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Abstract

We introduce a Bayesian VAR model with non-Gaussian disturbances that are
modelled with a finite mixture of normal distributions. Importantly, we allow for
regime switching among the different components of the mixture of normals. Our
model is highly flexible and can capture distributions that are fat-tailed, skewed
and even multimodal. We show that our model can generate large out-of-sample
forecast gains relative to standard forecasting models, especially during tranquil
periods. Our model forecasts are also competitive with those generated by the
conventional VAR model with stochastic volatility.
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1 Introduction

This paper develops a VAR model with non-Gaussian shocks by modelling the distur-
bances with a finite mixture of normal distributions. The purpose of the model is to
capture important non-linearities that characterise time-series data and can therefore
affect the forecast performance of VAR models. Our model also allows for potentially
abrupt switches between the components of the mixture of normal and provides a more
flexible treatment of non-Gaussian shocks relative to existing approaches.

A number of approaches have already been proposed to capture non-linearities in the
VAR literature. Models with stochastic volatility (Cogley and Sargent (2005); Primiceri
(2005)) were developed to model time-variation in the error structure, which proved to be
successful in increasing the out-of-sample forecast accuracy of VAR models (DAgostino,
Gambetti, and Giannone (2013); Clark and Ravazzolo (2015)). Most of these papers use
mixture of normals approximation as in Kim, Shephard, and Chib (1998) to estimate
volatility with the Gibbs sampler. Nevertheless, these models assume smoothly drift-
ing second moments. Therefore they are designed to capture persistent (low-frequency)
changes in volatilities while being less capable of modelling transient (high-frequency)
changes in volatility such as rare, fat-tailed events. This point was made in different con-
texts by Jacquier, Polson, and Rossi (2004) and Curdia, del Negro, and Greenwald (2014).
Models with fat-tails relaxed the assumption of Normality by introducing Student’s t-
distributed shocks (Ni and Sun, 2005), and the results of Chiu, Mumtaz, and Pinter
(2015) show that accounting for both stochastic volatility and fat-tails can improve the
out-of-sample forecast accuracy of VAR models. Recent advances in computational algo-
rithms allowed these features to be incorporated in larger VAR models (Carriero, Clark,
and Marcellino (2016); Chan (2015))

None of these models can however capture abrupt changes in economic dynamics
similar to the recent Great Recession. Markov switching VAR models (Sims and Zha
(2006); Sims, Waggoner, and Zha (2008); Hubrich and Tetlow (2014)) have been designed
to model such turning points, but very few applications have looked at implications for
forecast accuracy. This is mainly because of the significant computational challenge
that these models impose during a real-time forecasting evaluation exercise (Clark and
Ravazzolo (2015)).

Our model builds on all the previous approaches by constructing a framework of finite
mixtures of normals to account for non-normal shocks. In particular, a markov switching
process is assumed to potentially capture any persistence in the regimes. We allow for
independent Markov chains to govern the behaviour of each orthogonal shock, which
allows for greater flexibility in the modelling process.

Our paper is related to Kalliovirta, Meitz, and Saikkonen (2014), who proposes a
Gaussian Mixture Vector Autoregression. Our model is different from theirs in the fol-
lowing ways: (i) while in their set-up all coefficients in the system switch regimes at the
same time, our proposed model focuses on the modelling of the regime switches in the
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Figure 1: Empirical Motivation
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shocks; (ii) our proposed model allows each shock to have an independent distribution;
(iii) we estimate our model in a Bayesian framework and thus the predictive posterior
density can be estimated.

To empirically motivate the need for our modelling strategy, Figure 1 plots the em-
pirical distribution (using kernel estimation) of monthly changes in the 3-month T-bill
rate over 1990m1-2015m6 against a fitted normal distribution. The discrepancy between
the two distributions is obvious, and there are at least three things to notice.

First, the kernel distribution is much more peaked. This is because the sample is
dominated by the long recent period of the zero lower bound on the nominal interest
rate, which makes most of the distribution centred tightly around zero. Second, the
kernel distribution is more fat-tailed and highly negatively skewed. This is because the
sample features three recessions that generated strong monetary policy responses leading
to large negative values of interest rate changes. In contrast, expansions are in general not
as abrupt as recessions, therefore monetary policy generates large interest rate changes
less frequently. Third, there are some signs of multimodality in the kernel distribution:
small (0-30bp) and large (45-65bp) interest rate cuts are more frequent than medium-sized
(30-45bp) cuts. This is because monetary policy either fine tunes or responds aggressively
to recessions.

We argue that the model we propose can successfully capture some of these peculiari-
ties of aggregate time-series data. We show that this can lead to sizable gains in forecast
accuracy relative to other, frequently used BVAR models and models with Student’s t-
distributed shocks (TVAR), especially during tranquil periods. We also provide evidence
that the forecasts generated by our proposed model are competitive with respect to the
VAR model with stochastic volatility as investigated by Clark and Ravazzolo (2015) .

The structure of the paper is as follows. Section 2 provides a description of our
baseline model. Section 3 explains the priors and the Gibbs sampling algorithm. Section
4 explains the data and the metrics used to measure forecast accuracy. Section 5 describes
the estimated regimes using our model. Section 6 presents the results of pseudo-out-of-
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sample forecast comparison. Section 7 concludes.

2 BVAR Model with Non-normal Disturbances

The model presented in this section is a multivariate time series model with disturbances
that are allowed to be non-normal. The non-normality is introduced in the model through
a finite mixture of normals.

The BVAR model is defined as follows

yt = B1yt−1 + · · ·+Bpyt−p + ut t = 1, . . . , T. (2.1)

where yt is an n × 1 vector of observed endogenous variables; Bi, i = 1, . . . , p are n ×
n matrices of coefficients; and ut are heteroscedastic shocks associated with the VAR
equations. In particular, we assume that the covariance matrix of ut is defined as

cov(ut) = Σ = A−1HA−1′ (2.2)

where A is a lower triangular matrix. The orthogonalised shocks of the model are then
given as

et = Aut (2.3)

The shock to the ith equation is assumed to follow:

eit = αi,Sit + σi,Sitεit, εit ∼ N(0, 1) (2.4)

where Sit = 1, 2, ...M denotes the unobserved components or regimes. As explained in
Koop (2003) and Geweke (2005), the formulation in equation 2.4, describes a mixture of
M distributions where each component is N (αi, σ2

i ) . The state variable S determines
the component that is active at a particular point in time. The law of motion for Sit is
chosen to be first order Markov process with transition probabilities

P (Si,t = J\Si,t−1 = I) = pi,IJ (2.5)

This formulation captures possible dependence in the time series data used in the paper
but allows for the possibility of rapid transitions across components.

The specification in equations 2.4 implies that orthogonalised residuals et are non-
Gaussian. As the number of components increases, the specification can potentially cap-
ture features of the distribution that are very different from the normal distribution. For
example, if the means αi vary across regimes then the distribution can exhibit skewness
and have kurtosis less than 3, the value for the normal distribution. If the means are the
same across components, the model is then a scale mixture of normals, which is a special
case of our more general model. The resulting distribution is symmetric but may have
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fatter tails than the normal distribution. In fact, as shown by Geweke (1993) assuming
that eit = σi,tεit and adopting a Gamma prior for 1

σi,t
of the form p

(
1
σi,t

)
=

T∏
t=1

Γ (1, vi) is
equivalent to a specification that assumes a Student-t distribution for eit with vi degrees
of freedom. We employ the specification with Student-t errors as a competing model in
the forecast comparison below.

The VAR model proposed above can also be interpreted as a Markov Switching VAR
model (see Hamilton (1994)). Using equation 2.4, 2.3 and 2.1 one obtains:

yt = B1yt−1 + · · ·+Bpyt−p + A−1 (αSt + σStεt) (2.6)

where αSt and σSt are respectively vectors of αi,Sit and σi,Sit . The VAR model in equation
2.6 has switching intercepts A−1αSt , and reduced form residuals with switching variances.
Note that unlike standard MSVAR models, there are n independent Markov chains in
the proposed model that govern the behaviour of each orthogonal error. The implied
reduced form intercepts and residuals are a linear combination of these and thus implies
a more complex structure than MSVARs with switching intercepts and variance where,
typically, one Markov process controls the regime shifts in the system.

Equation 2.6 also shows that the reduced form residuals are a linear combination
of non-normal orthogonal shocks. Therefore the setup imparts a flexible specification
for ut which can also depart from Gaussianity in interesting ways. It implies, however,
that the ordering of the variables in yt can affect the forecast from the model. In the
analysis below, we order the variables in an economically meaningful manner and check
the robustness of the results to this choice.

3 Estimation

We adopt a Bayesian approach to model estimation and forecasting. In this section we
describe the prior distributions and the MCMC algorithm used to obtain the posterior
distribution of the parameters.

3.1 Priors

To define priors for the VAR dynamic coefficients, we follow the dummy observation ap-
proach of Banbura, Giannone, and Reichlin (2010). We assume Normal priors, p (B) ∼
N(B0, S0), whereB = vec([B1, B2, ..Bp]), B0 = (x′dxd)

−1 (x′dyd) and S0 = (YD −XDb0)′ (YD −XDb0)⊗
(x′dxd)

−1. The priors are implemented by the dummy observations yD and xD that are
defined as:
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yD =



diag(γ1s1...γnsn)
τ

0n×(p−1)×n

..............

diag (s1 . . . sn)
..............

01×n


, xD =



JP⊗diag(s1...sn)
τ

0np×1

0n×np 0n×1

..............

01×np c

 (3.1)

where γ1 to γn denote the prior mean for the parameters on the first lag obtained by
estimating individual AR(1) regressions, τ measures the tightness of the prior on the VAR
coefficients, and c is the tightness of the prior on the constant term. We use set τ = 0.1
for all models. The scaling factor si are set using the standard deviation of the residuals
from the individual AR(1) equations. We set c = 1/1000, implying a relatively flat prior
on the constant. In addition, we introduce priors on the sum of lagged coefficients by
defining the following dummy observations:

yS = diag (γ1µ1 . . . γnµn)
λ

, xS =
[

(11×p)⊗ diag (γ1µ1 . . . γnµn)
λ

0n×1

]
(3.2)

where µ1 to µn denote the sample means of the endogenous variables using a training
sample, and the tightness of period on this sum of coefficients is set to λ = 10τ .

The prior for the non-zero and non-one elements Ak is P (Ak) ∼ N (A0,Σ0) where
A0 = Aols from the Cholesky decomposition of the OLS estimate of the VAR error
covariance matrix and Σ0 = 10.

The prior for αi is assumed to be the same across regimes and is given by P (αi) ∼
N (α0, v0) where we set α0 = 0 and v0 = 100. The prior for σ2

i in each regime is inverse
Gamma: P (σ2

i ) ∼ IG (σ0, v0) where scale parameter σ0 = 0.1 and degrees of freedom
v0 = 5.

The prior for the non zero elements of the transition probability matrix pi,IJ is of
the following form: P (pi,IJ) = D (uIJ) where D(.) denotes the Dirichlet distribution and
uIJ = 20 if I = J and uIJ = 1 if I 6= J. This prior thus places some weight on regimes
that are persistent and implies apriori that the process stays in the current regime with
a probability of 95%.

3.2 Gibbs Sampling Algorithm

The marginal posterior distributions are approximated via a Gibbs algorithm. This al-
gorithm draws successively from the following conditional posterior distributions:

1. G
(
B\Sit, αi,Sit , σ2

i,Sit
, A, pi,IJ

)
: The conditional posterior distribution of the VAR

coefficients conditional on the remaining parameters is linear and Gaussian: N
(
BT\T , PT\T

)
.
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We use the Kalman filter to calculate BT\T and PT\T . In particular, we re-write
the model in State-Space form

Yt = XtBt + µt +R
1/2
t Vt

Bt = Bt−1

where Yt = vec(yt),Xt = In⊗[yt−1, yt−2, ..., yt−p], µt = A−1αi,Sit , Rt = A−1diag(σi,Sit),
Vt = εit. Note that, as this step is conditioned on the regime switching parameters,
the State Space model is linear with Gaussian disturbances Vt. Given the switching
parameters and the knowledge of the Markov states, the time-varying matrices µt
and Rt can be calculated at each point in time. The Kalman filter is initialised at
B0 and S0 and the recursions are given by the following equations for t = 1, 2..T

Bt\t−1 = Bt−1\t−1

Pt\t−1 = Pt−1\t−1

ηt\t−1 = Yt −XtBt\t−1 − µt
ft\t−1 = XtPt\t−1X

′
t +Rt

Kt = Pt\t−1X
′
tf
−1
t\t−1

Bt\t = Bt\t−1 +Ktηt\t−1

Pt\t = Pt\t−1 −KtxtPt\t−1

The final iteration of the filter delivers BT\T and PT\T . The VAR coefficients can
then be drawn from the multivariate Normal distribution.

2. G
(
A\B, Sit, αi,Sit , σ2

i,Sit
, pi,IJ

)
: Conditional on the VAR coefficients B, the model

can be written as et = Aut. For a four variable VAR, this system is given as
α1,S1t + σ1,S1tε1t

α2,S2t + σ2,S2tε2t

α3,S3t + σ3,S3tε3t

α4,S4t + σ4,S4tε4t

 =


1 0 0 0
a1 1 0 0
a2 a3 1 0
a4 a5 a6 1




u1t

u2t

u3t

u4t

 (3.3)

where [a1, ...a6] represent the elements of A.The second equation in this system is
thus:

u2t − α2,S2t = −a1u1t + σ2,S2tε2t

This is a linear regression with a known variance. Given knowledge of σ2,S2t , a
GLS transformation can be applied to the regression and the conditional posterior
for a1 is given by the standard formula for linear regression models. Letting y∗t =

u2t−α2,S2t∑M

j=1 σ2,S2t×Dt,j
and x∗t = −u1t∑M

j=1 σ2,S2t×Dt,j
where Dt,j is a matrix where the jth column

denotes a dummy variable that equals 1 at time t when regime j is active, the
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conditional posterior is N (M∗, V ∗)

M∗ =
(
Σ−1

0 + x∗′t x
∗
t

)−1 (
Σ−1

0 A0 + x∗′t y
∗
t

)
V ∗ =

(
Σ−1

0 + x∗′t x
∗
t

)−1

The same procedure can be applied to the remaining equations of the system.

3. G
(
αi,Sit\B, Sit, σ2

i,Sit
, A, pi,IJ

)
: As in step 2 above, the model can be written in

terms of the orthogonalised residuals given B,A : et = Aut. The ith equation of
this system is

eit = αi,Sit + σi,Sitεit (3.4)

Conditional on knowing the Markov state for this equation Sit and the error variance
σi,Sit , the procedure for a linear regression again applies. Following Koop (2003), we
impose a labelling restriction on αi,Sit in order to deal with the label switching prob-
lem inherent in Markov Switching models. In particular we impose the condition
that αi,Sit=1 < αi,Sit=2 < ... < αi,Sit=M . As shown in Koop (2003), the conditional
posterior is then a truncated normal N (m, v) I (αi,Sit=1 < αi,Sit=2 < ... < αi,Sit=M)
where:

m = v

v−1
0 α0 +

T∑
t=1


M∑
j=1

Dt,j ×
1

σi,Sit

Dteit


v =

v−1
0 +

T∑
t=1


M∑
j=1

Dt,j ×
1

σi,Sit

DtD
′
t

−1

The same procedure is applied to each equation i.

4. G
(
σ2
i,Sit
\B, Sit, αi,Sit , A, pi,IJ

)
: Conditional on a draw for B,αi, Sit the conditional

posterior for σi,Sit is inverse Gamma IG
(
σ̄, T̃

)
σ̄ = ē′itēit + σ0

T̄ = T̃ + v0

where ēit are the residuals from equation 3.4 for Sit = j. The same procedure is
repeated for regime j = 1...M and each equation i.

5. G
(
pi,IJ\B, Sit, αi,Sit , A, σ2

i,Sit

)
: The conditional posterior distribution for the ele-

ments of the transition probability matrix is Dirichlet:

pi,IJ = D (uIJ + ηi,IJ)

where ηi,IJ denotes the number of times regime I is followed by regime J for the
ith orthogonal error.
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6. G
(
Sit\σ2

i,Sit
, B, αi,Sit , A, pi,IJ

)
:

Following Kim and Nelson (1999) we use a multi-move Gibbs step to sample from
the conditional posterior of Sit. The Markov property of Sit implies that

f (Sit|yt) = f (SiT |eiT )
T−1∏
t=1

f (Sit|Sit+1, eit) (3.5)

where we suppress dependence on the parameters αi,Sit , σ2
i,Sit

for notational simplic-
ity. This density can be simulated in two steps:

• Calculating f (SiT |eiT ): The Hamilton (1989) filter provides f (Sit|eit) , t =
1, ....T. Denoting ξ̂i,t as a vector where the jth element equals Pr (St = j), the
filter iterates on the following two equations:

ξ̂i,t\t−1 = Piξ̂i,t−1\t−1

ξ̂i,t\t = F (eit\Sit = j)× ξ̂i,t\t−1
J∑
j=1

F (eit\Sit = j)× ξ̂i,t\t−1

where Pi denotes the transition probability matrix and:

F (eit\Sit = j) =
(
2πσ2

i,Sit

)−T/2
exp

(
−(eit − αi,Sit)

′ (eit − αi,Sit)
2σ2

i,Sit

)
.

The last iteration of the filter delivers f (SiT |eit) .

• Calculating f (Sit|Sit+1, eit): Kim and Nelson (1999) show that

f (Sit|Sit+1, eit) ∝ f (Sit+1|Sit) f (Sit|eit) (3.6)

where f (Sit+1|Sit) is the transition probability matrix and f (Sit|eit) is ob-
tained via the Hamilton (1989) filter in the previous step. Kim and Nelson
(1999) (pp 214) show how to sample St from (3.6).

In the technical appendix, we present a simple Monte Carlo experiment that shows that
this algorithm displays a satisfactory performance in approximating the posterior mo-
ments. The appendix also presents the Gibbs algorithm for the model that features
orthogonalised errors that have a student-T distribution.

4 Data and Forecasting Methodology

4.1 Data and Forecasts

We employ monthly data on the following US variables: (1) annualised growth rate of
Industrial Production, (2) annualised CPI inflation rate, (3) three-month Treasury bill
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Figure 2: Plots of the US data
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rate and (4) annualised S&P500 stock returns. The data spans the sample January 1947
to June 2015. The first three variables are obtained from the FRED database, while the
stock market index is downloaded from Global Financial Database. The four series are
plotted in Figure 2.

The forecasting exercise is carried out recursively. The forecasting models are esti-
mated over the initial sample January 1947 to December 1960. They are then re-estimated
654 times adding one month of data at each iteration until June 2014. At each iteration,
we construct the forecast density for the models:

P (ŷt+k\yt) =
ˆ
P (ŷt+k\yt,Ψt+k)P (Ψt+k\Ψt, yt)P (Ψt\yt) dΨ (4.1)

where k = 1, 2, ..12 and Ψ denotes the model parameters. The last term in equation
4.1 represents the posterior density of the parameters that is obtained via the MCMC
simulation. The preceding two terms denote the forecast of the (time-varying) parameters
and the data that can be obtained by simulation. The point forecast is obtained as the
mean of the forecast density.

Our measure of point forecast performance is the Root Mean Squared Error (RMSE),
while the Continuous Ranked Probability Score (CRPS), as in Hersbach (2010); Jolliffee
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and Stephenson (2003) and implemented by Shrestha (2014), is our measure of density
forecast accuracy. Our preference to use CRPS instead of using log scores is related to the
relative advantages of CRPS: it is better at rewarding values from the predictive density
that are close to but not equal to the outcome, and it is less sensitive to outlier outcomes
(Gneiting and Raftery (2007); Clark and Ravazzolo (2015); Smith and Vahey (2015)).

4.2 Forecasting Models and Forecast Evaluation

We consider the forecasting performance of VAR models with non-Gaussian errors to a
standard Bayesian VAR. In particular, we consider two versions of the benchmark model
shown in equation 2.1, allowing for the possibility of two (M2-VAR) and three (M3-
VAR) components or regimes in the model for the orthogonal shocks (equation 2.4).1

We consider two more models: the first one being a VAR model with fat-tailed errors
(henceforth ’TVAR’), which features a scaled mixture of normals for the orthogonal errors;
and the second one being the VAR model with stochastic volatility (SVOL-VAR).

5 Full sample estimation results

In this section we investigate the estimated regimes implied by our M2-VAR. The esti-
mated values for αi and σi, respectively the mean and the variance of shocks for each
equation under the two regimes, are shown in Table 1.

Table 1: Estimated values for the coefficient αi and σi in equation 2.4.
Regime 1 Regime 2

αi σi αi σi
∆IP -0.381 18.06 2.432 5.695

(-1.057,-0.061) (16.72,19.58) (1.714,3.109) (5.410,6.015)
π -0.053 2.11 0.323 5.349

(-0.157,-0.009) (1.965,2.232) (0.010,0.826) (4.820,5.930)
R -0.049 0.7579 0.007 0.1340

(-0.086,-0.014) (0.7025,0.8220) (-0.006,0.021) (0.1259,0.1240)
∆SP500 -23.50 73.56 19.48 38.95

(-32.83,-13.46) (66.72,82.27) (15.17,23.98) (36.96,40.97)
Note: Numbers in brackets indicate intervals of 10 and 90 percent.

It can be observed that regime 1 is associated with shocks of negative mean and high
variance for ∆IP , R, and ∆SP500, indicating that regime 1 can be interpreted as ’low
mean and high variance’ for the shocks of industrial growth rate, the short-term rate
and the stock market returns. As for π, regime 1 is associated with shocks of negative
mean and low variance, implying that regime 1 can be interpreted as ’low mean and low
variance’ for the inflation rate equation.

1We also consider models with four and five unobserved regimes, whose forecasting performances are
very similar to our M3-VAR models. In the interest of space we do not report their results here.
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Figure 3 plot the time-varying estimated regimes each of the variables. A few obser-
vations are in order:

• The model manages to capture the great moderation period for the industrial pro-
duction growth equation, where the mean of shocks is high but the variance is low.
This is indicated by the a prolonged period of regime 2 between the mid-1980s and
2007. In contrast, the immediate post-world war period, part of the 1970s and the
1980s, and the Great Recession are characterised by regime 1, where the shocks are
of low mean and high variance;

• As for the inflation rate equation, the model indicates shocks of regime 2 (high
mean and high variance) in the late 1940s and early 1950s, and various periods of
1970s, as well as around the Great Recession;

• The model captures negative interest rate shocks with regime 1 (negative mean
and high variance) in periods where there is a downward trend in the short-term
interest rate, noticeably at the end of 1950s, the early 1990s, late 1990s and the
Great Recession. During the episode of 1970s and mid 1980s where the short-term
rate is volatile, the estimated regime is also fluctuating a lot, with most of the time
being in regime 1 which is characterised by high variance.

• As for the ∆SP500 equation, the model is able to capture episodes of shocks with
volatile and negative mean at times of high stock market volatility throughout the
sample.

6 Forecasting Results

Table 2 presents the average point forecast performance measured by the RMSE and
the average density forecast performance measured by the CRPS for each model relative
to that obtained using the BVAR for the full sample. The relative forecast gains are
presented in ratios, therefore ratios with values being less (more) than one suggesting
superior (inferior) forecast performance relative to the BVAR.

The results suggest that our baseline models tend to outperform both the BVAR
and the TVAR models in forecasting output and interest rates in terms of both point
and density forecasts. For example, the M3-VAR model yields a 2-6% more accurate
point forecast over the 1-3 month horizon relative to the BVAR, while the same model
yields a 13% more accurate density forecast over the same horizon relative to the BVAR.
In general, our model generates more accurate forecasts for these two variables than
the TVAR. Interestingly, our proposed model delivers relatively little forecast gains for
inflation and no forecast gains for stock returns compared to the BVAR model. Our
forecasts are also generally competitive with those of the SVOL-VAR model.
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Figure 3: Estimated regimes (regime 1 or 2) for each equation in the two-component
model (M2-VAR). Sample period:1948-2014.

1948 1954 1960 1966 1972 1978 1984 1990 1996 2002 2008 2014
1

2
∆ IP

R
eg

im
e

Year
1948 1954 1960 1966 1972 1978 1984 1990 1996 2002 2008 2014
1

2
π

R
eg

im
e

Year

1948 1954 1960 1966 1972 1978 1984 1990 1996 2002 2008 2014
1

2
R

R
eg

im
e

Year
1948 1954 1960 1966 1972 1978 1984 1990 1996 2002 2008 2014
1

2
∆ SP500

R
eg

im
e

Year

Note: Regime 1 is associated with shocks of low-mean and high variance for ∆IP , R and ∆SP500. As for π, regime 1 is
associated with shocks of low-mean and low-variance.

13



Table 2: Forecast Performance Relative to BVAR: Rolling window for 1961-2014
RMSE CRPS

1M 3M 6M 12M 1M 3M 6M 12M
TVAR 0.976 0.965 1.000 1.023 0.914 0.903 0.946 0.983

M2-VAR 0.959 0.957 0.975 1.004 0.883 0.862 0.912 0.959
∆IP M3-VAR 0.966 0.966 0.983 1.010 0.888 0.867 0.917 0.965

SVOL-VAR 0.955 0.952 0.960 0.981 0.897 0.876 0.910 0.955
TVAR 0.996 0.998 1.052 1.108 0.972 0.976 0.991 1.015

M2-VAR 1.015 1.005 1.015 1.028 0.967 0.977 0.997 1.038
π M3-VAR 1.010 0.998 1.003 1.022 0.970 0.971 0.983 1.039

SVOL-VAR 1.010 0.998 1.001 1.006 0.963 0.960 0.966 0.987
TVAR 0.988 0.950 1.291 1.283 0.938 0.919 0.932 0.969

M2-VAR 0.975 0.932 0.915 0.919 0.890 0.875 0.896 0.951
R M3-VAR 0.981 0.941 0.929 0.948 0.870 0.867 0.907 0.997

SVOL-VAR 0.982 0.931 0.905 0.902 0.854 0.830 0.845 0.905
TVAR 0.999 0.996 1.066 1.058 1.000 0.998 0.999 1.003

M2-VAR 1.020 1.011 1.013 1.016 1.018 1.005 1.016 1.023
∆SP500 M3-VAR 1.015 1.013 1.015 1.020 1.022 1.018 1.024 1.036

SVOL-VAR 1.001 0.998 1.000 1.002 0.998 0.998 1.005 1.017
Note: The table presents the average point and density forecast measures based on 655 recursive estimations of the five

models. Sample period: 1961-2014.

To provide a pictorial representation of forecasting results, Figures 4–7 show the
evoluation of CRSP measures of the three-month ahead forecasts for the TVAR, M2-
VAR and M3-VAR models relative to the BVAR. The coloured lines (units in left axis)
are constructed based on the recursive estimation of the forecasting models. When the
line is below (above) one, then the given model delivers a superior (inferior) forecasting
performance relative to the BVAR.

The results suggest that there is considerable asymmetry in forecast performance of
the models depending on the time period in question. Specifically, there are at least two
things to notice. First, there is evidence that the simpler linear BVAR model performs
relatively better than our proposed models during the highly volatile 1970s and 1980s.
However, the situation is reversed afterwards: our models do much better during the
relatively more tranquil periods such as the Great Moderation and during the aftermath
of the Great Recession. Second, allowing for fat-tails may not be enough to generate
accurate density forecasts, and modelling asymmetries can result in additional forecast
gains. The most striking example for this is demonstrated by Figure 6 which plots the
results for the nominal interest rate. While both the TVAR and our mixture models
dominate the BVAR during the recent period of the zero lower bound (2010-2015), the
M2-VAR and M3-VAR models strongly dominate TVAR during this period.
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Figure 4: Time-series of CRSP of the industrial production growth rate
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Note: The figure plots the three-month ahead density forecast performance (measured by CRSP) of the TVAR (black line),
M2-VAR (yellow line), M3-VAR (green line) relative to the BVAR model. The left axis shows the units of the relative
forecast gain with values being less (more) than one suggesting superior (inferior) forecast performance relative to the
BVAR. The dark blue lines are the data whose units are measured by the right axis.

Figure 5: Time-series of CRSP of the inflation rate
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Note: The figure plots the three-month ahead density forecast performance (measured by CRSP) of the TVAR (black line),
M2-VAR (yellow line), M3-VAR (green line) relative to the BVAR model. The left axis shows the units of the relative
forecast gain with values being less (more) than one suggesting superior (inferior) forecast performance relative to the
BVAR. The dark blue lines are the data whose units are measured by the right axis.
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Figure 6: Time-series of CRSP of the short-term interest rate
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Note: The figure plots the three-month ahead density forecast performance (measured by CRSP) of the TVAR (black line),
M2-VAR (yellow line), M3-VAR (green line) relative to the BVAR model. The left axis shows the units of the relative
forecast gain with values being less (more) than one suggesting superior (inferior) forecast performance relative to the
BVAR. The dark blue lines are the data whose units are measured by the right axis.

Figure 7: Time-series of CRSP of SP500 returns
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Note: The figure plots the three-month ahead density forecast performance (measured by CRSP) of the TVAR (black line),
M2-VAR (yellow line), M3-VAR (green line) relative to the BVAR model. The left axis shows the units of the relative
forecast gain with values being less (more) than one suggesting superior (inferior) forecast performance relative to the
BVAR. The dark blue lines are the data whose units are measured by the right axis.
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To check whether our proposed models do indeed better at forecasting during tranquil
period, we compute the average point and density forecast measures of Table 2 for the
subsample 1990-2014. Table 3 confirms that indeed all our mixture models deliver more
accurate point and density forecasts over virtually all horizons during this relatively more
tranquil period.

The results indicate improvement in forecasting all of the four variables relative to the
BVAR in this sample. But the improvement is far more substantial for output growth
and interest rates. For example, the M3-VAR model delivers a 35-50% more accurate
point forecast and a 20-55% more accurate density forecast of the nominal interest rate
compared to the BVAR. We argue that this is due to the peculiar shape of the interest rate
distribution (Figure 1) that models with Normal distribution cannot easily capture. Our
flexible modelling of the shock distribution can do a much better job in fitting the data,
which results in significant improvements in out-of-sample forecast performance. There is
also evidence that our proposed models outperform the SVOL-VAR in forecasting output
growth in this subsample.

Table 3: Forecast Performance Relative to BVAR: Rolling window for 1990-2014
RMSE CRPS

1M 3M 6M 12M 1M 3M 6M 12M
TVAR 0.828 0.787 0.794 0.814 0.775 0.734 0.784 0.817

M2-VAR 0.814 0.780 0.784 0.797 0.736 0.684 0.727 0.750
∆IP M3-VAR 0.810 0.782 0.786 0.801 0.734 0.688 0.732 0.751

SVOL-VAR 0.824 0.799 0.808 0.829 0.753 0.726 0.779 0.811
TVAR 0.993 0.996 0.963 0.940 0.981 0.939 0.890 0.860

M2-VAR 1.017 1.004 0.978 0.962 0.981 0.945 0.902 0.880
π M3-VAR 0.996 0.982 0.952 0.936 0.963 0.925 0.977 0.857

SVOL-VAR 1.002 0.988 0.955 0.934 0.970 0.923 0.879 0.854
TVAR 0.521 0.519 0.562 0.661 0.484 0.520 0.612 0.781

M2-VAR 0.498 0.492 0.535 0.630 0.463 0.469 0.559 0.733
R M3-VAR 0.506 0.501 0.551 0.657 0.448 0.468 0.579 0.791

SVOL-VAR 0.508 0.502 0.543 0.635 0.439 0.457 0.551 0.733
TVAR 0.992 0.981 0.975 0.971 0.997 0.994 0.978 0.985

M2-VAR 0.996 0.987 0.980 0.972 0.994 0.997 0.986 0.993
∆SP500 M3-VAR 0.984 0.977 0.971 0.967 0.982 0.995 0.987 0.995

SVOL-VAR 0.990 0.978 0.972 0.968 0.982 0.980 0.977 0.995
Note: The table presents the average point and density forecast measures based recursive estimations of the five models.

Sample period: 1990-2014.

7 Conclusion

This paper proposed a new, flexible approach to modelling shocks in VAR models,
whereby we approximated the disturbances with a finite mixture of normal distribu-
tions, and allowed for regime switching among the different components of the mixture of
normals. The model is thereby more flexible than existing models of stochastic volatility
and more general than existing models with Markov-switching. We showed that the pro-
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posed model can generate substantial out-of-sample forecast gains relative to standard
BVAR models, especially during tranquil periods such as the Great Moderation and the
aftermath of the Great Recession.
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8 Technical Appendix

8.1 Monte-Carlo Experiment

In order to assess the Gibbs sampling algorithm for the benchmark model we conduct a
simple Monte-Carlo experiment. Data is generated from the following VAR(1) model

yt = B1yt−1 + ut

cov(ut) = Σ = A−1HA−1′

et = Aut

eit = αi,Sit + σi,Sitεit, εit ∼ N(0, 1)

where i = 1, 2, ..., 4 and Sit denotes the state-variable that follows a three state Markov
Chain with transition probability matrix:

0.95 0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95


The VAR coefficient vector is defined as

B1 = diag([0.5; 0.5; 0.5; 0.5])

and

A =


1 0 0 0
−0.1 1 0 0
−0.1 −0.1 1 0
−0.1 −0.1 −0.1 1


The regime specific coefficients are defined as

αi,Sit=1 = −0.5, αi,Sit=2 = 0, αi,Sit=3 = 0.5

σi,Sit=1 = 0.11/2, σi,Sit=1 = 0.21/2, σi,Sit=1 = 0.31/2

We generate 500 observations and discard the first 100 to minimise the influence of
starting values. For each artificial dataset, the MCMC algorithm described above is used
to estimate the model and the experiment is repeated 500 times. Figure 8 shows the
difference between the true values of key parameters and their estimated counterparts. It
is clear from the figure that the estimated bias across 500 replications is centered around
zero and the algorithm delivers reasonable estimates of the model parameters.
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Figure 8: Monte-Carlo experiment. Difference between true and estimated values.

Notes: The red line is the median difference, while the shaded area represents the 10th and the 90th
percentile of the difference across 500 iterations.

8.2 Gibbs Algorithm for the VAR Model with Fat-tailed Resid-
uals

The VAR is defined as

Yt = c+
P∑
j=1

bjYt−j + Σ1/2
i et, e ∼ N(0, 1) (8.1)

Σi = A−1HiA
−1′

whereA is a lower triangular matrix andH is a diagonal matrix: Hi = diag(σ1$1,i, σ2$2,i, ..σN$N,i).$i

is a vector of unknown parameters.

8.2.1 Priors

Following Koop, the prior for λk,i = 1/$k,i is gamma

p (λk) ∼ Γ (1, vλ,k)

p (vλ,k) ∼ Γ (v0, 2)

where v0 = 20 and Γ (a, b) is the gamma density with mean a and degree of freedom b.
The remaining priors are set in an identical fashion to the benchmark model. The Gibbs
algorithm samples from the following conditional posterior distributions:
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8.2.2 Conditional Posteriors

8.2.2.1 G(λk\Ψ) As shown in Koop (2003), G(λk\Ψ) is gamma with mean vλ,k+1
1
σK

e2
K,t+vλ,k

and degrees of freedom vλ,k + 1 for K = 1, 2, ...N . Note that eK,t is the kth column of
e = Av and Ψ denotes all other parameters.

8.2.2.2 G (vλ,k\λk) As shown in Koop (2003), this conditional is the non-standard
and given by

G (vλ,k\λk) ∝
(
vλ,k
2

)Tvλ,k
2

Γ
(
vλ,k
2

)−N
exp

(
−
(

1
v0

+ 0.5
T∑
t=1

[
ln
(
λ−1
t,K

)
+ λt,K

])
vλ,k

)
(8.2)

Koop uses a random walk metropolis step to draw from this conditional. In particular
for each K we draw vnewλ,k = voldλ,k + c1/2ε with ε ∼ N(0, 1). The draw is accepted with

probability G(vnewλ,k \λk)
G(voldλ,k\λk)

with c chosen to keep the acceptance rate around 40%.

8.2.2.3 G (σK\Ψ) The conditional posterior of σK is inverse Gamma. The posterior
scale parameter is D0 + e∗′K,te

∗
K,t where e∗K,t = eK,t · λ1/2

K and degrees of freedom T + T0

where D0 and T0 are the prior scale parameter and degrees of freedom, respectively.

8.2.2.4 G (A\Ψ) Conditional on the VAR coefficients, the system can be re-written
as


vt

v2t + v1ta1

v3t + v2ta2 + v1ta3

v4t + v3ta4 + v2ta5 + v1ta6

 =


(σ1$1,i)1/2 e1t

(σ2$2,i)1/2 e2t

(σ3$3,i)1/2 e3t

(σ4$4,i)1/2 e4t


conditional on λK and σK the elements of A have a normal posterior and formulas for

linear regressions apply.

8.2.2.5 G (B\Ψ) Conditional on Σi = A−1HiA
−1′ equation 8.1 is a VAR with het-

eroscedastic disturbances. The distribution of the VAR coefficients is linear and Gaussian.
G (B\Ψ) ∼ N

(
BT\T , PT\T

)
. We use the Kalman filter to estimate BT\T and PT\T where

we account for the fact that the covariance matrix of the VAR residuals changes through
time. The final iteration of the filter delivers BT\T and PT\T .
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