0
t )dt,

with

W (θt, nt, δ
0
t ) = ntu1(θt, nt) + (1− nt)[u0(θt, nt)− c0(δ0

t )]

The strategy here follows Guimaraes and Machado (2017) and is similar to the em-

ployed in Section 2.3. Suppose the planner is following the optimal plan and consider the

following deviation: change δ0
t to δ̃ at τ for an infinitesimal period dt and keep future

choices for every realization of the Brownian path in the future unchanged. This affects

current costs and output net of switching costs for all s > τ . Since there are 1−nt agents

locked in action 0, costs change by

[c0(δ̃)− c0(δ0
t )](1− nt)dt (32)

and the immediate effect on nt is

dnτ = (δ̃ − δ0
t )(1− nt)dt. (33)

This effect dies out in time:

dns = dnτ −
∫ s

τ

dnv
(
δ0
v + δ1

)
dv,

which implies that

dns = dnτe
−

∫ s
τ (δ0v+δ1)dv. (34)

The effect on welfare W net of switching costs for s > τ is

Eτ

∫ ∞
τ

e−ρ(s−τ)

(
∂W (θs, ns, δ

0
s)

∂ns
dns

)
ds. (35)

This deviation cannot be profitable. Hence, putting together (32), (33), (34) and (35), it

must be that

(δ̃ − δ0
t )Eτ

∫ ∞
τ

e−
∫ s
τ (ρ+δ0v+δ1)dv

(
∂W (θs, ns, δ

0
s)

∂ns

)
ds−

[
c0(δ̃)− c0(δ0

t )
]
≤ 0,
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for any δ̃ ∈ [0, δ]. That is equivalent to stating that a necessary condition for the planner’s

solution is that δ0
t must maximize

δ0
τEτ

∫ ∞
τ

e−
∫ s
τ (ρ+δ0v+δ1)dv

(
∂W (θs, ns, δ

0
s)

∂ns

)
ds− c0(δ0

τ ). (36)

This expression is similar to (31). The difference is the term ∂W (θs, ns, δ
0
s)/∂ns inside the

integral instead of D (θs, ns, δ
0
s). As in (9), the planner considers the externality on other

agents. Mathematically, finding the solution to the planner’s problem is thus equivalent

to finding a solution to a game played by agents that maximize (36).

4.1.2 Examples

Let’s say agents are firms and each firm has a job that can be either filled (locked in action

1) or vacant (locked in action 0). Firms with a vacant job choose the search intensity δ0

and matches are destroyed at an exogenous rate δ1, with c1(δ1) = 0 (so K1 is a singleton).

A vacant job yields a flow payoff u0(θt, nt) = 0 and a filled job generates a flow payoff

u1(θt, nt) that is increasing in both arguments – θt can be seen as a measure of productivity

and it is assumed that firms’ profits are larger when output in the economy (proportional

to nt) is larger.

This is the essence of the model of Howitt and McAfee (1992). They show the existence

of multiple equilibria in this setting with no shocks to θ. If θ follows a Brownian motion, we

can apply the results in Frankel and Burdzy (2005), so the model has a unique equilibrium.

The model in Section 3.3 can also be extended to allow for endogenous hazard rates.

Firms can be in two regimes: 0 (low capacity) and 1 (high capacity). Firms in regime 1

have some capital that fully depreciate at some exogenous rate. Once it depreciates, firms

can decide how much resources (if any) they will spend building a fixed unit of capital

(say, constructing a new plant). In other words, they choose the arrival rate of the new

plant. The more resources spent, the more likely the new plant will be ready to operate.

Guimaraes and Machado (2017) show that the constant-subsidy result also applies to this

setting.

4.2 Ex ante heterogeneous agents

A consumer deciding between Facebook and another social network takes into account

what others have been choosing but also her own tastes; a firm’s investment decisions

might depend on other firms’ investment (which affects aggregate demand), but also on

idiosyncratic factors that affect the demand for its particular product. In these and other
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settings, both strategic complementarities and idiosyncratic features of preferences or

technologies are important. While strategic complementarities lead agents to try to do

what others will be doing, idiosyncratic components of preferences might push agents in

different directions. Guimaraes and Pereira (2017) study the interplay of complementar-

ities and heterogeneity in payoffs in a dynamic setting with timing frictions as in Frankel

and Pauzner (2000).

Denote agent i’s relative flow-payoff of choosing action 1 by ∆uq(i)(θ, n), where θ ∈ R
denotes the fundamentals of the economy, n ≡

∫ 1

0
aidi is the fraction of agents currently

committed to action 1, as before, and q(i) ∈ Q = {1, ..., Q} is agent i’s type. All functions

πq(.) are continuously differentiable and strictly increasing in both arguments. If we let

αq denote the mass of type-q agents in the population and nq the proportion of type-q

agents currently playing 1, n can be written as n =
∑Q

q=1 αqnq.

An agent who receives a revision opportunity at time τ will choose ai = 1 whenever

E
∫ ∞
τ

e−(ρ+δ)(t−τ)∆uq(i)(θt, nt)dt > 0

and ai = 0 if the inequality is reversed.

Assumption 1 is now replaced by the assumption that all payoff functions ∆uq(.) are

such that there are dominance regions for all types of agents. That is, for each q ∈ Q,

there are values θ̃q and θq˜ such that: if θt > θ̃q, playing 1 is a dominant action, and if

θt < θ˜q, playing 0 is a dominant action for type-q agents.

In principle, one could expect the dynamics of the system to depend on the proportion

of each type of agent currently choosing each option. However, owing to the assumption

of a Poisson process for the arrival rate of switching opportunities, we can deal with this

problem in a two-dimensional space. Guimaraes and Pereira (2017) show that for any

given a strategy profile, the dynamics of nt (i.e., ∂nt/∂t) depends on each nq,t (for q ∈ Q)

only through nt. Denote by It the set of types whose strategies prescribe action 1 at time

t. We have that
∂nt
∂t

= δ

[∑
q∈It

αq − nt

]
(37)

Guimaraes and Pereira (2017) then show that the uniqueness result in Theorem 1

extends to this environment. Agents choose action 1 when θt > θ∗q(nt) and action 0 when

θt < θ∗q(nt), where θ∗q(·) for q ∈ Q are decreasing functions. The argument employs a

strategy of iterative elimination of strictly dominated strategies similiar to the proof of

Theorem 1.
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4.2.1 Bifurcation probabilities

From now on, assume there are only two types of agents, Q = {q, q}. Suppose there

is a mass α of type-q agents, and assume that the utility functions are such that for

any pair (θ, n) we have ∆uq(θ, n) > ∆uq(θ, n), i.e., type-q agents have a higher relative

instantaneous payoff of choosing action 1 in every state.

The result in Burdzy, Frankel and Pauzner (1998) essentially states that as µ, σ → 0,

the probabilities of the economy bifurcating up and down are proportional to the speed

that the economy moves in either direction around the threshold, as in (10). Hence

we can extend Burdzy, Frankel and Pauzner’s (1998) result on bifurcation probabilities

to the case with heterogeneous agents. Suppose agents play according to two arbitrary

(downward sloping and Lipschitz) thresholds θq(n) < θq(n) for all n in some interval

(n1, n2). Consider a point along one of those thresholds with n ∈ (n1, n2). As µ, σ → 0,

the time it takes for the system to bifurcate either up or down converges to zero, the

probabilities of an upward or a downward bifurcation are computed as follows:

1. For a point (θt, nt) with θt = θq(nt),

P (up) =

0 if n ≥ α,

1− n
α

if n < α,

and P (down) = 1− P (up).

2. For a point (θt, nt) with θt = θq(nt).

P (up) =

 1−n
1−α if n > α,

1 if n ≤ α,

and P (down) = 1− P (up).

Figure 18: Bifurcation probabilities with two thresholds

n = 1

n = 0
θ

θq

α

θq

ṅ = −δn ṅ = δ(1− n)ṅ = δ(α− n)

P (down) = 1

P (down) = n
α

Figure 18 illustrates the dynamics around the two types’ thresholds in case they do not

intersect (see equation 37) and the implied bifurcation probabilities along the thresholds.
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As in the case with a single threshold, starting somewhere along the curves θq or θq, once

the economy has headed off in one direction, it does not revert to the threshold, since it

is downward sloping and shocks to fundamentals are small. The direction of bifurcation

depends on the realization of the Brownian motion in a tiny time span and on the speed

at which n increases or decreases at each side of the threshold.

To fix ideas, consider a point (θq(n), n) with n > α. Small negative shocks bring the

economy to the left of θq, a region in which n decreases. A tiny shock to the right also puts

the economy in a region where n decreases – at a lower speed, but still.16 Hence, regardless

of the direction of the (small) shocks that hit, the economy immediately heads off in the

direction of n = 0: the system bifurcates down with probability one. Now, suppose n < α.

Negative shocks that bring the economy to the left of θq make n decrease at maximum

speed, while positive shocks that lead the economy to the right of the threshold make n

increase at rate δ(n− α).

4.2.2 Results for limiting cases

Once again we focus on the tractable limiting cases with vanishing shocks to fundamentals

and vanishing timing frictions. Let θ∗q(n) and θ∗q(n) denote the two types’ equilibrium

thresholds when µ, σ → 0. The equilibrium properties in this case depend on the degree

of payoff heterogeneity.

Denote by Pq the boundary of the upper dominance region of a type-q agent, i.e.,

the curve along which such agent is indifferent between the two actions if she believes

everyone after her will choose 0 (the most pessimistic beliefs possible about the path of

n). Analogously, let Oq be the boundary of the lower dominance region for a type-q player

– the curve along which the agent is indifferent between 0 and 1 if she believes everyone

will choose 1 in the future. If heterogeneity is not too large, dominance regions are such

that Oq < Pq(n) ∀n, so there is a region in which neither action is dominant for both

types of agents. Figure 19 illustrates this case.

Proposition 2 shows the main equilibrium properties for the case of vanishing shocks

when heterogeneity is not so large.17

Proposition 2. In the setting with two types of agents and vanishing shocks, in the unique

rationalizable equilibrium, if O(n) < P (n) ∀n, then θ∗q(n) = θ∗q(n) for all n in an interval

containing α. Moreover, there are neighborhoods around 0 and 1 in which θ∗q(n) < θ∗q(n).

16Between the thresholds, all high-type agents who get the chance will play 1, but all low-types will play 0. When n > α,

there are more agents currently committed to action 1 than agents willing to choose 1 , so n decreases at a rate δ(n− α).
17See Guimaraes and Pereira (2017) for the proof.
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Figure 19: The case of not-so-large heterogeneity

n = 1

n = 0
θ

Oq Oq PqPq

No dominant
action for
neither

Proposition 2 states that there is some conformity in agents’ behavior as long as het-

erogeneity is not large enough to make it impossible for agents to play according to the

same threshold for any (arbitrary) set of beliefs. Moreover, different types choose ac-

cording to the same threshold for an intermediate range of n, but for extreme values of

n, heterogeneity in preferences beats coordination motives and each type has a distinct

threshold. Figure 20 illustrates this result.

Figure 20: Equilibrium with small heterogeneity and σ → 0

n = 1

n = 0
θ

θ∗q

θ∗q

To better understand the result, suppose agents play according to distinct thresholds

as in Figure 18. For n = α, an agent at the leftmost threshold holds the most pessimistic

beliefs, that n will surely decrease from then on at maximum speed. Hence an agent will

not choose action 1 unless it is dominant to do so. Conversely, an agent at the rightmost

threshold holds the exact opposite beliefs, and thus will not choose 0 unless it is dominant

to do so. This reasoning implies that an equilibrium with two distinct thresholds at

n = α would require (i) high-type agents being indifferent between either choice for some

θ̃ under the most pessimistic beliefs; and (ii) low-type agents being indifferent between

either choice for some θ > θ̃ under the most optimistic beliefs, which cannot happen in the

case of low heterogeneity. Owing to the large dispersion in beliefs offsetting idiosyncratic

payoffs, both thresholds will coincide at n = α.

An analogous reasoning helps understand why for extreme values of n thresholds for

distinct types do not coincide. Consider n = 0. Notice beliefs at the two thresholds
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are not so different: both types expect the economy to bifurcate up with probability

one. The speed n will move up is not the same in both cases, but that is not such a

significant difference in beliefs. That is why even a small difference in preferences leads

to the existence of two distinct thresholds.

Consider now the limiting case of δ → ∞. The next proposition emphasizes some

properties of the equilibrium when distinct types’ flow payoffs differ by a constant.18

Proposition 3. Let ∆uq(θ, n) = ∆u(θ, n) + ε and ∆uq(θ, n) = ∆u(θ, n) + ε, where ∆u(.)

is continuously differentiable and strictly increasing in both arguments and ε > ε. Define

ε̂ ≡ αε+ (1− α)ε and ẑ∗ as satisfying
∫ 1

0
∆u (ẑ∗, n) dn = −ε̂.

In the limit as δ → ∞, ∀n, the vertical line ẑ∗ divides the state space in two regions:

whenever θt > ẑ∗, nt ≈ 1 and whenever θt < ẑ∗, nt ≈ 0.

Proposition 3 states that if heterogeneity is not so large, the economy behaves as

if agents were identical and had an intermediate preference parameter ε̂.19 Although

agents’ strategies do not coincide, agents of a given type immediately switch actions

when fundamentals cross the vertical division line, and the change in n leads the opposite

type to switch actions as well. Since revision opportunities arrive at a very fast pace,

the dynamics of the economy is basically the same as if agents were identical. Figure 21

illustrates the result.

Figure 21: Equilibrium when δ →∞

n = 1

n = 0
θ

z∗

z∗

ẑ∗

The planner’s problem when agents are ex ante heterogeneous can be solved in an

analogous way to the one presented in section 2.3. Guimaraes and Pereira (2017) show

that the region of the state space where the planner would choose the same strategy for

different types is always larger than the region where agents play the same strategy in the

decentralized equilibrium. Therefore, from an efficiency perspective, there is not enough

conformity. Agents do not internalize the spillovers from their action, and thus do not

put enough weight on coordination relative to their own idiosyncratic tastes.

18For general payoff functions, one can use the bifurcation probabilities to compute the equilibrium analytically.
19See Guimaraes and Pereira (2017) for the proof.
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4.3 Coordination and preemption

We now modify our framework so that agents also worry about preemption. This might be

important in applications such as bank runs and currency crises. Consider, for example, a

currency pegged to the dollar that might depreciate if enough agents take short positions.

While everybody is long, the peg is more likely to be kept, which increases incentives

for going long; but if everyone decides to short the currency, the peg is more likely to be

abandoned, which raises incentives for agents to go short. This might look like a particular

case of a coordination game, but there is an important difference: if agents decide to go

short and the peg is likely to be abandoned, one wants to go short before others do it. At

this point, there is no coordination game, as agents want to preempt others.

We consider a version of the model in Guimaraes (2006). Agents have 1 unit of re-

sources. An agent that is long in the currency gets return r as long as the peg is kept, so

an agent long in the currency for T units of time gets erT , where r is a positive constant.

However, when the peg is abandoned, an agent who is long in the currency sees its bal-

ances multiply by e−θ. The return for the agents that are not long in the currency are

normalized by 0.

The fundamental variable θ and the mass of agents long in the currency n determine

whether the peg will be abandoned or not. Denote by θ̃ a function of n that determines

when the peg is abandoned. Assume θ̃(0) = 0, θ̃(1) = Θ̄ for some Θ̄ > 0 and θ̃ is increasing

for n ∈ [0, Θ̄]. The game is over (and agents long in the currency lose money) whenever

(θ, n) hits (θ̃(n), n). For a given θ, the peg is kept as long as n is large enough. Figure 22

provides an illustration.

Figure 22: Game is on if the economy is at the left of θ̃

n = 1

n = 0
θ

θ̃

0

Each agent gets the opportunity to change position according to an independent Pois-

son process with arrival rate δ, assumed to be greater than r. We make the simple

assumption that dθt = µdt, for some µ > 0.20

20Guimaraes (2006) also considers the case where θ follows a Brownian motion (with a trend).

45



Related models. Daniëls (2009) studies crises in a model closer to Frankel and Pauzner

(2000) and Burdzy, Frankel and Pauzner (2001), but allows for jumps in the fundamental

variable θ. In his model, agents actions are always strategic complements.

There are also similarities between the model of debt runs in He and Xiong (2012)

and this one. One key difference is that in He and Xiong (2012), there is an exogenous

credit line instead of something similar to nt, so their economy is not pictured in a two-

dimensional graph similar to Figures 2 or 22 and the model is solved in a different way.

4.3.1 Equilibrium

It can be shown that agents with an opportunity to choose will go long if the economy

is at the left of a positively-inclined threshold (call it θ∗), and will stay out otherwise.

Figure 23 shows the decision threshold θ∗ and the regions agents choose to go long (L)

and decide not to do so (N).

Figure 23: Agents deciding according to θ̃

n = 1

n = 0
θ

θ̃

0

θ∗

NL

Suppose the economy crosses the threshold θ∗ when n = n0. Denote by ñ the value of

n when the economy hits the threshold θ̃ and let Θ̃ ≡ θ̃(ñ). As µ > 0, an agent at θ∗(n0)

knows that everybody will choose to stay out from then on. So, the time for a devaluation

is related to the fraction of agents that is able to run before the devaluation:

ñ = n0 e
−δ∆T , (38)

where ∆T is the time that it takes for the peg to collapse after θ crosses the threshold.

An agent that is long in the currency sees her resources multiplied by exp(rdt) at every

dt as long as the peg has not been abandoned. However, when the devaluation comes,

her balance is multiplied by exp(−θ). The only source of uncertainty is the realization of

the Poisson process. The expected payoff of a long position is

Eπ =

∫ ∆T

0

δe−δtertdt + er∆T e−Θ̃

∫ ∞
∆T

δe−δtdt.
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The first term is what an agent gets if she gets an opportunity to change behavior before

time ∆T . The second term is the agent’s return if she is caught by the devaluation. An

agent is indifferent between a long position and staying out if

Eπ =
(
1− e−(δ−r)∆T ) δ

δ − r
+ e(r−δ)∆T−Θ̃ − 1

which yields

∆T =
log
(
δ
r

(
1− e−Θ̃

)
+ e−Θ̃

)
δ − r

. (39)

The expressions in (38) and (39) yield:

ñ

n0

=

(
r

re−Θ̃ + δ
(
1− e−Θ̃

)) δ
δ−r

. (40)

Let ψ = δ
r
. Then, (40) can be written as:

ñ

n0

=
(
ψ
(

1− e−Θ̃
)

+ e−Θ̃
) −ψ
ψ−1

. (41)

The expression in (41) and the function θ̃ determine Θ̃ and ñ. Then, (38) pins down ∆T .

We then need to determine the agents’ decision threshold. Let Θ∗ ≡ θ∗(n0). It is pinned

down using the expression for the distance covered since agents start to choose to stay

out:

∆T =
Θ̃−Θ∗

µθ
(42)

Results One implication of (41) is that for a given ψ, Θ̃ and ñ do not depend on δ or

r. Intuitively, the benefit per unit of time r does not matter; what matters is the benefit

per unit of the number of opportunities to run away r/δ.

We now show the following results:

1. Θ̃ and ñ are decreasing in ψ. Hence Θ̃ and ñ are decreasing in δ and increasing in r.

2. As ψ →∞,

lim
ψ→∞

ñ = lim
ψ→∞

Θ̃ = lim
ψ→∞

∆T = lim
ψ→∞

Θ∗ = 0.

We first prove the first statement. Taking logs from (41) and rearranging yields

F =
ψ − 1

ψ
[log(ñ)− log(n0)] + log

(
ψ
(

1− e−Θ̃
)

+ e−Θ̃.
)

= 0 (43)

Differentiating F with respect to ñ leads to

∂F
∂ñ

=
ψ − 1

ψñ
+

(ψ − 1)e−Θ̃

ψ
(
1− e−Θ̃

)
+ e−Θ̃

∂θ̃

∂ñ
> 0.
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Hence, using the implicit function theorem, in order to show that ñ is decreasing in ψ we

need to show that F is increasing in ψ. Differentiating F with respect to ψ, we get

∂F
∂ψ

=
1− e−Θ̃

ψ
(
1− e−Θ̃

)
+ e−Θ̃

− 1

ψ2
[log(n0)− log(ñ)]

=
1− e−Θ̃

ψ
(
1− e−Θ̃

)
+ e−Θ̃

−
log
(
ψ
(

1− e−Θ̃
)

+ e−Θ̃
)

ψ(ψ − 1)

>
1− e−Θ̃

ψ
(
1− e−Θ̃

)
+ e−Θ̃

−
ψ
(

1− e−Θ̃
)

+ e−Θ̃ − 1

ψ(ψ − 1)

> 0.

The second equality uses (43), the first inequality uses

log
(
ψ
(

1− e−Θ̃
)

+ e−Θ̃
)
< ψ

(
1− e−Θ̃

)
+ e−Θ̃ − 1,

and the second inequality requires some algebra.

For the second statement, suppose that limψ→∞ Θ̃ is bounded away from 0. Then

from (41), limψ→∞ ñ = 0, which contradicts the assumptions on the function θ̃. Hence

limψ→∞ Θ̃ = 0, which implies limψ→∞ ñ = 0. The results for ∆T and Θ∗ then follow from

(39) and (42).
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