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Abstract

This paper proposes a simple macroeconomic model with staggered investment de-
cisions. The model captures the dynamic coordination problem arising from demand
externalities and fixed costs of investment. In times of low economic activity, a firm
faces low demand and hence has less incentives for investing, which reinforces firms’
expectations of low demand. In the unique equilibrium of the model, demand expecta-
tions are pinned down by fundamentals and history. Owing to the beliefs that arise in
equilibrium, there is no special reason for stimulus at times of low economic activity.
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1 Introduction

Pessimistic expectations are often said to play a role in recessions. This idea is captured by
models with demand externalities that generate strategic complementarities in production.1

In times of low economic activity, a firm faces low demand and thus has low incentives for
investment. In a dynamic setting, this feedback effect may trap the economy in a regime of
low output. One important policy issue is then the optimal stimulus policy for an economy
subject to this dynamic coordination problem. Is there any special reason for stimulus at
times of low economic activity owing to this coordination channel?

This paper develops a model that features this dynamic coordination problem. Invest-
ment decisions are staggered, hence economic activity is a state variable. A firm’s optimal
investment decision depends on its expectations about others’ actions in the future. Natu-
rally, the optimal policy also depends on those expectations. The model generates a unique
set of rationalizable beliefs about others’ actions. The beliefs that arise in equilibrium ex-
actly offset the dynamic coordination problem faced by firms, so there is no special reason
for stimulus at times of low economic activity.

The model features monopolistic competition. Investment is a payment of a fixed cost
that increases production capacity. Returns to investment depend on future demand, and
hence on whether producers with subsequent investment opportunities choose to take them
as well. Thus investment decisions are strategic complements. Producers of each variety
receive investment opportunities according to a Poison clock, a simple way to capture pro-
duction decisions that can not adjust overnight. This assumption implies that investment
decisions are not synchronized, so a producer has to form expectations about others’ future
decisions when deciding about investment.

Return to investment depends not only on demand but also on productivity. If the
increase in production resulting from investing is large enough, then investing is a dominant
strategy. Likewise, if productivity is very low, investing is a dominated strategy. In an
intermediate range, a producer’s decision depends on his expectations about the actions of
others. In a world with no shocks, that gives rise to multiple equilibria. There is a region
of parameters where investing is the optimal decision if agents expect others to do so, but
refraining from investment is the best choice in case of pessimistic beliefs.

The solution to the planner’s problem in the environment with no shocks differs from
the decentralized equilibrium in three ways: (i) there is no room for multiplicity of beliefs,
as one would expect; (ii) the planner requires a lower productivity to invest because it
internalizes the benefits to consumers from selling at a cheaper price (monopoly distortion);
and (iii) the difference between the planner’s solution and the decentralized equilibrium is

1Seminal papers in this literature are Cooper and John (1988), Kiyotaki (1988) and Murphy et al. (1989).
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particularly large at times of low economic activity.
The third point is particularly important. Agents might get stuck in a situation where

economic activity is low, hence there is low demand and firms prefer not to invest even
though productivity would be high enough to encourage investment if demand were high.
In this situation, firms would like others to invest, so that demand would increase and then
they would be happy to invest as well. A dynamic coordination problem means nobody
wants to be the first to invest and the economy is trapped in a situation with low economic
activity. The planner would be particularly keen to invest in this situation.

Once we allow for shocks, a unique equilibrium arises in the model, as in Frankel and
Pauzner (2000). There is no room for arbitrary beliefs, agents’ expectations are pinned
down by the model. The basic idea is that fully pessimistic beliefs are not rationalizable in
a region where a small shock to productivity would make it dominant for all firms to invest.
Likewise, fully optimistic beliefs are not rationalizable in a region where a small shock to
productivity takes the economy to a region where investing is a dominated strategy. Agents
know all others will reason like this and try to anticipate what others will do. This process
yields a unique rationalizable set of strategies and a unique set of beliefs.

The main result of the paper is that owing to the beliefs that arise in equilibrium, the
third difference between the planner’s solution and the decentralized equilibrium vanishes.
The maximum amount of investment subsidies the planner is willing to provide at times of
high and low economic activity is exactly the same. There is no special reason for subsidies
at times of low economic activity.

How are equilibrium beliefs? Consider an agent indifferent between investing or not in
a state of low economic activity. She understands that if fundamentals get a bit worse,
firms will still be refraining from investing but there will be no major change in the state
of the economy. Conversely, a slight improvement in fundamentals will trigger a recovery
because firms will choose to invest and that will push the economy to a situation where
investing is profitable for everyone. Owing to larger demand, firms will then have more
incentives to invest, so it will take a large negative productivity shock to offset the benefit
from increasing demand and stop the recovery. The fundamental asymmetry is that bad
news basically leave the economy parked in a region of inaction, while good news drive the
economy to a different state. The recovery is thus just waiting for a small piece of good
news. Hence, in a pivotal circumstance, optimistic beliefs make perfect sense at times of
low economic activity. The same reasoning implies that in a pivotal circumstance with high
economic activity, beliefs will be more pessimistic: the economy is close to an investment
slump.

Optimistic beliefs thus arise at times of decent fundamentals and low economic activity
and that is what prevents the economy from being trapped in a regime of low output.
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Equilibrium beliefs solve the dynamic coordination problem. The only remaining difference
between the planner’s solution and the decentralized equilibrium is the externality due to
market power (which is unrelated to economic activity with (standard) constant elasticity
specifications for consumption and production).

The demand externalities that play a key role in this paper are in the seminal con-
tributions by Blanchard and Kiyotaki (1987), Kiyotaki (1988) and Murphy et al. (1989).
When others produce more, the demand for a particular variety shifts to the right, and its
producer finds it optimal to increase production. In Kiyotaki (1988), multiple equilibria
arise because of increasing returns to scale. The model in this paper would also give rise
to multiple equilibria in the absence of shocks to fundamentals or timing frictions, owing to
the assumption of a fixed cost that increases production capacity.

A branch of the literature takes expectations to be driven by some “sunspot” variable,
or simply, in the words of Keynes, by “animal spirits”. Depending on agents’ expectations,
coordination failures might arise and an inefficient equilibrium might be played.2 Despite
generating interesting insights, this approach does not allow us to understand how policies
affect expectations. In models with multiple equilibrium, government policies can only hope
to eliminate the “bad equilibrium”. Here, in constrast, policies affect agents’ beliefs about
others’ actions.

This paper is closely related to the theoretical contributions in Frankel and Pauzner
(2000) and Frankel and Burdzy (2005) that resolve indeterminacy in dynamic models. They
study models with time-varying fundamentals and timing frictions similar to the ones em-
ployed in this paper, and prove there is a unique rationalizable equilibrium in their models.3

The results in Frankel and Pauzner (2000) guarantee a unique equilibrium in our baseline
model and we use the results of Frankel and Burdzy (2005) in one extension of the model.4

This paper is also related to the global games literature, which has been used to study a
wide variety of economic problems that exhibit strategic complementarities, but differently
from that literature, there is no asymmetric information in this model.5

There has been a lot of research incorporating strategics complementarities and coordi-
nation issues in macroeconomics.6 However, there has not been much work applying those

2See, e.g., Cooper and John (1988), Benhabib and Farmer (1994) and Farmer and Guo (1994).
3Models with time-varying fundamentals and timing frictions have been used to study other dynamic

coordination problems. Frankel and Pauzner (2002) employ a similar structure in order to analyze the
timing of neighborhood change. Guimaraes (2006) studies speculative attacks. Levin (2009) studies the
persistence of group behavior in a collective reputation model. He and Xiong (2012) study debt runs.

4See also Burdzy et al. (2001).
5See the seminal papers by Carlsson and Van Damme (1993) and Morris and Shin (1998). For a detailed

survey, see Morris and Shin (2003).
6Angeletos and La’O (2010) and Angeletos and La’O (2013) show in an environment with noisy and

dispersed information how self-fulfilling fluctuations can emerge. Expectations also play a key role in the
literature of news-driven business cycles (e.g., Beaudry and Portier (2006)), but here expectations about
future productivity depend solely on the current state of the economy. In the models of Lorenzoni (2009) and
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theoretical insights to understand the effects of stimulus packages on coordination. One
important exception is Sákovics and Steiner (2012). They build a model to understand
who matters in coordination problems: in a recession, who should benefit from government
subsidies? The results point that the government should subsidize sectors that have a large
externality on others but that are not much affected by others’ actions. Differently from a
large literature that deals with coordination failures and expectations in macroeconomics,
our focus is not on noisy and heterogeneous information, fundamentals are common knowl-
edge here, all the action comes from dynamic frictions. This makes our framework specially
suitable to understand the dynamic interplay between economic activity, productivity and
beliefs that arise in equilibrium.

The paper is organized as follows. Section 2 presents the model in its simplest form.
Section 3 describes the decentralized equilibrium and Section 4 shows the solution to the
planner’s problem. Section 5 then explains the result, highlighting the role of beliefs. Section
6 deals with important extensions: it shows a more complete macro model that leads to
the same results; considers a process for productivity with mean reversion and discusses
implementation of the optimal policy. Section 7 presents some numerical results and Section
8 concludes.

2 Model

2.1 Environment

Time is continuous. A composite good is produced by a perfectly competitive representative
firm. At time t, Yt units of the composite good are obtained by combining a continuum of
intermediate goods, indexed by i ∈ [0, 1], using the technology:

Yt =
(ˆ 1

0
y

(θ−1)/θ
it di

)θ/(θ−1)

, (1)

where yit is the amount of intermediate good i used in the production of the composite good
at time t and θ > 1 is the elasticity of substitution. The zero-profit condition implies

ˆ 1

0
p̃ityitdi = PtYt, (2)

Eusepi and Preston (2011), it is noisy information about current variables that leads to excessive optimism
or pessimism about the future. Nimark (2008) builds a model where pricing complementarities together
with private information help to explain the inertial behavior of inflation due to the inertial response of
expectations (see also Angeletos and La’O (2009)). Chamley (2013) presents a model with decentralized
trade, credit constraints and multiple equilibria where pessimistic expectations lead to precautionary savings,
which in turn lead to low production.
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where Pt is the price of the composite good and p̃it is the price of good i at time t.
There is a measure-one continuum of agents who discount utility at rate ρ. An agent’s

instantaneous utility at time t is given by Ut = Ct, where Ct is her instantaneous consump-
tion of the composite good. The assumption of linear utility implies that policies will be
concerned with inefficiencies in production but will not aim at providing insurance to the
household.

Agent i ∈ [0, 1] produces intermediate good i. Since yit is the quantity produced by
agent i at time t, her budget constraint is given by

PtCt ≤ p̃ityit ≡ wiPt.

Prices are flexible and each price p̃it is optimally set by agent i at every time. Since goods
are non storable, supply must equal demand at any time t.

The assumptions on technology aim at modelling staggered investment decisions in a
simple and tractable way. There are 2 production regimes, a High-capacity regime and a
Low-capacity regime. Agents get a chance to switch regimes according to a Poisson process
with arrival rate α.7 Once an individual is picked up, he chooses a regime and will be locked
in this regime until he is selected again. Choosing the Low regime is costless. Choosing the
High regime costs ψ units of the composite good.8

An agent in the Low regime can produce up yLt units at zero marginal cost at every
time t, and an agent in the High regime can produce up to yHt units at zero marginal cost,
with yHt = AtxH and yLt = AtxL, where xH > xL are constants and At is a time-varying
productivity parameter.9

The High regime can be interpreted as the use of frontier technology, while the regime
Low would correspond to a less productive technology. The cost ψ can be thought of as
the cost difference between each technology and the difference yHt − yLt as the resulting
gain in productivity. Agents are locked in a regime until the next opportunity arises. In
one interpretation, the equipament will break after some (random) time and the firm will
then decide again between a more or less productive technology. Alternatively, that might
capture attention frictions.10

7Real world investments require a lot of planning and take time to become publicly known, so investments
from different firms are not syncronized. The Poisson process generates staggered investment decisions in
a simple way. As an implication, investment decisions depend on expectations about others’ actions in the
near future. For further evidence on non-convex adjustment costs that lead to infrequent investment, see
Hall (2000) and Cooper and Haltiwanger (2006).

8Investment is thus a binary decision. As shown in Gourio and Kashyap (2007), the extensive margin
accounts for most of the variation in aggregate investment, so a binary choice set can capture much of the
action in investment.

9The assumption of zero marginal cost is relaxed in Section 6.1.
10In another possible interpretation, ψ could be the cost of hiring a worker that cannot be fired until his

contract expires. In that case, the fixed cost would not be paid at once, but that makes no difference in the
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Investment requires agents to acquire a stock ψ of composite goods, which cannot be
funded by their instantaneous income, so we assume agents can trade assets and borrow to
invest. Owing to the assumption of linear utility, any asset with present value equal to ψ is
worth ψ in equilibrium. For example, an agent might issue an asset that pays (ρ + α)ψdt
at every interval dt until the investment depreciates (ρψdt would be the interest payment
and αψdt can be seen as an amortization payment since debt is reduced from ψ to 0 with
probability αdt). Since agents are risk neutral, other types of assets would deliver the same
results.

Let at = log(At) vary on time according to

dat = σdZt, (3)

where σ > 0 and Zt is a standard Brownian motion.

2.2 The agent’s problem

The composite-good firm chooses its demand for each intermediate good taking prices are
given. Using (1) and (2) and defining pit ≡ p̃it/Pt, we get

pit = y
−1/θ
it Y

1/θ
t , (4)

for i ∈ [0, 1]. Since marginal cost is zero and marginal revenue is always positive, an agent in
the Low regime will produce yLt, and an agent in the High regime will produce yHt. Thus at
any time t, there will be two prices in the economy, pHt and pLt (associated with production
levels yHt and yLt, respectively). Hence the instantaneous income available to individuals
in each regime is given by

wHt = pHtyHt = y
θ−1
θ

Ht Y
1
θ
t (5)

and
wLt = pLtyLt = y

θ−1
θ

Lt Y
1
θ
t . (6)

Moreover, using (1),

Yt =
(
hty

θ−1
θ

Ht + (1− ht)y
θ−1
θ

Lt

) θ
θ−1

, (7)

where ht is the measure of agents locked in the High regime.
Combining (5), (6) and (7), we get the instantaneous income of individuals locked in

each regime. Let π(ht, at) be the difference between instantaneous income of agents locked
in the High regime and agents locked in the Low regime when the economy is at (ht, at).

model.
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Then, using yLt = eatxL and yHt = eatxH ,

π(ht, at) = eat
(
htx

θ−1
θ

H + (1− ht)x
θ−1
θ

L

) 1
θ−1

(
x
θ−1
θ

H − x
θ−1
θ

L

)
. (8)

Function π is increasing in both at and ht. The effect of at captures the supply side incentives
to invest: a larger at means a higher productivity differential between agents who had
invested and those who had not. The effect of ht captures the demand side incentives to
invest: a larger ht means a higher demand for a given variety. The equilibrium price of
a good depends on how large yit/Yt is, so a producer benefits from others producing yHt

regardless of how much she is producing. Nevertheless, since θ > 1, an agent producing
more reaps more benefits from a higher demand.

One key implication of (8) is that there are strategic complementarities: the higher
the production level of others, the higher the incentives for a given agent to increase her
production level.

A strategy is as a map s(ht, at) 7→ {Low,High}. An agent at time t = τ that has to
decide whether to invest will do so if

ˆ ∞
τ

e−(ρ+α)(t−τ)Eτ [π(ht, at)]dt ≥ ψ. (9)

In words, investing pays off if the discounted expected additional profits of choosing the
High regime are larger than the fixed cost ψ. Future profits π(ht, at) are discounted by the
sum of the discount rate and depreciation rate (ρ+ α).11

Investment decisions depend on expected profits. Producers will decide to invest not only
if productivity is high, but also if they are confident they will be able to sell their varieties at
a good price. Hence investment decisions crucially depend on demand expectations, which
in turn are determined by expectations about the path of at and ht.

3 Equilibrium

3.1 Benchmark case: no shocks

Consider the case where the fundamental a does not vary over time, σ = 0. Proposition 1
characterizes conditions under which we have multiple equilibria in this case.

Proposition 1 (No Shocks). Suppose σ = 0 and a = µ. There are strictly decreasing
functions aL : [0, 1] 7→ < and aH : [0, 1] 7→ < with aL(h) < aH(h) for all h ∈ [0, 1] such that

11As a tie breaking convention, an agent chooses High whenever she is indifferent between regimes High
and Low.
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1. If a < aL(h0) there is a unique equilibrium, agents always choose the Low regime;

2. If a > aH(h0) there is an unique equilibrium, agents always choose the High regime;

3. If aL(h0) < a < aH(h0) there are multiple equilibria, that is, both strategies High and
Low can be long-run outcomes.

Proof. See Appendix B.

Figure 1 illustrates the result of Proposition 1. If the productivity differential is suffi-
ciently high, agents will invest as soon as they get a chance and the economy will move to a
state where h = 1 (and there it will rest). If the productivity differential is sufficiently low,
the gains from investing are offset by the fixed cost, so not investing is a dominant strategy.
In an intermediate area, there are no dominant strategies, the optimal investment decision
depends on expectations about what others will do and there are multiple equilibria.

Figure 1: Equilibria without shocks

All choose Low

a

h = 1

h = 0 a

All choose HighMultiple Equilibria

a

The boundaries of the region with multiple equilibria are obtained using the expression
for the payoff from investing in (9). The set of states where agents are indifferent between
investing or not assuming everyone will choose High from then on is the curve that separates
the region of multiplicity from the region where all agents choose the low regime. The other
boundary is calculated in the same way, assuming everyone will choose Low in the future.

Cycles are possible in this economy, but their existence depends on exogenous changes
in beliefs. Demand expectations are not pinned down by the parameters that characterize
the economy and its current state. Small subsidies to investment in the multiplicity region
have no effects on beliefs.

3.2 The case with shocks

We now turn to the general case where productivity varies over time, σ > 0. We say that
an agent is playing according to a threshold a∗ : [0, 1] 7→ < if she chooses High whenever
at > a∗(ht) and Low whenever at < a∗(ht). Function a∗ is an equilibrium if the strategy
profile where every player plays according to a∗ is an equilibrium.
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The model can be seen as a particular case of Frankel and Pauzner (2000). Hence we
can apply Theorem 1 in their paper to show there is a unique rationalizable equilibrium
where agents play according to a decreasing threshold a∗(h).12

Proposition 2 (Frankel and Pauzner, 2000). Suppose σ > 0. There is a unique ratio-
nalizable equilibrium in the model. Agents invest if and only if a > a∗(h), where a∗ is a
decreasing function.

The proof shows that a unique equilibrium survives iterative elimination of strictly dom-
inated strategies. Intuitively, consider a situation where productivity is relatively low, so a
firm is only willing to invest if the probability the following firms will also invest is very high.
In Figure 1, that would correspond to a point in the multiplicity region but close to its left
boundary. In a world with shocks, the economy might cross to the region where investing is
a dominated strategy. That imposes a cap on the probability that others will invest in the
near future – the belief that all of them will invest is not rationalizable. In consequence,
some dominated strategies are eliminated, which imposed further limits on beliefs agents
can hold. Iterating on this process leads to a unique equilibrium.

The equilibrium is characterized by a threshold. A larger h implies that agents are willing
to invest for lower values of a, as in Figure 2. Beliefs about others’ investment decisions are
pinned down by fundamentals (a) and history (h). Shocks to at and movements in ht might
affect expectations about others’ actions.

Figure 2: Equilibrium with shocks

All choose Low

a

h = 1

h = 0

All choose High

a∗

Let V (a, h, ã) be the utility gain from choosing High obtained by an agent in state (a, h)
that believes others will play according to threshold ã. Then

V (a, h, ã) =
ˆ ∞

0
e−(ρ+α)tE[π(ht, at)|a, h, ã]dt− ψ, (10)

where E[π(ht, at)|a, h, ã] denotes the expectation of π(ht, at) of an agent in state (a, h) that
believes others will play according to a threshold ã. An agent choosing when a = a∗(h) and

12We have shown instantaneous payoffs are increasing in a and h and an argument similar to the proof of
Proposition 1 can be used to show that investing is a dominant action for high enough a and a dominated
action for low enough a. We will show the existence of dominance regions for a more general process for at
in Proposition 5, so the proof of Proposition 2 is omitted.
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believing all others will play according to the cutoff a∗ is indifferent between High and Low,
which means that V (a∗(h), h, a∗) = 0, for every h.

4 The planner’s problem

Proposition 2 shows there is a unique rationalizable equilibrium in the model. Although
agents face a dynamic coordination problem, a unique set of rationalizable beliefs emerges
and, from the point of view of an individual firm, pins down the optimal decision. It is
then natural to ask about the beliefs that arise in equilibrium and, in particular, about the
inefficiencies that might exist in the model.

One particularly important question is about whether inefficiencies are more pronounced
at times of low economic activity. For instance, suppose the current value of h is low and
the economy is at the left but close to the equilibrium threshold. A firm chooses not to
invest and the economy might be stuck in a regime with low economic activity for a while.
Is that situation particularly inefficient? Would a social planner be particularly interested
in stimulating investment when h is low?

The planner maximizes expected welfare, given by:

Eτ (W ) = Eτ

ˆ ∞
τ

e−ρ(t−τ) (Y (ht, at)− αψI(t)) dt (11)

where Y (h, a) is given by (7) and I(t) ∈ [0, 1] is the decision of the planner about investing
at time t.

The path of a is exogenously given and the path of h depends on future decisions of the
planner, which is taken as given by the planner at a certain point in time. The planner
chooses investment I(τ) at every point in time, which affects h in the following way: investing
dI today raises h by αdI, but that increase depreciates at rate α. Hence

dht
dI(τ) = αe−α(t−τ)

The first order condition of Eτ (W ) with respect to investment I(τ) at a given time τ implies
that the planner is indifferent between any level of investment if:

ˆ ∞
τ

e−ρ(t−τ)Eτ

(
∂Y (ht, at)

∂h
αe−α(t−τ)

)
dt− αψ = 0

Since
∂Y (ht, at)

∂h
= eat

θ

θ − 1

(
htx

θ−1
θ

H + (1− ht)x
θ−1
θ

L

) 1
θ−1

(
x
θ−1
θ

H − x
θ−1
θ

L

)
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we get that the planner chooses to invest at time τ (I(τ) = 1) if:
ˆ ∞
τ

e−(ρ+α)(t−τ)Eτ

[
θ

θ − 1π(ht, at)
]
dt ≥ ψ (12)

where π(ht, at) is given by (8). That is a necessary condition for optimality. In principle,
it is difficult to characterize the planner’s solution because expectations about the path of
(a, h) have to be taken into account in the solution for the optimal decision but the path of
h will be optimally chosen by the planner.

However, mathematically, this problem is very similar to the agent’s problem in the
decentralized equilibrium. At every point in time, there is investment if (12) holds, taking
into account that the path of h in the future will be determined by a similar choice. The
only difference is that the planner and agents follow different decision rules, but even that
difference is small: the expression for the planner’s choice in (12) and the expression for a
firm’s decision in (9) differ only by the term θ/(θ−1) multiplying the benefit from investing
in (12). Hence we know the planner also chooses according to a threshold a∗P such that (12)
holds with equality at a∗P (h) for h ∈ [0, 1].

The key implications for the optimal stimulus policies are in Proposition 3:

Proposition 3. Optimal policy:

1. [Optimality of a constant subsidy] The planner’s solution can be implemented by a
constant subsidy of ψ/θ whenever an agent invests.

2. [Parallel shift of the threshold] The planner invests according to a threshold a∗P such
that for any h ∈ [0, 1],

a∗P (h) = a∗(h)− log
(

θ

θ − 1

)

where a∗ is the threshold for the decentralized equilibrium.

Proof. First statement: The solution to the planner’s problem prescribes investment if (and
only if) the condition in (12) is satisfied. Multiplying both sides of (12) by (θ − 1)/θ yields
the condition for an agent to invest in (10) in an economy where the cost for investing is
ψ − ψ/θ.

Second statement: Since π(ht, at) can be written as eatg(ht), for some function g(·), we
can rewrite condition 12 as

ˆ ∞
τ

e−(ρ+α)(t−τ)Eτ

[
e(at+log( θ

θ−1))g(ht)
]
dt ≥ ψ (13)

Define bt = at + log
(

θ
θ−1

)
and consider the planners’ problem in the (b, h)-space. The

expression for the planner’s decisions is identical to the expression in (10) for the agents’
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decisions in the decentralized equilibrium (in the (a, h)-space). Moreover, the law of motion
for bt is exactly the same as the law of motion for at. Therefore, the solution for the problem
must be the same as well.

We know there is a unique decentralized equilibrium given by a threshold a∗, hence
a∗ = b∗, which implies a∗(h) = a∗P (h) + log

(
θ
θ−1

)
and yields the claim.

Figure 3: Planner’s problem

a

h = 1

h = 0

a∗a∗p

The solution to the planner’s problem in (12) considers the benefits from investing by
an individual producer multiplied by a constant larger than 1. Hence the only problem
with the individual decision is that it requires a benefit from investing that is too high. A
constant subsidy takes care of this problem.

As shown in (13), the expressions for the planner’s problem in (12) is the same as
the solution for the decentralized problem in (10) when a constant is added to the log
of productivity. That implies the planner’s threshold is a translation of the equilibrium
threshold, where that constant is subtracted from the productivity threshold, as in Figure
3.13

The slope of the threshold affects the likelihood of a recession and its expected duration.
If the threshold is close to a vertical line, h will start to fall when productivity is below
some a† but firms will resume investing whenever at > a†. A rotation of the threshold that
reduces a∗(1) but raises a∗(0) implies there will be less ocasions where productivity will
cross the threshold to the left of a∗ when h is large, but when that happens, h is likely to
go further down and it will take longer for h to increase again.

An implication of Proposition 3 is that a constant subsidy implements the planner’s
solution if and only if the planner is not willing to affect the slope of the equilibrium
threshold. The proposition shows the planner is not concerned with the timing of stimulus

13This analysis ignores the costs of subsidizing investment but the result is robust to the inclusion of
such costs. More specifically, assume the planner faces a monitoring cost c for each unit of investment it
subsidizes, with c < ψ/(θ − 1). An argument similar to the one in Proposition 3 shows that the optimal
policy can be implemented by a constant subsidy and leads to a different translation of the threshold, but
no rotation. In Section 6.2 we assume that every unit of subsidy has a small welfare cost and obtain similar
results.
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policies: there is no special reason for subsidies at times of low (or high) economic activity
(h); and there is no reason to affect the expected duration of recessions.

The planner’s solution prescribes no extra stimulus for investment when h is low because
equilibrium beliefs solve the dynamic coordination problem. The next section provides
economic intuition for this result.

5 Understanding the result

Suppose the economy is at h = 0 and at the left but very close to the equilibrium threshold.
Agents are stuck in a regime with low economic activity but would choose to invest if the
economy switched to a high-h state. The planner could drive the economy to higher values
of h but, as we’ve shown, this dynamic coordination problem does not provide a reason for
stimulus at low h. Why?

The explanation can be divided in two parts: (i) the externality from investing is always
a constant proportion of the individual return; and (ii) equilibrium beliefs compensate for
the dynamic coordination problem. For the first part, note that welfare in this economy at
time t can be written as W (h, a) = hwH(h, a) + (1− h)wL(h, a). That yields:

∂W

∂h
= (wH(h, a)− wL(h, a)) +

(
h
∂wH(h, a)

∂h
+ (1− h)∂wL(h, a)

∂h

)

An agent takes into account the effect of investment on her income but not the positive effect
on others from selling at a lower price. However, owing to the constant demand elasticity,(

h
∂wH(h, a)

∂h
+ (1− h)∂wL(h, a)

∂h

)
= 1
θ − 1 (wH(h, a)− wL(h, a))

The externality is a constant proportion of the agent’s payoff from investing and, conse-
quently, independent of h or a for a given return to investment. Non-proportional exter-
nalities in payoffs may generate non-constant optimal subsidies but for reasons unrelated to
the dynamic coordination problem. Sections 5.4 and 5.5 discuss how the model is affected
when the externality depends on h.

For the second (and most important) part, we need to understand the beliefs that arise
in equilibrium. It is instructive to look first at the case with no shocks. In this case, there
are multiple equilibria, so beliefs outside the dominance regions are not determined by the
model. We then move to a case with very small shocks, where a unique set of beliefs is
pinned down by the model, and show how that affects the equilibrium.
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5.1 Solutions for σ = 0 and σ → 0+

The uniqueness result and the expressions for the equilibrium and planner’s thresholds hold
for any σ > 0. In case σ → 0+, the expression for the threshold can be simplified. For any
h0 ∈ [0, 1], suppose the economy is at the threshold, i.e., at (a∗(h0), h0). The economy will
soon move either up or down, but how exactly does it work and what are the probabilities
the economy will go in each direction? This mathematical problem is studied by Burdzy
et al. (1998) and their main result is that the economy will instantaneously move up in
the direction of (a∗(h0), 1) with probability 1 − h0 and will move down in the direction of
(a∗(h0), 0) with probability h0. Using (10), a∗0 ≡ a∗(h0) thus solves:

(1− h0)
ˆ ∞

0
e−(ρ+α)t[π(h↑t , a∗0)]dt+ h0

ˆ ∞
0

e−(ρ+α)t[π(h↓t , a∗0)]dt = ψ (14)

where h↑t = 1 − (1 − h0)e−αt, and h↓t = h0e
−αt. The solution to the planner’s problem is

similar. Using (12), we get that for any h0 ∈ [0, 1], the planner’s threshold a∗P0 ≡ a∗P (h0)
solves:

(1− h0)
ˆ ∞

0
e−(ρ+α)t[π(h↑t , a∗P0)]dt+ h0

ˆ ∞
0

e−(ρ+α)t[π(h↓t , a∗P0)]dt = ψ − ψ

θ
(15)

For the planner, there is no difference between no shocks (σ = 0) or vanishing shocks
(σ → 0+). Beliefs about the future are basically the same and the planner can effectively
choose the path of h.14

However, the decentralized equilibrium in case σ = 0 can be very different from (14). In
case of optimistic beliefs, the agent’s threshold a∗opt solves:

ˆ ∞
0

e−(ρ+α)t[π(h↑t , a∗opt(h0))]dt = ψ (16)

for every h0, while in case of pessimistic beliefs, the agent’s threshold a∗pes is given by:
ˆ ∞

0
e−(ρ+α)t[π(h↓t , a∗pes(h0))]dt = ψ (17)

The irrelevance of vanishing shocks for the planner’s solution highlights the point that
14The planner’s problem with σ = 0 can be written in a different way: the planner chooses between

always investing and never investing in the foreseeable future (any other option is dominated by one of
these alternatives). Thus a∗P0 solves:
ˆ ∞

0
e−ρt

([
h↑twH(a∗P0, h

↑
t ) + (1− h↑t )wL(a∗P0, h

↑
t )− h

↑
t ψ̃
]
−
[
h↓twH(a∗P0, h

↓
t ) + (1− h↓t )wL(a∗P0, h

↓
t )− h

↓
t ψ̃
])
dt = 0

where ψ̃ = (ρ + α)ψ is the user cost of capital. This expression seems very different from (15) but yields
the same results.
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very small fluctuations in a are not intrinsically important. Their effects on the decentralized
equilibrium stem from the determination of beliefs in case σ → 0+.

5.2 The case with no shocks

Consider the case σ = 0. The equilibria of the model are depicted in Figure 4. The
left threshold (good equilibrium) is the set of (a, h) where an agent is indifferent between
investing or not assuming all others will invest given by (16). For the right threshold (bad
equilibrium), the assumption is that no other agent will ever choose to invest, as in (17).

Figure 4: The case with no shocks

a

h = 1

h = 0

Planner Good equilibrium Bad equilibrium

Beliefs Problem

Dynamic Problem

There are three differences between the planner’s solution and the decentralized equilib-
rium: (i) the solution for the planner’s problem is unique but there are multiple self-fulfilling
equilibria; (ii) the planner takes into account the price externality from market power; and
(iii) in the decentralized equilibrium, agents face a dynamic coordination problem: in a re-
gion of parameters, nobody wants to be the first to invest although investing is the socially
optimal choice.

There are multiple equilibria in a region of parameters (the first difference between
the planner’s solution and the decentralized economy). However, regardless of whether we
assume optimistic or pessimistic beliefs, the equilibrium threshold is further away from the
planner’s threshold for low values of h. The difference in slopes shows the planner would
be willing to pay higher subsidies when h is low – as shown in Proposition 3, a constant
subsidy would shift the threshold to the left without rotating it. That is the third difference
between the planner’s solution and the decentralized economy.

At the heart of this problem, there is a dynamic coordination failure. Agents effectively
discount the future at rate α+ρ while the planner discounts the future at the much smaller
rate ρ. In a region of parameters with low h and a just below the threshold, investment in
the short run would drive the economy to the high regime and the planner takes that into
account. Agents don’t find it profitable to invest while demand is still low, but would be
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happy to sign a contract forcing everyone to take investment opportunities in the short run,
as these losses for some would imply gains for all in the future.

While the planner effectively decides where the economy goes, agents take beliefs as
given. In consequence, the economy might be stuck in a recession trap (low h, not so low
a). However, beliefs are exogenous in this reasoning. We now consider the case of a positive
but very small σ to understand which beliefs arise in equilibrium.

5.3 The case with very small shocks

We now consider the case with σ → 0+. Differently from the previous case, beliefs now are
uniquely determined by the model. The equilibrium is depicted in Figure 5.

Figure 5: The case with very small shocks
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h = 1

h = 0

Planner

Good equilibrium

Bad equilibrium

Unique equilibrium
with shocks

Externality problem

The result is completely different from the case with σ = 0. As in Frankel and Pauzner
(2000), with very small but positive shocks, there is no role for arbitrary beliefs and no
multiplicity of equilibria, so the first difference between the planner’s problem and the
decentralized equilibrium disappears. The surprising result from this paper is that the
difference in slopes between the planner’s and the agents’ thresholds vanishes as well.

Since the productivity parameter moves very slowly, this change in the behavior of the
economy must stem from the endogeneity of beliefs. As shown in Figure 5, the equilibrium
threshold at h = 0 coincides with the ‘good’ equilibrium of the model with no shocks, hence
agents are very optimistic at h = 0. The same reasoning also implies that agents are very
pessimistic at h = 1.15

Intuitively, in a neighborhood of the equilibrium threshold, optimistic beliefs make per-
fect sense at h = 0, but no sense whatsoever at h = 1. Suppose the economy is exactly
at the equilibrium threshold at h = 0. The economy would stay around there as long as
a < a∗(0), but any shock that moves a above a∗(0) leads agents to invest and drives the

15An implication of Burdzy et al. (1998) is that in case σ → 0+, the equilibrium threshold connects the
‘good-equilibrium’ threshold (for the case σ = 0) at h = 0 and the ‘bad-equilibrium’ threshold at h = 1 as
in Figure 5.
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economy up in the picture. Since the slope of the threshold is negative, as soon as the
economy is at h > 0, it is at the right of the threshold and hence moves up in the direction
of h = 1. The fundamental asymmetry here is that a tiny negative shock basically leaves
the economy where it is, while a tiny positive shock drives the economy up in the direction
of h = 1. The same reasoning implies that in a neighborhood of the equilibrium threshold
at h = 1, a regime switch is also expected and beliefs are pessimistic.

The intuition for equilibrium beliefs was explained for the case with σ → 0+ but Propo-
sition 3 shows the result holds for any σ > 0. Graphically, for σ bounded away from 0, the
planner’s and agents’ equilibrium thresholds would be parallel to each other as in Figure 5,
but the agents’ threshold would not touch the boundaries of the dominance regions.

The intuition for the case with σ bounded away from zero is very similar. When eco-
nomic activity is low and agents are around the equilibrium threshold, they are optimistic:
productivity is relatively good, the economy is parked in a region of inaction but is likely
to leave that state soon. Again, the key asymmetry here is that a movement of a to the
left does not significantly affect the state of the economy, but a movement of a to the right
affects the mass of agents investing, raising demand in the economy and incentives for the
following agents with investment opportunities to take them. The recovery is just waiting
for a small piece of good news.

The only difference between the planner’s solution and the decentralized equilibrium
is the monopoly distortion in the investment decision, the externality shown in Figure 5.
When beliefs are determined by the model, planner and agents solve a very similar problem.
At every (a, h), investment is undertaken if its expected return pays off and the equilibrium
(or planner’s) threshold is a fixed point. “Pays off” means different things for agents and
planner but the ratio is constant since the only difference is the externality from market
power.

5.4 What if the externality is not a constant fraction of payoffs?

Different functional forms for preferences and technology could in principle lead to exter-
nalities varying with h. We now argue that for reasonable parameters (namely for ρ << α),
the effect of, say, larger externalities for low values of h would be mitigated in equilibrium.

Consider the case σ → 0+, assume the private gain from investing is π = eag(h) and the
planner’s instantaneous gain is:

Λ(h, a) ≡ [1 + κ] eag(h) + β(h) with
ˆ 1

0
β(h)dh = 0

The function β(h) captures deviations of the planner’s threshold from a parallel shift of the
equilibrium threshold. Using Theorem 2 in Frankel and Pauzner (2000), the expression for
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the planner’s threshold in (15) yields:

aP (0) = log
 αψ´ 1

0 (1− h)ρ/αea(1 + κ)g(h)dh+
´ 1

0 (1− h)ρ/αβ(h)dh

 (18)

and

aP (1) = log
 αψ´ 1

0 h
ρ/αea(1 + κ)g(h)dh+

´ 1
0 h

ρ/αβ(h)dh

 (19)

The second integral term in the denominator of both (18) and (19) corresponds to devia-
tions from a parallel shift of the threshold – if that term is 0, deviations from the average
externality do not show up in the equations. In general, the second integral terms in (18)
and (19) will be small for two reasons: (i) β(h) is the difference between the externality
at a particular value of h and the mean externality (across h), while ea(1 + κ)g(h) is the
private gain plus the average externality, which would in general be much larger; and (ii)
ρ/α tends to be small since ρ is the time discount rate (say 2% a year) and α is the frequency
agents choose investment (say twice a year). Hence there will be little dispersion on weights
attached to each β(h) and the second integral will therefore be close to 0.

The second point is particularly related to our main contribution, so it is worth exploring
it with an illustration. We now consider a linear example so that β(h) = ζ − 2ζh, hence the
externality is larger at h = 0 by ζ. In this case

ˆ 1

0
(1− h)ρ/αβ(h)dh = ζρ/α

(1 + ρ/α) (2 + ρ/α) <
ζ

2
ρ

α

In words, the “extra” externality at h = 0 has to be divided by two and multiplied by ρ/α.
This term is then added to the denominator of the expression for aSP (0) in (18) (and a
similar term is subtracted from the expression for aSP (1)). Since the time discount rate ρ
is in general much smaller than the frequency of decisions α, only a small fraction of the
“extra” externality at h = 0 is considered in the expression for aSP (0). Intuitively, when
deciding on investment at the equilibrium threshold at h = 0, the planner takes into account
that the economy will soon be moving up, so the “local” externality is not that important.

5.5 The case with vanishing frictions

In case of vanishing frictions (α → ∞), the economy moves very fast from h = 0 to h = 1
but agents’ horizons become very short.16 In the model with no shocks, agents take h

into account in their decisions, regardless of whether we assume fully optimistic or fully
pessimistic beliefs. In contrast, the planner does not take h into consideration. Moving the

16When taking the limit α→∞, we fix the user cost of capital (ρ+ α)ψ, not the investment cost ψ.
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economy to a different regime takes very little time and hence the transition is unimportant.
The threshold from the planner’s problem converges to a vertical line, as in Figure 6. This
result holds for any σ > 0.

Figure 6: The case with vanishing frictions
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An implication of Proposition 3 is that in equilibrium agents also play according to a
vertical threshold. History thus becomes irrelevant.17 Interestingly, this result holds even in
case of non-proportional externalities as discussed in Section 5.4. When α→∞, the second
integral in the denominators of (18) and (19) converge to zero, hence the differences in the
externality from the High regime across h do not affect the planner’s or agents’ decisions.
Hence for large α/ρ, the optimal policy prescribes an approximately constant subsidy even
if externalities are larger when h is low.

6 Extensions

6.1 A macroeconomic model with labor

The underlying macroeconomic model presented in Section 2 is quite stylized. Firms cannot
adjust their production in the intensive margin when economic conditions change. In this
section we develop a standard macroeconomic model where firms still receive opportunities
to increase their productivity according to a Poisson process, but can adjust the amount of
labor used in production at each point in time. The qualitative results in Proposition 3 are

17Intuitively, for a large α, an agent at the equilibrium threshold and h = 0 knows the economy will move
up with probability 1, while an agent at the equilibrium threshold and h = 1 is sure the economy will move
down. They don’t know their ‘position in the queue’, i.e., when they will have the next opportunity for
revising their behavior: how much time will have elapsed and the value of h when they can choose again.
On the one hand, the agent at h = 0 will experience lower values of h than the agent at h = 1 – the agent
starting at h = 0 is likely to get an opportunity to revise behavior before h gets close to 1. On the other
hand, for the agent at h = 0, the economy moves up very quickly at lower values of h, but slowly as h
approaches 1, so the last firms to change their decision will spend relatively more time at high values of
h. As it turns out, both effects exactly cancel each other, so the agents at h = 0 and h = 1 are indifferent
between investing and not investing for the same value of a.
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unchanged, i.e., the constant subsidy is still optimal and the planner chooses a threshold
that is parallel to the agent’s threshold.

There is a continuum of intermediate good firms indexed by i ∈ [0, 1] and a representative
household who supplies labor and consume a final good. The final good is produced by a
competitive firm whose production function is the Dixit-Stiglitz aggregator of intermediate
goods yit, given by equation (1) as before. The price of the final good is Pt. The household
utility function is given by

U(Ct, Lt) = Ct −
1

γ + 1L
γ+1
t ,

where Ct is the amount consumed of the final good, Lt is the total amount of labor supplied
and γ ≥ 0 parameterizes the Frisch elasticity of the labor supply. The household budget
constraint is

PtCt ≤ wtLt +
ˆ 1

0
Πitdi,

where wt is the wage and Πit is the profit of firm i (the household owns all the firms).
As before, at a given point in time, intermediate good firms can be in either the High (H)

or the Low (L) regime and opportunities to switch across regimes follow the same Poisson
technology as in Section 2. Firms use labor to produce their differentiated goods. A firm i

in regime r ∈ {L,H} has production function

yit = AtXrl
λ
it,

where lit denotes the amount of labor used in production, λ ∈ (0, 1) and XH > XL. In-
termediate good firms maximize profit taking the demand schedule imposed by final goods
firms as given. The stochastic process of at = log(At) is the same as in Section 2.

6.1.1 The agent’s problem

We will start solving for the equilibrium in a given period t taking the proportion of firms
in each regime as given. Since firms in a given regime and at a point in time make the same
choices in equilibrium, we will abuse notation and index firms by the regime r ∈ {L,H}.
We will also omit time subscripts in this subsection.

The demand schedule of the final good firm is the same as before and is given by (4).
Therefore, we can write the profits of a firm in regime r as

Πr = y
θ−1
θ

r Y
1
θ − w

(
yr
AXr

) 1
λ

. (20)
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For a given wage w and final good output Y , the optimal choice of a firm in regime r is:

yr =
[(

θ

θ − 1

)
1
λ

]−θλζ
(AXr)θζ Y λζw−θλζ , (21)

where ζ ≡ 1
λ+θ(1−λ) . A firm producing yr will demand lr = [yr/ (AXr)]1/λ units of labor.

For a given wage w, the household will supply w1/γ units of labor. Thus, equilibrium in the
labor market implies:

w =
[
h
(
yH
AXH

) 1
λ

+ (1− h)
(
yL
AXL

) 1
λ

]γ
. (22)

Finally, goods markets must clear:

Y =
(
hy

θ−1
θ

H + (1− h)y
θ−1
θ

L

) θ
θ−1

. (23)

Equations (21), (22) and (23) pin down the equilibrium of this economy for a given state
(a, h). From these equations, we find equilibrium expressions for the final good production
Y (h, a), the production for firms in each regime yH(h, a) and yL(h, a), and the wage w(h, a).
These lead to expressions for hours worked L(h, a) and profits ΠH(h, a) and ΠL(h, a).

The final good production in equilibrium is given by:

Y (h, a) =
[(

θ

θ − 1

)
1
λ

] λ
λ−γ−1

exp
{(

γ + 1
γ + 1− λ

)
a

}
q(h)

λγδ(θ−1)−1
(γ+1)δ−1 , (24)

where q(h) ≡
[
h (XH)(θ−1)ζ + (1− h) (XL)(θ−1)ζ

]
and δ ≡ 1

(1+γ)θ−(θ−1)λ . The difference in
profits between firms in regime High and Low:

π̃(h, a) = exp
{(

γ + 1
γ + 1− λ

)
a

}
q(h)

λγ(θ−1)−(γ+1)
(θ−1)(λ−γ−1)

(
X

(θ−1)ζ
H −X(θ−1)ζ

L

)
Φ, (25)

where Φ ≡
[(

θ
θ−1

)
1
λ

] λ
λ−γ−1 −

[(
θ
θ−1

)
1
λ

] γ+1
λ−γ−1 .

It is no longer true that the gain of being in regime High above is always increasing in
h. We need to impose the following restrictions on parameters:18

λ (θ − 1)− 1 < 1/γ (26)

This restriction is satisfied for standard parameters in the literature.19 Notice that the Frisch
18If γ = 0 we cannot write this assumption this way, but the condition is always satisfied.
19For example, the restriction is satisfied with θ = 5, λ = 2/3 and γ = 1/3. For a recent discussion about

the Frisch elasticity 1/γ, see Peterman (2014).
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elasticity 1/γ cannot be too low relative to θ, which determines the intensity of demand
externalities in the economy. As in the model of Section 2, when others produce more, an
agent is more inclined to incur the fixed cost for the High regime, owing to the increase in
price of his variety. However, in the model with labor, there is also an effect in the opposite
direction: when others are in regime High and producing more, wages increase as well. If
the Frisch elasticity is high, then the effect on wages is small and the overall incentives to
be in regime High increase in h. Finally, λ also enters the expression since it affects the
difference in labor used by firms in each regime.

Given that the assumption in (26) is satisfied, the equilibrium of the dynamic game is
given as in Section 3, with π(h, a) replaced by π̃(h, a) from (25).

6.1.2 The planner’s problem

The planner seeks to maximize the discounted sum of flow payoffs of the representative
household, which is given by USP = Y − 1

γ+1L
γ+1. There are two different ways to consider

the planner’s problem: (i) the planner chooses whether firms invest and how much labor
they hire (and hence how much they produce); or (ii) the planner will not interfere in firms’
pricing decisions and in workers’ labor supply, will only choose investment. Since we are
concerned with policies to stimulate investment, we now focus on the second alternative,
but the first one is presented in the appendix and the results are essentially the same as in
Proposition 3.

The planner thus determines the choices of firms between the High and Low regimes,
taking as given what firms and workers will choose at every point in time. The flow utility
of the representative household can thus be rewritten as

USP (h, a) = hΠH(h, a) + (1− h)ΠL(h, a) + γ

γ + 1w(h, a)
γ+1
γ . (27)

where functions Y (h, a), L(h, a), ΠH(h, a), ΠL(h, a) and w(h, a) refer to the decentralized
equilibrium of this economy for a given h and a, as defined in the last subsection.

Repeating the steps leading to (12), we get that the solution to the planner’s problem
can be written as the solution to the decentralized equilibrium replacing the private gain
from being in the High regime π̃(h, a) by ∂USP

∂h
. Taking partial derivatives of (27) with

respect to h, using (22) and the equality between marginal revenue and marginal cost, and
rearranging, we get:

∂USP (h, a)
∂h

= π̃(h, a) + 1
θ

∂Y (h, a)
∂h

.
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Taking derivatives of (24) and rearranging leads to:

∂USP

∂h
=
(

1
1− χ

)
π̃(h, a),

where χ = 1
θ− λ

γ+1 (θ−1) .
Following the steps in Section 4, we can show that a constant subsidy χψ implements the

planner’s first best.20 Moreover, the planner’s threshold is parallel to the agent’s threshold
and given by

ã∗P (h) = ã∗(h)−
(
γ + 1− λ
γ + 1

)
log

(
1

1− χ

)
, (28)

where ã∗(h) denotes the agent’s threshold in the model of this section.

6.2 Implementation

Proposition 3 shows that a constant subsidy implements the first best. However, in a large
set of states, much less generous subsidies would be enough to coax agents to invest. This
leads to the following question: what if every unit of subsidy has a small welfare cost ε ≈ 0?
It is not difficult to show that the government will use minimal spending policies, as in
Definition 1.

Definition 1. Let a∗ be an equilibrium of the game and a∗p a continuous function such that
a∗p(h) < a∗(h), for every h. Let â be the boundary where an agent is indifferent between
High and Low when others are playing according to a∗p. The function ϕ(h, a) is the minimal
spending policy that implements a∗p if

ϕ(h, a) =

ψ −
´∞

0 e−(ρ+α)tE[π(ht, at)|a, h, a∗p]dt if a∗p(h) ≤ a ≤ â(h)

0 otherwise
. (29)

Figure 7 shows 3 thresholds: a∗p is the threshold implemented by the policy, â is the best
response of a player that believes others will play according to a∗p and a∗ is the equilibrium
threshold without intervention. By definition, a∗ is the best response to others playing
according to a∗. Now, the sheer change in beliefs affects agents’ strategies: once they
believe others will play according to a∗p, they will be indifferent between High and Low at a
threshold â such that â(h) < a∗(h) for all h ∈ [0, 1].

A government following a minimal spending policy is committed to give an investment
subsidy to each agent in the region between a∗p and â (the gray area in figure 7). The

20When the planner can affect not only investment but also labor and production at each t, the optimal
investment subsidy is ψ/θ. Intuitively, when the only instrument available for the planner is an investment
subsidy, the optimal subsidy is larger in order to partially offset the inefficiencies from low labor demand.
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Figure 7: Example of minimal spending policy
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h = 1
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subsidy ϕ(h, a) makes her indifferent between choosing High and Low given others will play
according to a∗p. Under those beliefs, playing according to a∗p is a best response under this
policy, so a∗p is an equilibrium. Interestingly, no subsidies are needed in the area between â

and a∗.21

Proposition 4 shows that minimum spending policies do not affect the main result of the
paper.

Proposition 4. In the model of Section 2 with minimal spending policies, the maximum
optimal subsidy is ψ/θ for all h ∈ [0, 1].

Proof. See Appendix B.

The result is intuitive. Under minimal spending policies, investment subsidies are equal
to the minimum between how much the planner is willing to pay and how much is required
to coax agents to invest. The result from Proposition 4 thus follows from the planner’s
willingness to subsidize being independent of h (Proposition 3).

6.3 Mean reversion

We now consider at follows a process with mean reversion. Let at = log(At) vary in time
according to

dat = η(µ− at)dt+ σdZt (30)

The parameter η determines how fast at returns to its mean, given by µ. Proposition 5
builds on Frankel and Pauzner (2000) to show that a threshold equilibrium always exists.

Proposition 5 (Existence). Suppose σ > 0. There exists a strictly decreasing function a∗

such that a∗ is an equilibrium.
21The equilibrium under the minimal spending policy is no longer unique. If agents believe others will play

according to a∗ their best response is to play according to a∗ as well, thus the policy has no effect at all. The
amount of subsidies required to coax agents to invest depends on whether they expect others to respond to
the stimulus policy. However, the government could implement this allocation through a contingent subsidy
that would be essentially equivalent to a minimal spending policy: a large subsidy contingent on others not
investing, and the subsidy prescribed by the minimal spending policy in case others invest as well.
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Proof. See Appendix B.

The first statement of Proposition 3 still holds when the process for at exhibits mean
reversion, thus the planner’s solution can be implemented by a constant subsidy. However,
the second statement does not hold in this case because with mean reversion, translating
the threshold is not isomorphic to re-labeling the a-axis. A translation of a∗ also implies
a different path of at and, consequently, a different balance between expected demand and
productivity around that threshold. However, numerical results show that for a reasonable
amount of mean reversion, the results are essentially unchanged.22

We do not have a strong uniqueness result in this case. However, the model can be seen
as a limiting case of a sequence of models that have a unique rationalizable equilibrium.
The following section discusses this point.

6.3.1 On equilibrium uniqueness

In order to apply the results of Frankel and Burdzy (2005), we need to make two changes
in the model. First, the diffusion process for at is given by (30), but the mean-reversion
parameter ηt varies over time so that

ηt =

η if t < T

0 otherwise
, (31)

where T is a large number. Second, the difference between the instantaneous utility of
agents locked in each regime is given by π̂ instead of π, where

π̂(h, a) =

π(h, a) if a < M

π(h,M) otherwise
, (32)

where M is a large number. One can verify that π̂(h, a) is Lipschitz in both a and h, and
continuous. Using the results in Frankel and Burdzy (2005), we can prove there is a unique
equilibrium in this model.

Proposition 6 (Uniqueness, Frankel and Burdzy (2005)). Suppose σ > 0, the mean rever-
sion parameter ηt is given by (31) and the relative payoff of investing is given by (32). Then
there is a unique rationalizable equilibrium in the model. Agents follow cut-off strategies,
and the cut-off can vary over time.

Proof. See Appendix B.
22See Guimaraes and Machado (2013).
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As M and T approach infinity, this modified model converges to our model. For finite
values of M and T , the environment is not stationary anymore: the equilibrium strategies
might vary over time. Nevertheless, agents’ behavior at time 0 is determined by a threshold
that makes agents indifferent between High and Low. For large values of M and T , that
threshold is arbitrarily close to the function ã that makes the expression in (10) equal to
zero.

Why does the mean reversion need to die out eventually? In case of no mean reversion
(η = 0), the iterative procedure in Frankel and Pauzner (2000) could be applied to show
equilibrium uniqueness. However, in the presence of mean reversion, the last step in the
proof of Frankel and Pauzner (2000) fails. Their proof relies on finding two boundaries,
a1(h) < a2(h) for every h ∈ [0, 1], with the same shape, such that: (i) in any equilibrium
that survives iterative elimination of strictly dominated strategies, agents play Low whenever
the economy is to the left of a1(h) and High if the economy is to the right of a2(h); and
(ii) there exists ĥ ∈ [0, 1] such that an agent B at (a1(ĥ), ĥ) and agent C at (a2(ĥ), ĥ) are
indifferent between High and Low. Since a1(h) < a2(h), for every h ∈ [0, 1], it cannot be
the case that both are indifferent because both expect the same dynamics for ht given any
realization of the Brownian motion, but C expect larger values of at (because a2(ĥ) > a1(ĥ)).
However, this argument fails when the process for at exhibits mean reversion. In order to
see this, consider the case where a1(ĥ) < µ and a2(ĥ) > µ. Now, C expects at to fall,
while B expects at to rise. Although C still expects larger values of at for any realization
of the Brownian motion, B expects better relative dynamics for at, which can imply a more
optimistic expectation about the dynamics of ht.

Frankel and Burdzy (2005) overcome this problem by transforming the space and time
of the stochastic process at, so the difference in instantaneous utility of agents locked in
each regime can be written as a function of an i.i.d. process and time. Then, we can
follow a procedure that is similar to Frankel and Pauzner (2000) for every date t in a
transformed time-and-fundamental space. However, technical complications arise when the
mean reversion lasts forever. For a given time t, in the transformed time-and-fundamental
space, we may not be able to find a translation of a boundary such that every agent at every
date τ > t chooses Low (or High), that is, the region where no action is dominant keeps
expanding in time in the transformed fundamental space.

7 Numerical example

We now calibrate and solve the model numerically in order to get a better understanding
of the workings of the model. In order to solve the model numerically, we work with an
approximation of the model presented in Section 2. Now time is discrete and each period
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has length ∆, where ∆ is a small number. Hence time t ∈ {0,∆, 2∆, 3∆, ...}. We also
consider a stochastic process with mean reversion, so that

at = at−1 + η(µ− at−1)∆ + σ
√

∆εt,

where εt is an iid shock with a standard normal distribution. In the beginning of each
period, after at is observed, (1− e−α∆) individuals are randomly selected and get a chance
to switch regime. The instantaneous payoffs of being locked in each regime are the same
as before, but now agents discount utility by the factor e−ρ∆t. When ∆ → 0, this model
converges to the model of Section 2.

Our algorithm aims at finding a threshold where agents are indifferent between actions
High and Low if they believe others will play according to that threshold. The steps are
basically the following: first, choose a finite grid for h in the interval [0, 1] and pick an
arbitrary threshold a∗0(h) for every h in the grid. Then, for each h in the grid, simulate n
paths of at and ht departing from (a∗0(h), h) assuming every agent will play according to a∗0.
Use those paths to estimate the gain in utility from picking High of an agent choosing at
(a∗0(h), h). That yields an estimate of V (a∗0(h), h, a∗0). If the gain in utility is close to zero in
every point of the grid, stop. Otherwise, update a∗0 and repeat the simulation process that
leads to the estimation of V (a∗0(h), h, a∗0) until it converges.23

Parameters were chosen to satisfy the following criteria:

• The mean of output in peaks is about 4% higher than in troughs, which is roughly
consistent with the data using the two-quarters definition of business cycles.24

• The economy stays 30% of time at the left of the threshold, that is, agents are not
investing 30% of the time, approximately.25

• Once the economy goes to the left of the threshold, the mean time it stays there is 5
quarters. We consider that the economy went to the left of the threshold if it crossed
it and remained there for at least 36,5 days.26

23Alternatively, we can assume every agent is choosing Low, find the threshold that determines the region
where playing High is a dominant strategy (call it aH0 ), then assume all agents play according to aH0 , find
again the best response and keep iterating until it converges. We can also start by assuming all agents play
High, find the region where playing Low is dominant and start the iterative process of eliminating dominated
strategies from there. As suggested by the proof of equilibrium uniqueness, both equilibrium thresholds and
the one found using the first algorithm presented coincide, but the former ones are more expensive in terms
of computing time.

24According to the two-quarters definition of business cycles, a recession starts when output goes down
for two consecutive quarters and ends when it increases for two consecutive quarters.

25When the economy is to the left of the threshold, no agent is investing. If that is interpreted as a
recession, this calibration implies the economy is in recession 30% of the time. Owing to the lack of a
positive trend in our productivity parameter, output is increasing roughly 50% of the time.

26That is because it is not reasonable to consider an economy is in a recession if unemployment fell for 3
consecutive days.
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Output is computed net of depreciation, so the present value of output is equivalent to the
present value of consumption (and thus utility) in the economy. The user cost of capital
for an agent locked in the High regime is equal to (ρ + α)ψ. At time t, there are ht agents
in the High regime, so we subtract the cost of capital in the economy ht(ρ + α)ψ from the
total amount produced, given by (7).

The parameters µ and xL were normalized to zero and one, respectively. The chosen
values of the parameters θ and ρ are standard in the literature, and α was made equal to 1,
meaning that investment decisions are made once a year on average. All other parameters
in the model were chosen to match the desired statistics. Table 1 shows the parameters (the
time unit is years, when needed).

Table 1: Parameters
Parameter Symbol Value
Production regime High xH 1.1
Production regime Low xL 1
Elasticity substitution θ 6
Fixed cost of investing ψ 0.0806
Mean of fundamental process µ 0
Arrival rate of Poisson Process α 1
Standard deviation of shocks σ 0.03
Discount rate ρ 0.03
Mean reversion intensity η 0.7
Time interval lenght ∆ 0.005

Figure 8 shows the equilibrium threshold and the path of the economy following a random
realization of at. At the left of the threshold, agents do not invest, so h decreases; at the right
of the threshold, agents invest, so h increases. A point (a, h) describes the current state of
the economy and, together with the equilibrium threshold, determines agents’ expectations
about the future. In this example, the economy starts to the right of the threshold at
(0, 0.5), so h initially increases. About a year later, negative shocks to a bring the economy
to the left of the equilibrium threshold and h starts to decrease. At that point, it is optimal
for agents to choose Low because they expect others will do so.

Figure 9 shows output in the economy and what output would be in case h = 1. The
variance of output in this economy is about 20% higher relative to the case where h is
always equal to 1, because low values of the productivity parameter a lead to periods of
low expected demand where agents choose not to invest. In this model, policies can do
nothing about the exogenous movements in a but can increase the region where agents
invest. Investment subsidies can bring output closer to the h = 1 curve.

Besides amplifying the effects of negative shocks, the endogenous and staggered reaction

29



Figure 8: Estimated threshold
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of h also implies that low productivity periods have long-lasting negative effects. As shown
in Figure 9, output when the economy is coming back from a recession is lower than right
before the recession for the same productivity parameter a. That occurs not only because
staggered investment decisions mechanically add persistence to output, but also because
agents require a higher productivity to invest when h is low.

8 Concluding remarks

This paper proposes a macroeconomic model that captures in a simple way the dynamic
coordination problem arising from demand externalities and fixed investment costs. From a
substantive point of view, the main result of the paper is the absence of a special reason for
subsidies at times of low economic activity – a constant subsidy implements the planner’s
solution. From a methodological point of view, the paper highlights the importance of
understanding beliefs that arise in equilibrium and their policy implications.
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A Optimal policy when the planner can choose labor

In this appendix we solve the planner’s problem in the model of Section 6.1 assuming it can
not only choose when a firm will invest but also how much each firm will produce at each t.
In other words, we also allow the planner to correct the monopoly distortion at each time
t, when the proportion of firms in regime High is given. We can thus break the planner’s
problem into two objectives: (i) in a given period, taking the aggregate state (at, ht) as
given, the planner’s wants to achieve the optimal production for each firm; (ii) taking as
given that in each period the optimal production will be implemented, the planner wants
to choose investment optimally.

It is well known that in models with CES preferences a subsidy of 1/θ per dollar spent
on wages will achieve the optimal outcome within a period – since the markup is constant,
this subsidy will induce firms to set prices equal to the marginal cost. Thus all we need
to do is to solve the model assuming this wage subsidy will be paid at each t and get the
planner’s optimal investment decision.

The steps are essentially the same as in Section 6.1, except that the profit of a firm,
given by (20) before, is now given by

Πr = y
θ−1
θ

r Y
1
θ −

(
θ − 1
θ

)
w
(
yr
AXr

) 1
λ

Since the steps to find the expressions for the endogenous variables are the same as in
Section 6.1, we will omit most derivations here. We get that the gain from being in regime
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High is now given by

π̃LS(h, a) = exp
{(

γ + 1
γ + 1− λ

)
a

}
q(h)

λγ(θ−1)−(γ+1)
(θ−1)(λ−γ−1)

(
X

(θ−1)ζ
H −X(θ−1)ζ

L

)
Φ̂, (33)

where Φ̂ ≡ λ
λ

1+γ−λ −
(
θ−1
θ

)
λ

γ+1
1+γ−λ . Notice that condition (26) that guarantees complemen-

tarity remains unchanged. We can also find new expressions for the values in equilibrium
of GDP Y (h, a), wage w(h, a), profits in each regime Πr(h, a), total labor supplied L(h, a)
and so forth.27 As before, the planner flow payoff is:

USP (h, a) = Y (h, a)− 1
γ + 1L(h, a)γ+1, (34)

where Y (h, a) and L(h, a) are now given by

Y (h, a) = λ
λ

1+γ−λ exp
{(

γ + 1
γ + 1− λ

)
a

}
q(h)

λγδ(θ−1)−1
(γ+1)δ−1

and
L(h, a)γ+1 = λ

γ+1
1+γ−λ exp

{(
γ + 1

γ + 1− λ

)
a

}
q(h)

λγδ(θ−1)−1
(γ+1)δ−1 .

In the next paragraphs we present the main findings of this appendix.

Optimal combination of subsidies. Taking derivatives of (34) with respect to h we get
that

∂USP (h, a)
∂h

=
(

θ

θ − 1

)
π̃LS(h, a).

This equation imply that our constant subsidy result still holds in this case. The planner
combines the same (constant) investment subsidy ψ/θ of Section 4 with a labor subsidy that
finances a share 1/θ of the firm’s cost of labor. Thus, the planner’s pays a proportion 1/θ
of all costs incurred by a firm.

Parallel shift. We can now analyze how the planner’s threshold look like in comparison
to the agent’s. From (33) one can verify that the planner’s threshold can be written as

ã∗∗P (h) = ã∗LS(h)−
(
γ + 1− λ
γ + 1

)
log

(
θ

θ − 1

)
, (35)

27For simplicity, unless otherwise stated, we will use the same notation as in Section 6.1 to denote the
functions that determine the endogenous variables in equilibrium.
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where ã∗LS(h) denotes the agent’s threshold if the planner’s only pays the labor subsidy but
not the investment subsidy. Comparing the expressions in (33) and (25) one can verify that

ã∗LS(h) = ã∗(h)−
(
γ + 1− λ
γ + 1

)
log

Φ̂
Φ

 (36)

where ã∗(h) is the equilibrium threshold when the planner does not pay any subsidy (as in
Section 6.1). Doing some algebra one can verify that Φ̂ > Φ and therefore ã∗LS(h) is to the
left of ã∗(h). Therefore, the planner’s threshold here is also parallel to the agent’s threshold
regardless of whether agents get no subsidy at all or get just the subsidy that corrects the
monopoly distortions in the labor market within a period.

Some comparative statics. From (35) and (36), one can verify that the total shift to
the left implemented by the planner’s when he gives both the labor and the investment
subsidy is

ã∗∗P (h)− ã∗(h) =
(
γ + 1− λ
γ + 1

)
log

Φ̂
Φ

θ

θ − 1

 .
Remember that when it cannot subsidize labor (as in Section 6.1), the threshold shift is
given by

ã∗P (h)− ã∗(h) =
(
γ + 1− λ
γ + 1

)
log

(
1

1− χ

)
,

where ã∗P (h) is defined in (28). After some algebra, we can show that Φ̂
Φ

θ
θ−1 >

1
1−χ , and thus

ã∗∗P (h) < ã∗P (h) for every h. Intuitively, in some states, it might be worth investing only if
firms will not distort the choice of labor, in which case the gains from a higher productivity
will be totally explored.

Next figure summarizes the relative position of each threshold, where ã∗P (h) and ã∗LS(h)
could switch positions on the figure, depending on parameters.

Figure 10: Relative position of the thresholds
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B Proofs

B.1 Proof of Proposition 1

Consider an agent deciding at time normalized to 0 who believes that every agent that will
get an opportunity to change regime will choose Low. He assigns probability 1 that the path
of ht will be h↓t = h0e

−αt, which is independent of a. Thus, choosing High raises his payoff
by

U(h0, a) =
ˆ ∞

0
e−(ρ+α)tπ(h↓t , a)dt− ψ

= ea
(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)t
(
h↓tx

θ−1
θ

H + (1− h↓t )x
θ−1
θ

L

) 1
θ−1

dt− ψ.

Therefore this agent will choose High iff U(h0, a) ≥ 0. Now, U(h0, a) is continuous and
strictly increasing in a, lima→∞ U(h0, a) = ∞, and lima→−∞ U(h0, a) = −ψ. Thus for any
h0, there is a = aH(h0) such that U(h0, a) = 0. Since U(h0, a) is strictly increasing in a, for
any a′ > aH(h0) we have U(h0, a

′) > 0 and thus choosing High is a strictly dominant strategy
(any other belief about the path of ht will raise the relative payoff of choosing High). Notice
that U(h0, a) is strictly increasing in both a and h0 and thus aH(h0) is strictly decreasing.

A similar argument proves that there exists a strictly decreasing threshold aL such that
if a < aL(h0), Low is a dominant action. Consider an agent who believes others will choose
High after him. He believes that the motion of ht will be given by h↑t = 1− (1− h0)e−αt, so
choosing High instead of Low raises his payoff by

U(h0, a) =
ˆ ∞

0
e−(ρ+α)tπ(h↑t , a)dt− ψ

= ea
(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)t
(
h↑tx

θ−1
θ

H + (1− h↑t )x
θ−1
θ

L

) 1
θ−1

dt− ψ.

This agent will choose Low whenever U(h0, a) < 0 and, as in the previous case, we can
show that there exists a strictly decreasing threshold aL such that if a < aL(h0), Low is a
dominant action. Since for every h0 and t > 0 we have h↑t > h0 > h↓t , U(h0, a) > U(h0, a).
This implies aH(h0) > aL(h0).

Take a pair (a, h0) such that aL(h0) < a < aH(h0). Since a < aH(h0), if an agent believes
that the path of ht will be h↓t , then U(h0, a) < 0 and thus his optimal strategy is to play
Low. Therefore this belief is consistent and the strategy profile where every player plays
Low is an Nash equilibrium. Likewise, since a > aL(h0) the strategy profile where every
player plays High is also a Nash equilibrium. Hence, there is multiplicity in this set.
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B.2 Proof of Proposition 4

For a given h ∈ [0, 1] the maximum amount of subsidies the planner have to pay to imple-
ment his threshold a∗p(h) is ϕ(h, a∗p(h)), since agents payoffs are increasing in a. But from
Proposition 3 we know that an agent will be indifferent between investing and not investing
at (h, a∗p(h)) if the cost is ψ − ψ/θ and he believes that the other’s will play according to
a∗p(h). Thus, ϕ(h, a∗p(h)) = ψ/θ, which is independent of h.

B.3 Proof of Proposition 5

In order to apply the existence arguments in Frankel and Pauzner (2000), it suffices to show
that playing High is a dominant choice for some large enough a and that Low is a dominant
choice for some small enough a. This is so because i.i.d. shocks are needed just to show
uniqueness, and Corollary 1 in Burdzy et al. (1998) guarantees that Lemma 1 in Frankel
and Pauzner (2000), used in their proof, holds for our more general process for at.

Solving dat = η(µ− at)dt+ σdZt we get that

at = a0e
−ηt + µ(1− e−ηt) + σ

ˆ t

0
eη(s−t)dZs. (37)

And thus at conditional on a0 is normally distributed with mean

E0 [at] = µ+ e−ηt(a0 − µ). (38)

and variance
V ar0 [at] = σ2

2η
(
1− e−2ηt

)
. (39)

Therefore, eat conditional on a0 follows a log-normal distribution with mean

E0 [eat ] = exp
{
µ+ e−ηt(a0 − µ) + 1

4
σ2

η

(
1− e−2ηt

)}
. (40)

Consider an agent deciding at some point (0, a0) who believes that ht = 0 for every t ≥ 0.
His utility gain from choosing High is

W (a0) =
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
L

ˆ ∞
0

e−(ρ+α)tE0 [eat ] dt− ψ

>
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
L

ˆ 1

0
e−(ρ+α)t inf {E0 [eat ]}t∈(0,1) dt− ψ.

By (40), we have that lima0→∞ inf {E0 [eat ]}t∈(0,1) =∞. Thus, there exists some large enough
a∗∗ such that High is a strictly dominant action when a > a∗∗.
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Now consider an agent deciding at some point (1, a0), with a0 < µ, who believes that
ht = 1, for every t ≥ 0. His gain in utility of choosing High is given by

W (a0) =
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
H

ˆ ∞
0

e−(ρ+α)tE0 [eat ] dt− ψ

<
(
x
θ−1
θ

H − x
θ−1
θ

L

)
x

1
θ
H

(ˆ Q

0
e−(ρ+α)t

(
sup {E0 [eat ]}t∈(0,Q)

)
dt

+
ˆ ∞
Q

e−(ρ+α)t
(
µ+ σ2

4η

)
dt

)
− ψ.

By (40), we have that lima0→−∞ sup {E0 [eat ]}t∈(0,Q) = 0. For large enough Q, the integral
term is small enough, so W (a0) < 0. Hence there exists some small enough a∗∗ such that
Low is a strictly dominant action when a < a∗∗.

We have shown the existence of dominant regions. Now, as in Frankel and Pauzner
(2000) we can iteratively eliminate strictly dominated strategies. This process converges to
a threshold a∗ such that agents are indifferent between investing or not at (a∗(h), h) for all
h ∈ [0, 1], if they believe the others will play according to a∗. Given a threshold a∗, notice
that payoffs are increasing in a and h. Thus, playing according to a∗ is an equilibrium.

B.4 Proof of Proposition 6

In order to prove Proposition 6, we need to show the existence of dominance regions, so
that we can apply the results on Frankel and Burdzy (2005). First, Lemma 1 constructs a
process ut that allows us to replace payoffs π̂(·) by the original payoffs π(·). Then, Lemma
2 proves the existence of dominance regions.

Lemma 1. Let ut be the following stochastic process

ut =

at if at < M

M otherwise
,

where at is given by dat = ηt(µ−at)dt+σdZt, with ηt given by (31). Then limaτ→∞Eτ [eut ] =
eM and limaτ→−∞Eτ [eut ] = 0, for every t > τ and every τ ≥ 0.

Proof. First assume τ < T . It follows from (37) that when τ < t < T , at|aτ has a normal
distribution with mean and variance given by µ + e−η(t−τ)(aτ − µ) and σ2

2η

(
1− e−2η(t−τ)

)
,
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respectively. In that case we have

Eτ [eut ] = 1
Σt

√
2π

ˆ M

−∞
exp

at − 1
2

(
at − µ− e−η(t−τ)(aτ − µ)

Σt

)2
 dat

+
(

1− Φ
(
M − µ− e−η(t−τ)(aτ − µ)

Σt

))
eM , (41)

where Φ is the standard normal distribution and Σt ≡ σ
√

1
2η (1− e−2η(t−τ)).

Now fix t ≥ T . In that case, we have that at|aT follows a normal distribution with mean
aT and variance σ2(t− T ). Therefore, by the law of iterated expectations,

Eτ [at] = Eτ [Eτ [at|aT ]] = Eτ [aT ] = µ+ e−η(T−τ)(aτ − µ),

where the last equality follows from (38). Moreover, by the law of total variance,

V arτ [at] = Eτ [V arτ [at|aT ]] + V arτ [Eτ [at|aT ]] = σ2(t− T ) + Σ2
T .

We can show that at|aτ follows a normal distribution28 and so,

Eτ [eut ] = 1√
(σ2(t− T ) + Σ2

T ) 2π

ˆ M

−∞
exp

at − 1
2

at − µ− e−η(T−τ)(aτ − µ)√
(σ2(t− T ) + Σ2

T )

2
 dat

+
1− Φ

M − µ− e−η(T−τ)(aτ − µ)√
(σ2(t− T ) + Σ2

T )

 eM . (42)

Notice that both (41) and (42) are continuous on aτ and that they coincide at t = T . Taking
limits with aτ →∞ and aτ → −∞ of (41) and (42) completes the proof for the case where
τ < T . The proof for the case where τ ≥ T is very similar and therefore omitted.

Lemma 2. Suppose σ > 0, the mean reversion parameter ηt is given by (31) and the relative
payoff of investing is given by (32). Then, if M is sufficiently high, there are constants a′

and a′′, with a′ < a′′ such that if a(h) > a′′ it is strictly dominant to play High and if
a(h) < a′ it is strictly dominant to play Low.

Proof. First, notice that we can write π̂(ht, at) = π(ht, ut), for every t. Assume that an
agent deciding at some period normalized to 0 has the belief that ht = 0, for every t ≥ 0.
Thus, his payoff of investing is given by

28We know that aT |aτ ∼ N(µ+ e−η(T−τ)(aτ − µ), σ
2

2η (1− e−2η(T−τ))) and at|aT , aτ ∼ N(aT , (t− T )σ2).
Since Eτ [at|aT ] is linear on aT and V arτ [at|aT ] does not depend on aT we guarantee bivariate normality of
the vector (at, aT ) conditional on aτ (see Arnold et al. (1999), p. 56) and therefore its marginal distributions
are normal.
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U(a0) ≡ x
1
θ
L

(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)tE0 [eut ] dt− ψ

> x
1
θ
L

(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ 1

0
e−(ρ+α)tE0 [eut ] dt− ψ

> x
1
θ
L

(
x
θ−1
θ

H − x
θ−1
θ

L

)
e−(ρ+α) inf {E0 [eut ]}t∈(0,1) − ψ.

But inf {E0 [eut ]}t∈(0,1) converges to eM when a0 goes to∞. Thus as long as M is suficiently
high, we can get an a′′ such that U(a′′) > 0.

Now consider an agent deciding at some period τ normalized to zero that believes that
ht = 1 for every t ≥ 0. His gain in utility of investing is given by

U(a0) ≡ x
1
θ
H

(
x
θ−1
θ

H − x
θ−1
θ

L

)ˆ ∞
0

e−(ρ+α)tE0 [eut ] dt− ψ

< x
1
θ
H

(
x
θ−1
θ

H − x
θ−1
θ

L

)(ˆ Q

0
e−(ρ+α)t sup {E0 [eut ]}t∈(0,Q) dt+

ˆ ∞
Q

e−(ρ+α)teMdt

)
− ψ.

But sup {E0 [eut ]}t∈(0,Q) goes to zero as a0 goes to −∞. For large enough Q, the second
integral term is small enough, so for sufficiently small a′, we get U(a′) < 0.

Proof of Proposition 6. We have proved the existence of dominance regions, hence our
model is a special case of Frankel and Burdzy (2005) and uniqueness follows from Theorems
1 and 4 in that paper.
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