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Abstract

I present a framework for analyzing decision makers with an imper-

fect understanding of their environment’s correlation structure. The

decision maker faces an objective multivariate probability distribution

(his own action is one of the random variables). He is characterized by

a directed acyclic graph over the set of variables. His subjective belief

filters the objective distribution through his graph, via the factoriza-

tion formula for Bayesian networks. This belief distortion implies that

the decision maker’s long-run behavior may affect his perception of the

consequences of his actions. Accordingly, I define a "personal equilib-

rium" notion of optimal choices. I show how recent models of bound-

edly rational expectations (as well as new ones, e.g. reverse causality)

can be subsumed into this framework as special cases. Some general

properties of the Bayesian-network representation of subjective beliefs

are presented, as well as a "missing data" foundation.
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1 Introduction

The rational-expectations postulate is a basic building block in the vast ma-

jority of economic models. It means that agents in an economic model have

a perfect understanding of the statistical regularities that characterize equi-

librium in the model - in particular, the structure of correlations among the

relevant economic variables. Over the years, economists have become in-

creasingly interested in modeling systematic departures from this extreme

assumption. In this paper, I propose a rather general approach to modeling

decision makers with an imperfect understanding of correlation structures,

based on the borrowed concept of Bayesian networks.

I focus on choices by an individual decision maker (DM), whose en-

vironment is defined by an objective probability distribution  over  =

(0 1  ). One way of writing down  employs the standard chain rule

() = (0)(1 | 0)(2 | 0 1) · · · ( | 0  −1) (1)

where the enumeration of the variables is arbitrary. This basic formula sug-

gests a natural way of capturing an imperfect understanding of the corre-

lation structure of : pick an enumeration and selectively omit conditioned

variables. This implies the following representation of subjective beliefs. The

DM is characterized by an asymmetric, acyclic binary relation  over the set

 = {0 1  }. Given that the objective distribution is , the DM’s sub-
jective belief is given by the factorization formula

() =

Y
=0

( | ()) (2)

where () = { ∈  | }.
When  is any linear ordering over  , we recover the standard chain rule.

This is the case of correct beliefs, i.e. "rational expectations". When  is

empty, () = (0)(1) · · · () - i.e.,  is the product of the marginals
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of  over the  + 1 random variables. The more complete the relation ,

the more thorough the DM’s understanding of the underlying correlation

structure - and his expectations are intuitively "more rational".

The binary relation  and the set of distributions representable by (2)

define what is known as a Bayesian network. This concept was introduced

by statisticians and Artificial-Intelligence researchers, and has become ubiq-

uitous in the AI literature, as it provides a useful platform for studying

algorithmic aspects of reasoning about uncertainty (for textbook treatments,

see Cowell, Dawid, Lauritzen and Spiegelhalter (1999) or Koller and Fried-

man (2009)). In particular, Pearl (1988,2000) advocated the view of  as a

causal structure that underlies the probability distribution , and used the

graph-theoretic representation of  to visualize causal relations and system-

atize reasoning about causality. I adopt the graph-theoretic terminology of

this literature, and refer to  as a directed acyclic graph (DAG).1

This paper puts Bayesian networks to novel use, as a representation of

imperfect understanding of correlation structures, which is then integrated

into a "personal equilibrium" model of individual decision making under

"boundedly rational expectations". Suppose that 0 =  describes the DM’s

own action, 1 =  describes his signal, and denote  = (2  ). An

objective distribution  is a "personal equilibrium" if the DM’s behavior,

given by the conditional probabilities ( | ), maximizes his expected payoff
(  ) w.r.t the subjective conditional distribution ( |  ). Because
some actions may be played with zero probability in equilibrium, the de-

finition of personal equilibrium involves "trembling hand perfection", con-

ventionally capturing the idea that the DM almost never plays subjectively

sub-optimal actions.2

1Graphical probabilistic models have been introduced into economics in other contexts:

as a way of representing games and facilitating computation of Nash equilibrium (see

Kearns, Littman and Singh (2001) and Koller and Milch (2003)), or as a way of discussing

causality in econometric models (see White and Chalak (2009)).
2The term "personal equilibrium" was introduced by Koszegi (2009) in the context of

decision making with reference-dependent preferences.
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Example 1.1: Medication

Consider a DM who considers fighting a disease by taking a medication that

has adverse side effects. The DM’s choice and his state of health are statisti-

cally independent, yet they share a common consequence: the level of some

chemical in the DM’s blood goes up when his medical condition improves,

or when he takes the medication. Let 0 1 2 denote the DM’s consump-

tion decision, state of health and chemical level, respectively. The objective

distribution  is thus consistent with a "true DAG" 0 → 2 ← 1. Suppose

that the chemical level as such is payoff-irrelevant. Then, a DM with rational

expectations would choose not to take the medication.

Now assume that our DM’s subjective DAG is 0 → 2 → 1; that is, he

inverts the causal link between the chemical level and his health. The DM

will choose 0 to maximizeX
1

X
2

(2 | 0)(1 | 2)(0 2)

Given the true underlying , 1 is generally not independent of 0 conditional

on 2. Therefore, the conditional probability (1 | 2) may be affected
by the equilibrium distribution over 0. This is why the DM’s choice is

fundamentally an equilibrium decision: his evaluation of any choice of 0

effectively takes his own long-run consumption as given.

When the disutility from the medication’s side effects is not too large,

there is a personal equilibrium in which the DM takes the medication. In

such an equilibrium, the DM observes (possibly as a result of "trembles") the

positive correlation between the chemical level and his health. He correctly

grasps that if he quits taking the medication, the chemical level will go down.

However, the subjective causal link 2 → 1 means that the DM erroneously

concludes that a lower chemical level will aggravate his disease. As a result,

he prefers to continue taking the medication.
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The Bayesian-network approach to modeling decision making under bound-

edly rational expectations has a number of merits:

Modeling subjective perceptions of causality. As Example 1.1 illustrates, the

DM’s DAG can be interpreted as a subjective (and possibly mis-perceived)

model of causal relations in his environment. This "Pearlian" interpreta-

tion enables us to study implications of incorrect causality perceptions on

equilibrium behavior in economic models.

Unification. In Section 3, I demonstrate that several existing models of

boundedly rational expectations emerge as special cases captured by distinct

graphical representations. When the objective distribution is consistent with

a "true DAG", the systematic departures from rational expectations embod-

ied in such models can be captured by simple operations on the true graph

(removing, inverting or reorienting links). This unification uncovers connec-

tions among existing concepts, suggests new ones and leads to results that

hold for general classes of models of boundedly rational expectations (see

Section 5).

From solution concept to type. The literature has typically presented models

of boundedly rational expectations in the form of solution concepts in a class

of games. The Bayesian-network approach reduces such notions to types of

individual agents, and this expands their scope of applicability. First, a DM

represented by a DAG can be incorporated in other classes of models (e.g.

competitive markets). Second, the representation opens the door for richer

comparative statics (see Section 5.2) and greater heterogeneity of agents in

economic models. Third, the fact that the representation is not tied to a par-

ticular interactive model simplifies analysis. Finally, the representation may

facilitate the study of "high-order" boundedly rational expectations (when

one of the variables in  is another agent’s DAG).

Structured belief heterogeneity. It is instructive to compare the Bayesian-

network approach to the traditional notion of subjective priors. A DM with
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a subjective prior has a fixed belief, which is independent of the objective dis-

tribution . In contrast, a DM represented by a DAG has a subjective prior

that changes systematically with . An economic model in which agents are

characterized by distinct graphs exhibits "structured belief heterogeneity",

because the agents’ subjective beliefs are different deterministic transforma-

tions of the same objective distribution . In particular, when  is consistent

with the empty DAG, all agents’ beliefs will coincide with .

However, since the Bayesian-network representation of beliefs combines

objective and subjective elements, it gives rise to an important question:

how does the DM manage to fit  into his subjective graph? In Section 4

I provide a foundation for the Bayesian-network representation, in terms of

a naive procedure for extrapolating from limited datasets. The idea is that

the DM receives partial feedback about , in the form of a large dataset with

"missing values"; he employs an iterative procedure for imputing the missing

values. I show that when the support of the missing-data process satisfies a

condition known in the Bayesian-network literature as the "running intersec-

tion property", the procedure generates a "completed" dataset in which the

frequencies have an essentially unique DAG representation, which the DAG

is restricted to be perfect. When the running intersection property is vio-

lated, the procedure will be aborted for some objective distribution. Thus,

although for most of the paper I treat the DM’s graph as a fundamental char-

acteristic, the missing-data foundation is an integral part of this approach.

It has the advantage of imposing additional structure on Bayesian-network

representations, and possibly inspiring more general ones.

Related works on models of boundedly rational expectations

Non-rational expectations have been explored from many different points

of view (e.g., see Evans and Honkapohja (2001) and Woodford (2013) for

macroeconomic models; the notion of "restricted perceptions equilibrium" is

particularly relevant). In this partial literature review, I emphasize attempts

to model imperfect understanding of correlations, as these have inspired the
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present study. Osborne and Rubinstein (1998) studied games with players

who falsely believe their own actions influence the opponents’ behavior, as a

result of naive extrapolation from small samples. Eyster and Rabin (2005)

examined Bayesian games in which each player may underestimate (exag-

gerate) the correlation between his opponents’ actions and their signals (his

own signal). Esponda (2008) and Esponda and Pouzo (2012,2014b) focused

on situations in which agents neglect the effect of their own actions on the

observed distribution over consequences. A key development in this liter-

ature involved "coarse reasoning". Piccione and Rubinstein (2003), Jehiel

(2005), Jehiel and Koessler (2008) and Eyster and Piccione (2013) assumed

that agents’ beliefs are measurable w.r.t a coarse representation of the set

of contingencies (by omitting variables from their subjective model or by

clumping contingencies into an "analogy class").3

The Bayesian-network approach is related to the view of a boundedly

rational agent as an econometrician working with a misspecified model, as

in Bray (1982), Cho, Sargent and Williams (2002), or Rabin and Vayanos

(2010). More recently, Esponda and Pouzo (2014a) extended this tradition

by formulating a rather general model of static games, in which each player

has a set of subjective prior beliefs over the states of Nature (possibly with

an incorrect support). The player receives partial feedback about the equi-

librium distribution (similar in spirit to the "missing data" model in this

paper). In equilibrium, each player’s subjective belief is the closest (in terms

of relative entropy) to the objective distribution, among the beliefs in the set

of possible posterior beliefs over consequences defined by his set of priors and

his feedback. Esponda and Pouzo justify their solution concept as a steady

state of a dynamic Bayesian learning model.

3The representation (2) can be interpreted in terms of Jehiel’s (2005) concept of

analogy-based expectations, applied to a fictitious extensive-form game: the DM believes

that he is part of an ( + 1)-player extensive game, in which each player  ∈  moves

once according to a fixed order of moves given by a linear ordering ∗ that extends . All
player- histories with the same moves by the players in () form an analogy class.
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2 The Decision Model

Let  = 0 × · · · ×  be a finite set of states, where  ≥ 2. Denote

 = {0 }. For every  ⊆  , denote  = ()∈ . The set 0 = 

is the set of feasible actions available to a decision maker (DM). Thus, the

DM’s action is part of the definition of a state. I use 0 or  interchangeably

to denote an action. The set  = 1 × · · · ×,   , is the set of signals

that the DM may receive (note that each  ∈  has  components), such

that {1} and  can be used interchangeably to denote a signal. Denote

 = +1 × · · · ×. Thus, a state  can be written as the triple (  ).

Let  ∈ ∆() be an objective probability distribution over states.

Beliefs

To capture limited understanding of the correlation structure of , I introduce

a new primitive. Let  be an asymmetric and acyclic binary relation over

 , and define () = { | }. I refer to  as a directed acyclic graph

(DAG), and use ̃ to denote the undirected version (or "skeleton") of  -

that is, ̃ if and only if  or . For any  and , define  by the

factorization formula (2). The notation  is a convenient short-hand for a

mapping from∆() to itself. This mapping assigns a subjective distribution

to every objective distribution , such that () is the subjective probability

of  when the objective probability of  is (). We say that a distribution

 is consistent with a DAG  if () = () for every .

Recall that when  is a linear ordering, the enumeration of the state

variables is irrelevant for the representation (2). This means that all linear

orderings are equivalent, as far as the representation is concerned. In general,

a given probability distribution can admit multiple DAG representations, a

consequence of the basic identity ( ) = ()( | ) = ()( | ).

Definition 1 Two DAGs  and  are equivalent if  =  (that is,

() = () for every ) for every  ∈ ∆().
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Verma and Pearl (1991) provided a characterization of equivalent DAGs

which will be useful in the sequel. We say that  and  have the same

-structure if for every nodes    for which , ,  and , it is

the case that ̃ if and only if ̃. In other words, if both  and  treat 

and  as causes of , then  establishes a causal link between  and  if and

only if  does so, too.

Proposition 1 (Verma and Pearl (1991)) Two DAGs  and are equiv-

alent if and only if they have the same skeleton and the same -structure.

To illustrate this result, the DAGS 0 → 2 ← 1 and 0 → 2 → 1 have

identical skeletons but different -structures. Therefore, these DAGs generate

different subjective beliefs for some objective distribution . In contrast, the

DAGs 0→ 2→ 1 and 0← 2← 1 are equivalent because they have the same

skeleton and the same (vacuous) -structure.

Comment: Conditional probabilities. Subjective conditional probabilities are

calculated as usual. In particular, for any , the DM’s subjective distribution

over  conditional on   is

( |  ) = (  )P
0 (  

0)

as long as ( )  0. Note that at first glance, the representation (2)

seems to contain potentially ill-defined conditional probabilities. Suppose

that  ∈ () and that ( | ()) = 0 for some value of . Then, the term
( | ()) is ill-defined. However, this does not pose any problem: when
we sum over all  in the calculation of , we simply exclude zero-probability

realizations of  in the summation, such that the problematic term does not

appear.
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Decisions

Let us now turn to decision making under the Bayesian-network represen-

tation of subjective beliefs. Our DM, characterized by a particular , is an

expected utility maximizer, with a vNM utility function  :  → R. The

objective distribution  is interpreted as a long-run (steady-state) joint dis-

tribution over all the relevant variables, including the DM’s own action. We

will require the DM’s long-run behavior (given by (( | ))) to be optimal
w.r.t his subjective belief, which is a systematic distortion of  given by (2).

Because of this distortion, the DM’s long-run behavior can influence his per-

ception of the implications of his actions, hence beliefs and decisions cannot

be separated; optimal behavior is fundamentally an equilibrium notion.4

The need for an equilibrium model of individual choice also requires us

to take off-equilibrium actions into account. Consider a distribution  with

full support on  . We say that 0 is a perturbation of  if 0() ≡ (),

0( |  ) ≡ ( |  ), and 0( | )  0 for all  . A perturbation fixes

every aspect of  except for the DM’s behavior, such that every action is

played with positive probability for every signal.

Definition 2 A distribution  ∈ ∆() with full support on  ×  is an

-personal equilibrium if

 ∈ argmax
0

X


( | 0 )(0  )

for every   for which ( | )  .

Definition 3 A distribution ∗ ∈ ∆() with full support on  is a personal

equilibrium if there exist a sequence  → 0 and a sequence  → ∗ of

perturbations of ∗, such for every ,  is a -personal equilibrium.

4This feature, which is impossible under rational expectations, was pointed out in

earlier works - explicitly in Esponda (2008), and implicitly in Piccione and Rubinstein’s

(2003) discussion of bounded recall and Jehiel’s (2005) Centipede-Game example.
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Thus, in equilibrium, the DM takes actions that maximize his subjective

expected utility given his information. The expectation is taken w.r.t the

(perturbed) equilibrium distribution filtered through the DM’s DAG. In a

-personal equilibrium, the DM plays actions that are sub-optimal w.r.t his

subjective belief with probability  at most. Personal equilibrium essentially

requires that such actions are almost never taken.

Proposition 2 For any (()) and (( |  )), there exists ((( | ))
such that  = ((()) ((( | )) (( |  ))) is a personal equilibrium.

As we shall see in Section 3, "pure" personal equilibria (where for every

 there is  such that ( | ) = 1) need not exist, unlike the case of expected
utility maximization w.r.t rational expectations.

3 Illustrations

This section demonstrates how the Bayesian-network framework accommo-

dates a variety of systematic departures from rational expectations. Most of

the examples will involve three or four variables, and the DM will be unin-

formed ( = 0). In each example,  will be consistent with some "true DAG"

having a particular conditional-independence structure; the DM’s subjective

DAG will be obtained from the true DAG by simple operations: removing,

inverting or reorienting links. Different belief biases can thus be captured

by different operations on the true DAG. In particular, a given subjective

DAG can capture different biases, depending on its exact relation to the true

DAG.

If the DM’s subjective DAG differs from the true DAG only by adding

links, this can never lead to biased beliefs, because any belief that is consistent

with a DAG is also consistent with another DAG that contains it. Thus,

over-estimation of correlations among variables is not a bias that the current

framework can capture.
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3.1 Inverting Links: Reverse Causality

Let  = 2. Interpret 1 as a state of Nature, and 2 as a consequence of the

two other variables. The DM is uninformed about 1 at the time he makes

his choice; 0 and 1 are statistically independent. The objective distribution

can be written as

(0 1 2) = (0)(1)(2 | 0 1)

which means that  is consistent with the "true DAG"

 : 0→ 2← 1

A rational DM will choose 0 to maximizeX
1

X
2

(1 2 | 0)(0 1 2) =
X
1

X
2

(1)(2 | 0 1)(0 1 2)

Suppose that the DM’s subjective graph is

 : 0→ 2→ 1

such that

(0 1 2) = (0)(2 | 0)(1 | 2)

Thus, relative to the true DAG , the DM inverts the direction of the causal

link between 1 and 2. The DM chooses 0 to maximizeX
1

X
2

(1 2 | 0)(0 1 2) =
X
1

X
2

(2 | 0)(1 | 2)(0 1 2)

Under , the notion of personal equilibrium cannot be reduced to

straightforward maximization. The reason is that the conditional proba-

bility (1 | 2) involves summing over the DM’s equilibrium actions. If
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(0) were to change, so could (1 | 2), and so could the DM’s optimal
action. This means that the DM effectively takes his equilibrium behavior

as given when choosing his action, hence the equilibrium aspect of his choice

is not redundant.

Example 3.1: Fiscal policy

Let us impose additional structure on this setting. The DM is a government.

All three variables take values in {0 1}; 1 = 0 (1) means that the rate of
real growth is low (high); and 2 = 0 (1) means that the level of public debt

is low (high). The action  = 0 (1) represents fiscal austerity (expansion).

The objective distribution  satisfies (1 = 1) =
1
2
(independently of 0, in

line with the true DAG ), and 2 is a deterministic function of 0 1 given

by 2 = 0(1 − 1). Thus, high public debt results from a combination of

fiscal expansion and low growth.

The government’s preferences are given by (0 1) = 0+1, where  

0. Thus, the government cares about social programs (which it can provide

via fiscal expansion) and growth; it does not care about debt per se. It

follows that under rational expectations, the government will choose 0 = 1,

because growth is independent of fiscal policy. The government’s subjective

DAG is . The nature of its departure from rational expectations is that it

believes fluctuations in public debt cause fluctuations in real growth, whereas

the true causal link is in the opposite direction.

This structure of  implies the following conditional probabilities. Denote

(0 = 1) = . Then,

(2 = 0 | 0 = 0) = 1
(2 = 0 | 0 = 1) = 1

2
(1 = 1 | 2 = 1) = 0

(1 = 1 | 2 = 0) =
1
2
(1− ) + 1

2


1−  + 1
2


=
1

2− 
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Let us first show that the action 0 = 1 is inconsistent with personal equi-

librium whenever   2. Assume the contrary, i.e.  = 1. The government’s

evaluation of the action 0 = 1 is

1 +  · [(2 = 0 | 0 = 1)(1 = 1 | 2 = 0)
+(2 = 1 | 0 = 1)(1 = 1 | 2 = 1)]

= 1 +  · [1
2
· 1

2− 1 +
1

2
· 0] = 1 + 1

2


If the government deviates to 0 = 0, it expects to earn

0 +  · [(2 = 0 | 0 = 0) · (1 = 1 | 2 = 0)
+(2 = 1 | 0 = 0) · (1 = 1 | 2 = 1)]

= 

hence the deviation is profitable whenever   2.

Thus, although expansion is the unique optimal action under rational

expectations, it is inconsistent with personal equilibrium when the govern-

ment cares enough about growth and when its subjective causal model is

given by . The intuition is simple: if the government plays  = 1 in

the putative equilibrium, it observes a negative correlation between debt and

growth. It correctly grasps the effect of fiscal policy on debt. And since it

misperceives debt-growth causality, it erroneously believes that the low debt

resulting from austerity will lead to high growth. This is not the usual logic

of self-confirming expectations. The government’s reasoning does not rest

on out-of-equilibrium beliefs, but rather on a misperception of the statistical

regularities that characterize the observed equilibrium behavior.

Using similar analysis, it can be shown that when  ≥ 4, playing the

action 0 = 0 with probability one is consistent with personal equilibrium.

When  ∈ (2 4), personal equilibriummust be "mixed" (in the sense that  ∈
(0 1)). Other specifications of the DM’s preferences could lead to multiple
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personal equilibria. Of course, these effects are impossible under conventional

expected-utility maximization.

Medication example revisited. Example 1.1 can be cast in the same terms as

the fiscal policy example: 1 = 0 (1) indicates poor (good) health; 2 = 0 (1)

indicates a high (low) chemical level; and 0 = 0 (1) indicates that the DM

takes (avoids) the medication. The true DAG means that the DM’s chemical

level is low if (and only if) he avoids the drug and suffers from the disease.

Taking the medication is analogous to austerity in the fiscal-policy story.

3.2 Removing Links: Coarse Reasoning

Models in which agents’ beliefs are a coarse representation of the true un-

derlying distribution have been prominent in the literature on boundedly

rational expectations (see Piccione and Rubinstein (2003), Jehiel (2005), Je-

hiel and Koessler (2008), Eyster and Piccione (2013)). To capture coarse

reasoning, let  = 4 and suppose that  is consistent with the following true

DAG :
2 → 1 → 0

↓ & ↑
4 ← 3

(3)

where the nodes 0 and 1 represent the DM’s action and signal, respectively;

2 and 3 jointly represent the state of Nature; and 4 represents some "de-

pendent variable" (an opponent’s action in a game, a product price in a

market setting). Every  that is consistent with  has the property that 0

is independent of (2 3 4) conditional on 1.

Now suppose that the DM’s subjective DAG, denoted , differs from

 only by removing the link 4 ← 3. This represents a coarse perception

of the causes of 4: while the true DAG admits both 2 and 3 as direct

causes of 4, the modified graph  admits only 2. Using the terminology of

Jehiel (2005), 2 is the "analogy class" to which the state of Nature (2 3)
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belongs. In general, coarse reasoning can be captured by omitting links in

the true DAG that involve "exogenous" variables, namely variables that are

independent of the DM’s action conditional on his signal.

To illustrate the effect of coarse reasoning on the DM’s beliefs and ac-

tions, consider the simpler, four-variable case of an uninformed DM, which is

captured graphically by removing the node 1 and its links from both  and

. Then,

() = (0)(2)(3 | 2)(4 | 2 3) (4)

() = (0)(2)(3 | 2)(4 | 2)

The DM chooses 0 to maximizeX
2

X
3

X
4

(2 3 4 | 0)() =
X
2

X
3

(2 3)
X
4

(4 | 2)()

This is precisely the individual behavior that Jehiel and Koessler (2008)

presume as part of the solution concept Analogy-Based Expectations Equi-

librium in the context of games with incomplete information.5

By the structure of , the term (4 | 2) is independent of 0. As
a result, the DM does not need to take his own behavior as given when

choosing how to act - in other words, personal equilibrium under  is reduced

to maximization.

Example 3.2: Bilateral trade

The following example, based on an adverse-selection experiment by Bazer-

man and Samuelson (1985), has developed semi-canonical status in recent

literature on boundedly rational expectations (including Eyster and Rabin

(2005), Jehiel and Koessler (2008) and Esponda (2008) - see Spiegler (2011,

5The present model does not address environments with an explicit time dimension,

and therefore does not subsume analogy-based expectations in extensive-form games, as

defined by Jehiel (2005).
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Ch. 8) for a pedagogical exposition). I recast it in terms of the Bayesian-

network framework.

A seller holds an object. Our DM is an uninformed buyer who bids 0 for

the object; 1 ∈ [0 1] is the seller’s valuation; and 2 ∈ [0 1] is his ask price.
Trade takes place whenever 0 ≥ 2. The transaction price conditional on

trade is 0. Thus, if the seller does not play weakly dominated strategies,

then (2 = 1) = 1. The buyer’s payoff is () = 1(2 ≤ 0) · (1+ − 0),

where   0 is the gain from trade.

The true distribution  is consistent with the DAG

0 2← 1

A buyer with rational expectations will choose 0 to maximize

X
1

(1)
X
2

(2 | 1)1(2 ≤ 0)(1 +  − 0)

= (1 ≤ 0)

"X
1

(1 | 1 ≤ 0)1 +  − 0

#

Now suppose that the buyer’s subjective DAG is the empty graph - i.e., it re-

moves the link 2← 1 from the true DAG, thus displaying "coarse reasoning".

Then, he chooses 0 to maximizeX
1

(1)
X
2

(2)1(2 ≤ 0) · (1 +  − 0)

= (1 ≤ 0)

"X
1

(1)1 +  − 0

#

Thus, the buyer has a correct understanding of the seller’s average behav-

ior, but he fails to take into account its correlation with the seller’s private

information.
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3.3 Disconnecting Nodes: Missing Variables

In the previous sub-section, we saw how coarse reasoning can be captured

by a simple operation on the true DAG, namely omitting a link between

variables which are independent of the DM’s action (conditional on his sig-

nal). Let us now consider a more elaborate operation: severing all the links

of a payoff-irrelevant variable which is potentially correlated with the DM’s

action. Thus, the DM’s subjective causal model is misspecified in the sense

that it effectively omits a variable, and this omission potentially biases the

DM’s perception of the consequences of his action.

For instance, let  = 3, and suppose that the true DAG is

0 → 1 → 3

& %
2

(5)

Let  be purely a function of 1 and 3. Under rational expectations, the

DM chooses 0 to maximizeX
1

X
2

(1 2 | 0)
X
3

(3 | 1 2)(1 3)

Suppose that the DM’s subjective DAG, denoted  , is

0 → 1 → 3

2

(6)

Thus, differs from the true DAG by disconnecting 2 from all other nodes.

The DM will choose 0 to maximizeX
2

(2)
X
1

(1 | 0)
X
3

(3 | 1)(1 3) (7)

18



which is equal toX
1

(1 | 0)
X
3

X
00

X
02

(00 | 1)(02 | 00)(3 | 1 02)(1 3)

It is clear from this expression that as in the case of reverse causality - but

unlike the case of coarse reasoning - the DM’s own equilibrium behavior given

by (00) affects his evaluation of actions, hence personal equilibrium cannot

be reduced to simple maximization.

Example 3.3: Central banking

This example translates an argument by Sargent (1999) into the Bayesian-

network framework. The DM is a central banker, and 0 is a non-negative

real number that represents monetary policy (say, inflation targeting). The

true DAG is given by (5). Let 1 represent actual inflation, and suppose

that 1 = 0 + , where  is an independently distributed variable with

mean zero. Let 2 represent the public’s inflation expectations, which are

formed after the public observes the central banker’s choice of 0. In the

spirit of Lucas (1976), the public has "rational expectations", such that 2 =

(1 | 0) = 0. The variable 3, which represents unemployment, is given

by 3 = ∗3 − (1 − 2) + , where ∗3 is the "natural unemployment rate",

  0 is a constant, and  is an independently distributed variable with mean

zero. Thus, the true relation between monetary and real variables is given by

an "expectational Phillips curve", where only unanticipated inflation affects

unemployment. In contrast, the central banker’s subjective graph , given

by (6), can be interpreted as if it postulates a "traditional" Phillips curve

that omits the public’s inflation expectations.

The central banker’s preferences are given by (1 3) = −[(3)2+(1)2].
Under rational expectations, the central banker would choose 0 to minimize

[(3)
2 + (1)

2 | 0] = (∗3 −  + )2 +(0 + )2
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The optimal policy is thus clearly 0 = 0. This is the familiar Kydland-

Prescott "commitment policy".

Now consider the central banker’s behavior under  . Suppose that

in personal equilibrium, (∗0) = 1 for some ∗0. Then, the central banker

believes that 2 = ∗0 with probability one, independently of 0 and for all

1. Applying (7), we obtain that the central banker chooses 0 to minimize

[∗3−(1−∗0)+]2+(0+)2 = [∗3−(0+−∗0)+]2+(0+)2

The optimal policy ∗∗0 is given by the first-order condition,

−2(∗3 − (∗∗0 − ∗0)) + 2
∗∗
0 = 0

In order for ∗∗0 to be consistent with the guessed personal equilibrium, we

need to have

∗∗0 = ∗0 =
1

∗3

This is the Kydland-Prescott "no-commitment policy". Thus, when the

central banker omits expected inflation from his subjective causal model,

he behaves as if he cannot commit to an inflation target, effectively taking

the public’s expectations as given. This is essentially the insight of Sargent

(1999) - originally formulated in the context of an elaborate dynamic learning

model - recast in the simpler, static language of Bayesian networks.

3.3.1 Retrospective Choice

This sub-section discusses a different missing-variable distortion of a true

DAG. Let  = 3, suppose that the true DAG is

0 → 2 ← 1

& ↓
3

(8)
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where 1 is payoff-irrelevant. Under rational expectations, the DM chooses

0 to maximizeX
1

X
2

(1)(2 | 0 1)
X
3

(3 | 1 2)()

Suppose that the DM’s subjective DAG, denoted  , omits all the links from

1, such that  consists of an isolated node 1 and the connected component

0→ 2→ 3. Then,The DM chooses 0 to maximizeX
1

(1)
X
2

(2 | 0)
X
3

(3 | 2)()

=
X
2

(2 | 0)
X
3

(3 | 2)()

To see why this expression departs from rational expectations, note first

that each of the terms (2 | 0) and (3 | 2) implicitly involves a summa-
tion over 1, as if the effects of 1 on 2 and 3 are independent - whereas

in reality they may be correlated. Moreover, the term (3 | 2) implicitly
involves summing over all possible values of 0, effectively taking the DM’s

equilibrium behavior as given. It follows that personal equilibrium under 

cannot be reduced to maximization.

This example is abstracted from Esponda (2008) and Esponda and Pouzo

(2014b), and captures a mode of reasoning which Esponda and Pouzo call

"retrospective choice". It is also close in spirit to the choice procedure un-

derlying Osborne and Rubinstein (1998). Suppose that 3 is a deterministic

function of 1 2, and  is purely a function of 0 3 (such that 1 is not

directly payoff-relevant). Imagine that the DM reviews a large historical

database induced by the equilibrium distribution . For every action 0 that

he considers, he first examines its possible consequences 2; for every such

consequence he calculates a payoff-relevant summary statistic 3; then he

aggregates over all possible consequences, according to their weights in the
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database conditional on the contemplated action 0. This chain of reason-

ing, action→ consequence→ payoff, is an intuitive way of evaluating actions.

Yet, it leads to a biased evaluation (affected by the DM’s own equilibrium

behavior) because it omits the "latent" variable 1.
6

Bilateral trade revisited

Consider the following reformulation of Example 3.2, which translates an

example due to Esponda (2008) into the current framework. The variables

0 and 1 are defined as before. Let 2 ∈ {0 1} indicate whether trade takes
place, and assume 2 = 1 if and only if 0 ≥ 1. Let 3 = 1+ be the buyer’s

valuation of the object, and let (0 2 3) = 2(3 − 0). The objective

distribution obeys the DAG given by (8), and the buyer’s subjective DAG is

 . The buyer chooses 0 to maximize

(2 = 1 | 0)
X
3

(3 | 2 = 1)(0 2 3)

= (1 ≤ 0)

⎡⎣⎛⎝X
00

X
01

(00)(
0
1 | 01 ≤ 00)

0
1

⎞⎠+  − 0

⎤⎦
If in equilibrium an action ∗0 is played with probability one, then

∗0 ∈ argmax
0

(1 ≤ 0)

⎡⎣⎛⎝X
01

(01 | 01 ≤ ∗0)
0
1

⎞⎠+  − 0

⎤⎦
Thus, the DM chooses his bid as if the object’s expected quality is given

by its empirical distribution conditional on trade taking place, according to

his own equilibrium action. He fails to perceive that this distribution would

change if he changed his bid.

6Specifically, Esponda and Pouzo (2012) analyze a voting model with asymmetric in-

formation, in which each voter evaluates each candidate by looking at his own average

historical payoff when the candidate was elected (conditioning on his current signal).
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Relation to reverse causality

Assume that (0 2 3) = 3 and 3 = (1 2). That is, 3 records the

DM’s payoff itself, and it is a deterministic function of 1 and 2. Then,

 (1 2 3 | 0)(0 2 3) =
X
2

(2 | 0)
X
3

(3 | 2)3

=
X
2

(2 | 0)
X
1

(1 | 2)
X
3

(3 | 1 2)3

=
X
1

X
2

(2 | 0)(1 | 2)(1 2)

= (1 2 | 0)(1 2)

where  is the DAG over {0 1 2} given by 0→ 2→ 1. Thus, two appar-

ently different biases turn out to be equivalent in this environment: inverting

the causal link between the state of Nature and a consequence, and omission

of the state of Nature from a causal model that includes the DM’s payoff as a

distinct state variable. This illustrates how the Bayesian-network approach

may help clarifying the connection between different types of departures from

rational expectations.

3.4 Reorienting Links: False Attribution

In this sub-section I briefly discuss another class of belief biases that can be

captured by another simple operation on the true DAG, namely changing

the origin of a link. These can be called "attribution biases".

Illusion of control

Let  = 2. The DM is informed of the realization of 1 when he chooses

0 - i.e., 1 is the DM’s signal. Accordingly, the true DAG is 0 ← 1 → 2.

The DM’s subjective DAG is 1→ 0→ 2. Thus, although 1 is the only true

cause of 2, the DM believes that his own action is the sole direct cause of
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2. This captures an "illusion of control", namely an exaggerated perception

of the impact of one’s own actions (see Langer (1975)). The DM will choose

0 to maximize X
2

(2 | 0)()

Since both 0 and 2 are actually caused by 1, the two variables are corre-

lated and the DM will misperceive this correlation as a causal relation. The

term (2 | 0) is not invariant to (0 | 1), hence personal equilibrium
cannot be reduced to maximization.

Hindsight bias

Let  = 4, and assume that 1 represents the (informed) DM’s signal. The

true DAG is 0 ← 1 ← 2 → 3 → 4, where 2 represents the state of Nature,

and 3 and 4 represent another agent’s signal and action, respectively. The

DM’s subjective DAG is

0 ← 1 → 2 → 3

↓
4

This captures the phenomenon known as hindsight bias (or "information pro-

jection bias"), namely, the false belief that other people share your knowledge

(see Fischoff (1975) for a pioneering experimental study, andMadarasz (2012)

for a Bayesian-game solution concept that captures information projection

bias).

Analogy-based reasoning and attribution errors

Ettinger and Jehiel (2010) proposed that analogy-based reasoning can ac-

commodate attribution errors. To illustrate this point, suppose that the true

DAG is 0 → 3 ← 1 → 2, where 1 is the state of Nature and 3 is a conse-

quence of 0 and 1. The variable 2 is a deterministic, coarse function of 1.

The DM’s subjective DAG is 0→ 3← 2← 1 - that is, the DM attributes 3
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to the "analogy class" of the state of Nature. This observation demonstrates

that the bias that a given DAG captures depends on its relation to the true

DAG, as well as on the model’s framing (in this example, the state of Na-

ture and the analogy class are represented by different variables, whereas in

Section 3.2 the state of Nature was defined by a collection of variables, one

of which was the analogy class).

4 A "Missing Data" Foundation

What is the origin of ? If it represents an entirely subjective causal model,

how does the DM manage to apply it systematically to the objective distrib-

ution? On one hand, he should be exposed to enough data to enable him to

pin down the conditional probabilities ( | ()); yet on the other hand, if
the data is rich enough, the DM may end up rejecting his subjective causal

model.7

One story is that the DM has access to a rich database consisting of infi-

nitely many observations of . He poses a sequence of +1 questions to the

database, where question  is: "What is the distribution over  conditional

on ()?" (Variations on this question might involve running a regression or

generating a plot graph.) The DM then pastes together the answers to these

questions, by taking the product of the conditional distributions he obtains

as answers to his queries. The reason the DM poses these particular ques-

tions may be that he is confident of the subjective causal model described by

, and therefore he does not look for correlations that are ruled out by .

Alternatively, the questions need not reflect an explicit prior causal model,

but rather an intuitive way of reasoning about the data, as in the "retro-

spective choice" example of Section 3.3.1. According to this interpretation,

the essence of the DM’s bounded rationality is that he "asks the wrong ques-

7For an analysis of the problem of learning a graphical model from a machine-learning

perspective, see Koski and Noble (2009, Ch. 6).
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tions".

In this section I explore in detail a different foundation for , based on

the idea that the DM receives incomplete data about the objective distribu-

tion, and employs some procedure for extrapolating his belief from the data.

To motivate our discussion, recall the setting of Section 3.1:  = 2, and

0 1 2 denote the DM’s action, the state of Nature and the consequence,

respectively. Imagine that the DM’s data consists of a very large sample.

However, in each observation, either the value of 0 or the value of 1 are

missing, according to some random independent process. In other words,

the consequence is always observed, but only one of its two causes can ever

be observed. The DM has thus effectively observed two joint distributions,

(0 2) and (1 2), but he lacks direct evidence about the correlation

between 0 and 2. Our DM wishes to extrapolate from this data in order

to form a subjective joint distribution over the three variables.

The DM’s dataset can be visualized as a large spreadsheet, where each

variable is represented by a different column, and each observation corre-

sponds to a row. The spreadsheet has many missing values, generated ac-

cording to the above process. Our DM attempts to fill the missing cells and

"rectangularize the spreadsheet", such that the frequencies in the completed

spreadsheet will serve as his subjective distribution. The following is a nat-

ural extrapolation procedure, which is motivated by this image. When the

DM faces an observation of 0 2, he imputes the missing value of 1 using

the joint distribution (1 2) - specifically, by taking a random draw from

(1 | 2). Similarly, when he observes 1 2, he imputes the missing value
of 1 by taking a random draw from (1 | 2).
Using this imputation procedure, the DM can turn a dataset with missing

values into a complete dataset. The imputed distribution in the first part of

the dataset (where values of 1 were originally missing) is (0 2)(1 | 2);
and the imputed distribution in the second part of the dataset (where values

of 0 were originally missing) is (1 2)(0 | 2). The two distributions are
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identical, as both can be written as (0)(2 | 0)(1 | 2). The DM will

adopts this "constructed" distribution as his subjective belief. This belief is

consistent with the DAG 0 → 2 → 1. This example shows that the DAG

representation can be a consequence of a natural procedure for extrapolating

from a limited dataset.

An iterative imputation procedure

I now define a general procedure for extrapolating a belief from a dataset with

missing values, which iterates the imputation procedure of the motivating

example. The DM’s limited feedback consists of a collection S of   1

non-empty subsets  ⊂  . For convenience, I assume that  is a cover of

 , and that there exist no  0 ∈  such that  ⊂ 0. Each  represents

an infinitely large sample consisting of independent draws of  from , such

that he effectively learns the marginal of the objective distribution  over

. (In general, the description of the DM’s limited feedback would specify

the frequency of each  in the dataset. However, this detail it omitted here

because it is irrelevant for the present exercise).

The procedure consists of precisely  − 1 rounds. In each round  =

1 − 1 of the procedure, the DM executes the following steps:

Step 1: The initial condition of the -th round is a pair (−1 −1), where

−1 ⊂  and −1 ∈ ∆(−1). In particular, 0 is an arbitrary member of

S, and 0 coincides with  over 0, i.e. 0(0) ≡ (0).

Step 2: Select a set  ∈ argmax∈S−{0−1}
¯̄
 ∩−1¯̄. Define  =

−1 ∪ .

Step 3: Define two distributions over  :

1() = (−1) · ( | ∩−1)

2() = () · −1(−1 | ∩−1)
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If the two distributions coincide, define  ≡ 1 ≡ 2 and continue to Step

4. Otherwise, abort the procedure.

Step 4: If  = − 1, the procedure is terminated and −1 ∈ ∆() is the

DM’s final belief. If   − 1, switch to round  + 1 and return to Step 1.

Discussion

The idea behind this procedure is that the DM gradually completes his lim-

ited dataset by imputing missing values according to the correlations he ob-

serves. By the end of round − 1, the DM has "rectangularized" the part of

the spreadsheet in which the observed sets of variables were 0 1 −1 -

that is, he has transformed the observations of the variable sets 0 1 −1

into a joint distribution over −1. In round , the DM looks for a new vari-

able set  having maximal overlap with −1, and he exploits the observed

correlation among the variables in −1 ∩ in order to extrapolate the dis-

tributions of −1 and  conditional on −1∩ . The rationale for the

"maximal overlap" criterion invoked in Step 2 of the iterative procedure is

that the DM tries to make the most of the observed correlations. The DM

terminates the procedure when he has "rectangularized" and completed his

entire spreadsheet.

I assume that the DM aborts the procedure in round  whenever the

imputation method leads to a discrepancy between the two auxiliary dis-

tributions 1 and 2. Alternatively, one could assume that the DM simply

takes some weighted average between the two, and obtain results in the same

spirit. I adopt the "abort" variation mainly for simplicity, but it also reflects

the idea that when extrapolations from different pieces of the DM’s dataset

lead to contradictory conclusions, the DM may abandon this method of ex-

trapolation in favor of another one.

Illustration

Let  = {1 2 3 4} and S = {{1 3} {1 2} {2 4}}. This means that the
DM has effectively learned the joint distributions (1 3), (1 2) and
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(2 4). Select the initial condition to be 
0 = {1 3}. The only legitimate

continuation is 1 = {1 2}, such that 1 = {1 2 3}. Imputing the missing
values of 3 (2) in the observations of 1 2 (1 3) is done in round 1

exactly as in the motivating example. Thus, after the first round, the DM

has replaced the original observations of 1 2 and 1 3 with "manufactured

observations" of the triple 1 2 3, and the joint distribution over these

variables in the manufactured dataset is

1(1 2 3) = (3)(1 | 3)(2 | 1)

In the second and final round, 2 = {2 4}, such that 2 =  , and

22(1 2 3 4) = (2 4) · 1(1 3 | 2)

= (2 4)
1{123}(1 2 3)

1{123}(2)

= (2 4)
(3)(1 | 3)(2 | 1)P

01

P
03
(03)(

0
1 | 03)(2 | 01)

= (2 4)
(2)(1 | 2)(3 | 1)

(2)
P

01
(01 | 2)

P
03
(03 | 01)

= (2 4)(1 | 2)(3 | 1)
= (3)(1 | 3)(2 | 1)(4 | 2)
= 1(1 2 3) · (4 | 2)
= 21(1 2 3 4)

hence this is the expression for 2(1 2 3 4). The distribution given by

the completed dataset is thus consistent with the DAG 3 → 1 → 2 → 4.

Note that if the DM ignored the "maximal overlap" criterion and picked

1 = {2 4} in the first round, the procedure would terminate immediately;
the DM’s resulting belief would be (1 3)(2 4), thus ignoring the cor-

relation structure given by his observations of 1 2. The insistence on the
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maximal-overlap criterion ensures that the DM extracts more information

from observed correlations.

The main result

In the preceding example, S had the property that its elements could be
ordered such that the intersection between any set along the sequence and

the union of its predecessors would be weakly contained in one of these pre-

decessors. (This property was trivially satisfied in the motivating example,

where S consisted of only two sets). This "running intersection property", as
it is known in the Bayesian-network literature (see Cowell, Dawid, Lauritzen

and Spiegelhalter (1999), p. 54), turns out to allow the iterative imputa-

tion procedure to culminate in a final belief that has an essentially unique

Bayesian-network representation.

Definition 4 A sequence of sets 1   satisfies the running intersec-

tion property (RIP) if for every  = 2 ,  ∩ (∪) ⊆  for some

  . We will say that the set S satisfies RIP∗ if its elements can be ordered
in a sequence that satisfies RIP.

Before stating our main result, we shall need a few conventional graph-

theoretic definitions. A clique of a DAG  is a set of nodes  such that ̃

for every distinct   ∈ . A clique in  is maximal if there is no clique

in  that contains it. A clique  in  is ancestral if () ⊂  for every

 ∈ . Finally, we will say that a DAG  is perfect if () is a clique for

every  ∈  . In a perfect DAG, all direct causes of a variable are causally

linked themselves.

Remark 1 Perfect DAGs that share the same set of maximal cliques are

equivalent in the sense of Definition 1.
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This is a direct consequence of our analysis of equivalent DAGs in Section

2. By definition, perfect graphs have vacuous -structures. Therefore, by

Proposition 1, perfect graphs that share the same skeleton - which is given

by the set of maximal cliques - are equivalent.

Proposition 3 (i) If S satisfies RIP*, there exists a DAG  such that for

every , the iterative imputation procedure is never aborted and produces a

final belief −1 that has a Bayesian-network representation given by (2).

(ii) Conversely, if S violates RIP*, there exists  such that the procedure is
necessarily aborted in some round.

Thus, datasets that satisfy RIP* can be extrapolated - via the itera-

tive imputation procedure - into a belief that has a DAG representation.

Moreover, the DAG must be perfect and uniquely pinned down up to the

multiplicity allowed by Remark 1 - regardless of the arbitrary selections that

the procedure involves along the way (e.g. the initial condition 0). The re-

sult also means that any Bayesian-network representation (2) in which  is

perfect has a "missing data" foundation, were S in the set of maximal cliques
in . On the other hand, if a dataset violates RIP*, the procedure will be

aborted for some objective distribution. For instance, let  = {1 2 3 4}
and S = {{1 2} {2 3} {1 3 4}}. Note that S violates RIP*. For any initial
conditions of the iterative procedure, there is a distribution it will be aborted

in the second round for some objective distribution.

Remark 1 means that in a perfect DAG, the direction of causal links is

not identified: if  is perfect and , there is an equivalent perfect DAG 

for which . It follows that our imputation procedure cannot pin down the

direction of any causal link. This is consistent with the idea that causality

cannot be inferred from purely statistical data. There are natural economic

models in which the objective distribution is consistent with an imperfect

DAG - e.g., the "true DAG" in Example 3.3, given by (5). Proposition 3
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thus uncovers a sense in which the true conditional-independence structure

in Example 3.3 cannot be extrapolated from limited datasets.

Comments on RIP

RIP* states that the sets in S can be ordered in some sequence that will
satisfy RIP. However, the sequence in which the procedure considers the sets

in S is governed by the maximal-overlap criterion of Step 2. A priori, such
a sequence need not satisfy RIP. A key step in the proof is a recent theorem

due to Alon (2014), which assures that it will.

A natural variant on the imputation procedure would terminate it in the

earliest round  for which  =  . In other words, the DM would stop as

soon as his "edited" spreadsheet has an infinite set of rows for which no cell

has a missing value, instead of trying to "rectangularize the entire spread-

sheet". When RIP* is satisfied, this variation would not make any difference

(in particular, by the assumption that S does not include sets that contain
one another, the alternative procedure would terminate in exactly  − 1
rounds). When RIP* is violated, it is possible that under the alternative ter-

mination criterion, the imputation procedure will never be aborted, and cul-

minate in a belief with a DAG representation. However, the DAG will not be

essentially unique, as it will depend on arbitrary selections such as the initial

condition 0. For instance, let  = {1 2 3} and S = {{1 2} {1 3} {2 3}}.
The alternative procedure will terminate after one round, leading to a belief

with a perfect DAG representation  →  → , where any permutation of

   is possible.

In the Bayesian-network literature, perfect DAGs graphs are relevant be-

cause they enable efficient algorithms for computing Bayesian updating. A

common practice is to transform the DAG that represents a given statistical

environment into a (skeleton of a) perfect DAG (by linking all parents of any

given node, and eliminating the directionality of all links). RIP is then ob-

served as a property of the set of maximal cliques in the "transformed" graph.

This observation links the role of RIP in the Bayesian-network literature and
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in the present paper, because when the iterative imputation procedure is not

aborted, it implies that the DAG in the representation of subjective beliefs

is perfect.

5 Strategic Rationality

In Section 3 we saw that personal equilibrium is reducible to maximization

for some DAGs, whereas for others the notion of equilibrium is fundamental.

Let us attempt to systematize this distinction. For simplicity, assume that

the DM is uninformed ( = 0) and that (0) = ∅ (the DM believes his action

is not directly caused by any other variable).

Definition 5 A DAG  is strategically rational w.r.t a set of probability

distributions  if for every pair of distributions   ∈  and every  ,

( | ) = ( | ) implies ( | ) = ( | ).

Strategic rationality requires that if we modify the underlying objective

distribution  by changing () - without changing the stochastic mapping

from  to  - the DM’s perception of this mapping should remain unchanged

as well. When  is strategically rational, we can rewrite the definition of

personal equilibrium as a maximization problem, because ( | ) is inde-
pendent of the DM’s equilibrium behavior given by (). When strategic ra-

tionality is violated, we need to take () as given when calculating ( | ),
and therefore the notion of personal equilibrium is indispensable.

Proposition 4 Let  = 0. A DAG  satisfying (0) = ∅ is strategically

rational w.r.t a set of probability distributions  if and only if 0 ∈ ()

implies ( | ()∪{0}) = ( | ()) for every  ∈  ,  = 1  .
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Thus, a necessary and sufficient condition for strategic rationality is that

if the DM’s subjective DAG  omits  as an explanatory variable of some ,

then it must be the case that for every distribution in  ,  is independent of

 conditional on (). To illustrate this result, revisit the reverse causality

example of Section 3.1. The DM’s subjective DAG is 0→ 2→ 1, i.e. 0 = 

is omitted as an explanatory variable of 1. And yet, according to the true

DAG 0→ 2← 1, 1 is not independent of 0 conditional on 2. In contrast,

consider the case of fully coarse reasoning in Example 3.2, where the true

DAG is 0 2 ← 1. The DM’s subjective DAG is the empty graph, hence

it assumes that neither 0 nor 2 are direct causes of 1. Since the true DAG

has the property that 1 is independent of 0, the condition for strategic

rationality is satisfied.8

Simple strategically rational representations

The following is a simple special case of strategic rationality, which will serve

us in the remaining two sub-sections. Suppose all variables in  are indepen-

dent of . Then, w.l.o.g we can remove the DM’s action from his subjective

causal model, and redefine  as the subgraph over {1  } induced by the
original DAG over {0 1  }. Since the DM is uninformed,  = (1  ).

Define

() =

Y
=1

( | ()) (9)

The DM’s chooses  to maximizeX


()( ) (10)

8When  is the set of all distributions that are representable by (2) w.r.t some DAG,

the condition for strategic rationality can be described in terms of the structure of ∗

(using the concept of -separation - see any textbook on Bayesian networks, e.g. Pearl

(2000, Ch. 1.2)). Since this concept requires preliminary definitions and makes no further

appearance in this paper, I do not define it here.
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Thus, the DM chooses his action to maximize his expected payoff w.r.t his

distorted belief  over .

5.1 Rationalizable Predictions

Because the DM in our model has an imperfect understanding of correlation

structures, his prediction of some variable  may be sub-optimal even when

he is fully informed of −. By comparison, the traditional source of imper-

fect predictions in economics models is limited information. This raises the

following question: are the predictions of a DM with complete information

but incomplete understanding of the correlation structure distinguishable

from the predictions of a DM with complete understanding and incomplete

information?

Let be a DAG over {1  }. The DM tries to predict  given complete
information of −. The DM’s posterior over  is thus ( | −). In
contrast, consider a DM with rational expectations, who is only informed of

−{}, where  is some subset of {1  }. Such a DM’s posterior over 
would be ( | −{}).

Definition 6 A DAG  induces rationalizable predictions if there exists

 ⊆ {1  } such that ( | −) = ( | −{}) for every  and every .

When  is a linear ordering, it induces rationalizable predictions, where

 = {1  }. To take the other extreme, when  is empty, (1  ) =
(1) · · · (), in which case the DM’s prediction of  is ( | −) = (),

hence it is rationalizable by  = ∅.

Proposition 5 A DAG  induces rationalizable predictions if and only if it

is empty or a linear ordering.
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Thus, unless  is empty or a linear ordering, predictions on the basis of

an imperfect understanding of the correlation structure are distinguishable

from predictions based on rational expectations and imperfect information.

5.2 Performance-Based Rationality Ranking

As mentioned in the Introduction, a more complete graph corresponds in

some intuitive sense to "more rational" expectations. Is this intuition con-

sistent with ranking graphs in terms of the expected performance they lead

to?

Definition 7 Let 0 be two DAGs over {1  } that are not equivalent
in the sense of Definition 1. We say that  is more rational than 0 if for

every    0, the pair of inequalitiesX


()( ) 
X


()(
0 )X



0()(
0 ) 

X


0()(
0 )

implies X


()( ) 
X


()(0 )

That is, if  ranks  above 0 and 0 ranks 0 over , then the rational-

expectations ranking of the two actions necessarily sides with . Clearly, if

 is a linear ordering and 0 is not, the property holds trivially. The question

is whether there exist non-equivalent 0 that are not linear orderings, and

yet one is more rational than the other.

Proposition 6 Let 0 be two non-equivalent DAGs that are not linear

orderings. Then, neither DAG is more rational than the other.
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Thus, DMs characterized by different DAGs cannot be unambiguously

ranked in terms of their expected performance, unless exactly one of these

DAGs is a linear ordering.9 Note, however, that the ranking criterion adopted

in this sub-section is very strong, because the ranking is required to be con-

sistent across all  . It would be interesting to investigate weaker criteria

that are based on restricted domains of payoff functions and objective distri-

butions.

Mixed DAG representations

The simple representation (9) can be extended, by allowing the DM to be

characterized by a probability distribution  over DAGs , such that his

subjective belief (given the objective distribution ) over  is

() =
X


()() (11)

This fits cases in which the DM has uncertainty regarding the causal relations

in his environment, thus capturing gradations of belief biases such as omitting

or inverting links.

Definition 7 is extendible to such mixed DAG representations. Let ∗ be

a distribution that assigns probability one to linear orderings. Consider two

distributions  0 that satisfy  = ∗ + (1 − )0, where  ∈ (0 1). It is
easy to see that  is more rational than 0. Thus, mixed representations are

also useful because they enable us to order types according to a performance-

based rationality ranking.

Example 5.1: Partial cursedness (Eyster and Rabin (2005))

Let  = {1 2 3}. Consider the "coarse" DAG 1 → 2 → 3. The true

DAG is an extension of the coarse DAG into a linear ordering. Suppose

that the DM’s type is characterized by a mixture, denoted , that assigns

9Eyster and Piccione (2013) made an observation in the same spirit in the context of

their model of competitive asset markets in which traders hold diversely coarse theories.
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probability  to the true DAG and probability 1− to the coarse DAG. Then,

(1 2 3) = (1 2)[(3 | 1 2) + (1− )(3 | 1)]

where 1−  measures the degree of the DM’s underestimation of the corre-

lation between 3 and 2. This is the representation of "partial cursedness"

due to Eyster and Rabin (2005), for the simple case of an uninformed de-

cision maker. Thus, partially cursed DMs can be unambiguously ranked in

terms of their performance: a DM type with a higher  is "more rational".

This conclusion can be extended to the case of partially informed DMs.

6 Concluding Remarks

Part of the appeal of the Bayesian-network approach to modeling boundedly

rational expectations is that it establishes links with fields that are currently

far from microeconomic theory. For instance, in Section 3 I showed how the

formalism can capture fallacies of statistical inference - mistaking correla-

tion for causation, relying on observed correlations to evaluate interventions,

ignoring latent variables, etc. Statistics and econometrics teachers pour gal-

lons of sweat to "cure" students of such fallacies. Indeed, the impetus be-

hind part of the Bayesian-network literature (Pearl (2000)) is to systematize

correct reasoning about identification of causal relations (see Heckman and

Pinto (2013), Pearl (2013) and Dawid (2014), for recent reflections on this

role of graphical probabilistic models). Instead, I used the formalism posi-

tively, to model precisely the kind of systematic errors that statisticians warn

us against.

The framework also alludes to the (somewhat abandoned) tradition that

linked bounded rationality and artificial intelligence, which dates back to

Herbert Simon’s works (see Rubinstein (1993,1998), Radner and van Zandt

(2001), Cho (1995) or Jehiel and Samet (2005)). Bayesian networks are useful

for machine learning because they provide a platform for efficient computa-
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tion of probabilistic inferences; in particular, perfect DAGs with relatively

small cliques are appealing in this respect. This suggests an interesting di-

rection for future research. Just as the finite-automata formalism enabled

game theorists to incorporate complexity considerations into players’ choices

of strategies (as in Rubinstein (1986)) or beliefs (as in Eliaz (2003) and

Spiegler (2004)), the Bayesian-network representation of subjective beliefs

may enable researchers to introduce complexity of statistical inferences into

positive economic modeling.
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Appendix: Proofs

Proposition 2

Fix . The set of -perturbations of  is compact and convex. For a fixed  ∈
(0 1), let  be the set of profiles of conditional distributions (( | )∈)∈
such that ( | ) ≥  for every  . Define

() = argmax
∈

X


()
X


( | )
X


( |  )(  )

If ∗ is a -personal equilibrium, then (∗( | )∈)∈ ∈ (∗). Because

( |  ) is continuous function in ,  is continuous as well. Also,

the target function in the definition of  is linear in , hence () is a

convex set. Since the set  is compact and convex,  has a fixed point,

by Kakutani’s theorem. Therefore, a -personal equilibrium  exists for any

  0. By standard arguments, there is a convergent sequence of -personal

equilibria.
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Proposition 3

Part (i). I begin by stating a recent result due to Noga Alon. A sequence

of sets 0 1   is expansive if for every  ≥ 1,
¯̄
 ∩ (∪)

¯̄
≥

| ∩ (∪)| for all   .

Theorem 2 (Alon (2014)) Suppose that S satisfies RIP*. Then, every

expansive ordering of S satisfies RIP.

Suppose that S satisfies RIP*. Consider the sequence of sets  that are

introduced in round  until the procedure is aborted/terminated in some

round . By Step 2 of the procedure, the sequence 0 1   is ex-

pansive. By Theorem 2, it satisfies RIP. Thus, for every round  ≥ 1 of

the iterative imputation procedure,  ∩ −1 is weakly contained in some

 ∈ {0  −1}. My task is to show that for every , the procedure ter-
minates in round −1, such that the final belief −1 is given by (2), where
 is some perfect DAG over  whose set of cliques is S.
I will now prove by induction on  that  is consistent with a perfect

DAG . Let  = 1. Recall that 1 = 0 ∪ 1. Because S is a cover of 
and does not include sets that contain one another, 1−0 and 0−1 are

non-empty. The auxiliary beliefs 11 and 12 defined over 1 are given by

11(1) = (0)(1−0 | 1∩0)
12(1) = (1)(0−1 | 1∩0)

By the basic rules of conditional probability, we have

(0)(1−0 | 1∩0) = (1)(0−1 | 1∩0)

and therefore 1 is consistent with a DAG 1 defined over 1, where ̃

if and only if   ∈ 0 or   ∈ 1. For convenience, impose the following
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direction of links:  / for every  ∈ 0  ∈ 1. The DAG 1 has two cliques,

0 and 1.

Consider the initial condition (−1 −1) of the  round,   1. The

inductive hypothesis is that −1 has a Bayesian-network representation with

a perfect DAG −1 over −1, where the set of maximal cliques of −1 is

{0 1  −1}. By RIP,  ∩−1 is weakly contained in one of the sets

0 1  −1. By the assumption that no set in S contains one another,
−1 −  and  − −1 are non-empty. The auxiliary beliefs 1 and 2

over  = −1 ∪  are given by

1() = −1(−1)(−−1 | ∩−1) (12)

2() = ()
−1(−1− | ∩−1)

By the inductive step, −1 has a Bayesian-network representation with a

perfect DAG over −1. Therefore, the term

−1(−1)(−−1 | ∩−1) (13)

is a Bayesian-network representation with a perfect DAG  over −1∪,

where  is a maximal clique in , and for every  ∈ −1  ∈ , ̃ only

if  or  are in  ∩−1.

The expressions in (12) can be rewritten as

1() = ()
−1(−1) · 1

(∩−1)
(14)

2() = ()
−1(−1) · 1

−1(∩−1)

I will show that (∩−1) = −1(∩−1). I use the simplifying notation

∩−1 =  , −1 = , −1 = . Thus, for every 0 ⊂ −1, −1( 0)

45



is denoted ( 0). Observe that

( ) =
X
0

(  
0
− )

We have established that  is weakly contained in some clique  of . Re-

mark 1 implies that we can take to be an ancestral clique w.l.o.g. Therefore,

(  
0
− ) = ( ) · (0− |  ) ·

Y
∈−

(0 | ()∩  0()− )

When we sum this expression over 0, we obtain

( )
X
0
−

(0− |  )
X
0
−

Ã Y
∈−

(0 | ()∩  0()∩(− ) 0()−)
!

which is equal to ( ). We have thus established that (∩−1) =

−1(∩−1).

Therefore, the procedure is not aborted in round , and  is given by

(13). We conclude that the procedure necessarily terminates in round −1.
By construction, the set of maximal cliques in −1 is S, which means that
−1 is unique in the sense of Remark 1.

Part (ii). Suppose that S violates RIP*. Note that This means  contains

at least three elements. Assume that the procedure is never aborted. Then,

it terminates in round  − 1, for any . Recall that the sequence 0 1

trivially satisfies RIP. Let   1 be the earliest round for which  ∩ −1

is not weakly contained in any of the sets 0 1  −1. By the sufficiency

result, −1 ∈ ∆(−1) is consistent with a perfect DAG over −1, where

the set of maximal cliques of  is {0 1  −1}.
As in the case of Part (), denote  ∩ −1 =  , −1 =  . We have

established that  contains at least two elements, denoted 1 and 2, which do

not belong to the same clique. Let  denote the maximal clique in  that
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contains the node ,  = 1 2. Moreover, since  is perfect, 1 allows us to

set 1 to be ancestral in , w.l.o.g. For the same reason, we can set w.l.o.g

 ∩1 to be -maximal in 1, and  ∩2 to be -minimal in 2, such that
for each  = 1 2,  is the -maximal element in  ∩ . Let us establish the

following properties: () there exists an element in 2 −  , denoted 3, such

that 32; () 1 /2. Property () follows directly from the assumption that

no set in S contains one another, as well as from the designation of  ∩ 2
to be -minimal in 2. As to property (), assume that 12. Then, since

2 is a clique in which  ∩2 is -minimal, 2 for every  ∈ 2−  . And

since  is perfect, it follows that 1 for every  ∈ 2 −  , which would

mean that the set {1 2} ∪ (2 −  ) is a clique, contradicting the fact that

1 and 2 do not belong to the same clique. Note that since 1 is ancestral,

is impossible that 31. We have thus established the existence of two nodes

1 2 ∈  and a third node 3 ∈  , such that 23, 1 /3 and 3 /1.

The auxiliary distributions 1 and 2 are given by (14). I now show that

there exists  such that (∩−1) 6= −1(∩−1), which would mean

that the procedure aborts in round . To use our simplified notation, we need

to show that ( ) 6= ( ) for some . We can assume w.l.o.g that  has

the feature that every variable in  − {1 2 3} is distributed independently
of all other variables. Then, ( ) can be written as

( ) = (−{12}) · (1) ·
X
03

(03 | (3)∩{1})(2 | 03)

whereas ( ) can be written as

( ) = (−{12}) · (1) ·
X
03

(03 | (3)∩{1})(2 | 03 1)

Set  such that (2 | 03) 6= (2 | 03 1) for some 1 2 
0
3. Then,

( ) 6= ( ), such that the procedure will abort in round  for this

, a contradiction.
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Proposition 4

Recall that when  = 0, we denote  = 0,  = (1  ). A DM with some

DAG  satisfying (0) = ∅ chooses  to maximize

( | ) = (1   | 0)

=

(0) ·
Y
=1

( | ())

X
010

(0) ·
Y
=1

(0 | ()∩{0} 0()−{0})

=

Y
=1

( | ())

X
010

Y
=1

(0 | ()∩{0} 0()−{0})

Recall that we are considering a modification of  that change () for some

, while leaving ( | ) intact for all  . Therefore, if 0 ∈ (), the terms

( | ()) and (0 | ()∩{0} 0()−{0}) are unchanged; while if 0 ∈ (),

these terms can be written as follows:

(0 | ()∩{0} 0()−{0}) = (0 | 0()) =
X

00
0

(000)(
0
 | 000 0())

Recall that (0 | 000 0()) is unchanged. If this probability is not constant
in 000, we can find a modification of (

0
0) for some values of 

0
0 such that the

expression for ( | ) will change. In contrast, if the probability is constant
in 000 (i.e., (

0
 | 000 0()) = (0 | 0()), the expression for ( | ) is

necessarily unchanged.

Proposition 5

We already established the "if" part before the statement of the result. Let

us turn to the "only if" part. Assume that  is neither empty nor a linear
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ordering. Therefore,  ≥ 3.
Suppose first that  is intransitive. Then, there are three variables,

indexed w.l.o.g 1 2 3, such that 12, 23 and 1 /3. Let us restrict atten-

tion to distributions  for which ({123} | −{123}} is constant - i.e., the
variables 1 2 3 are independent of all other variables. This means that

all our formulas for conditional probabilities can be written as if the only

variables are 1 2 3. In particular, (2 | −2) = (2 | 1 3) and
(2 | −{2}) = (2 | ∩{13}). Thus:

(2 | 1 3) =
(1)(2 | 1)(3 | 2)P
02
(1)(

0
2 | 1)(3 | 02)

=
(2 | 1)(3 | 2)P
02
(02 | 1)(3 | 02)

= (2 | 1) · 1P
02
(02 | 1)

³
(3|02)
(3|2)

´
= (3 | 2) · 1P

02
(3 | 02)

³
(02|1)
(2|1)

´
The only possibilities for  we need to consider are {1}, {3} and {1 3}.

It is clear that we can find  with non-constant (2 | 1) and non-constant
(3 | 2), such that the denominators in the last two expressions are different
from 1, which implies (2 | 1 3) 6= (2 | 1) and (2 | 1 3) 6= (3 |
2). Finally, we need to compare (2 | 1 3) to

(2 | 1 3) = (1)(2 | 1)(3 | 1 2)P
02
(1)(

0
2 | 1)(3 | 1 02)

=
(2 | 1)(3 | 1 2)P
02
(02 | 1)(3 | 1 02)

Once again, it is clear we can find  for which (3 | 1 2) does not coincide
with (3 | 2), such that the two expressions are different.
Now suppose that is transitive, but not anti-symmetric. Then, {1  }

can be partitioned into  ≥ 2 subsets {1  } such that  is complete

and transitive when restricted to any given . Let () denote the partition

cell to which  belongs. Take   such that () 6= () and |()| ≥ 2. Since
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 is not empty, there must exist such  . Then, ( | −) = ( |
()−{}) whereas ( | −) = ( | ()−{}) Since () 6= () and

()− {} 6= ∅, we can find  for which ( | ()−{}) 6= ( | ()−{}).

Proposition 6

Assume the contrary - i.e., that there exist non-equivalent 0 that are

not linear orderings, such that  is more rational than 0. For notational

convenience, enumerate  = {1  }. Fix  and denote  = ,  = 0.

Both  and  are probability vectors of length . Define the length- vector

 as follows. For each , () = ( )− (0 ).

Consider the × 3 matrix

 =

(1) −(1) −(1)
(2) −(2) −(2)
...

...
...

() −() −()

Let  = (−−−) be a vector in R3, where   0 is arbitrarily small. The
assumption that  is more rational than 0 thus implies that there exists no

 that satisfies the inequality    . By Farkas’ Lemma, this means that

there is a vector   0 in R3, such that there  = 0 (and since   0,

  0). Thus,

() =
2

1
() +

3

1
()

for every . Since
P

 () =
P

 () =
P

 () = 1 by assumption, 
1 =

2 + 3, such that the claim holds with  = 3(2 + 3).

We have thus established that for any , we can find  ∈ (0 1) such that
 =  + (1 − )0. In particular, for any  that is consistent with ,

 =  and so the equation reduces to  = 0. Likewise, for any  that

is consistent with 0, 0 =  and again we obtain  = 0. It follows

that the sets of distributions that are consistent with  and 0 are identical,

contradicting the assumption that  and 0 are not equivalent.
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