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Abstract

This paper proposes a theory of intermediation in which intermediaries emerge

endogenously as the choice of agents. In contrast to the previous trading models

based on random matching or exogenous networks, we allow traders to explicitly

choose their trading partners as well as the number of trading links in a dynamic

framework. We show that traders with higher trading needs optimally choose to

match with traders with lower needs for trade and they build fewer links in equi-

librium. As a result, traders with the least trading need turn out to be the most

connected and have the highest gross trade volume. The model therefore endoge-

nously generates a core-periphery trading network that we often observe: a financial

architecture that involves a small number of large, interconnected institutions. We

use this framework to study bid-ask spreads, trading volume, asset allocation and

implications on systemic risk.
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1 Introduction

This paper contributes a theory of intermediation and trading networks in decentralized

or over-the-counter (OTC) markets. While we maintain bilateral exchange as a feature of

decentralized markets, our approach di↵ers fundamentally from existing theories, which

are based on random search (starting from Du�e, et al. (2005)[15]). Rather than as-

suming agents meet randomly, we explicitly specify the environment that limits agents’

ability to communicate and trade; more importantly, we determine the counterparties as

well as the meeting rate for each agent as a part of the equilibrium.

Since all trading links are formed optimally, we provide an explicit answer as to why

decentralized markets often involve active intermediaries. We show that a trading network

that exhibits a hierarchical core-periphery structure, one in which certain traders inter-

mediate a large amount of trade,1 emerges endogenously by agents’ choices. Morevoer,

and perhap surprisingly, such a structure is in fact constrained e�cient, subject to the

frictions in decentralized markets. Our results therefore provide new insights regarding

the existence in reality of a small number of large and interconnected financial institu-

tions. While it is well known that such a structure has important implications for the

stability of the financial system and its regulation,2 what remains unknown is why such

a trading structure arises in the first place or why certain financial institutions become

more connected than do others.3

To directly address these questions, we build a dynamic trading model with multi-

ple rounds of bilateral trade, in which matching is based on observable heterogeneities

among traders and is subject to pairwise stability. The key heterogeneity on which we

focus involves the riskiness of traders’ asset positions, modeled as the volatility of their

valuations over their assets. We assume that a trader can only observe the realized valu-

ation of another trader after they agree to be matched, and we further assume that their

agreement on the terms of trade is contingent on the realized valuations between the pair.

The assumption that traders must contact (i.e., match with) each other in order to find

1Li and Schurho↵ (2011)[32] and Bech and Atalay (2010)[11] documented the hierarchical core-
periphery structure in the municipal bond and the federal funds market, respectively. Both show that
the distribution of dealer connections is heavily skewed with a fat right tail populated by several core
dealers.

2There is growing literature that focuses on the role of the architecture of financial systems as an
amplification mechanism. For example, Allen et al. (2000)[6], Acemoglu et al. (2014)[1], Elliott et al.
(2014)[17], Cabrales et al. (2014)[12], and Gofman (2014) [23] studied the financial contagion in given
networks.

3Having a model with endogenous intermediaries is crucial for policy analysis. This concept resonates
with the motivation underlying the work of Townsend (1978)[39], who showed that intermediation and
a star network may emerge endogenously when bilateral exchange is costly.
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out the other’s desirable position is designed to capture the friction that prevents agents

from perfectly locating the right counterparty, which resonates with the basic economics

motivating random search frictions.

We demonstrate that heterogeneous exposure to risk is a fundamental driving force for

intermediation. That is, certain institutions endogenously specialize in the intermediary

role.4 In equilibrium, institutions with a higher exposure to risk, which have higher risk-

sharing needs, always match with institutions that have more stable positions (we think

of these institutions as having more diversified portfolios and thus a lower need to trade).

This is true even when valuations are negatively correlated. The intuition is simple:

trading friction suggests that misallocation is inevitable within a matched pair. Trading

through a stable type of agent minimizes the costs of asset misallocation, even though

traders with stable preferences have a lower need to trade. This economic force suggests

that the joint output is submodular in the exposure to risks of the two matched traders,

and, as is well known in the literature regarding matching with transferable utility, the

equilibrium is therefore negatively assortative.

As a result, stable types, those agents who have the comparative advantage of bearing

the costs from asset misallocation, behave as market makers in equilibrium: that is, they

take on the opposite position of volatile types regardless of their own preferences. This

insight carries through in a dynamic environment with an additional element: traders

with higher exposure to risk leave the market after matching with traders with lower

exposure to risk. This is because trading through market makers guarantees that they

receive the first-best asset allocation. The dynamic matching equilibrium therefore follows

a recursive structure: in each round, traders who are still participating in the market are

endogenously partitioned into two di↵erent roles: market makers (relatively stable types)

and customers (relatively volatile types). Customers trade through their market makers

and leave after the trade; market makers, on the other hand, continue trading in the next

round.

The model therefore endogenously generates a core-periphery network with a multi-

layered hierarchy, where traders with lower exposure to risk specialize in market making.

Consistent with recent empirical studies, this model predicts that the distribution of

trading activity is highly skewed, with only a few institutions acting as intermediaries

fro a large amount of trade and with heterogeneity in the interconnectedness of dealer

banks.5 Traders who do not need to trade for themselves turn out to form the core of
4Our dynamic framework can itself be applied generally to environments with di↵erent types of

heterogeneity. Nevertheless, we focus on this particular type throughout the paper.
5Afonso and Lagos (2014)[3] and Atkeson et al. (2014)[7] documented that the distribution of con-

3



the network: they are the most connected and have the highest gross trade volume. We

further establish time-series and cross-sectional predictions regarding the trade volume

and asset prices.

Motivated by the existing (and growing) literature on finanical networks and financial

contagion,6 we study the spread of unexpected shocks across this highly skewed, intercon-

nected network. We do so by applying our framework to unsecured lending markets and

by introducing counterparty risk as a potential cost of interconnections. We characterize

the pattern of financial contagion and analyze how interconnectedness determines the ex-

tent of financial contagion in such a highly asymmetric structure. We find that financial

interconnectedness will not exacerbate contagion when the initial loss to the financial

system is not too large, but financial contagion will spread across the whole network

with relatively large initial shocks. Furthermore, since most work in the literature takes

specified networks as given, it remains unknown how the underlying network responds to

a policy that aims to decrease interconnection by limiting banks’ trading activities. Our

model thus provides a framework in which to formally analyze such questions.

Related Literature There are two approaches to modeling OTC markets. The first

is based on a random search model, in which counterparties arrive only at an exogenous

rate (see Du�e, Garleanu and Pedersen (2005)[15], Lagos and Rocheteau (2009)[29],

Afonso and Lagos (2014)[4], and Hugonnier, Lester and Weill (2014)[26]). The other

approach is based on an exogenous network structure in OTC markets (e.g., Gofman

(2011)[22], Babus and Kondor (2012)[10], and Malamud and Rostek(2012) [33]). Our

main contribution to the literature on OTC markets is that we develop a framework that

allows matching to be based on ex ante characteristics of traders and that generates an

endogenous trading structure.

One reason why it is desirable to endogenize the meeting process is that many have

argued that random matching is an unrealistic feature of asset markets. One may counter

that random matching is a tractable or reduced-form way to model frictions. In fact,

we show that certain predictions of random matching do go through, whereas others

change significantly. Since our framework allows heterogeneous valuation, it is closest

to those of Afonso and Lagos (2014)[4], Hugonnier, Lester, and Weill (2014)[26], and

Shen, Wei, and Yan (2015)[38]. All of these papers point out that agents with moderate

nections is highly skewed. Li and Schürho↵ (2014)[32] found that municipal bond markets have a higher
level of heterogeneity among dealers in terms of connectedness, and trading costs increase strongly with
dealer centrality.

6See Allen and Babus (2009)[5] and to Glasserman and Young (2015)[21] for recent surveys of the
literature regarding financial contagion in networks.
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valuations play an intermediary role endogenously as they buy and sell over time when

randomly matching with others. Hence, consistent with our results, trading volumes

are also concentrated among these traders. A new framework developed by Atkeson,

Eisfeldt, and Weill (2014)[7] also delivers similar empirical predictions. In a static model,

they show that large banks endogenously become dealers in the sense that they have the

highest gross notional trade volume.7

None of these papers, however, allows traders to choose with whom to trade, hence

all meetings are possible by construction and could be ine�cient. Our framework, on

the other hand, establishes a unique insight: it is optimal and constrained e�cient for

traders with higher needs for trade (i.e., customers) to trade with traders who have fewer

needs to trade (i.e., dealers). The fact that we allow for traders to direct their search

and to choose whether to remain active also reduces the ine�cient matching generated in

random search framework. Furthermore, two free parameters in random search models,

the surplus-division rule and the meeting technology, are determined in equilibrium in

our framework.8 In fact, we show that both of these parameters will be endogenously

heterogeneous across agents.9

One technical contribution of this paper is that it applies the matching literature to

a dynamic trading environment.10 The dynamic framework is important for two reasons.

First, it allows us to analyze asset allocations and prices over time and across traders

of di↵erent centrality. More importantly, the number of periods that a trader actively

contacts a counterparty, instead of staying in autarky, resembles the number of trading

links that a trader builds (i.e., his trading rate in equilibrium). In other words, the model

predicts which traders will become the most connected.

Hence, this dynamic framework of pairwise matching also provides a new and tractable

approach to studying network formation (see Jackson (2005)[27] for a detailed literature

review). Regarding the literature in this line, our framework is related to the ones that

study network formation in asset markets (e.g., Babus and Hu (2015)[9], Hojman and

Szeidl(2008)[24], Gale and Kariv(2007)[19], and Farboodi (2014)[18]). These frameworks

7Although we do not explicitly model bank size, one can interpret large banks as having a more
diversified portfolio and therefore having less exposure to shocks to their preference. We detail this
connection in Section 6.1.

8In Section 4, we explore the empirical implications of a comparison between our model and random
search models.

9Our model thus provides a micro-foundation for Neklyudov (2014)[34], who analyzed an environment
in which traders are endowed with heterogeneous search technologies in a random search framework.

10Most works in this vein involve static frameworks. One notable exception is Corbae et al. (2003)[14],
who introduced directed matching to the money literature in a setting without heterogeneity ex ante.
They used this to study the relationship between trading history and matching decisions.
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focus on di↵erent frictions and predict di↵erent trading structures.11 We are the first

paper that explains the existing core-periphery structure with multi-layered hierarchy as

a robust feature of many interbank markets. And the novel prediction is that financial

institutions that have lower exposure to risk become the core of a network endogenously.

Moreover, in spite of the network structure, our dynamic framework is very tractable and

admits an analytical solution.

2 Basic Model: One Round of Trade

We start with a basic model with one round of trade to explain the main mechanism

behind the sorting on volatility, and extend it to a dynamic setting in Section 3. All

omitted proofs can be found in the appendix.

2.1 Setup

Preferences: There are two periods (t = 0, 1). There is a continuum of risk-neutral traders

of total measure 1 who are indexed by a type � 2 ⌃ = [�L, �H ], which is exogenously

given and publicly observable. The function G(�) denotes the measure of traders with

types weakly below �. There is one divisible asset. At t = 0, all traders are endowed with

A units of this asset and unlimited numeraire goods (i.e., traders have deep pockets).

Asset holdings of all traders are observable and restricted to the [0, 2A] interval.

The utility of a trader at period 1 is given by "v�a+ ⌧ , where "v� denotes the trader’s

marginal utility over the dividend, a denotes his asset holdings, and ⌧ denotes the transfer

he receives at period 1. The marginal utility, "v�, is realized at the beginning of period 1

and is given by

"v� =

(

y + �, if v = H

y � �, if v = L

where y � �H and v is a trader-specific random variable that takes the value v = {L,H}
with equal probability at t = 1. The type � there represents the volatility of a trader’s

marginal utility and thus his exposure to uncertainty. The heterogeneity in exposure is

meant to capture the fact that financial institutions may di↵er in terms of their diversifi-

11Both Babus and Hu (2015)[9] and Hojman and Szeidl(2008)[24] predict a star structure in order to
overcome information frictions and minimize the costs of building links. Farboodi (2014)[18] looked at
the interbank lending market, considering two types of agents: banks that make risky investments over-
connect and banks that mainly provide funding end up with too few connections, a result of bargaining
frictions.
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cation driven by di↵erent business models: the one who holds a more diversified portfolio

has a lower exposure to risk and thus fewer needs for risk sharing.12

The basic environment here assumes that each trader receives an i.i.d. preference

shock. In general, our model allows for the correlation of preferences across traders

by imposing more structure on traders’ preferences, which is specified in Section 2.4.

For now, to establish our result more generally, we use the parameter p to denote the

probability that traders in a pair have opposite preference realizations; hence, p = 1
2 is the

special case with no correlation, and we directly derive our result for any given parameter

p below.

Trading decisions: At the beginning of period 0, each trader chooses to match with

another trader based on the observable characteristics. The observable characteristics

include preference volatility, asset holdings, and the correlation of realized preferences.

When two traders agree to form two-person partnerships, they agree on the trading con-

tract that specifies the asset allocation and transfers contingent on the realized preference

at t = 1.

The key assumption here is that traders observe the realized preference of their coun-

terparties only if they choose to match with each other. Such an assumption explicitly

captures the information friction in decentralized markets: traders do not know perfectly

who their best counterparties are in terms of their exact valuation over the asset unless

they contact each other, which is also the basic idea behind search frictions.

Our setup thus captures two distinct features of the OTC market: (1) bilateral trade

and (2) information friction. The combination of these two features generates the under-

lying frictions. The frictionless benchmark would be either of the following: (1) trading

takes place in a centralized market and, therefore, there is no need to search for a counter-

party, or (2) trading takes place in a decentralized trading environment where traders’

realized preferences are observable so that everyone knows where the “right” counter-

party is. In either case, the market implements the first-best allocation: traders with

high realizations end up with 2A units of assets, and traders with low realizations sell

their assets. Therefore, we deviate from a frictionless environment in a minimum way.

12In Section 6.1, we show the mapping between the volatility type and the degree of the diversification
of a financial institution. An institution with a portfolio that concentrates on certain assets has a higher
exposure to risk. On the other hand, a bank who has a more diversified portfolio has fewer risk-sharing
needs and therefore e↵ectively has a more stable marginal utility over a particular asset.
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2.2 Equilibrium Definition

Denote the observable characteristics of a trader to be z, and let Z represent the set of

observable characteristics. The basic model with only one-dimensional heterogeneity (i.e.,

volatility of preference) is designed to highlight the key economics in our model. Hence,

one can set z = � in this simple case; z in general represents all possible observable

characteristics, which would play a role in our full model. Denote the contract in a

match between a trader with observable type z and a trader with observable type z0

to be  (z, z0). The contract is a collection of the terms of trade contingent on the

preference realizations of the traders in the match, which specifies the asset allocation

↵ ((v, z) , (v0, z0)) and the transfer ⌧ ((v, z) , (v0, z0)) to type-z trader, when the preference

realizations of type-z trader and type-z0 trader are v and v0, respectively. Denote C as

the set of feasible contracts within the pair. Let W (z, ) denote the expected value for

trader z when he is matched with trader z0 and uses contract  to trade:

W (z, (z, z0)) = Ev,v0 ["
v
�↵ ((v, z) , (v0, z0)) + ⌧ ((v, z) , (v0, z0))] .

The maximized joint payo↵ with the pair-(z, z0), denoted by ⌦(z, z0), is solved by a payo↵-

maximizing contract,

⌦(z, z0) = max
 2C

W (z, (z, z0)) +W (z0, (z, z0)).

Let f(z, z0) denote the measure of the pair (z, z0). Hence, if f(z, z0) = 0, we say that

agents z and z0 are not paired.

Our basic model with one round of trade can be understood as a one-sided matching

model. As is standard in the literature, we use the pairwise stability as our solution

concept.

Definition 1 An equilibrium is a payo↵ function W ⇤(·) : Z ! R+, an allocation function

f : Z⇥Z [ {;} ! R+, and terms of trade  ⇤(·, ·) : Z ⇥ Z ! C satisfying the following

conditions:

1) Optimality of traders’ matching decisions. For any z 2 Z and z0 2 Z [ {;} such

that f(z, z0) > 0,

z0 2 arg max
z̃2Z[{;}

⌦(z, z̃)�W ⇤(z̃),

W ⇤(z) = max
z̃2Z[{;}

⌦(z, z̃)�W ⇤(z̃), (1)
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where W ⇤(z) = W (z, ⇤(z, z0)) with  ⇤(z, z0) 2 argmax 2C W (z, )+W (z0, ) if z0 6= {;},
and ⌦(z, {;})�W ⇤({;}) is the trader’s payo↵ without trade.

2) Feasibility of the allocation function.

ˆ
f(z, z̃)dz̃ + f(z, {;}) = h(z), for all z 2 Z,

where h(z) is the density function of z.

Condition (1) states that, taking other traders’ payo↵s as given, a trader chooses his

trading partner optimally. If a type-z trader chooses to match with no one, we use a

null set {;} to denote such a choice. Hence, if a type-z trader chooses to match with a

type-z0 trader, he expects to get no higher payo↵ by choosing a trader of a di↵erent type,

z̃, while making the alternative match weakly better o↵ by promising her W ⇤(z̃). This

condition makes sure that traders does not benefit from pairwise joint deviation, which

is essentially the no-blocking condition. The second condition is about the feasibility of

the allocation, where h(z) = dG(�) in the basic model.

2.3 Matching Outcome

Since it is known that, with transferable utility, the matching outcome must maximize

aggregate output, we first look at the matching outcome that implements the e�cient allo-

cation subject to the underlying frictions. Then, we characterize transfers, or equivalently,

transaction prices, in the trading rules that implement the allocation in equilibrium.

Given any matching allocation, asset allocations between traders in a match maximizes

their joint payo↵ in a constrained e�cient allocation. So, assets should be allocated to

the agent with a higher realized valuation up to his asset holding capacity. Hence, the

asset allocation that maximizes the joint surplus must reflect the preference of the more

volatile type within the pair: the more volatile type receives the asset whenever he has

a high realization and sells the asset whenever he has a low realization, regardless of the

preference of the less volatile type. As a result, compared with the frictionless benchmark,

the more volatile type within a pair always reaches his e�cient allocation, whereas the

less volatile type might not, and he would need to take on the cost of misallocation.

Formally, given the trading surplus for each possible state is
�

�"v� � "v
0
�0

�

�A, the expression

for the expected joint payo↵ is given by

⌦(�, �0) = A [p (�0 + �) + (1� p) |�0 � �|] +W0(�) +W0(�
0), (2)
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where the first term represents the expected trading surplus, and the second term repre-

sents traders’ autarky value, denoted as W0(�). With probability p, these two traders are

on the opposite sides, implying a larger di↵erence in the preference
�

�"v� � "v
0
�0

�

� = (�0 + �)

and hence a higher trading gain. With probability (1� p), they have similar preferences

and hence a lower trading gain.

The following lemma establishes the key property of this joint output function, which

implies that ⌦(�, �0) is weakly submodular on ⌃2.13

Lemma 1 Let �4 � �3 > �2 � �1, for any p < 1,

⌦(�4, �3) + ⌦(�2, �1) < ⌦(�4, �1) + ⌦(�3, �2) = ⌦(�4, �2) + ⌦(�3, �1).

Proof. [⌦(�4, �3) + ⌦(�2, �1)]� [⌦(�4, �1) + ⌦(�3, �2)] = �2A(1� p)(�3 � �2) < 0.

The intuition is the following: within any pair, one of the two might not reach the

first best with some probability. Since �4 and �3 have a higher need for trade, it would

be more costly if one of them failed to reach the optimal allocation. As a result, the

matching outcome that maximizes the aggregate surplus is to match both of them with

more stable types separately. In this way, the total loss is minimized because it is less

costly for �2 and �1 to take on the misallocation. In other words, the more stable types

have a comparative advantage to act as a “market maker” by always taking the opposite

position of “customers.” Although the market maker himself might not need to trade,

and even though customers can reach a higher pairwise surplus with other customers,

trading through market makers minimizes the uncertainty of the preference shocks in

the economy, and such matching outcomes are always e�cient. On the other hand, if

the information is perfect (which is the case in which preference shocks are perfectly

negatively correlated), this economy e↵ectively has no uncertainty. This explains why

Lemma 1 holds whenever preference shocks are not perfectly negatively correlated.

With transferable utility, it is perhaps well known that equilibrium allocation f must

support e�cient matching, which leads to the following proposition.

Proposition 1 The matching function f must satisfy the following conditions: if f(�, �0) >

0 and f(�̂, �̂0) > 0, max(�, �0) + max(�̂, �̂0) = �4 + �3, where �i is the ith order statistic

of {�, �0, �̂, �̂0}.

Corollary 1 There exists �⇤ 2 [�L, �H ] such that f(�, �0) = 0 for each (�, �0) 2 ⌃C ⇥⌃C

and (�, �0) 2 ⌃M ⇥ ⌃M , where ⌃M = [�L, �⇤] and ⌃C = [�⇤, �H ].

13That is, ⌦(a) + ⌦(b) � ⌦(a
W

b) + ⌦(a
V

b).
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Given Lemma 1, the e�cient allocation must satisfy the cuto↵ rule, that is, there

exists �⇤ such that a trader above the cuto↵ � � �⇤must match with a trader below

the cuto↵, and the asset allocation always reflects the realized preference of a customer

� � �⇤ within the pair. Clearly, the additive nature of the payo↵ implies that there is no

complementarity between customers and market makers. That is, as long as customers

trade with market makers, it does not matter which market maker they choose. Intu-

itively, the loss of aggregate surplus comes from the fact that market makers might not

reach their optimal allocation. Such loss is independent of which customers they match.

Hence, there is no gain from any sorting between customers and market makers.14

With Corollary 1, the joint payo↵ of a matched pair defined in equation (2) can be

conveniently rewritten as ⌦(�c, �m) = A [�c + (2p� 1)�m] + W0(�c) + W0(�m), where

�c 2 [�⇤, �H ] and �m 2 [�L, �⇤]. This one-sided matching problem can then be reduced

to the standard assignment model with a two-sided market: the additional payo↵ gained

by trader � is exactly his contribution to the surplus within the match, given his optimal

assignment in equilibrium. Conditional on customer �c matching with market maker

�m, the marginal contribution of a customer is given by ⌦�c(�c, �m) = A, whereas the

marginal contribution of a dealer is represented by ⌦�m(�c, �m) = (2p� 1)A. This then

explains the shape of the equilibrium payo↵ function W ⇤(�) established below.

Proposition 2 For any p < 1, a unique equilibrium payo↵ W ⇤(�) is given by

W ⇤(�) =

(

W ⇤(�⇤) + (2p� 1)A(� � �⇤) +
´ �
�⇤ W 0

0(�̃)d�̃ 8� 2 [0, �⇤]

W ⇤(�⇤) + (� � �⇤)A+
´ �
�⇤ W 0

0(�̃)d�̃, 8� 2 (�⇤, �H ]

W ⇤(�⇤) = Ap�⇤ +W0(�
⇤),

where �⇤ solves
´ �⇤

0 dG(�̃) =
´ �h
�⇤ dG(�̃).15

2.4 Correlation of Preferences across Traders

In this subsection, we rationalize the correlation of the volatility of preferences across

agents by introducing an additional dimension of observable heterogeneity. Traders are

divided into two groups with the same population and distribution of volatility types,

14Note that because of the linear preference and the weak submodularity of ⌦(�,�0), it is expected that
NAM is an equilibrium outcome, but not the unique (See, for example, Legros and Newman (2002)[30]).

15In our basic case with i.i.d. shocks, the autarky value is independent of types, W0(�) =
1
2 (y+�)A+

1
2 (y� �)A = yA, hence, W 0

0(�m) = W 0
0(�c) = 0. Nevertheless, in general, W0(�) can be type dependent,

as shown in Section 2.5.
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labeled by k 2 {R,B}. We assume the following preference structure so that the cross-

group correlation is more negative than the within-group correlation. The group identity

is observable. Intuitively, traders would always prefer to match across groups; hence,

this two-dimensional sorting problem can be reduced to the one-dimensional sorting on

volatility established in our basic model by setting the parameter p in the basic model

to be the probability that two traders have the opposite position across groups. Assume

that traders’ specific shocks in each group k 2 {R,B} is given by

viR =

(

V, with Prob �,

vi, with Prob 1� �,
viB =

(

⇠ V, with Prob �,

vi, with Prob 1� �,

where V and vi are uncorrelated random variables and they all take value {H,L} with

equal probability. The variableV is an aggregate shock while vi is idiosyncratic, and

we assume that the realization of the aggregate shock V is publicly observable. The

variable⇠ V takes the opposite realization compared with V . Group R has positive

exposure to the aggregate shock and group B has negative exposure. Probability �

represents the intensity of the exposure to the aggregate shock in each group.

Since agents in di↵erent groups have the opposite exposure to the aggregate shock,

valuations of agents across groups are negatively correlated while within-group valuations

are positively correlated. As a result, matching across groups leads to a higher trading

surplus. This immediately implies that traders must match with traders from the other

group in equilibrium. This two-dimensional sorting problem can then be reduced to

the one-dimensional sorting on volatility established in our basic model by setting the

parameter p = Pr(vR 6= vB) = ⇡H
R ⇡

L
B + ⇡H

R ⇡
L
B = ⇡2 + (1 � ⇡)2, where ⇡v

k denotes the

probability that a trader in group k has valuation v and ⇡ ⌘ ⇡H
R = (1� ⇡H

B ) = 1+�
2 .

2.5 Implementation by Bid and Ask Price

In this subsection, we implement the contract by a spot transaction contract, which

specifies the transaction price for each unit of assets and total trade volume. Recall that

matching must be across groups and the type with less volatility can be interpreted as a

maker maker, who buys or sells only based on his customer’s valuation.

In the basic model, every trader has A units of asset (i.e., ac = am = A). Therefore,

the trade volume between a market maker of type (�m, k) and a customer of type (�c, k0)

is always A, and the asset always goes to the trader with a higher realization. The

equilibrium transfer, ⌧ ((v, z) , (v0, z0)) , between the market maker and the customer can
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then be interpreted as bid and ask prices. Note that, since the matching outcome suggests

that customers must trade with market makers but it does not matter which market maker

they choose, it implies that all market makers must be charging the same expected spread

in equilibrium. Hence, with this implicit knowledge, we look for bid and ask prices that

are independent of the volatility type of the market maker.

A trader who chooses to be a market maker commits to selling to his customer at

the ask price, which in general can be contingent on his own realization v and is de-

noted by qvak . Similarly, the price that the market maker in group k is willing to pay

his customer is called the bid price, denoted by qvbk . Since we assume that a trader

is committed to the contract before preference realization, what matters for their deci-

sions is the expected bid and ask price, qak ⌘
P

v2{L,H} ⇡
v
kq

va
k and qbk ⌘

P

v2{L,H} ⇡
v
kq

vb
k .

The commitment assumption, however, can be further relaxed by looking for the price

schedule{(qvak , qvbk ), (qvak0 , q
vb
k0 )} that also satisfies traders’ ex post incentives, which is given

below. For any k 2 {R,B},and v 2 {H,L},

qHa
k = y + �⇤, qLak = qHb

k = y, qLbk = y � �⇤.

Intuitively, a market maker with a high valuation is less willing to sell; hence, he charges

a higher asking price, in this case qHa
k > qLak . The fact that qHa

k = y+ �⇤ ensures that all

market makers �  �⇤ are willing to sell even if they have a high valuation. Similarly,

a market maker with a low valuation is less willing to buy, implying a lower bid price,

qLbk > qHb
k . The expected spread, Sk = qak � qbk, compensates the trader for being a market

maker, who takes on the misallocation from a customer. One can easily see that the

above price schedule implements the unique payo↵ established in Proposition 2.

3 Dynamic Model: Multiple Rounds of Trade

In this section, we extend the basic model to a dynamic setting with N rounds of trade.

By allowing multiple rounds of trade, the model generates endogenous intermediation,

where certain traders end up buying and selling assets for multiple rounds and forming

multiple trading links. As in the basic model, the key decision is the traders’ matching

decision. The only di↵erence is that traders now choose with whom to connect for each

round of trade as well as the number of traders to connect with. That is, both the trading

links as well as the number of links for each trader are determined in equilibrium.

13



3.1 Extended Setup and Equilibrium Definition

To fix ideas, think of our model as an intra-period trading game.16 With N rounds of

trade, a trading day is divided into N subperiods. The maximum number of trades, N ,

captures the underlying friction that prevents traders from connecting with an infinite

number of traders.

Traders enjoy a flow value from holding an asset each period, which is given by "̃�tat

and t > 0, where "̃� depends on the group of traders as described in Section 2.4. One

can think of the asset as producing t units of dividend in each period. Let � = 1
N
denote

the duration of a subperiod. The discount factor for the dynamic model is then given by

� = e�r�, where r is the daily interest rate. We allow for an arbitrary payo↵ structure

of the asset, and the present value of total dividend is normalized to one,
PN

t=1 �
tt = 1.

To simplify the characterization of the asset distribution over time, we assume that

traders can hold either 0 assets or A assets in our dynamic setting. The initial asset

distribution is symmetric across groups: traders in group k are endowed with A or 0

assets with equal probability.

At t = 0, before the realization of their preference and endowment, traders make their

matching decisions and agree on the terms of trade for N periods. A trader of type (�, k)

chooses his trading partner for each period contingent on his asset holdings, at 2 {0, A},
based on the observable characteristics of the counterparties, which include the volatility

type (�), asset holdings (at 2 {0, A}), and to which group the trader belongs. So, the

space of observable types is given by Z =
P

⇥{0, A}⇥ {R,B}. Note that, in the static

model, asset holding does not play a role, because all traders have the same endowment

to begin with. In the dynamic model, traders might have di↵erent asset positions over

time, depending on their trading histories. The fact that we allow for the trading decision

to be contingent on asset holding implies that we assume asset positions are observable

to the market. That is, when a trader has 0 units of assets at period t, he would only

contact a trader with A units of assets. In this way, consistent with the basic model, the

only uncertainty in this economy is the realized preferences of traders.17

We now introduce the notation for the gain from trade function in this dynamic

16The setup can be easily extended to infinite horizon by repeating the intraday trading game developed
here.

17If matching decisions cannot be contingent on asset holdings, this will simply introduce additional
uncertainty into the economy in the sense that traders cannot realize the gain from trade either because
neither of them have assets or because both of them have reached their capacity. By assuming asset
positions are observable, we omit this additional uncertainty. Since we assume that asset position is
observable, the asset position could potentially be used as a signaling device. To assume away this
additional complexity, we maintain the restriction on the asset holding at 2 {0, A}.
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setting. The joint payo↵ for traders (z, z̃) who agree on the terms of trade  t(z, z̃) is

given by

⌦̂t(z, z̃, t(z, z̃)) =
X

v,ṽ

⇡v
t (z)⇡

ṽ
t (z̃)

�

t
⇥

"v�↵t ((v, z) , (ṽ, z̃)) + "ṽ�̃↵t ((ṽ, z̃) , (v, z))
⇤

+�
h

W v
t+1 (↵t ((v, z) , (ṽ, z̃)) , �, k) +W ṽ

t+1

⇣

↵t ((ṽ, z̃) , (v, z)) , �̃, k̃
⌘io

,

where (1) ⇡v
t (a, �, k) : Z ! [0, 1] represents the probability of a trader (�, k) who has

valuation v 2 {H,L}, conditional on he ending up with a units of asset at period t. Since

traders cannot observe others’ valuation until making the contact, this probability is given

by the ex ante distribution prior to trading at period 1: ⇡v
1(a, �, k) = ⇡v

k. From any period

onward t � 2, this probability is determined by the trading history and the evolution of

asset distribution; (2) W v
t+1(a, �, k) denotes the continuation value of trader-(�, k) with

valuation v 2 {H,L} who ended up with a 2 {0, A} units of assets at the beginning of

next period, which depends on traders’ trading decision next period in the equilibrium

path. If a trader z chooses to match with trader z̃ at period t (i.e., ft(z, z̃) > 0) and

agrees on the contract  t(z, z̃),

W v
t (a, �, k) =

8

>

>

<

>

>

:

P

ṽ2{L,H} ⇡
ṽ
t (z̃) [t"

v
�↵t ((v, z) , (ṽ, z̃))

+⌧t ((v, z) , (ṽ, z̃)) + �W v
t+1 (↵t ((v, z) , (ṽ, z̃)) , �, k)

⇤

, if 9z̃ 2 �(f(z, ·)),
"v�at + �W v

t+1 (at, �, k) , if ; = �(f(z, ·)).

The gain from trade function ⌦t(z, z̃) is then given by ⌦t(z, z̃) = max 2C(z,z̃) ⌦̂t(z, z̃, ).

And a trader’s expected payo↵, given contract  t(z, z̃), isWt(z, t(z, z̃)) =
P

v ⇡
v
t (z)W

v
t (z) .

At period 0, a trader (�, k) chooses his optimal trading partner z̃ for each period to

maximize his expected payo↵ contingent on the asset position at 2 {0, A}, taking the

equilibrium payo↵ function W ⇤
t (z̃) as given. Formally, the equilibrium is defined below:

Definition 2 Given the initial distribution ⇡v
1(a, �, k), an equilibrium is a payo↵ function

W ⇤
t (·) : Z ! R+, an allocation function ft(z, z0) : Z ⇥ Z [ {;} ! R+, terms of trade

 ⇤
t (·, ·) : Z ⇥ Z ! C for all t 2 {1, . . . , N}, probability of preferences ⇡v

t (·) : Z ! [0, 1],

such that the following conditions are satisfied:

(1) Optimality of traders’ matching decisions. For any z 2 Z and z0 2 Z [ {;} such
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that ft(z, z0) > 0,

z0 2 arg max
z2Z[{;}

⌦t(z, z̃)�W ⇤
t (z), (3)

W ⇤
t (z) = max

z̃2Z[{;}
⌦t(z, z̃)�W ⇤

t (z̃), (4)

where W ⇤
t (z) = Wt(z, ⇤(z, z0)) with  ⇤

t (z, z
0) 2 argmax 2C(z,z0) Wt(z, ) + Wt(z0, ) if

z0 6= {;}, and ⌦t(z, {;})�W ⇤
t ({;}) is the trader’s payo↵ without trade.

(2) The laws of motion of ⇡v
t (z).

⇡v
t+1(z) =

ht+1 (v, z)
P

ṽ2{L,H} ht+1 (ṽ, z)
, (5)

where ht+1 (v, z) : {L,H} ⇥ Z ! R+represents joint density function of type-z traders

with valuation v next period, which is given by

ht+1 (v, a, �, k) =
X

â

⇡v
t (â, �, k){

ˆ
z0

X

v02{H,L}

⇡v0

t (z
0)Pr [↵t ((v, â, �, k) , (v

0, z0)) = a]

ft (z
0, (â, �, k)) dz0}, (6)

where ↵t ((v, â, �, k) , (v0, z0)) is given  ⇤
t (z, z

0).

(3) Feasibility of the allocation function.

ˆ
z̃2Z

ft(z, z̃)dz̃ + ft(z, {;}) =
X

v

ht (v, z) , for all z 2 Z, t 2 {1, . . . , N}, (7)

where h1 (v, a, �, k) =
1
2⇡

v
1(a, �, k)g(�) and ht (v, a, �, k) is given by equation (6).

Equilibrium conditions (1) and (3) are in the same spirit of the static model. In

particular, equation (4) implies that there is no profitable pairwise joint deviation for any

period t in an equilibrium, where W ⇤
t (z) represents the expected value of trader z.

Condition (2) describes the evolution of the distribution of preference types conditional

on observable characteristics. Consider a trader of type (â,�, k) with valuation v who

matches with a trader of type z0. The probability that this trader has asset position a

in the next period depends on the preference realization of his counterparty, v0, which is

given by
P

v02{H,L} ⇡
v0
t (z

0)Pr {↵t ((v, â, �, k) , (v0, z0)) = a}. Hence, the integral in equation

(6) represents the probability that a trader of type (â,�, k) with valuation v switches to

asset position a next period, given all the matching decisions ft (z0, (â, �, k)) . Since at any

period t, a trader of type (�, k) can have two asset positions, the distribution function
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ht+1 (v, a, �, k) : {L,H} ⇥ Z ! R+ is the summation over these two asset positions

â 2 {0, A} with the weight ⇡v
t (â, �, k) on position â.

3.2 Constrained E�cient Allocation

The planner maximizes the total surplus by choosing (1) the matching rule for each

period matching rule ft conditional on observable information and (2) asset allocation

↵t ((v, z) , (v0, z0)) within each match, subject to the same constraint in decentralized

markets:

⇧ ⌘ max
{ft,↵t}Nt=1

N
X

t=1

�tt
X

v,v02{L,H}

ˆ ˆ
h

⇡v
t (z)"

v
�↵t ((v, z) , (v

0, z0))

+⇡v0

t (z
0)"v

0

�0↵t ((v
0, z0) , (v, z))

i

ft(z
0, z)dzdz0, (8)

subject to constraints (5)⇠(7) and ↵t ((v, z) , (v0, z0)) + ↵t ((v0, z0) , (v, z)) = A.

In general, the planner wants to allocate assets from the trader with low valuation to

the one with higher valuation, in order to maximize the total payo↵. However, because of

the underlying frictions, bilateral trade and information frictions, misallocation of assets

is unavoidable. Hence, the constrained e�cient allocation simply minimizes the overall

misallocation. Note that, although the matching decision is multidimensional in our

setting, Z =
P

⇥{R,B} ⇥ {0, A}, it is neither optimal to match traders within groups

(since across-group matching implies a higher surplus) nor optimal to match traders with

the same asset position (since there is no trading surplus). Hence, the matching problem

can be reduced to a one-dimensional problem in which the key variable is the volatility

type.

In the Appendix, we show that the planner’s problem can then be reduced to choosing

which traders to reach the first-best allocation in each period. The measure of traders who

can reach their e�cient allocations in each period is constrained by bilateral matching.

In other words, among traders with misallocated assets, at most half of them can reach

e�cient allocations, at the cost of having the other half undertake the misallocation. Since

it is less costly for the stable types to take on the misallocation, it is e�cient to have

the more stable types match with the more volatile types. By doing so, the more volatile

types are then guaranteed to reach their e�cient allocations earlier. Once a trader has

reached the first best, he remains inactive afterward (since there is no gain from trade).

The total expected output of a trader who reached his first-best allocation at period t
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(and stays inactive afterward) can then be expressed as

#(�, k, t) ⌘
t�1
X

s=1

�ss⇡
H
k (y + (2⇡H

k � 1)�)A+
N
X

s=t

�ss⇡
H
k (y + �)A.

The following proposition establishes the property of the constrained e�cient allocation,

which shows that traders with larger gains from trade reach their e�cient allocations

earlier, and the most stable types stay until the end and face asset misallocations. The

formal proof is left to the appendix.

Proposition 3 The solution to the social planner’s problem {ft,↵t} must satisfy the

following conditions: (1) The expected output of a trader (�, k) is given by #(�, k, t⇤(�, k)),

where the last period of a trader-(�, k) that remains active is given by

t⇤(�, k) = t , � 2 (�⇤
t , �

⇤
t�1] (9)

and t⇤(�, k) = N + 1 for �  �⇤
N . (2) The cuto↵ type �⇤

t is given by G(�⇤
t ) = 2�t. Hence,

total welfare is given by ⇧ =
P

k

´
#(�, k, t⇤(�, k))dG(�)

2 .

3.3 Equilibrium Characterization

We now characterize the transfers in a decentralized equilibrium that implement the

constrained e�cient allocation in Proposition 3. That is, in this equilibrium, at any

period t, two traders are only matched with each other if (i) they are in di↵erent groups,

(ii) they have di↵erent asset holdings, and (iii) a more stable type �  �⇤
t always matches

with a more volatile type � > �⇤
t . Within the pair, the more stable trader acts as a market

maker, who buys or sells based on the realized valuation of his customer, whereas the

more volatile type acts as a customer, reaches his first-best position and becomes inactive

afterward.

To make sure that a market maker is willing to do so, he must be compensated by the

bid-ask spread. We therefore construct a market-making equilibrium, where the trader’s

payo↵ depends on the role he chooses to play each period and solves for the bid-ask

spread of the market maker in each group, denoted by {(qvakt , qvbkt),(qvak0t, qvbk0t)} such that

all traders follow the optimal matching rule. In theory, by assuming full commitment,

one only needs to solve for the expected transfer (let qbkt ⌘
P

v ⇡
v
kq

vb
kt and qakt ⌘

P

v ⇡
v
kq

va
kt

denote the expected bid-ask prices, respectively) that satisfies traders’ ex ante incentive.

Below, as in the static model (see Section 2.5), we solve for the price schedule that also
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satisfies traders’ ex-post incentives. That is, with this implementation, the role of market

making is not subject to a commitment problem.

Formally, the role that a trader chooses to play is denoted by ⇢ 2 {m, c, ;}: (i) If a

trader chooses to be a “customer,” ⇢ = c, he keeps the asset if and only if he has a high

realization, pays the ask price charged by the market maker in group k0 if he needs to

buy, and receives the bid price if he needs to sell. (ii) If a trader chooses to be a “market

maker,” ⇢ = m, he trades based on his customer’s valuation at the bid-ask price. (iii)

If a trader chooses to be inactive (⇢ = ;), his asset position remains the same for next

period. Consider a trader of type (�, k) with valuation v 2 {H,L} who ends up with A

units of the asset, and let Ŵ v
t (�, A, k, ⇢) denote his payo↵ when he chooses the role ⇢.

The gain from being a customer relative to being a market maker can be expressed as

�vt (z) ⌘ Ŵt(z, c)� Ŵt(z,m):

�Ht (�, A, k) = A⇡H
k0
⇥

�qHa
kt + t(y + �)

⇤

+ �⇡H
k0
⇥

WH
t+1(�, A, k)�WH

t+1(�, 0, k)
⇤

,

�Lt (�, A, k) = A
⇥

qbk0t �
�

⇡H
k0 q

La
kt + t⇡

L
k0(y � �)

�⇤

+ �⇡L
k0
�

WL
t+1(�, 0, k)�WL

t+1(�, A, k)
�

,

where W v
t+1(z) = max⇢ Ŵ v

t+1(z, ⇢)). Note that we can express the continuation value of a

trader as W v
t+1(z) = max⇢ Ŵ v

t+1(z, ⇢) because we look for the implementation such that

traders’ ex post incentives are also satisfied.18

The trade-o↵ between acting as a customer and acting as a market maker can be un-

derstood as a trade-o↵ between trading probability and trading prices. When a trader of

type z = (�, A, k) with high valuation (v = H) chooses to be a customer, he simply keeps

the asset; on the other hand, if he chooses to be a market maker, he keeps the asset only

when his customer has a low valuation (at the probability ⇡L
k0) and sells the asset when

his customer has a high valuation (at the probability ⇡H
k0 ). In this case, he loses the asset

and is compensated by the asking price qHa
kt , which explains the expression of �Ht (�, A, k).

Similarly, for a trader z = (�, A, k) with low valuation, being a customer implies that he

sells to the market-maker at group k0 at the expected bid price, whereas being a market

maker implies that he sells at the asking price qLakt only when he meets a customer with

high valuation. Hence, with probability ⇡L
k0 , the market maker fails to sell; therefore, the

di↵erence in the continuation value is given by ⇡L
k0

�

WL
t+1(�, 0, k)�WL

t+1(�, A, k)
�

.

18Otherwise, in general, when the role choice is made ex ante, the expression is given by W v
t+1(z) =

Ŵ v
t+1(z, ⇢

⇤
t+1(z)), where ⇢

⇤
t+1(z) = argmax⇢

P

v ⇡
v
t+1(z)Ŵ

v
t+1 (z, ⇢) .
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We can derive similar expressions for traders who end up having zero assets:

�Ht (�, 0, k) =
⇥

�
�

qak0t � ⇡L
k0q

Hb
kt

�

+ ⇡H
k0t(y + �)

⇤

A+ �⇡H
k0
�

WH
t+1(�, A, k)�WH

t+1(�, 0, k)
�

,

�Lt (�, 0, k) = ⇡L
k0
⇥

qLbkt � t(y � �)
⇤

A+ �⇡L
k0
�

WL
t+1(�, 0, k)�WL

t+1(�, A, k)
�

.

In this case, being a customer, he can always purchase when he has a high valuation by

paying the expected asking price. On the other hand, being a market maker he buys at

the asking price qvakt if and only if his customer has a low valuation. In general, whenever

a trader with high (low) valuation chooses to be a market maker, he does not reach his

first-best allocation with probability ⇡H
k0 (⇡

L
k0), which is the probability that he meets a

customer whose valuation is also high (low).

To make sure that traders follow the matching rule, we solve for bid-ask price {(qvakt , qvbkt),
(qvak0t, q

vb
k0t)} such that, for any t, given the cuto↵ type �⇤

t , this marginal trader is indi↵erent

between being a customer and being a market maker:

�Ht (�⇤
t , 0, k) = �Lt (�

⇤
t , 0, k) = �Ht (�⇤

t , A, k) = �Lt (�
⇤
t , A, k) = 0, (10)

and, with the following claim, we show that all traders � > �⇤
t are strictly better o↵

being a customer, whereas all traders �  �⇤
t are strictly better o↵ being a market-maker,

regardless of their realized valuation.

Lemma 2 �vt (�, a, k) strictly increases with �, and there exists a solution {(qvakt , qvbkt),
(qvak0t, q

vb
k0t)} to equation (10) that satisfies the following conditions: (1) qakt � qbkt = qak0t �

qbk0t ⌘ St; and (2) St = t�⇤
t +

1
2�St+1,where SN = N�⇤

N .

Lemma 2 then guarantees that, at any period, a trader acts as a market maker if

and only if his volatility type is below the marginal type �⇤
t . A trader who acts as a

customer at period t reaches his first best at that period and become inactive afterward.

The dynamic equilibrium therefore follows a recursive structure and is characterized by a

time-varying cuto↵ that divides customers (relatively volatile types) and market makers

(relatively stable types) in each period. Such a cuto↵ volatility type, �⇤
t , is pinned down

so that all active traders in period t are matched: G(�⇤
t ) = 1

2t , for t = 1, . . . , N . The

equilibrium trading links are illustrated in Figure 1.

As a result, the dynamics has a very simple interpretation. The most volatile types

builds only one trading link with a market maker in the first period, and he behaves

purely as a customer. The most stable types, on the other hand, are the most connected

dealers, who buy and sell over time based on the valuation of their customers each period.
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Traders with mid-range volatility act like peripheral dealers in the sense that they serve

customers in earlier periods and then trade with more central dealers.

Figure 1: Equilibrium trade links, with 6 rounds of trade. A node represents a trader.
His volatility type is given by the distance from the center to the node. The edge between
two nodes represents the link between two traders.

Expected Payo↵ The ex ante payo↵ of a trader at period 0 (i.e., before the realization

of valuation and asset position) in this constructed market-making equilibrium can be

understood as the sum of his expected asset position plus the total transfer that he

has been receiving or paying over time. When a trader of type (�, k) chooses to be a

customer this period, he pays the expected asking price qak0t if and only if he sells to the

customer in the last period, which happens with probability ⇡H
k0 , and he buys it back

this period, which happens with probability ⇡H
k . Similarly, he receives the expected bid

price if and only if he purchases from the customer in the last period, which happens

at the probability ⇡L
k0 , and he sells this period. Since ⇡ = ⇡H

k = (1 � ⇡H
k0 ), this buy-sell

probability is therefore given by ⇡(1 � ⇡) and is independent of group k. Hence, for a

trader who stays for t periods, he will act as a market maker for t� 1 periods, receiving

⇡(1� ⇡)
Pt�1

j=1 �
j(qakj � qbkj)A from market making, and will become a customer at period

t. Once he acts as a customer, he pays for the expected spread, ⇡(1� ⇡)�t(qak0t � qbk0t)A,

reaches his e�cient asset allocation, and becomes inactive after period t.

Recall that the expected bid-ask spread is independent of the type of group. As a

result, the total net payment of a trader who acts as a market maker for period t� 1 and

becomes a customer at period t is given by: T (t) ⌘ ⇡(1 � ⇡)
⇣

Pt�1
j=1 �

jSjA� �tStA
⌘

.
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One can show that the total net payment is increasing in t. Hence, in the constructed

market-making equilibrium, a trader’s ex ante expected payo↵ at t = 0 can be understood

as

W̄ (�, k) = max
t

{#(�, k, t) + T (t)} . (11)

That is, the earlier a trader chooses to be a customer, the earlier that he reaches his first-

best position, which implies a higher output (as #(�, k, t) is increasing in t) but a lower

net payment (as T (t) is decreasing in t). Clearly, t⇤(�, k) ⌘ argmaxt {#(�, k, t)) + T (t)}
satisfies Proposition 3. That is, the constrained e�cient allocation can be implemented

by letting more stable types receive higher expected revenue from market making and

bear the cost of asset misallocation longer.

Proposition 4 There exists a decentralized equilibrium that is constrained e�cient, where

the expected payo↵ of a trader is given by equation (11).

Frictionless Limit Compared with the frictionless benchmark, trading frictions in

our model are captured by two factors: (1) Information friction comes from the fact

that a trader does not know others’ valuation before making the contact. Hence, the

extent of information friction is governed by the correlation of preferences between two

matched traders and is captured by the probability that traders in di↵erent groups have

the opposite position, denoted by p = ⇡2+(1�⇡)2. Information friction therefore vanishes

as the correlation converges to being perfectly negative (i.e., p ! 1). (2) A finite number

of trading rounds (N) captures the possible trading opportunities within a day, which

captures the technology constraint that prevents a trader from contacting an infinite

number of counterparties.

The total expected payment from customers to market makers (i.e., bid/ask spreads)

compensates the fact that market makers are taking on the misallocation. Hence, the bid-

ask spread converges to zero whenever the cost of misallocation converges to be zero. This

includes the limit cases where (1) the correlation converges to being perfectly negative

or (2) the number of trading rounds converges to infinity so that �N ! 0 and there is

no cost of delay. In both cases, the expected payo↵ of a trader in equation (11) thus

converges to the one in the the frictionless benchmark.
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4 Implications for Market Microstructure

4.1 Trading Activity

The equilibrium trading pattern suggests that a trader with relatively stable preferences

(who does not need to trade ex ante) builds most trading links and intermediates a large

volume of trades. That is, he buys and sells over time. Hence, our model predicts that

trade volume will be concentrated among these traders, who endogenously act as dealers.

To see this, we look at two measures below: trading links and trading volume.

Trading Links The number of periods that a trader actively contacts a counterparty

(instead of staying in autarky) resembles the number of trading links that he has, denoted

by L(�).19 In equilibrium, a trader of volatility type � 2 [�⇤
t , �

⇤
t�1] creates a trading link,

as a market maker with a customer, for each period from period 1 to period t� 1. And

for period t, he creates a link as a customer with a market maker, reaching his e�cient

allocation and remaining inactive afterward. Hence, for all traders of type � � �⇤
N , the

number of links e↵ectively maps to the period that a trader has reached his e�cient

allocation, which is characterized by equation (9). That is, L(�) = t⇤(�, k) for � 2
[�⇤

N , �H ]. The most stable types � < �⇤
N always build the maximum links N so L(�) = N.

As a result, a trader with more stable preferences builds more links in equilibrium,

implying a higher trading rate. In other words, the model endogenously generates a

heterogeneous meeting rate. Our model thus provides a micro-foundation for Neklyudov

(2014)[34], in which analyzes the environment where traders are endowed with heteroge-

neous search technologies in random search framework.

Trade Volume Developing a trading link does not mean there must be trade through

the link. At period 1, trades happen only if the one with a higher valuation within the pair

is not endowed with the asset, which happens with half probability. Therefore, the trading

volume is 1
2A at t = 1. For any period t onward, trades happen only if the customer in

period t has not yet reached his e�cient allocation. This event happens when this trader

sells (purchases) the asset even when he has a high (low) valuation in the previous period

because his customer wants to buy (sell). Hence, trade happens at probability 2⇡(1�⇡),

which is the probability that traders in di↵erent groups have the same realization. Hence,

the intraday dynamics of the aggregate trade volume is Vt = 22�t⇡(1� ⇡)A for t > 1. In

19We omit observable characteristics other than the volatility type in the notation to simplify presen-
tation, because the equilibrium number of trading links does not depend on other observables.

23



other words, the dynamics has the following features: (1) the trading volume decreases

over time, as more assets have been reallocated to traders with high preference realization

and (2) the trading volume for any period t (i.e., the need for reallocation) decreases when

the preferences of two groups are more negatively correlated.

The cross-sectional behavior, on the other hand, can be understood from the expected

gross trade volume for traders of type �, which is denoted by V(�) and is given by

V(�) =

8

<

:

1
2A, 8� 2 [�⇤

1, �H ],
⇥

1
2 + 2⇡(1� ⇡)(L(�)� 1)

⇤

A, 8� 2 [�⇤
N , �

⇤
1].
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Figure 2: Trade volume across the preference type of traders, with 10 rounds of trade.

Figure 2 illustrates how gross trade volume depends on the preference type of the

trader. Clearly, being a trader who builds more links implies a higher expected trading

volume, as he buys and sells over time. These two measures then provide predictions on

the distribution of the trading activity. As a result, consistent with Afonso and Lagos

(2014)[3] and Atkeson el al (2014)[7], the distribution is skewed, and only a few traders

intermediate a large amount of trade in equilibrium.20 Moreover, since only the relatively

stable types are building more links, the skewness of the distribution increases when

the trading rounds increase (N). Formally, the number of links follows an exponential

distribution:

Measure{� : L(�) = n} =

8

<

:

1
2l , if l = 1, . . . , N � 1,

1
2N�1 , if l = N.

(12)

20Afonso Lagos (2014)[3] shows that, in the federal funds market, the average number of transactions
per bank is typically above 75th percentile throughout the sample. In credit default swap markets,
Atkeson et al. (2014)[7] documented that the top 25 bank holding companies in derivatives trade dis-
proportionately more than others, and over 95 percent of the gross notional is consistently held by only
five bank holding companies.
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We define the sparsity of network as the ratio of the average number of links over N,

which can be characterized by  (N) =
PN

i=1
i/N
2i + 1

2N . It is therefore straightforward to

show that the sparsity of network  (N) is strictly decreasing in N . 21

4.2 Bid-Ask Spread

In this section, we examine the time-series and cross-sectional predictions on the bid-ask

spread. Recall that the expected spread is the same across groups, denoted by St.

The time-series behavior of the expected spread is governed by the price schedule in

Lemma 2 and can be rewritten as

St = 2t�
⇤
t

| {z }

benefit from immediacy

+ �St+1 � St
| {z }

change in the net payment

, 8t < N.

Intuitively, two factors are driving the bid-ask spread. The cost of being a customer at

period t is paying the spread, whereas the benefit is reaching e�cient allocation earlier

(which is represented by the first term). The second term represents the change in the

net payment: acting as a customer at period t, a trader saves the spread next period, but

he gives up the spread that he would have received as a market maker this period. The

expected spread charged by de facto market makers at period t, St, and changes in the

spread over time, St+1 � St, are characterized by the following equations:

St =
N
X

s=t

✓

�

2

◆s�t

s�
⇤
s , (13)

St+1 � St =
N
X

s=t+1

✓

�

2

◆s�t�1
�

s�
⇤
s � s�1�

⇤
s�1

�

�
✓

�

2

◆N�t

N�
⇤
N . (14)

We can see that two sets of parameters a↵ect the time series of bid-ask spreads: the

dynamics of the payo↵ structure of the asset (t) and the dynamics of volatility type �⇤
t

of the marginal investor. The dynamics of the payo↵ structure controls the benefit from

immediacy. To see this, we shut down the benefit from immediacy by setting � = 1 and

t ! 0 and N ! 1. In this environment, there is little benefit from immediacy as long

as a trader can reach his first-best allocation before the end of day. Hence, the total net

payment for any traders except for the most central dealers must be the same. Therefore,

paying the spread St this period must be the same as paying the spread next period and

21 (N + 1)�  (N) =
PN

i=1
i/(N+1)�i/N

2i < 0 .
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giving up the spread this period: St ' St+1 � St. Hence, the bid-ask spread must be

increasing over time.

On the other hand, when the benefit from immediacy dominates, traders who reach

the first-best allocation earlier should pay for the additional premium for immediacy. For

example, consider the simple case that the asset pays constant dividends for each period

t = , one can then show that bid-ask spread is decreasing over time in this case. When

immediacy becomes more valuable, the time series of the expected bid-ask spread shift

from an upward-sloping curve to a downward-sloping curve.

The dispersion of the bid-ask spread also depends on the value of immediacy. Consider,

for example, an increase in the volatility of the economy by moving the distribution of

volatility types from G(�) to G̃(�) = G(� � �), with � > 0, and assume t = .

As the economy becomes more volatile, immediacy becomes more valuable. Then, the

di↵erence in the expected spread over two consecutive periods increases from |St+1 � St|
to |St+1 � St|+

�

�
2

�N�t
�.

The time-series pattern of the expected bid-ask spread can be further mapped to the

cross-sectional distribution of the spread across financial institutions of di↵erent central-

ity. If the bid-ask spread is increasing in t, it means it is more costly to trade with

more central dealers. This result is then consistent with the findings in Li and Schürho↵

(2014)[32]. But because our paper identifies two factors that drive the bid-ask spread,

we also provide an explanation as to why we might observe di↵erent empirical patterns

depending on the underlying distribution of trading needs in a particular OTC market.

4.3 The Network Structure

The network graph, as in the standard network literature, can be characterized by an

adjacency matrix. However, because the matching decisions at period t are contingent

on asset holdings at the end of period t � 1, this dynamic feature of formation implies

that the trading links of a trader at period t are only determined up to the type-(�, k)

at period 0. That is, at period 0, the asset position is e↵ectively a random variable,

and the realization is determined by the trading history. Given the realized positions, an

agent (�, k, 0) meets (�0, k0, A). We therefore define an adjacency matrix at t = 0 based

on the type (�, k). The proposition shows that, in equilibrium, the number of traders

(nodes) that are connected (i.e., there exists a path connecting two traders) is given by

2N . Denote G as network graph on the set of these connected traders: ij 2 G if there is

a direct trading link between the type i = (�, k) and j = (�0, k0). The network has the

following tiered structures:
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Proposition 5 With N trading rounds, a total population of 2N traders are connected.

The adjacency matrix is G = gN ,

gt =

"

gt�1 I2t�1⇥2t�1

I2t�1⇥2t�1 O2t�1⇥2t�1

#

, 8t > 1, g1 =

"

0 1

1 0

#

, (15)

where dim(G) = 2N , O2N�1⇥2N�1 is a zero matrix, and I2t�1⇥2t�1 is an identity matrix.

In the adjacency matrix, traders acting as customers in the earlier period (i.e., lower

t⇤(�, k)) are assigned a higher index. The identity matrix, I2t�1⇥2t�1 , in matrix gt repre-

sents links formed at period N � t+ 1. At period t, traders with an index number lower

than 2t, who are market makers at period t, form links with traders with index numbers

from 2t�1 + 1 to 2t. This sorting result leads to a zero matrix on the lower right corner

of matrix gt, O2t�1⇥2t�1 , which reminds us that customers at period t do not match with

each other at period t.

In the section on financial contagion, we use these properties to further study the

implications for contagion risk in the interbank market.

4.4 Comparison to Random Search Models

In random search frameworks, trading friction is modeled as an exogenous meeting rate

(Du�e et al. (2005)[15]), which captures the fact that it takes time to find the “right”

counterparty. Based on this, recent works by Afonso and Lagos (2014)[4] and Hugonnier,

Lester and Weill (2014)[26] further allow for richer heterogeneity, where the valuation of a

counterparty is drawn from a distribution. In their environment, traders with moderate

valuation act as intermediaries because they are more likely to buy and sell given the

distribution that they face. Despite our mechanisms being very di↵erent, several predic-

tions are similar here: (1) misallocation as well as trading volume are concentrated in

traders with moderate valuation, and (2) allocation converges to the e�cient outcome in

the frictionless limit.

Our framework, however, has several di↵erent implications regarding e�ciency, trad-

ing structure, and prices. First of all, the fact that we allow for traders to direct their

search and choose whether to be inactive or not reduces the ine�cient matching in ran-

dom search framework, in which all meetings are possible. This can be seen from two

channels: (1) as established in Proposition 5, our equilibrium structure has a defined

tiering, in the sense that banks in the same tier will never trade with each other. The

tier of a trader is determined by his gain from trade and hence his willingness to wait.
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Traders who are more willing to wait take on misallocation from traders in other tiers

who need immediacy. Hence, it is ine�cient for a trader to meet with another trader in

the same tier, and that is why it never happens in our environment. (2) In random search

frameworks, traders meet at the same exogenous meeting rate regardless whether they

have already reached their e�cient allocations, which by construction generates some

crowding e↵ect and thus “unused” matches. In our framework, on the other hand, two

traders meet if and only if they still have expected gains from trade and only the ones

who carry on misallocation remain active in the market. Traders e↵ectively have di↵erent

meeting rate endogenously. Due to these two channels, the speed of convergence to the

e�cient allocation is therefore much slower in a random matching model.

Second, asset prices in a random search framework depends on bargaining power of a

trader, which is a free parameter. On the other hand, prices and thus the surplus sharing

rule are pinned down endogenously in our framework so that it is indeed optimal for

customers to trade with market makers. This force also has di↵erent price implications.

For example, in Hugonnier, Lester, and Weill (2014)[26], the trading price within a pair

is given by a weighted value of buyers’ and sellers’ reservation value, and such weight is

given by an exogenous bargaining power parameter. A buyer with high valuation then

pays a higher price on average. This, however, is not necessarily true in our model: buyers

with higher valuation are customers in earlier periods, who paid the spread in the earlier

period. In fact, without delay cost, they pay a lower asking price. On the other hand,

a buyer with slightly lower valuation (the peripheral dealer) pays a higher asking price

when he leaves the market but profit from the spreads he charges his customers.

5 Implication for Systemic Risk

Motivated by the existing (growing) literature on network and financial contagion, we

study the spread of unexpected shocks throughout this highly skewed, interconnected

network.22 The key question in this literature is how shocks propagate in varied en-

dogenously given networks, and existing analytical results focus mostly on a simple and

symmetric network.23 The goal of this section is to analyze the interdependence in our

equilibrium network, which has a highly asymmetric structure and is also consistent with

what we observed in the financial markets. To introduce counterparty risk, we assume

that all payments are made at the end of the trading game. That is, when transfer is

22Studying how counterparty risk with expected shocks changes the network formation is clearly im-
portant but is beyond the scope of this paper.

23See, for examples, [6] and[1], where the network structure is taken as given.
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delayed, transactions in our model can now be interpreted as borrowing and lending, or

taking long/short positions of derivatives contracts.

Interpretation of the OTC Market as an Unsecured Lending Market Financial

Institutions (FIs) are di↵erent in terms of their return on investment, which is given by

"v� at the end of period N if they invest A units of capital. At t = 0, all FIs start with the

same amount of outside obligation b to non-financial entities and the same value of total

assets. That is, all FIs start with the same net worth (equity value), which is denoted by

e. They are di↵erent in terms of the composition of their asset holdings at t = 0. Only

half of FIs have A units of capital on hand, and the rest of the assets are illiquid at t = 0.

These FIs can choose to lend the capital to other FIs or invest in their own projects. The

other half of FIs have only illiquid assets so that they can profit from the investment only

if they borrow from other FIs. The trading framework developed here can be applied to

interbank lending, where the asset is now the “capital”, and the transfer is the interest

rate that FIs pay back at the end of period N . Furthermore, an FI receives the return "v�
as long as the investment is made before period N. Hence, in this setting, the flow value

t is given by t ! 0 for all t < N and N ! 1.

The face value of j’s debt to i is thus equal to ⌧jiA, where ⌧ji is given by the bid-

ask price in the trading framework. Given the lending network, let
P

k ⌧kiA denote the

in-network asset of FI i, which are claims on other FIs, and let
P

j ⌧ijA denote the in-

network liabilities of FI i, which represents the payment obligation. The net worth of FI

i after the trading is then given by

e(�, nb, a0, aN) = "v�aN +
ns
X

k=1

⌧kiA�
nb
X

j=1

⌧ijA+ e,

where a0 and aN denote the initial and the final asset position a 2 {0, A}, nb denotes

the number of creditors of FI i, and ns denotes the number of lenders of FIs. Given

an initial position of an FI a0, the final position at the end of day is given by aN =

A (I{a0 = A}+ nb � ns) . In general, the net worth of FI i after the trade depends on the

project return and the net payment (bid-ask spread), which is a function of type-�.24 To

simplify the analysis on contagion, we assume that e � �A and the net payment coming

from the interest spread is negligible (e � {
Pns

k=1 ⌧kiA �
Pnb

j=1 ⌧ijA}), so that the net

worth of an FI i after the trade is approximately homogeneous e(�, n, aN) ! e.

24If one takes into account the heterogeneity in �, the expression can be rewritten as e(�, n, aN ) =
e+ ("v� � y)aN + T (�, k).
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5.1 Interconnectedness

According to Proposition 5, the network has the following two features. (1) Maximum

connections: Given the trading capacity N, the number of FIs that are connected in

equilibrium is given by 2N . (2) No loop: Any FI that is connected to FI i is no longer

connected to FI-j under G � ij, where G � ij denotes the graph obtained by deleting

link ij from the existing graph G.

Both features are important for contagion analysis. The first one clearly establishes

how trading capacity changes interconnectedness. The fact that there is no circle in the

trading network G further simplifies the contagion analysis. Since deleting any link ij in

the trading network G necessarily leads to two disconnected subnetworks, let gi
�j denote

the subnetwork that includes all the nodes (directly and indirectly) connected to bank

i under G � ij. Hence, any risk arising from a subnetwork gi
�j a↵ects FIs outside the

subnetwork only through link ij. Similarly, any risk from outside the subnetwork a↵ects

FIs within the subnetwork gi
�j through the link ij. Such property can be seen clearly

from Figure 3.

Figure 3: Network graph, with 6 rounds of trade. The size of an FI-node represents the
gross trading volume involving the FI.

Furthermore, consider an FI i with n + 1 links: he acts as a market maker for n

customers and trades with a market maker at period n+1. If we delete the link between

FI i and his market maker (denoted by jm(i)), FI i is then the most connected dealer

in the subnetwork gi ⌘ gi
�jm(i). The subnetwork centered at FI i can be characterized

recursively. For an FI i with n+ 1 links, he will have n customers, and the n customers

have n � 1, n � 2, ..., 0 customers in turn. Hence, the number of FIs in subnetwork gi

can be solved recursively and is denoted by ⌫n: ⌫n = n+
Pn�1

j=0 ⌫j.
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5.2 Contagion

We study contagion triggered by the unexpected loss of an FI in the network. Such

negative shocks can be from investment returns or other outstanding assets of the FI.

We make the following assumptions on defaults: (1) An FI defaults whenever the loss is

higher than its equity value e. (2) Each FI must meet the outside obligation b, which

is assumed to have seniority relative to its liabilities within the network. We look at

the shock regime that an FI can always meet its senior liabilities b so that the loss is

only distributed within the network. (3) There is a deadweight loss z whenever an FI

defaults.25

Let l0 denote the size of the negative shock that hits the initial distressed FI i, which

will default if l0 � e. If the FI has n creditors, each creditor takes a loss of 1
n
(l0 + z � e).

The default of creditors may trigger further default. As there is no circle in the equilib-

rium network, the prorogation of risks can be characterized easily. The threshold for a

connected FI becoming insolvent is summarized in the proposition below.

Proposition 6 The default of the first distressed FI i will induce the default of FI x that

is m links away from FI i if (1) there is a credit chain between FI i and FI x and (2) the

initial loss l0 satisfies the following condition:

l0 � e � max{0, ⇣m1 }, (16)

⇣mj = nj
be� z + nj max{0, ⇣mj+1}, 81  j < m, ⇣mm = nm

b e� z, (17)

where nj
b denotes the number of creditors of the jth FI on the chain, starting from the

first distressed FI and ending at the FI-x.

The proposition shows that two factors are driving the contagion. The first one is the

dilution e↵ect pointed out by Allen and Gale (2000)[6]. When an FI has more creditors,

the burden of any losses is shared among its creditors. This dilutes the loss and its

creditors are less likely to default, leading to less fragility. This shows up in the threshold

for contagion ⇣m1 , which increases with the number of creditors of FIs on the chain. To

see this clearly, let lm denote the loss received by an FI that is m links away conditional

25The deadweight loss can be interpreted as a bankruptcy loss or a liquidation cost. For example,
under a slightly di↵erent formulation, where e is the cash holding of an FI and the only illiquid asset of
an FI is the project created through the credit market, z can be thought of as the liquidation cost of the
illiquid asset.
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on the event that all creditors before him default, which can be expressed as

lm =
l0

⇧m�1
j=0 n

j
b

+
m�1
X

j=0

(z � e)

⇧m�1
i=j nj

b

> e.

The corollary below highlights the diversifying e↵ect decreases the spread of risk.

Corollary 2 Consider an initial shock l0 > e that hits FI i. (1) All immediate creditors

remain solvent if and only if ni
b � l0+z�e

e
, where ni

b is the number of creditors of FI i.

(2) Rank all immediate creditors by the number of their customers, indexed by c. That is,

nb(c0) � nb(c) for any c0 > c. If no FI defaults in subnetwork gc
�i, then no FI defaults in

subnetwork gc0
�i.

The speed at which the negative shock l0 dies out also depends on the excess liquidity

of the defaulting banks, which is captured by z�e. When the default cost (z) is small rel-

ative to the excess liquidity (z < e), each defaulting bank e↵ectively contributes liquidity

to the system, limiting the extent of contagion. On the other hand, consider the other

extreme case in which FIs are highly leveraged and there is a high liquidation cost (i.e.,

z � e); each additional default then brings net loss to the system. Hence, in contrast

to the environment in which contagion gradually stops as the length of the credit chain

increases, the accrued cost from default keeps the default going along the whole credit

chain. This is reflected in the following corollary, which establishes the condition under

which default will spread along the whole credit chain regardless of its length.

Corollary 3 All creditors along a credit chain will default if l0 � e and ni  bz/ec for

all creditors along the chain.

One can see how connection matters in the regime when bz/ec is large enough: on

the one hand, a more interconnected system implies more creditors, and a default chain

is therefore more likely to be stopped. That is, the condition is less likely to be satisfied.

On the other hand, when the number of creditors is not large enough to stop the failure,

any additional connection necessarily leads to further loss. In other words, there is

nonmonotonic e↵ect of increasing connections.

5.3 Policy Implications

The nonmonotonic e↵ects of interconnections have been pointed in studies on network

and financial contagion. However, since most studies take the network structure as given,
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it remains unclear how the underlying network responds to any policy that aims to change

the underlying connectedness. For example, because of the recent financial crisis, it has

been suggested that the connections of large, interconnected financial institutions should

be reduced.26 However, without knowing the counterfactual network, neither the cost

nor the benefit of reducing connections can be properly analyzed.

Our framework provides a way to analyze such a policy. In particular, a policy that

restricts the number of counterparties can be interpreted as restricting the maximum

trading capacity (N) in our setting. The e↵ect of such a policy can thus be understood

as comparative statics on N. To see the e↵ect of connections on contagion, consider an

increase in trading capacity, (say, N 0 = N + 1).27 Two disjointed subnetworks led by

the most central market makers i and j are now connected. The cost of this additional

connection is simply that the risk may spread from subnetwork gi to subnetwork gj.

Without loss of generality, we assume that these two market makers also have the highest

realized number of creditors. When the number of creditors of market maker i is low (so

that ni < bz/ec), the risk travels. In fact, according to Corollary 3, all connected creditors

in both subnetworks default in this case. On the other hand, when the financial network

is more interconnected so that the most central market makers have enough creditors to

diversify the risk exposures, the risk will not travel to subnetwork gj. This can be seen

from Corollary 2, which shows that unless all immediate creditors of FI i default, the

subnetwork centering around FI j remains solvent, as it has the most creditors.

Our framework therefore has immediate policy implications, which is a trade-o↵ be-

tween e�ciency and stability.28 A policy that restricts the number of counterparties leads

to e�ciency losses. The marginal losses in e�ciency are decreasing with N , since the gain

from trades from the relatively stable types is lower. The e↵ect on stability, on the other

hand, is nonmonotonic: increasing connections creates channels through which shocks

are spread (negative e↵ect) but also has a positive e↵ect by diversifying risk exposures

for individual banks that are a↵ected. When the underlying architecture is densely con-

nected so that the positive e↵ect dominates, restricting the number of counterparties only

decreases welfare. Hence, such a policy could only be optimal when the negative e↵ect

dominates, which happens in an economy in which FIs are highly leveraged (z � e) with

intermediate levels of integration.

26“The risk of failure of large, interconnected firms must be reduced, whether by reducing their size,
curtailing their interconnections, or limiting their activities” (Volcker, 2012).

27Stuying policy implications by reducing or increasing interconnectedness is a standard exercise. See,
for example, Section 6 of Garleanu et al. (2013)[20].

28Same trade-o↵ has been analyzed in Gofman (2014)[23] within a calibrated model where networks
are taken as given.
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6 Discussions/Extension

6.1 Diversification and Heterogeneity in Volatility

Some financial institutions tend to have less diversified asset portfolios, either because of

their focus on a certain geographic location, such as community banks, or because of their

specialization, such as initiators of asset-backed securities. Other financial institutions

tend to have more diversified portfolios, either because they are geographically diversified,

such as large commercial banks, or because of their business models, such as large dealer

banks. In this section, we show that the heterogeneity in volatility can be mapped to

di↵erent levels of portfolio diversification.

Assume that there are two types of illiquid assets, whose payo↵s are negatively corre-

lated. Financial institutions are endowed with di↵erent portfolios. Normalizing the size

of an institution in terms of its illiquid asset holding to be 1, we denote the portfolio of

FI i by a = (!1i,!2i), where !ji denotes its holding of type-j assets. !1i + !2i = 1, and

!1i,!2i > 0. The degree of diversification is then given by max (!1i,!2i).

The assets are Lucas trees producing dividend goods each period. The dividend of

a type-j asset held by FI i at period t is dkit. FIs can trade a financial contract, which

is a promise to pay one dividend good each period. The payo↵ of an FI at period t is

ut(a1i, a2i,↵t) = (a1i + a2i)U (!1id1it + !2id2it + ↵t) + ⌧t, dkit is the period-t dividend of a

type-k asset held by FI i, ↵t is the FI’s period-t holding of the financial contract, ⌧t is con-

sumption of numeraire goods and U(d) = yd� �
2

�

d� D̄
�2
, where D̄ = 1

2 [D(H) +D(L)].

D(S) denotes the state contingent dividend payment. D(H) > D(L) > 0. The dividend

flows of an asset at any period are determined at period 0 but after matching decisions

are made:

(d1it, d2it) =

(

(D(V ), D(⇠ V )) with Prob �,

(D(vi), D(⇠ vi)) with Prob 1� �.

V is an aggregate shock and vi is an idiosyncratic shock, V, vi 2 {H,L}. V and ⇠ V are

perfectly negatively correlated, Pr(V =⇠ V ) = 0. The same applies to vi and ⇠ vi. With

this setup, the payo↵ of agent i mimics the general setup with preference correlation in

Section 2.4. The period 0 payo↵ of an FI is
P

t �
t [ut(a1i, a2i,↵t) + ⌧t], where � 2 (0, 1)

is a discount factor.

The holding of the financial contracts of any financial institution is restricted to be

between �⌘ and ⌘, with ⌘ 2 (0, 1), reflecting the trading capacity of an FI. Under this

setup, we can show that the stable matching plan is the same as in our dynamic model,
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as long as the trading capacity of FIs is small enough and the metric of diversification,

max (!1i,!2i), maps to the volatility type of a trader.

6.2 Endogenous Trading Capacity

So far, we have taken trading capacity N as given. In this part, we explore how such

capacity is bounded by FIs’ incentive to default strategically in a credit market when they

have limited commitment. To study strategic default in the unsecured lending market,

where repayment depends on FIs’ reputation in the market, we extend our intraday

trading game to an infinite-horizon setup.

For any given the number of trading rounds in each day, the value from participating

in the interbank trading is Vt(�, k) =
P1

s=t �̂
s�tW̄s(�, k), where �̂ is the interday discount

factor 29 and W̄s(�, k) is given by equation (11) in Section 3. With unsecured lending,

FIs’ incentive to repay depends on the value of reputation, which is other FIs’ belief that

the FI will not default. We assume that the reputation of an FI is public knowledge. If

an FI defaults, the FI will be punished collectively to live in autarky forever. An FI’s

continuation value in autarky is U(�, k) =
y+(2⇡H

k �1)�

1��̂ A.

For simplicity, we look at the i.i.d case where ⇡H
R = ⇡H

B = 1
2 and focus on a station-

ary equilibrium. Denote B(�) as the maximum outstanding debt of an FI of type �.

In the equilibrium, repayment with maximum debt is incentive compatible only if the

payo↵ from default, B(�) + �U(�), is no greater than the value from avoiding default,

�V (�). So, incentive compatibility implies that B(�)  �̂ [V (�)� U(�)] , 8�. FIs of a

low volatility type build up higher debt holding from market-making activities and have

less to gain from participating in the game; the maximum depends on their incentive to

default. Assume without loss of generality that B(�) is increasing with �. From Section

3, it is easy to show that � [V (�)� U(�)] is increasing with �. Therefore, incentive com-

patibility holds holds if and only if B(�L)  �̂ [V (�L, k)� U(�L, k)] . Hence, incentive

compatibility therefore imposes an upper bound for the maximum number of trading

rounds in each day endogenously. A lower capacity implies a higher profit of market

makers of participating the trading game. Hence, market makers have more incentive to

avoid default and maintain a good reputation.30

29The intraday discount factor used in the game with N subperiods can be expressed as � = �̂1/N .
30The same logic applies to the environment with collateralized lending: FIs’ incentive to repay depends

on the value of the collateral they pledge. Suppose the value of collateral each FI holds is Q. Then the
incentive compatibility constraint implies that B(�)  Q, 8�, which imposes an upper bound on trading
capacity.
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7 Conclusion

In this paper, we build a dynamic matching model of an over-the-counter market, in

which market-making activities and a tiered core-periphery network emerge endogenously.

The network structure is qualitatively similar to what we observe in a typical OTC

market. The key mechanism behind these results is negative sorting on the volatility

of traders’ preferences over assets. Market-making services o↵ered by traders with less

volatile preferences insure traders with more volatile preferences against their trading

needs, which could be either selling or buying assets. This trading model establishes

the economics behind the trading patterns in the OTC market and contributes a new

tractable framework for network formation.

A Appendix

Proof for Proposition 1

Proof. Suppose not, consider an equilibrium where f(�3, �4) > 0 and f(�2, �1) > 0. Note

that equation (1) can be rewritten as: W ⇤(�) + W ⇤(�0) � ⌦(�, �0) for 8(�, �0). Hence,

we have W ⇤(�4) +W ⇤(�2) � ⌦(�4, �2) and W ⇤(�3) +W ⇤(�1) � ⌦(�3, �1), which implies

⌃W ⇤(�j) � ⌦(�4, �2) + ⌦(�3, �1). However, since f(�3, �4) > 0 and f(�2, �1) > 0 implies

that W ⇤(�4) + W ⇤(�3) = ⌦(�4, �3) and W ⇤(�2) + W ⇤(�1) = ⌦(�1, �2), which in turn

implies that ⌃W ⇤(�j) = ⌦(�4, �3) + ⌦(�1, �2) > ⌦(�4, �2) + ⌦(�3, �1). Contradiction by

Lemma 1.

Proof for Proposition 2

Proof. We now show that the given the constructed payo↵ W ⇤(�), traders’ follow the

cuto↵ matching rule in Proposition 1. Define Ŵ (�, �0) ⌘ ⌦(�, �0)�W ⇤(�0).

Ŵ (�,�0) =

(

A [�0 + (2p� 1)�] +W0(�) +W0(�0)�W ⇤(�0), for �0 > �,

A [� + (2p� 1)�0] +W0(�) +W0(�0)�W ⇤(�0), for � � �0.

By construction of W ⇤(�), for any � 2 [�⇤, �H ],

@Ŵ (�, �0)

@�0 =

8

>

<

>

:

0, for �0 > �,

[(2p� 1)� 1]A = 2(p� 1)a < 0, for � � �0 � �⇤,

[(2p� 1)� (2p� 1)]A = 0, for � � �⇤ > �0.

Hence, given the continuity of Ŵ (�, �0) and @Ŵ (�,�0)
@�0 , argmax�0 Ŵ (�, �0) 2 [�L, �⇤] for any

� 2 [�⇤, �H ]. Similarly for any � 2 [0, �⇤], @Ŵ (�,�0)
@�0 =

8

>

<

>

:

0, for �0 � �⇤,

2(1� p)A, for �⇤ � �0 > �,

0, for �⇤ � � � �0.
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Hence,argmax�0 Ŵ (�, �0) 2 [�⇤, �H ] for any � 2 [0, �⇤]. Lastly, one can see that this

payo↵ satisfies the feasible within each pair:

W ⇤(�c) +W ⇤(�m)

= 2W ⇤(�⇤) + (1� 2p)(�⇤ � �m)A+ (�c � �⇤)A+

ˆ �c

�⇤
W 0

0(�̃)d�̃ +

ˆ �⇤

�m

W 0
0(�̃)d�̃

= 2{ap�⇤ +W0(�
⇤)}+ (1� 2p)(�⇤ � �m)A+ (�c � �⇤)A

= A{�c + (2p� 1)�m}+W0(�c) +W0(�m) = ⌦(�c,�m).

To show the uniqueness of W ⇤(�), the slope of W ⇤(�) is uniquely pin down from @W ⇤(�)
@�

=
@⌦(�,�0)

@�
. The level of this function is further pinned down by the payo↵ of the marginal

type: Since the marginal type must be in di↵erent between being a market maker and

customer, W ⇤(�⇤) = 1
2⌦(�

⇤, �⇤) = Ap�⇤ +W0(�⇤).

Equilibrium with heterogeneous correlations

Proof. The logic is the same as before, we show that when either of the above conditions

is violated, there is a surplus left and the aggregate surplus can therefore be improved

by rearranging the match. For notational convenience, we use �k to denote type-(�, k).

First, consider the case when both conditions are violated. That is, there exists�4
R �

�3
R > �2

B � �1
B such that f(�4

R, �
3
R) > 0 and f(�2

B, �
1
B) > 0:

⌦(�4R,�
3
R) + ⌦(�2B,�

1
B) = A

⇥

�4R � (1� 2p0)�
3
R

⇤

+A
⇥

�2B � (1� 2p0)�
1
B

⇤

+
X

j,k

W0(�
j
k)

 A
⇥�

�4R + �3R
�

� (1� 2p0)
�

�2B + �1B
�⇤

+
X

j,k

W0(�
j
k)

< A
⇥�

�4R + �3R
�

� (1� 2p1)
�

�2B + �1B
�⇤

+
X

j,k

W0(�
j
k)

= ⌦
�

�4R,�
2
B

�

+ ⌦
�

�3R,�
1
B

�

= ⌦
�

�4R,�
1
B

�

+ ⌦
�

�3R,�
2
B

�

,

where p0and p1represents the probability that traders have opposite realization within a

group and across groups, respectively. By construction, p0 = 2⇡(1 � ⇡) = 1��2
2 < p1 =

⇡2 + (1� ⇡)2 = 1+�2

2 .

Second, suppose that Proposition 1 is satisfied but certain traders are matched within

group. That is, f(�c
R, �

m
R ) > 0 and f(�c

B, �
m
B ) > 0. Given that p1 > p0, ⌦(�c

R, �
m
R ) +

⌦(�c
B, �

m
B ) < ⌦ (�c

R, �
m
B ) + ⌦ (�m

R , �
c
B) . Lastly, consider the case that f (�k, �0

k) = 0 (that

is, traders only match within each group) but the proposition 1 is not satisfied. Lemma 1

can be applied directly to this case within each group k. Hence, an allocation f maximizes

the aggregate surplus if and only if Proposition 1 and f (�k, �0
k) = 0 are satisfied.

Proof for Proposition 3

Proof. We start the proof by claiming that the allocation within a pair must satisfy

monotonicity property. That is, the asset goes to the trader with a higher realization
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within the pair, ↵t("v
0
�0 , "v�) = A i↵ "v

0
�0 � "v�. We solve the planner’s problem under

this allocation rule and then verify the claim below. The monotonicity property thus

suggests that, after exchanging the asset within a pair, for �2 � �1, ⇡H
t+1(�2, A, k

0) =

1,⇡H
t+1(�2, 0, k

0) = 0, and ⇡H
t+1(�1, ã, k) = ⇡H

t (z) for ã 2 {0, A}. Given that⇡H
0 (�, ã, k) =

⇡H
k , the probability that a trader owns the asset after the trade at period t, is therefore

given by ⇡H
k0 for trader (�2, ã, k

0) and (1�⇡H
k0 ) for trader (�1, ã, k). As a result, within the

pair, the more volatile type (�, k) would reach his e�cient allocation, with the expected

payo↵ tA⇡H
k (y+ �). The expected flow surplus for the less volatile type within the pair

is then given by (1� ⇡H
k0 )(y + (2⇡H

k � 1)�).

The optimal assignment function ft then e↵ectively determines whether a trader would

reach his e�cient allocation at period t. Let⌘t(�) be the index function so that ⌘t(�) = 1

i↵ a trader-� is assigned e�cient allocation at period t and ⌘t(�) = 0 otherwise. The

social planner’s problem can be rewritten as

⇧ = max
⌘t(�)2{0,1},8�2⌃

1

2

X

k

(

N
X

t=1

ˆ
�ttA

⇥

⌘t(�)⇡
H
k (y + �)

+(1� ⌘t(�))(1� ⇡Hk0 )(y + (2⇡Hk � 1)�)
⇤

g(�)d�

)

such that

µ
⇣n

� : ⌘t(�)� ⌘t�1(�) = 1, 8� 2
X

o⌘

 µ
⇣n

� : ⌘t(�) = 0, 8� 2
X

o⌘

,

and for all � 2
P

, µ ({s : ⌘t(s) = 1, s  �}) + µ ({s : ⌘t(s) = 0, , s  �}) = G(�).31

The first constraint is imposed by pair-wise matching. If a trader switches from

having misallocated assets to having first best allocation for sure in that period, it must

be the case that there is another trader taking on the misallocation from such a trader.

Hence, the measure of traders who switch to first best allocation in that period must be

no greater than the measure of traders who take misallocated assets at the end of that

period. The second constraint is the feasibility constraint.

The following claim shows that if traders of type � receive first best allocation, all

traders with type �0 > � must receive first best allocation.

Claim 1 If ⌘t(�) = 1, then ⌘t(�0) = 1 for �0 > �.

Proof. The flow payo↵ of a trader of type � as a function of ⌘t is proportional to

�(⌘t, �) ⌘ ⌘t⇡H
k (y+ �) + (1� ⌘t)(1� ⇡H

k0 )(y+ (2⇡H
k � 1)�). Then, �12(⌘t, �) = ⇡H

k � (1�
⇡H
k0 )(2⇡

H
k � 1) = 2⇡(1�⇡) > 0. That is, the value of getting e�cient allocation is strictly

increasing in �.

31⌘0(�) = 0, for all � 2
P

.
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Given this claim and the fact that the first constraint is binding, the period that a

trader who reaches his e�cient allocation t⇤(�, k) as well as the total surplus are then as

stated in the proposition.

Below, we verify that any allocation that violates the monotonicity property only

strictly decreases the surplus.

Claim 2 Optimal asset allocations within a pair must satisfy the monotonicity property.

Proof. Clearly, the monotonicity property holds for the last period N for any matching

plan. Suppose that the monotonicity property within any pair (�0, �) holds for period

t + 1 for any matching plan. We now show that given any matching plan in period t,

the monotonicity property holds within a pair. Consider an alternative allocation rule

for two agents of type (�2, A, k0) and (�1, 0, k) respectively, which gives the conditional

distribution of preference type to be ⇡̂H
t+1(�2, A, k

0)  1 and ⇡̂H
t+1(�2, 0, k

0) � 0, and

⇡̂H
t+1(�1, ãt, k

0) � 0. Let �̂t(�, k) denote the probability that a trader of type (�, k) owns

the asset after the trade at period t under this allocation rule. Any arbitrary allocation

rule must satisfy �̂t(�, k)⇡̂H
t+1(�, A, k) + (1� �̂t(�, k))⇡̂H

t+1(�, 0, k) = ⇡H
t (z).

Any allocation that violates the monotonicity property strictly decreases the flow

surplus at the period t. What is left to show is that the social surplus next period under

such deviation is also weakly lower than the one without deviation. Let f̂t+1 be the

matching plan next period following this deviating allocation. We now show that if one

follows the monotonicity rule at period t and the same assignment rule f̂t+1, one can

achieve a weakly higher surplus. In other words, the maximum surplus at t+1 generated

under the deviation is also achievable if one follows the monotonicity rule at period t.

As a result, the maximum surplus must be weakly higher when monotonicity property is

satisfied.

Given that the matching must be across groups and with di↵erent holding, for sim-

plicity, we use �⇤(�i) to denote the volatility of the optimal counterparty of type-�i trader

under f̂t+1, and ⇡j⇤ ⌘ ⇡H
t+1(�

⇤(�i)) for i = 1, 2. First, consider the case when both agents

are actively matched with a trader �⇤(�i) 6= {;}. If �i > �⇤(�i), the sum of expected pay-

o↵ generated by the pair{(�i, A, k), (j⇤(�i), 0, k0)} and the pair{(�i, 0, k), (j⇤(�i), A, k0)}
at period t+ 1 yields:

�̂t(�i, ki)t+1A
�

⇡̂Ht+1(�i, A, ki)(y + �) + (1� ⇡̂Ht+1(�i, A, ki)(y + (⇡j⇤ � 1)�⇤(�i))
 

+ (1� �̂t(�i, ki))t+1A
�

⇡̂Ht+1(�i, 0, ki)(y + �) + (1� ⇡̂Ht+1(�i, 0, ki)(y + (2⇡j⇤ � 1)�⇤(�i))
 

= t+1A
�

⇡Ht (z)(y + �i) + (1� ⇡Ht (z))(y + (2⇡j⇤ � 1)�⇤(�i)
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If �i < �⇤(�i), the total surplus is then

�̂t(�i, ki)t+1A
�

⇡j⇤(y + �⇤(�i)) + (1� ⇡j⇤)(y + (2⇡̂Ht+1(�i, A, ki)� 1)�i)
 

+ (1� �̂(�i, ki))t+1A
�

⇡j⇤(y + �⇤(�i)) + (1� ⇡j⇤))(y + (2⇡̂Ht+1(�i, 0, ki)� 1)�i)
 

= t+1A
⇥

⇡j⇤(y + �⇤(�i)) + (1� ⇡j⇤)y + (1� ⇡j⇤)(2⇡
H
t (z)� 1)

⇤

.

Observe that, in both cases, the resulting surplus is independent of ⇡̂H
t+1(�i, a, ki) and

�̂t(�i, ki), which is a function of the allocation rule at period t. In other words, the same

expected payo↵ can be achieved for any arbitrary allocation rule at period t, including

the one that satisfies the monotonicity rule.

Second, consider the case that, at period t+ 1, one of agents matches with none and

the other one matches with a trader �⇤(�i). Conditional on giving �⇤(�i) exactly the same

payo↵, it is clear that the following matching plan gives a strictly higher surplus for both

periods: (1) letting �2 reach e�cient allocation at period t and match with none at t+ 1

and (2) letting �1 match with �⇤(�i) and give �⇤(�i) the same payo↵. Lastly, if both

agents matches with none under f̂t+1, what matters is only the flow payo↵ of holding the

asset and hence the payo↵ is strictly higher when monotonicity holds.

Proof for Proposition 4

To prove Proposition 4, we first provide the complete characterization of an decen-

tralized equilibrium and then prove that it satisfies all conditions and then show that it

is constrained e�cient. In an economy with N rounds of trade,

- Matching outcomes: The dynamic equilibrium follows a recursive structure, where

matching at period t is characterized by a cuto↵ volatility type, �⇤
t , such that G(�⇤

t ) =
1
2t ,

for t = 1, . . . , N . And the equilibrium distribution is characterized by equations (18) and

(19).

ˆ �⇤
t�1

�⇤
t

ft((�, a, k), (�̃,a
0, k0))d�̃

=

(

1
2g(�), if t = 1,

g(�)
�

⇡Lk0I{a = A}+ ⇡Hk0 I{a = 0}
�

, if �L  �  �⇤t�1, t > 1,
(18)

ft(z, {;}) = g(�)
�

⇡Hk I{a = A}+ ⇡Lk I{a = 0}
�

, if �⇤t�1 < �  �H , t > 1. (19)

- The probability that a trader-z has a high preference realization is given by⇡H
1 (z) = ⇡H

k

and for t � 2 :

⇡Ht (�, A, k) =

(

1, if �⇤t�1  �,

⇡Hk , if �  �⇤t�1.
(20)
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- The contract  ⇤
t (·, ·) within the pair: 1) the asset allocation is given by

↵t ((v, z) , (v
0, z0)) =

(

A, if � > �0, v = H, or �  �0, v0 = L,

0, if � > �0, v = L, or �  �0, v0 = H,
(21)

and 2) the transfer
�

(qvakt , q
vb
kt)
 

k2{R,B},v2{H,L} is given by equations (22) and (23):

qHa
kt = t(y + �⇤t ) + �qak0t+1, qLakt = ty + �q̄t+1 +

1

2
�
⇡Lk0

⇡Hk0
ckt+1, (22)

qHb
kt = ty + �q̄t+1 +

1

2
�
⇡Hk0

⇡Lk0
ckt+1, qLbkt = t(y � �⇤t ) + �qbk0t+1, (23)

where qakt ⌘
P

v ⇡
v
kq

va
kt , qbkt ⌘

P

⇡v
kq

vb
kt , ckt+1 ⌘ qbkt+1 � qbk0t+1 = qakt+1 � qak0t+1,q̄t ⌘

PN
s=t �

s�tys, and the last period transfer is given by

qHa
kN = N(y + �⇤

N), q
La
kN = qHb

kN = Ny, q
Lb
kN = N(y � �⇤

N). (24)

- The equilibrium payo↵ of traders W ⇤
t (z) is given by equations (25) and (26).

W ⇤
t (A,�, k) =

8

>

>

>

>

<

>

>

>

>

:

⇡Lk0
�

t
⇥

y + (2⇡Hk � 1)�
⇤

A+ �W ⇤
t+1(A,�, k)

 

+⇡Hk0
�

qaktA+ �W ⇤
t+1(0,�, k)

 

, 8�  �⇤t
⇡Hk
�

⌃N
s=ts(y + �)A

�

+ (1� ⇡Hk )qbktA, 8�⇤t < �  �⇤t�1,

⌃N
s=ts(y + �)A, 8�⇤t�1 < �.

(25)

W ⇤
t (0,�, k) =

8

>

>

>

>

<

>

>

>

>

:

⇡Lk0
�

t
⇥

y + (2⇡Hk � 1)�
⇤

A� qbk0t
+�W ⇤

t+1(A,�, k)
 

+ ⇡Hk0�W
⇤
t+1(0,�, k), 8�  �⇤t ,

⇡Hk
�

⌃N
s=ts(y + �)A� qak0tA

�

, 8�⇤t < �  �⇤t�1,

0, 8�⇤t�1 < �.

(26)

Proof. The constructed equilibrium can be understood as follows: Each period, a trader

chooses to be a market maker (m), a customer (c), or inactive;.The payo↵ of a trader

depends on the role he choose to plays (this choice is denoted by ⇢ 2 {m, c, ;}). Since the
matching must be across groups, a trader in group k who chooses to be a customer trade

with market maker in group k0. If a trader (�, k) chooses to be a “customer”, ⇢ = c, he

keeps the asset if and only if he has a high realization. If he needs to buy, he pays the

ask price, denoted by qvak0t, charged by the market-maker with realization v in group k0. If

he needs to sell, he receives the bid price, denoted by qvbk0t, from this market maker. On

the other hand, if a trader with realization v in group k chooses to be a “market-maker”

(⇢ = m), he keeps the asset for that period only if the customers have a low realization,

and he buys at the bid price qvbkt and sells at the ask price qvakt .

Note that we allow for the price schedule
�

(qvakt , q
vb
kt)
 

k2{R,B},v2{H,L} that is contin-
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gent on the market maker’s own preference. In particular, we will look for the price

implementation such that the constructed matching rule also satisfies trader’s ex-post

incentives. From a viewpoint of a customer in group k, the expected bid/ask spread thus

depends on the distribution of market maker’s valuation in group k0, and is then given

by qak0t ⌘
P

v ⇡
v
k0q

va
k0t, q

b
kt ⌘

P

⇡v
k0q

vb
k0t.

Formally, let Ŵ v
t (z, ⇢) denote the utility of a trader of type z = (�, ã, k) with preference

realization v 2 {H,L} who chooses the role ⇢. We now prove that given the constructed

price, traders’ choice would satisfy the cuto↵ matching rule in each period characterized

by equations (18) and (19). That is, in period t, a trader with type�  �⇤
t chooses to be

a market maker, and a trader with type � 2 [�⇤
t , �

⇤
t�1] chooses to be a customer; and a

trader with type � 2 [�⇤
t�1, �H ] (who were customers last period) stay inactive.

Since di↵erent role choice leads to di↵erent combination of the probability of owning

the asset and price, W v
t (z) = max⇢̃2{m,c,;} Ŵ v

t (z, ⇢̃) can be conveniently rewritten as

W v
t (�, A, k) = max

⇢
�vkA(⇢)

⇥

t(y + ⇠(v)�)A+ �W v
t+1(�, A, k)

⇤

+(1� �vkA(⇢))
⇥

⌧vkA(⇢)A+ �W v
t+1(�, 0, k)

⇤

W v
t (�, 0, k) = max

⇢
�vk0(⇢)

⇥

t(y + ⇠(v)�)A� ⌧ vk0(⇢)A+ �W v
t+1(�, A, k)

⇤

+(1� �vk0(⇢))�W
v
t+1(�, 0, k),

where given any v2 {H,L} and a 2 {0, A}, �v
ka(⇢) denotes the probability of keeping the

asset after the trade in that period and ⌧ vka(⇢) denotes the transfer per asset. ⇠(H) = 1

and ⇠(L) = �1. Both of them are mapped to the role choice ⇢ and thus have the following

expressions:

{�HkA(⇢), ⌧HkA(⇢)} =

8

>

<

>

:

{1, 0}, if ⇢ = c,

{⇡Lk0 , qHa
kt }, if ⇢ = m,

{1, 0}, if ⇢ = ;,
{�LkA(⇢), ⌧LkA(⇢)} =

8

>

<

>

:

{0,
P

v q
vb
tk0}, if ⇢ = c,

{⇡Lk0 , qLatk }, if ⇢ = m,

{1, 0}, if ⇢ = ;,

{�Hk0(⇢), ⌧Hk0(⇢)} =

8

>

<

>

:

{1,
P

v q
va
tk0}, if ⇢ = c,

{⇡Lk0 , qHb
tk }, if ⇢ = m,

{0, 0}, if ⇢ = ;,
{�Lk0(⇢), ⌧Lk0(⇢)} =

8

>

<

>

:

{0, 0}, if ⇢ = c,

{⇡Lk0 , qLbtk }, if ⇢ = m,

{0, 0}, if ⇢ = ;.

Lemma 3 Given the transfer
�

(qvakt , q
vb
kt)
 

k2{R,B},v2{H,L} characterized by equations (22)

and (23), the following property holds for any t,

WH
t (�, A, k)�WH

t (�, 0, k) = qak0t, WL
t (�, A, k)�WL

t (�, 0, k) = qbk0t. (27)

Proof. The probability for a trader to hold optimally a units of asset at period t is

denoted by �v⇤
kta(�) ⌘ �v

ka (⇢
⇤
t (�, a, k)) , where ⇢

⇤
t (z) 2 argmax⇢̃2{m,c,;} Ŵ v

t (z, ⇢̃).

For period N , clearly that �H⇤
Na(�) is increasing in � and �L⇤

Na(�) is decreasing in �
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because continuation value is 0. Hence, given �⇤
N , there exists

�

(qvakN , q
vb
kN)
 

k2{R,B},v2{H,L}
that solves �vt (�

⇤, ã, k) = 0 for v 2 {H,L}, ã 2 {0, A}, k 2 {R,B}, where �vt (z) ⌘
Ŵ v

t (z, c)� Ŵ v
t (z,m).

�HN (�⇤, A, k) = ⇡Hk0
�

N (y + �⇤N )� qHa
kN

�

A = 0,

�LN (�⇤, A, k) =

"

X

v0

⇡v
0

k0q
v0b
k0N � ⇡Hk0 q

La
kN � N⇡

L
k0(y � �⇤N )

#

A = 0,

�HN (�⇤, 0, k) =

"

�
 

X

v0

⇡v
0

k0q
v0a
k0N � ⇡Lk0q

Hb
kN

!

+ ⇡Hk0N (y + �⇤N )

#

A = 0,

�LN (�⇤, 0, k) = ⇡Lk0
h

qLbkN � N (y � �⇤)
i

A = 0.

Setting qLakN = qLak0N = qHb
k0N = qHb

kN = Ny gives the expression in equation (24).32 Given

the price, regardless of the initial position a, traders with high (low) preference and

� � �⇤
N will own the asset with probability one (zero). Traders with � < �⇤

N , on the

other hand, always strictly better o↵ to act as a market maker, who only holds the asset

with probability ⇡L
k0 . That is, �H⇤

kNA(�) = �H⇤
kN0(�) =

(

1, if � � �⇤
N ,

⇡L
k0 , if � < �⇤

N ,
�L⇤
kNA(�) =

�L⇤
kN0(�) =

(

0, if � � �⇤
N ,

⇡L
k0 , if � < �⇤

N .
By envelope theorem, @

@�
{W v

N(�, A, k)�W v
N(�, 0, k)} = 0.

Given that W v
N(�, A, k)�W v

N(�, 0, k) is a continuous function,

WH
N (�, A, k)�WH

N (�, 0, k) = WH
N (�⇤

N , A, k)�WH
N (�⇤

N , 0, k) = qak0t,

WL
N(�, A, k)�WL

N(�, 0, k) = WL
N(�

⇤
N , A, k)�WL

N(�
⇤
N , 0, k) = qbk0t.

In other words, the value of owning the asset at the beginning of each period is the

same for all traders. Intuitively, for traders with � � �⇤
N , he will buy the asset for sure

if he has a high realization. Hence, owning the asset at the beginning of the period

saves the expected asking price, qak0t =
P

v0 ⇡
v0
k0q

v0a
k0NA. Similarly, he will sell the asset

for sure if he has a low realization. In this case, he will receive the expected bid price

qbk0t =
P

v0 ⇡
v0
k0q

v0b
k0NA. On the other hand, for traders who act as a market maker, the gain

of owning the asset only changes the expected transfer.

We now show that equation (27) holds for any t under the constructed price {(qvakt ,
qvbkt)
 

8k,v. Using mathematical induction, we assume that this property holds for t + 1.

Since @
@�

�

W v
t+1(�, A, k) �W v

t+1(�, 0, k)
 

= 0, by monotone comparative statics, �H⇤
ta (�)

is increasing in � and �L⇤
ta (�) is decreasing in �. Hence, given �⇤

t , {(qvakt , qvbkt)
 

8k,v solves

32This imposition can be derived from the restriction that an ask price be greater than or equal to a
bid price.
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the following equations:

�Ht (�⇤t , A, k) = A⇡Hk0
�

�qHa
kt + t(y + �⇤) + �qak0t+1

�

= 0,

�Lt (�
⇤
t , A, k) = A

⇥

qak0t �
�

⇡Hk0 q
La
kt + t⇡

L
k0(y � �⇤)

�⇤

� �(1� ⇡Hk0 )q
b
k0t+1A = 0,

�Ht (�⇤t , 0, k) = A
h

�
⇣

qak0t � ⇡Lk0q
Hb
kt

⌘

+ ⇡Hk0t(y + �⇤t )
i

+ �(1� ⇡Hk0 )q
a
k0t+1A = 0,

�Lt (�
⇤
t , 0, k) = A⇡Lk0

h

qLbkt � t(y � �⇤t )
i

� �(1� ⇡Hk0 )q
b
k0t+1A = 0.

And one can check that equations (22) and (23) solve the system of equations above. As

a result,

�H⇤
ktA(�) = �H⇤

kt0(�) =

(

1, if � � �⇤t ,

⇡Lk0 , if � < �⇤t ,
�L⇤ktA(�) = �L⇤kt0(�) =

(

0, if � � �⇤t ,

⇡Lk0 , if � < �⇤t .

Given that �v⇤
ktA(�) = �v⇤

kt0(�),
@
@�

�

W v
t+1(�, A, k)�W v

t+1(�, 0, k)
 

= 0, and

W v
t (�, A, k)�W v

t (�, 0, k)

=
�

�v⇤ktA(�)
⇥

t(y + ⇠(v)�)A+ �W v
t+1(�, A, k)

⇤

+ (1� �v⇤ktA(�))
⇥

�W v
t+1(�, 0, k) + ⌧ vkA(⇢

⇤)A
⇤ 

�
�

�v⇤kt0(�)
⇥

t(y + ⇠(v)�)A+ �W v
t+1(�, A, k)� ⌧ vk0(⇢

⇤)A
⇤

+ (1� �v⇤kt0(�))�W
v
t+1(�, 0, k)

 

= (1� �v⇤ktA(�))⌧
v
kA(⇢

⇤)A+ �v⇤kt0(�)⌧
v
k0(⇢

⇤)A.

We then have @{W v
t (�,A,k)�W v

t (�,0,k)}
@�

= 0 and

W v
t (�, A, k)�W v

t (�, 0, k) = W v
t (�

⇤, A, k)�W v
t (�

⇤, 0, k) =

(

qak0t, if v = H,

qbk0t, if v = L.

Lemma 2 is immediately implied by Lemma 3. That is, one can clearly see that

�vt (�, a, k) strictly increases with �. Furthermore, one can easily check that
�

(qvakt , q
vb
kt)
 

8k,v
satisfy the stated conditions in Lemma 2. This therefore guarantees that traders’ optimal

choice of roles can be characterized by the cuto↵ type �⇤
t , and such a choice only depends

on volatility type �, but not others variables (v, at, k). Hence, given the role last period

⇢t�1, the equilibrium payo↵ of traders W ⇤
t (z) in the construction is then given by

W ⇤
t (z) = max

⇢̃2{m,c,;}
Ẅt(z, ⇢̃|⇢t�1(z)),

where Ẅt(z, ⇢̃|⇢t�1(z)) ⌘
P

v2{L,H} ⇡
v
t (z|⇢t�1)Ŵ v

t (z, ⇢̃|⇢t�1) and ⇡v
t (z|⇢t�1) depends on the

role a type-z trader chooses to play in period t� 1.33 If a trader acts as a customer last

period (⇢t�1 = c), he has A assets or no asset if and only if he has high or low preference

33⇡v
t (z|⇢t�1) is part of subjective calculation of a trader when he decides to deviate from his equilibrium

choice or not. If he follows his equilibrium choice of ⇢t�1, ⇡v
t (z|⇢t�1) = ⇡v

t (z).
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realization, that is, ⇡H
t (�, A, k|c) = 1 and ⇡H

t (�, 0, k|c) = 0. One can easily see that for

traders who acted as a customer last period and� > �⇤
t�1, there is no gain by participating

the market at period t so they stay inactive afterward. On the other hand, being a market-

maker faces a random asset position next period, so the probability that a maker maker

is a high type is then the ex-ante prior:⇡v
t (�, A, k|m) = ⇡v

k and ⇡v
t (�, 0, k|m) = ⇡v

k. These

give the expression of equations (25), (26) as well as the evolution of ⇡v
t (z) in equation

(20).

To show that, given W ⇤
t (z), there is no profitable deviation by violating the match-

ing rule, Lemma 4 establishes the submodular property of joint payo↵ in this dynamic

environment. Since traders always trade across groups and with traders with di↵erent

asset holding, we assume a simpler notations to denote the joint payo↵, ⌦̂t(�, �0) ⌘
⌦t((�, a, k), (�0, a0, k0)), where a0 6= a and k0 6= k.

Lemma 4 Let �4 � �3 > �2 � �1, for any ⇡ 2 (0, 1), ⌦̂t(�4, �3) + ⌦̂t(�2, �1) <

⌦̂t(�4, �1) + ⌦̂t(�3, �2) = ⌦̂t(�4, �2) + ⌦̂t(�3, �1).

Proof. Given Lemma 3, since the benefit of holding the asset is independent of �. The

asset allocation within a pair simply maximizes the flow surplus, which explains the

optimal asset allocation given by equation (21). Define W FB
t (�, k) ⌘ ⇡H

k WH
t (�, A, k) +

(1 � ⇡H
k )WL

t (�, 0, k) to be a expected payo↵ of a trader if he has reached his e�cient

allocation and WM
t (�, k) ⌘ max⇢̃2{m,c,;} Ẅt(z, ⇢̃|m) to be payo↵ of a trader who acted as

market maker last period, which gives the following expression:

WM
t (�, k) =

X

v

⇡vk

h

⇡Lk0Ŵ
v
t (�, A, k) + (1� ⇡Lk0)Ŵ

v
t (�, 0, k)

i

= WFB
t (�, k)� ⇡Hk (1� ⇡Lk0)

�

WH
t (�, A, k)�WH

t (�, 0, k)
 

�(1� ⇡Hk )⇡Lk0
�

WL
t (�, 0, k)�WL

t (�, A, k)
 

.

Hence, the joint payo↵ function of two traders (�0, �) and �0 � � yields

⌦̂t(�,�0) = A
�

⇡Hk0 (y + �0) + (1� ⇡Hk0 ) [y + (2⇡ � 1)�]
�

+ �{WFB
t+1 (�

0, k0) +WM
t+1(�, k)}

= A
�

⇡Hk0 (y + �0) + (1� ⇡Hk0 ) [y + (2⇡ � 1)�]
�

+ �{WFB
t+1 (�

0, k0) +WFB
t+1 (�, k)

�⇡(1� ⇡)
X

v

[W v
t (�, A, k)�W v

t (�, 0, k)]}.

Since the change in the continuation value is independent of the � and k, what matters

is only the flow surplus. Hence, as in the static model, the above Lemma holds.

Given the submodular property of ⌦̂t(�, �0), one can use the same logic in Proposition

1 to show that there is no profitable deviation if a trader violates the matching rule.

Hence, we have shown that the above construction is indeed an equilibrium. In this

equilibrium, the period t⇤(�, k) that a trader-(�, k) reaches his first best allocation for

45



sure is then the period that a trader acts as a customer. Hence, the expected output for

a trader satisfies the solution of constrained e�ciency in Proposition 3. This completes

the proof for the proposition.

Proof for Proposition 6

Proof. For the immediate creditors of the first distressed FI, conditions under which

they will default is l0 � e where where l0 is the loss of immediate creditors to the first

insolvent FI, l0 = l+z�e
n1
b

. This implies l0 � e � n1
be � z. So, the distressed FI and its

creditors default if and only if l � e � max{0, n1e� z}. Therefore, the proposition holds

for immediate creditors of the first insolvent FI in the network.

Denote the loss of the (k � 1)th creditor to be lk�1. Since lk = lk�1+z�e

nk
, the kth

creditor on the chain will default if lk�1 � e � nke � z. This constraint is not binding

if 0 > nke � z, because if the kth creditor defaults, it must be that lk�1 � e � 0.

Therefore, the kth creditor and all creditors between the first FI on the chain if and only

if l0 � e � max{0, n1e� z}, l1 � e � max{0, n2e� z}, . . . lk�1 � e � max{0, nke� z}.
From which we can derive equations (16) and (17), a condition for the initial loss l0.
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