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Abstract

This paper analyzes optimal unemployment insurance (UI) over the business cycle. We
consider a general matching model of the labor market. For a given UI, the economy is effi-
cient if tightness satisfies a generalized Hosios condition, slack if tightness is too low, and tight
if tightness is too high. The optimal UI formula is the sum of the standard Baily-Chetty term,
which trades off search incentives and insurance, and an externality-correction term, which is
positive if UI brings the economy closer to efficiency and negative otherwise. Our formula
therefore deviates from the Baily-Chetty formula when the economy is inefficient and UI af-
fects labor market tightness. In a model with rigid wages and concave production function, UI
increases tightness; hence, UI should be more generous than in the Baily-Chetty formula when
the economy is slack, and less generous otherwise. In contrast, in a model with linear produc-
tion function and Nash bargaining, UI increases wages and reduces tightness; hence, UI should
be less generous than in the Baily-Chetty formula when the economy is slack, and more gen-
erous otherwise. Deviations from the Baily-Chetty formula can be quantitatively large using
realistic empirical parameters.
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1 Introduction

Following Baily [1978], we analyze the optimal provision of unemployment insurance (UI) when

individuals are risk averse, cannot insure themselves against unemployment, and job-search effort

is not observable. UI helps workers smooth consumption when they become unemployed, but it

also increases unemployment by discouraging job search. In Baily’s model, optimal UI satisfies a

simple and robust formula ensuring that the marginal benefit of smoothing consumption equal the

marginal cost of increasing unemployment [Baily, 1978; Chetty, 2006a]. A limitation of Baily’s

model, however, is that the job-finding rate per unit of search effort does not depend on UI (it is a

parameter of the model). In this paper, we allow the job-finding rate to depend on UI and generalize

the Baily-Chetty formula accordingly. Our formula sheds light on the controversial debate about

the optimal design of UI over the business cycle.

We begin in Section 2 by laying out a static labor market model with matching frictions and

endogenous search effort. The production function and wage-determination mechanism are com-

pletely general. The job-finding rate depends on labor market tightness, which is determined in

equilibrium as a function of UI. For a given UI, there is an optimal level of labor market tightness

that maximizes expected welfare. We define the business cycle relative to this optimal tightness.

The optimal tightness is given by a condition that generalizes the Hosios [1990] condition to a

situation with risk aversion and imperfect insurance. We express this generalized Hosios condi-

tion in terms of estimable statistics so that the position in the cycle can be empirically evaluated.

When the generalized Hosios condition holds, the marginal effect of UI on tightness has no im-

pact on welfare and optimal UI is given by the conventional Baily-Chetty formula. Hence, the

Baily-Chetty formula holds in an economy without business cycles.

In Section 3 we consider an economy with business cycles. The generalized Hosios condition

may not hold and the economy may be inefficient. When the economy is inefficient, UI may

also affect welfare by changing tightness. When the economy is slack, more UI is desirable if UI

increases tightness and less UI is desirable if UI decreases tightness.

First, we show that the effect of UI on tightness is measured by the wedge between microe-

lasticity and macroelasticity of unemployment with respect to UI. The microelasticity accounts

only for the response of job search to UI while the macroelasticity also accounts for the response
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of the job-finding rate to UI. Empirically, the microelasticity εm is the elasticity of the unem-

ployment probability of a worker whose individual benefits change while the macroelasticity εM

is the elasticity of aggregate unemployment when benefits change for all workers. When UI in-

creases tightness, it increases the job-finding rate, which stimulates employment, dampening the

negative microeffect of UI on unemployment. In that case, the macroelasticity is smaller than

the microelasticity. Conversely, when UI decreases tightness, the macroelasticity is larger than the

microelasticity. This property offers an empirical avenue to determine the effect of UI on tightness.

Next, we show that the optimal UI formula is a sum of the standard Baily-Chetty term and an

externality-correction term. The externality-correction term is equal to the deviation from the gen-

eralized Hosios condition times the wedge between micro- and macroelasticity. The externality-

correction term is positive if UI brings the economy closer to efficiency, and negative if it brings

the economy further from efficiency. The externality-correction term is large (in absolute value)

when the economy is far from efficiency, either very slack or very tight, and when UI has a large

effect on tightness. Following the Baily-Chetty tradition, we express the optimal UI formula in

terms of estimable sufficient statistics.

To illustrate the effect of UI on employment and labor market tightness, we represent the equi-

librium as the intersection of a labor supply curve and a labor demand curve in an (employment,

labor market tightness) plane. For a given tightness, the labor supply indicates the number of

workers who find a job when they search optimally and the labor demand indicates the number

of workers that firms desire to hire to maximize profits. The labor supply is upward sloping and

the labor demand is horizontal or downward sloping. An increase in UI reduces search efforts

and shifts the labor supply curve inward. The microelasticity measures the amplitude of the shift.

The labor demand curve may also shift if wages respond to UI. The macroelasticity measures the

horizontal distance between the old and the new equilibrium.

In Section 4 we derive the effect of UI on tightness in three specific matching models that

illustrate the range of possibilities. First, we consider the model with rigid wage and concave

production function of Michaillat [2012]. UI increases tightness so the microelasticity is larger

than the macroelasticity. In our equilibrium diagram, the concavity of the production function

generates a downward-sloping labor demand curve. Hence, the inward labor supply shift after an

increase in UI leads to an increase in tightness along the labor demand curve. Since UI increases
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tightness, optimal UI should be more generous than in the Baily-Chetty formula when the economy

is slack and less generous when the economy is tight. Furthermore, the wedge between micro- and

macroelasticity grows with slack. Hence, UI should be much more generous than in the Baily-

Chetty formula in a very slack economy and only moderately less generous than Baily-Chetty in

very tight economy. Second, we consider the model with rigid wage and linear production of

Hall [2005]. Tightness is determined by the rigid wage independently of UI. As a result, UI has

no impact on tightness, micro- and macroelasticities are identical, and the externality-correction

term is zero. The Baily-Chetty formula therefore applies whether the economy is slack or tight.

Third, we consider a conventional model with Nash bargaining over wages and linear production

function. UI decreases tightness so the microelasticity is smaller than the macroelasticity. In our

equilibrium diagram, the linearity of the production function generates a horizontal labor demand

curve, which determines equilibrium tightness by itself. Higher UI increases the outside option

of workers, which increases the Nash bargained wage and shifts the labor demand downward,

reducing tightness. Since UI decreases tightness, optimal UI should be less generous than in the

Baily-Chetty formula when the economy is slack, and more generous when the economy is tight.

In Section 5 we discuss existing empirical evidence on the sufficient statistics in our formula

and particularly the wedge between micro- and macroelasticity, which is central to our analysis.

We show how our optimal UI formula expressed in terms of estimable sufficient statistics can

be implemented to provide quantitative guidance. To simplify exposition, Sections 2, 3, and 4

consider a static model. However, our formula carries over with minor modification to a dynamic

model in which jobs are continuously created and destroyed. We use this extended formula for

the numerical illustration. Because of lack of definitive evidence on the sign and magnitude of

the wedge between micro- and macroelasticity, our illustration considers a range of scenarios.

We show that the cyclical correction to the Baily-Chetty formula can be quantitatively large for

plausible estimates of the sufficient statistics.

Section 6 concludes with two points. First, we emphasize that obtaining more empirical evi-

dence on the wedge between micro- and macroelasticity is crucial to design optimal UI over the

business cycle. Second, we conjecture that our model and methodology could be extended to

analyse other policies over the business cycle, such as public-good spending or income taxation.
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2 Optimal UI with Perfect Stabilization

In this section we introduce the matching model on which we base our analysis. We characterize

optimal UI when the government perfectly stabilizes the economy. By perfectly stabilizing the

economy, we mean choosing the wage level that maximizes expected welfare. With perfect stabi-

lization, optimal UI satisfies the conventional Baily [1978]-Chetty [2006a] formula. The optimal

wage satisfies a generalization of the Hosios [1990] condition.

2.1 Matching Model

For simplicity of exposition, the model is static.1 The economy is composed of a measure 1 of

identical workers and a measure 1 of identical firms.

Labor Market. There are matching frictions on the labor market. Initially, all workers are un-

employed and search for a job with effort e. Each firm posts o vacancies to recruit workers. The

number l of workers who find a job is given by a matching function taking as argument aggregate

search effort and vacancy: l = m(e, o). The function m has constant returns to scale, is differen-

tiable and increasing in both arguments, and satisfies the restriction that m(e, o) ≤ 1 as the pool of

potential workers has measure 1.

Labor market tightness is defined as the ratio of vacancies to aggregate search effort: θ ≡ o/e.

Since the matching function has constant returns to scale, labor market tightness determines the

probabilities that a unit of search effort is successful and a vacancy is filled. A jobseeker finds a job

at a rate f(θ) ≡ m(e, o)/e = m(1, θ) per unit of search effort. Thus, a jobseeker searching with

effort e finds a job with probability e ·f(θ). In the conventional Baily-Chetty model the job-finding

rate per unit of effort, f , is a parameter. In our model, f varies with labor market tightness, which

is determined in equilibrium as a function of UI. The property that f varies with UI is critical: it

allows us to extend the Baily-Chetty analysis of optimal UI to an economy with business cycles.

A vacancy is filled with probability q(θ) ≡ m(e, o)/o = m (1/θ, 1) = f(θ)/θ. The function f

is increasing in θ and the function q is decreasing in θ. That is, when the labor market is slacker, the

1The continuous-time dynamic version of the model generates virtually the same results. It is described in the
appendix and used for the quantitative exploration of Section 5.
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job-finding rate per unit of effort is lower but the probability to fill a vacancy is higher. We denote

by 1−η and−η the elasticities of f and q: 1−η ≡ θ ·f ′(θ)/f(θ) > 0 and η ≡ −θ ·q′(θ)/q(θ) > 0.

Firms. The representative firm hires l workers, paid a real wage w, to produce a consumption

good. As in Michaillat and Saez [2013], we assume that some workers are engaged in production

while others are engaged in recruiting. A number n < l of workers are producing an amount

y(n) of good, where the production function y is differentiable, increasing, and concave. Posting

a vacancy requires a fraction r > 0 of a worker’s time. Thus, l − n = r · o = r · l/q(θ) workers

are recruiting a total of l workers so that l · [1− r/q(θ)] = n. Hence, the numbers of workers and

producers are related by

l = (1 + τ(θ)) · n, (1)

where τ(θ) ≡ r/ (q(θ)− r) measures the number of recruiters for each producer. The function τ

is positive and strictly increasing when q(θ) > r, which holds in equilibrium. It is easy to show

that the elasticity of τ is θ · τ ′(θ)/τ(θ) = η · (1 + τ(θ)).

The firm sells its output on a perfectly competitive market. Given θ and w, the firm chooses n

to maximize profits π = y(n)− (1 + τ(θ)) · w · n. The optimal number of producers satisfies

y′(n) = (1 + τ(θ)) · w. (2)

At the optimum, the marginal revenue and marginal cost of hiring a producer are equal. The

marginal revenue is the marginal product of labor, y′(n). The marginal cost is the real wage, w,

plus the marginal recruiting cost, τ(θ) · w.

Government. The UI system provides employed workers with ce consumption goods and unem-

ployed workers with cu < ce consumption goods. Job search effort is not observable, so the receipt

of UI cannot be contingent on search. We introduce three measures of the generosity of UI. The

UI system is more generous if the consumption gain from work ∆c ≡ ce− cu decreases, the utility

gain from work ∆v ≡ v(ce) − v(cu) decreases, or the implicit tax rate on work T ≡ 1 − (∆c/w)

increases. When a jobseeker finds work, she keeps a fraction 1 − T of the wage and gives up a
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fraction T of the wage since UI benefits are lost. Hence, we interpret T as the replacement rate of

the UI system and refer to it as such.2 The government must satisfy the resource constraint

y(n) = (1− l) · cu + l · ce. (3)

If firms’ profits π are equally distributed, the UI system can be implemented with a UI benefit b

funded by a tax on wages so that (1− l) · b = l · t and cu = π+ b and ce = π+w− t. If profits are

unequally distributed, a 100% tax on profits rebated lump sum implements the same allocation.

Workers. Workers cannot insure themselves against unemployment in any way, so they con-

sume ce and cu. Utility from consumption is v(c). The function v is twice differentiable, strictly

increasing, and concave. We denote by ρ the coefficient of relative risk aversion at ce: ρ ≡

−ce · v′′(ce)/v′(ce). Disutility from job search is k(e). The function k is twice differentiable,

strictly increasing, and convex.

Given θ, ce, and cu, a representative worker chooses effort e to maximize expected utility

l · v(ce) + (1− l) · v(cu)− k(e) (4)

subject to the matching constraint

l = e · f(θ), (5)

where l is the probability to be employed and 1 − l is the probability to remain unemployed. The

optimal search effort satisfies

k′(e) = f(θ) · [v(ce)− v(cu)] . (6)

At the optimum, the marginal utility cost and marginal utility gain of search are equal. The

marginal utility cost is k′(e). The marginal utility gain from search is the probability f(θ) that

2In reality, the UI system provides a benefit b funded by a tax t on work so that ∆c = w− t−b and T = (t+b)/w.
The conventional replacement rate in the literature is b/w; it ignores the tax t and is not exactly the same as T .
However, unemployment is small relative to employment so t� b and T ≈ b/w.
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a unit of effort leads to a job times the utility gain v(ce)− v(cu) from having a job.

Equilibrium. An equilibrium is a collection of variables {e, l, n, θ, w, ce,∆c} such that workers

maximize utility given tightness and UI, firms maximize profits given tightness and wage, and

the government satisfies a resource constraint. In equilibrium, the seven variables satisfy five

equations: (1), (2), (3), (5), and (6).

Since there are two more variables than equations, two variables are indeterminate. One vari-

able is the consumption gain from work, ∆c. In the rest of the paper, ∆c is determined by an

optimal UI formula when the government chooses the generosity of UI to maximize welfare. The

other variable is the wage, w. As is well-known, the indeterminacy of w arises because of the

matching frictions on the labor market.3 We consider three different resolutions to the indeter-

minacy. In Section 2, the government chooses w to bring the economy to efficiency, and w is

determined by an optimality condition that generalizes the Hosios condition to an environment

with risk aversion and imperfect insurance.4 In Section 3, w cannot be controlled by the govern-

ment; instead, w follows a completely general wage schedule. In Section 4, we consider various

models in which w follows specific wage schedules, arising for instance from bargaining.

We solve for the equilibrium taking as given the value w of the real wage and the values ∆c

and ce of the UI system. Search effort is given by e = es(f(θ),∆c, ce), where es is the function

implicitly defined by (6). The function es increases with θ and ∆c. The number of producers, n, is

given by (1) once l and θ are known.

We determine employment, l, and labor market tightness, θ, as the intersection of a labor supply

and a labor demand curve, as depicted on Figure 1(a). We define the labor supply function ls by

ls(θ,∆c, ce) = es(f(θ),∆c, ce) · f(θ). (7)

The labor supply gives the number of workers who find a job when workers search optimally for a

given labor market tightness and UI system. The labor supply increases with θ and with ∆c. The

labor supply is higher when UI is less generous because search efforts are higher. The labor supply

3Hall [2005] exploits this indeterminacy to introduce rigid wages in a matching model. Michaillat and Saez [2013]
discuss this indeterminacy in detail.

4The resulting equilibrium is only constrained efficient because the government cannot remediate the matching
frictions or the moral hazard problem.
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is higher when the labor market is tighter because the job-finding rate per unit of effort is higher

and search efforts are higher. We define the labor demand function ld implicitly by

y′
(
ld(θ, w)

1 + τ(θ)

)
= w · (1 + τ(θ)) . (8)

The labor demand gives the number of workers hired by firms when firms maximize profits for a

given labor market tightness and real wage.

In equilibrium, labor market tightness equalizes labor supply to labor demand:

ls(θ,∆c, ce) = ld(θ, w). (9)

The equilibrium is represented in Figure 1(a) in a (l, θ) plane. The labor supply curve is necessarily

upward sloping, and it shifts outwards when UI falls. The labor demand curve may be horizontal

or downward sloping, and it may or may not respond to UI. The intersection of the supply and

demand curves gives equilibrium labor market tightness and employment. The figure also shows

the composition of employment between producers and recruiters. Producers are only a fraction

1/(1 + τ(θ)) of all workers, and recruiters are workers who are not producers. The share of

recruiters grows with θ. Finally, unemployment is the number of labor force participants who did

not find employment.5 The representation in the (l, θ) plane will be useful to understand the key

economic mechanisms behind our analysis.6

2.2 Microelasticity of Unemployment and Discouraged-Worker Elasticity

We measure how workers’ search effort responds to a change in UI using an elasticity concept:

DEFINITION 1. The microelasticity of unemployment with respect to UI is

εm ≡ ∆c

1− l
· ∂l

s

∂∆c

∣∣∣∣
θ,ce
.

5Michaillat and Saez [2013] provide more details about the equilibrium concept and offer a complete characteriza-
tion of the equilibrium and its properties, in a model with inelastic search effort.

6More generally, Michaillat [2014] and Michaillat and Saez [2013] show that this equilibrium representation is
useful to study the cyclical properties of a number of macroeconomic policies, including public employment or the
provision of public good.
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Figure 1: Equilibrium in an (employment, labor market tightness) plane

The microelasticity measures the percentage increase in unemployment when the consump-

tion gain from work decreases by 1%, taking into account jobseekers’ reduction in search effort

but ignoring the equilibrium adjustment of labor market tightness. The microelasticity is com-

puted keeping ce constant, which means that ce does not adjust to meet the government’s budget

constraint when ∆c varies. The microelasticity can be estimated by measuring the reduction in

the job-finding probability of an unemployed worker whose unemployment benefits are increased,

keeping the benefits of all other workers constant. In Figure 1(b), the microelasticity measures

the shift of the labor supply curve after a change in UI. This shift is caused by a change in search

efforts following the change in UI.

In equilibrium a change in UI may also affect tightness, which affects workers’ search efforts.

We measure how search efforts respond to a change in labor market conditions with an elasticity:

DEFINITION 2. The discouraged-worker elasticity is

εd ≡ f(θ)

e
· ∂e

s

∂f

∣∣∣∣
∆c,ce

.

The discouraged-worker elasticity measures the percentage increase in search effort when the

job-finding rate per unit of effort increases by 1%, keeping UI constant. If εd > 0, workers search

less when the job-finding rate decreases; hence, εd > 0 captures the discouragement of jobseekers

when labor market conditions deteriorate.
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The discouraged-worker elasticity is closely related to two labor supply elasticities:

LEMMA 1. The microelasticity of unemployment with respect to UI satisfies

εm =
l

1− l
· ∆c · v′(cu)

∆v
· εd.

Proof. Consider a infinitesimal change d∆c, keeping ce and θ constant. This change leads to

changes d∆v, dl and de. As ∆v = v(ce)− v(cu) and ce is constant, we have d∆v = −v′(cu)dcu =

v′(cu)d∆c. Since the optimal search effort satisfies, k′(e) = f ·∆v, the elasticity of e with respect

to ∆v is the same as the elasticity of e with respect to f . Hence, de = εd · (e/∆v) · d∆v =

εd · (e/∆v) · v′(cu) · d∆c. As l = e · f(θ) and θ is constant, we have dl = (l/e) · de. By definition,

εm = [∆c/(1− l)] · dl/d∆c, which yields the desired result.

LEMMA 2. The elasticity of labor supply with respect to labor market tightness satisfies

θ

l
· ∂l

s

∂θ

∣∣∣∣
∆c,ce

= (1 + εd) · (1− η)

Proof. Obvious because ls(θ,∆c, ce) = e ·f(θ), εd is the elasticity of e with respect to f , and 1−η

is the elasticity of f with respect to θ.

2.3 Formulas for Jointly Optimal UI and Labor Market Tightness

We determine the optimal policy when the government can simultaneously stabilize the economy

and provide UI. By stabilizing the economy, we mean choosing the wage paid by firms to determine

the level of labor demand and thus the level of employment and labor market tightness prevailing

in equilibrium. As equation (9) shows that for a given UI system there is a one-to-one relationship

between wage and equilibrium labor market tightness, we consider that the government can choose

directly equilibrium labor market tightness. Taking this perspective greatly simplifies the analysis.

The wage level that implements a level of tightness is found with (9). Assuming that the gov-

ernment can stabilize the economy may be unrealistic, but the results of this analysis are a useful

building block for the subsequent analysis where the government cannot stabilize the economy.

The government chooses ce, ∆c, and θ to maximize social welfare (4) subject to the budget
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constraint, given by (3), the matching frictions on the labor market, given by (1) and (5), and

workers’ optimal search choice, given by (6). Proposition 1 characterizes the optimal policy:

PROPOSITION 1. The optimal UI policy (at constant θ) satisfies the Baily-Chetty formula

w −∆c

∆c
=

l

εm
·
(
v′(cu)

v′(ce)
− 1

)
. (10)

The optimal labor market tightness (at constant ∆v) satisfies the generalized Hosios condition

∆v

φ · w
+

(
1− ∆c

w

)
·
(
1 + εd

)
− η

1− η
· τ(θ) = 0, (11)

where φ satisfies

1

φ
=

(
l

v′(ce)
+

1− l
v′(cu)

)
. (12)

Proof. We write the Lagrangian of the government’s problem as

L = l · v(ce) + (1− l) · v(cu)− k(e)︸ ︷︷ ︸
SW

+φ · [y(n)− l · ce − (1− l) · cu]︸ ︷︷ ︸
X

,

where φ is the Lagrange multiplier on the resource constraint, SW is social welfare, and X is

the net budget of the government. We first determine φ. Consider infinitesimal changes dce =

dc/v′(ce) and dcu = dc/v′(cu) keeping θ constant. The changes have no first-order impact on

∆v = v(ce) − v(cu) and hence no impact on e and l. The effect on welfare is dSW = l · v′(ce) ·

dce + (1 − l) · v′(cu) · dcu = dc. The effect on the budget is dX = −l · dce − (1 − l) · dcu =

−dc · {[l/v′(ce)] + [(1− l)/v′(cu)]}. At the optimum dL = dSW +φ · dX = 0, which establishes

equation (12).

Next, consider an infinitesimal change d∆c keeping ce and θ constant. This change leads to

changes dl and de. Given that l = e · f(θ), the effect on welfare is dSW = [f(θ) ·∆v − k′(e)] ·

de− (1− l) · v′(cu) · d∆c = −(1− l) · v′(cu) · d∆c because workers choose e optimally. The effect

on the government’s budget is dX = {[y′(n)/(1 + τ(θ))]−∆c} · dl+ (1− l) · d∆c. By definition

of the microelasticity, dl = [(1− l)/∆c] · εm ·d∆c. Using (2), we can write w = y′(n)/(1 + τ(θ)).
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Thus, the first-order condition ∂L/∂∆c = 0 implies that

0 = −v′(cu) · (1− l) + φ · (1− l) + φ · (1− l) · w −∆c

∆c
· εm.

The sum of the first two terms reflects the welfare effect of transferring resources from the unem-

ployed to the employed by changing ∆c. The third term captures the budgetary effect of changing

employment through the response of job search to a change in ∆c. Rearranging the terms and

dividing by φ · (1− l) · εm yields

w −∆c

∆c
=

1

εm
·
[
v′(cu)

φ
− 1

]
.

Equation (12) implies that

v′(cu)

φ
− 1 = l ·

[
v′(cu)

v′(ce)
− 1

]
. (13)

Combining the last two equations yields the Baily-Chetty formula.

Last, consider an infinitesimal change dθ keeping ce and ∆c constant. This change leads to

changes dl, df , and de. The effect on welfare is dSW = ∆v · (l/f) · df because workers choose

e optimally. By definition, df = (1 − η) · (f/θ) · dθ and dSW = ∆v · (1 − η) · (l/θ) · dθ. The

effect on the budget is dX = {[y′(n)/(1 + τ(θ))]−∆c} · dl − [y′(n)/(1 + τ(θ))] · n · dτ . By

definition, dτ = η · (1 + τ(θ)) · (τ(θ)/θ) · dθ. Given l = ls(θ,∆c, ce), Lemma 2 implies that dl =

(1+εd)·(1−η)·(l/θ)·dθ. We rewrite dX = (w−∆c)(1+εd)·(1−η)·(l/θ)·dθ−w·l·η·(τ(θ)/θ)·dθ.

Thus, the first-order condition ∂L/∂∆c = 0 implies

0 =
l

θ
· (1− η) ·∆v + φ · l

θ
· (1− η) · (1 + εd) · (w −∆c)− φ · l

θ
· w · η · τ(θ).

The first term, proportional to ∆v, is the welfare gain from increasing employment by increasing

tightness. The welfare effect includes solely the job-finding rate channel and ignores the employ-

ment effect due to a change in effort as emaximizes individual expected utility (a standard envelope

theorem argument). The second term, proportional to w−∆c, captures the budgetary gain from in-

creasing employment by increasing tightness. Each new job created increases government revenue

12



by w−∆c. For the second term, the increase in employment results both from a higher job-finding

rate and from a higher search effort as no envelope theorem applies in that case. The term (1 + εd)

captures the combination of the two effects. The third term is the loss in resources y(n) due to a

higher tightness. Increasing tightness requires to devote a larger share of the workforce to recruit-

ing and a smaller share to producing. Dividing the expression by φ · w · (l/θ) · (1 − η) yields the

generalized Hosios condition.

Three points are worth making about Proposition 1. First, the Baily-Chetty formula gives the

optimal budget-balanced UI system when labor market tightness is fixed, regardless of whether

tightness is optimal or not. It captures the trade-off between the need for insurance, measured by

v′(cu)/v′(ce) − 1, and the need for incentives to search, captured by εm, exactly as in the analysis

of Baily [1978] and Chetty [2006a] with fixed job-finding rate per unit of search effort.

Second, the generalized Hosios condition determines the optimal labor market tightness, θ, for

a given UI system, ce and ∆c. More precisely, it provides the value of θ that maximizes welfare

assuming that ce and ∆c adjust to maintain budget balance while keeping ∆v constant.7 If workers

are risk neutral, the Baily-Chetty formula implies that it is optimal to set w = ∆c and provide no

UI. In that case, ∆v/(φ · w) = 1 and the generalized Hosios condition simplifies to

η

1− η
· τ(θ) = 1.

This condition is another formulation of the standard condition of Hosios [1990] for efficiency in

a matching model with risk-neutral workers. With risk aversion and UI, formula (11) generalizes

the Hosios condition. Assuming 1− l� l ≈ 1 and using a second-order expansion for v yields

η

1− η
· τ(θ) =

1

φ
· ∆v

w
+

(
1− ∆c

w

)
· (1 + εd) ≈ 1 + εd ·

(
1− ∆c

w

)
+
ρ

2
· ∆c

w
· ∆c

ce
,

As τ(θ) is increasing in θ and εd ≥ 0, the presence of insurance and risk aversion raises the optimal

θ relative to the Hosios condition.

Third and most important, when the government controls perfectly both UI and labor market
7To see this, suppose the government changes θ by dθ while changing ce and cu by dc/v′(ce) and dc/v′(cu) to

keep budget balance and keep ∆v constant. Computations paralleling the proof of Proposition 1 show that dX = 0
requires dc = φ · (w−∆c) · (1 + εd) · e · df −φ ·w · τ(θ) · [η/(1− η)] · e · df . Furthermore, dSW = dc+ e ·∆v · df .
Imposing dSW = 0 yields (11).
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tightness, the conventional UI trade-off between insurance and search incentives is disconnected

from the efficiency concerns of stabilization. Hence, the Baily-Chetty formula holds in a matching

model only when the government can perfectly stabilize the economy by optimally choosing tight-

ness. This assumption provides a useful benchmark but may not be realistic as economies seem to

be subject to inefficient cycles that cannot be perfectly stabilized.

3 Optimal UI with Business Cycles

In this section, we characterize optimal UI under the assumption that the government cannot sta-

bilize the economy. The wage is not chosen by the government but is determined by a completely

general wage schedule. As a result, labor market tightness is determined endogenously to equalize

labor supply and labor demand. The generalized Hosios condition does not necessarily hold, and

departures from the condition have important implications for optimal UI.

Let H be the departure from the generalized Hosios condition: H ≡ (1/φ) · (∆v/w) +

(1− (∆c/w)) · (1 + εd) − [η/ (1− η)] · τ(θ), where φ satisfies (12). H has the same sign as

the derivative of the Lagrangian of the government’s problem with respect to tightness, adjusting

ce and ∆c to maintain budget balance and keep ∆v constant. The economy can be in three regimes:

DEFINITION 3. The economy is slack if a marginal increase in tightness increases welfare, tight

if it decreases welfare, and efficient if it has no effect on welfare. Equivalently, slackness and

tightness can be measured by the departure from the generalized Hosios condition. The economy

is slack if H > 0, efficient if H = 0, and tight if H < 0.

We interpret business cycles as a succession of slack and tight episodes. According to our

definition, business cycles are necessarily inefficient. This definition of business cycles is uncon-

ventional but is very useful: optimal UI is systematically different in the three regimes.

3.1 Macroelasticity of Unemployment and Elasticity Wedge

We assume that the wage is determined by a completely general wage schedule. The wage schedule

may depend on UI, and the response of the wage to UI has important implications for optimal UI

because it determines how the labor demand respond to UI. However, we do not need to give
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an explicit expression for the wage schedule. The only information we need is the response of

equilibrium employment to UI, which is measured by the following elasticity:

DEFINITION 4. The macroelasticity of unemployment with respect to UI is

εM ≡ ∆c

1− l
· ∂l

∂∆c

∣∣∣∣
ce
.

The macroelasticity measures the percentage increase in unemployment when the consumption

gain from work decreases by 1%, taking into account jobseekers’ reduction in search effort and

the equilibrium adjustment of labor market tightness. The macroelasticity is computed keeping

ce constant, which means that ce does not adjust to meet the budget constraint of the government

when ∆c varies. The macroelasticity can be estimated by measuring the increase in aggregate un-

employment following a general increase in unemployment benefits financed by deficit spending.

Microelasticity and macroelasticity are not necessarily the same. A wedge between microelas-

ticity and macroelasticity appears when labor market tightness responds to UI:

DEFINITION 5. The elasticity wedge is 1− (εM/εm).

PROPOSITION 2. The elasticity wedge depends on the response of labor market tightness to UI:

1− εM

εm
= −(1− η) · 1 + εd

εd
· ∆v

v′(cu) ·∆c
· ∆c

θ
· ∂θ
∂∆c

∣∣∣∣
ce
.

The elasticity wedge is positive if and only if labor market tightness increases with the generosity

of UI. If labor market tightness does not depend on UI, the elasticity wedge is zero.

Proof. Consider an infinitesimal change d∆c, keeping ce constant. This change leads to variations

dl and dθ. We write dl in two different ways. First, the definition of the macroelasticity implies

that dl = εM · [(1− l)/∆c] · d∆c. This variation corresponds to a movement from A to B in

Figure 2. Second, the equilibrium condition l = ls(θ,∆c, ce) implies that we can decompose the

variation in employment as dl = dlθ + dl∆c. The variation dl∆c = (∂ls/∂∆c) · d∆c is the variation

keeping θ constant. It corresponds to a movement from A to C in Figure 2. The definition of the

microelasticity implies that dl∆c = [(1− l)/∆c] · εm · d∆c. The variation dlθ = (∂ls/∂θ) · d∆c

is the additional variation through the change in θ. It corresponds to a movement from C to B in
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Figure 2. Lemma 2 implies that dlθ = (1+ εd) · (1−η) · (l/θ) ·dθ. Multiplying the two expressions

for dl by ∆c/ [(1− l) · d∆c], we obtain

εM = εm +
l

1− l
·
(
1 + εd

)
· (1− η) · ∆c

θ
· ∂θ
∂∆c

∣∣∣∣
ce
. (14)

Combining this equation with the expression for εm in Lemma 1 yields the desired result.

Optimal UI depends on the response of θ to UI when the government cannot control θ. This

proposition is therefore important for our analysis because it shows that the response of θ to UI

can be captured by the wedge between micro- and macroelasticity. The result of Proposition 2

is illustrated in Figure 2. In Figures 2(a) and 2(b), the horizontal distance A–B measures the

macroelasticity and the horizontal distance A–C measures the microelasticity. In Figure 2(a), the

labor demand curve is downward sloping, and it does not shift with a change in UI because w

does not respond to UI. Labor market tightness falls after a reduction in UI along the demand

curve. We call this decrease in tightness a labor-demand externality. Because of the labor-demand

externality, the macroelasticity is smaller than the microelasticity. In Figure 2(b), the labor demand

shifts with a change in UI because w increases with UI. Labor market tightness first falls along the

old demand curve and then increases along the new supply curve. We call a wage externality

this increase in tightness due to the shift in labor demand. In net, tightness can either increase

or decrease. In Figure 2(b), the wage externality dominates and labor market tightness increases.

Thus, the macroelasticity is larger than the microelasticity.

3.2 Formula for Optimal UI

The government chooses ce and ∆c to maximize social welfare, given by (4), subject to the budget

constraint, given by (3), the matching frictions on the labor market, given by (5), and workers’

optimal choice of search effort, given by (6), and the equilibrium condition on the labor market,

given by (9). The following proposition characterizes the optimal policy:
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Figure 2: Microelasticity and macroelasticity for different responses of labor demand to UI

PROPOSITION 3. The optimal UI policy satisfies the formula

w −∆c

∆c
=

l

εm
·
(
v′(cu)

v′(ce)
− 1

)
+

1

1 + εd
· w

∆c
·
(

1− εM

εm

)
·
[

∆v

w · φ
+

(
1− ∆c

w

)
·
(
1 + εd

)
− η

1− η
· τ(θ)

]
, (15)

where φ satisfies (12). The first term in the right-hand side is the Baily-Chetty term, and the second

term is the externality-correction term.

Proof. Let L be the Lagrangian of the government’s problem and φ the Lagrange multiplier on the

budget constraint. Following the same reasoning as in the proof of Proposition 1, we can show that

φ satisfies equation (12).

Next, we consider a infinitesimal change d∆c, keeping ce constant. We decompose the vari-

ation in the Lagrangian as ∂L/∂∆c
∣∣
ce

= ∂L/∂∆c
∣∣
θ,ce

+ ∂L/∂θ
∣∣
∆c,ce

· ∂θ/∂∆c
∣∣
ce

. Therefore,

the first-order condition dL = 0 in the current problem is a linear combination of the first-order

conditions ∂L/∂∆c
∣∣
θ,ce

= 0 and ∂L/∂θ
∣∣
∆c,ce

= 0 in the joint optimization problem of Proposi-

tion 1. Hence, the optimal formula is also a linear combination of the Baily-Chetty formula and

the generalized Hosios condition. Moreover, the generalized Hosios condition is multiplied by the

wedge 1− (εM/εm) because the factor ∂θ/∂∆c
∣∣
ce

is proportional to that wedge.
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Table 1: Prediction of the optimal UI formula compared to the Baily-Chetty formula

(1) (2) (3)

Elasticity wedge, 1− (εM/εm) positive zero negative

Effect of UI on tightness positive zero negative

Regime Optimal UI replacement rate compared to Baily-Chetty

Slack higher same lower

Efficient same same same

Tight lower same higher

Cyclicality of optimal UI countercyclical acyclical procyclical

Notes: The UI replacement rate is T = 1 − (∆c/w). This table summarizes the results of Proposition 3. The table
reports whether optimal UI should be above, at, or below the Baily-Chetty formula (10) depending on the position of
the economy in the cycle (slack, efficient, or tight) and the sign of the elasticity wedge. Optimal UI is defined as being
higher than Baily-Chetty if the externality-correction term in formula (15) is positive. Cyclicality of optimal UI refers
to the cyclicality of optimal UI relative to the Baily-Chetty formula.

More precisely, we showed in the proof of Proposition 1 that

∂L
∂∆c

∣∣∣∣
θ,ce

= εm · φ · (1− l) ·
[
w −∆c

∆c
− l

εm
·
(
v′(cu)

v′(ce)
− 1

)]
∂L
∂θ

∣∣∣∣
∆c,ce

= φ · l · (1− η) · w
θ
·
[

∆v

φ · w
+

(
1− ∆c

w

)
·
(
1 + εd

)
− η

1− η
· τ(θ)

]
.

In addition, equation (14) shows that the labor market tightness variation is given by

∂θ

∂∆c

∣∣∣∣
ce

=
1− l
l
· 1

1 + εd
· 1

1− η
· θ

∆c
·
(
εM − εm

)
.

Combining these equations to write ∂L/∂∆c
∣∣
ce

= 0 and dividing the result by εm ·φ · (1− l) yields

the desired formula.

Formula (15) applies to a broad range of matching models (see Section 4). The formula is

expressed with estimable sufficient statistics so that it can be combined with empirical estimates

to evaluate optimal UI (see Section 5). As is standard in optimal taxation, the right-hand-side is

endogenous to UI. Hence, one needs to make assumptions on how each term varies with UI when

implementing the formula. Alternatively, the formula can be used to assess the desirability of a
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small reform around the current system : if the left-hand-side term is lower than the right-hand-side

evaluated in the current system then increasing UI increases social welfare, and conversely.

Formula (15) shows that optimal UI, measured by (w−∆c)/∆c = T/(1−T ) where T is the UI

replacement rate, is the sum of an insurance term, which is the term in the Baily-Chetty formula,

and an externality-correction term, which is proportional to the deviation from the generalized

Hosios condition. This form of additive decomposition between a standard term and a corrective

term is well-known in the literature on optimal taxation in the presence of externalities.8 When

the generalized Hosios condition holds, the externality-correction term vanishes and the optimal

replacement rate is given by the Baily-Chetty formula.

Formula (15) generates an optimal UI higher, equal, or lower than the Baily-Chetty formula if

the product of the deviation from the generalized Hosios condition and the elasticity wedge, 1 −

(εM/εm), is positive, zero, or negative. Intuitively, increasing UI above Baily-Chetty is desirable

if UI brings the economy closer to efficiency.

Table 1 shows the nine possibilities depending on the sign of the deviation from the generalized

Hosios condition and the sign of the elasticity wedge. Section 4 shows that different models predict

different signs for the elasticity wedge and hence different cyclicality for optimal UI. Optimal UI

is countercyclical relative to Baily-Chetty if the elasticity wedge is positive and procyclical if the

elasticity wedge is negative.

It is the combination of a low εM relative to εm and a low tightness relative to efficiency that

makes more UI desirable. A low εM alone is not sufficient. Consider a model in which the number

of jobs is fixed: εM = 0. Increasing UI redistributes from the employed to the unemployed without

destroying jobs, but, unlike what intuition suggests, full insurance is not desirable. This can be

seen by plugging εM = 0 and εm > 0 in (15). The reasons is that increasing UI increases tightness

and forces firms to allocate more workers to recruiting instead of producing, thus reducing output

available to consumption. In fact if the generalized Hosios condition holds, UI is given by the

standard Baily formula and the magnitude of εM is irrelevant.

Formula (15) also justifies the public provision of UI even in the presence of private provision

of UI. Small private insurers would solely take into account the microelasticity of unemployment.

8See for instance the general framework laid out in Farhi and Werning [2013] to design optimal macroeconomic
policies in the presence of price rigidities.
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Table 2: Optimal UI in various matching models

(1) (2) (3)

Model Section 4.1 Section 4.2 Section 4.3

Assumptions

Wage schedule rigid rigid Nash bargaining

Production function concave linear linear

Macroeconomic effect of UI

Elasticity wedge, 1− (εM/εm) positive zero negative

Effect of UI on tightness positive zero negative

Cyclicality of optimal UI countercyclical acyclical procyclical

Cyclicality of elasticity wedge countercyclical acyclical acyclical

Notes: The table summarizes the results for the three models of Section 4 (across columns). The top panel presents the
assumptions of each model on wage determination and production function. The bottom panel summarizes the effects
of UI in each model. Cyclicality of the elasticity wedge refers to how it changes with tightness. Cyclicality of optimal
UI refers to how optimal UI deviates from Baily-Chetty when the economy is slack or tight. Countercyclical optimal
UI means that optimal UI is above the Baily-Chetty formula in a slack economy and below in a tight economy.

They would offer insurance according to the Baily-Chetty formula and would not internalize tight-

ness externalities. Hence, it would be optimal for the government to provide the cyclical com-

ponent of UI equal to the second term in (15). Related, even in the absence of any concern for

insurance (if workers are risk neutral or already perfectly insured), positive UI should be offered if

UI brings the economy closer to the generalized Hosios condition.

4 Predictions of Specific Matching Models

Section 3 shows that the Baily-Chetty formula, conventionally used to calibrate optimal UI, may

underestimate or overestimate the optimal level of UI depending on the state of the business cycle

and the sign of the elasticity wedge, 1 − (εM/εm). The sign of the wedge matters because it

determines the effect of UI on tightness. This section determines the sign of the wedge in specific

matching models. The wedge can be positive, zero, or negative depending on the model.
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4.1 A Model With Rigid Wage and Concave Production Function

We analyze a matching model that shares the main features of the model of Michaillat [2012]. The

model makes the following assumptions on the production function and the wage:

ASSUMPTION 1. The production function is concave: y(n) = nα with α ∈ (0, 1).

ASSUMPTION 2. The wage is a parameter of the model: w ∈ (0,+∞).

Figures 3(a) and 3(b) represent the equilibrium in this model. Under Assumption 1, the labor

demand function ld is strictly decreasing with θ and with w. The labor demand decreases with

θ because when the labor market is tighter, hiring workers is less profitable as it requires more

recruiters. As a consequence, the labor demand curve is downward sloping in the (l, θ) plane, and

the labor demand curve shifts inward when the wage increases. Figure 3(a) plots the labor demand

curve for a low wage and Figure 3(b) plots it for a high wage, thus illustrating the effect of the

wage on the labor demand. We interpret a change in real wage as an aggregate activity shock

that could arise from a technology shock or an aggregate demand shock.9 Under Assumption 2,

the wage does not respond to UI so the labor demand curve does not shift after a change in UI.

The labor supply curve represents ls(θ,∆c, ce), which is defined by (7). Unlike the labor demand

curve, the labor supply curve does shift after a change in UI. Figure 3(a) and Figure 3(b) plot one

labor supply curve for high UI (dotted line) and one labor supply curve for low UI (solid line), thus

illustrating the effect of UI on labor supply.

Proposition 4 characterizes the response of tightness to a change in UI and the elasticity wedge:

PROPOSITION 4. Under Assumptions 1 and 2, ∂θ/∂∆c
∣∣
ce
< 0 and 1 − (εM/εm) > 0. More

precisely,

1− εM

εm
=

[
1 +

η

1− η
· α

1− α
· 1

1 + εd
· τ(θ)

]−1

.

Proof. Consider an infinitesimal change d∆c, keeping ce constant. This change leads to variations

dl and dθ. We can express dθ by moving along the labor demand since l = ld(θ, w) in equilibrium.

9Michaillat and Saez [2013] propose a more sophisticated macroeconomic model in which aggregate demand
shocks and technology shocks shift the labor demand. These shocks are isomorphic to a change in w in our model.
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The labor demand is implicitly defined by (8). Under Assumptions 1 and 2, the labor demand is

ld(θ, w) = w
−1
1−α · (1 + τ(θ))

−α
1−α .

Since the elasticity of 1 + τ(θ) with respect to θ is η · τ(θ), the elasticity of ld with respect to θ is

[−α/(1− α)] · η · τ(θ). Using the definition of the macroelasticity, dl = εM · [(1− l)/∆c] · d∆c,

we therefore obtain

dθ = −1− α
α
· 1

η
· 1

τ(θ)
· 1− l

l
· θ

∆c
· εM · d∆c.

This expression reflects a movement from A to C in Figure 3(a).

As in Proposition 2, we can also express dθ as a shift of labor supply followed by a movement

along the labor supply curve. This expression reflects a movement from A to B and from B to C in

Figure 3(a). Equation (14) implies that

dθ =
θ

∆c
· 1

1 + εd
· 1

1− η
· 1− l

l
·
(
εM − εm

)
· d∆c.

Combining these results yields

εM =
α

1− α
· 1

1 + εd
· η

1− η
· τ(θ) ·

(
εm − εM

)
.

Dividing this expression by εm and re-arranging yields the desired result.

In this model the macroelasticity is smaller than the microelasticity because cutting UI reduces

labor market tightness. As discussed above, this reduction in tightness is a labor-demand external-

ity. Figure 3(a) illustrates the externality. After a reduction in UI, jobseekers search more, shifting

the labor supply curve outward by a distance A–C, which represents the microelasticity. But the

job-finding rate per unit of search effort, f(θ), does not remain constant. If it did, labor market

tightness, θ, and marginal recruiting cost, τ(θ), would remain constant. As the wage remains con-

stant, the marginal cost of labor would remain constant. Simultaneously, firms need to absorb the

additional workers who find a job and who have lower productivity because the production function

has diminishing marginal returns to labor. Firms would face the same marginal cost of labor but a
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Figure 3: Equilibrium of the three matching models of Section 4

lower marginal product of labor, which would not be optimal. Thus, the new equilibrium has lower

labor market tightness and lower job-finding rate. A lower job-finding rate mechanically reduces

the number of new hires and also leads jobseekers to search less. The corresponding reduction in

employment is the distance C–B. The increase in equilibrium employment is the distance A–B,

which represents the macroelasticity. Since A–B is smaller than A–C, macroelasticity is smaller

than microelasticity.

As depicted in Table 2, column (1), Proposition 4 implies that optimal UI should be counter-

cyclical relative to Baily-Chetty because the elasticity wedge 1− (εM/εm) is positive. Optimal UI

is higher than Baily-Chetty in a slack economy and lower than Baily-Chetty in a tight economy.
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To explore further how the externality-correction term varies over the cycle, we establish the

cyclicality of the elasticity wedge under isoelasticity assumptions:

ASSUMPTION 3. The matching function and search cost function are isoelastic: h(e, v) = ωh ·

eη · v1−η and k(e) = ωk · eκ+1 for η ∈ (0, 1), κ > 0, ωh > 0, and ωk > 0.

PROPOSITION 5. Under Assumptions 1, 2, and 3, the elasticity wedge is countercyclical. An

increase in wage decreases tightness and increases the wedge: ∂
[
1− (εM/εm)

]
/∂w

∣∣
∆v

> 0 and

∂θ/∂w
∣∣
∆v

< 0.

Proof. Under Assumption 3, the optimal search choice implies that ωk · (1 + κ) · eκ = f ·∆v so

εd = 1/κ. The cyclicality of εM/εm follows from the expression in Proposition 4 and the fact that

the function τ is increasing with θ.

Proposition 5 describes comparative statics with respect to the real wage, w, keeping the UI

system, ∆v, constant. An increase in real wage represents a negative aggregate activity shock. The

proposition shows that the elasticity wedge is countercyclical so that the externality-correction

term is higher in a slack economy than in a tight economy for a deviation from the generalized

Hosios condition of a given amplitude. Hence, we expect the cyclical correction for optimal UI to

be larger in a slack economy than in a tight economy.

This result is illustrated by comparing the low-wage equilibrium in Figure 3(a) to the high-

wage equilibrium in Figure 3(b). Clearly, the wedge between εM and εm is driven by the slope of

the labor supply curve relative to the slope of the labor demand curve. In the low-wage equilibrium,

the labor supply is steep at the equilibrium point because the matching process is congested by the

large number of vacancies. Hence, εM is close to εm. Conversely, in the high-wage equilibrium,

the labor supply is flat at the equilibrium point because the matching process is congested by

search efforts. Hence, εM is much lower than εm. Formally, let εls ≡ (θ/l) · (∂ls/∂θ) be the

elasticity of labor supply with respect to tightness and εld ≡ −(θ/l) ·
(
∂ld/∂θ

)
be the elasticity of

labor demand with respect to tightness (normalized to be positive). We could rewrite the elasticity

wedge as 1−(εM/εm) = 1/
[
1 + (εld/εls)

]
. The elasticity wedge is countercyclical because εld/εls

is procyclical.10

10The result of Proposition 5 is closely connected to the result on the cyclicality of the public-employment multiplier
in Michaillat [2014] as both results rely on the cyclicality of the ratio εld/εls. In a matching model with rigid wage
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4.2 A Model With Rigid Wage and Linear Production Function

We analyze a model that shares the main features of the model of Hall [2005]. The model assumes

a rigid wage (Assumption 2) and makes the following assumption on the production function:

ASSUMPTION 4. The production function is linear: y(n) = n.

In this model, UI has no effect on tightness and micro- and macroelasticity are equal:

PROPOSITION 6. Under Assumptions 4 and 2, ∂θ/∂∆c
∣∣
ce

= 0 and εM = εm.

This result is illustrated in Figure 3(c). It arises because labor demand is perfectly elastic

and independent of UI, such that equilibrium tightness is independent of UI. There is no labor-

demand externality because the labor demand is perfectly elastic. There is no wage externality

either because the wage does not respond to UI. Table 2, column (2), shows that optimal UI is

always given by the Baily-Chetty formula. Tightness may be inefficient in this model but this

inefficiency does not affect optimal UI because UI has no effect on tightness. In other words,

the generalized Hosios condition may not hold but the externality-correction term is always zero

because UI cannot affect tightness.

4.3 A Model With Nash Bargaining and Linear Production Function

We analyze a matching model that shares the main features of the model of Pissarides [2000, Chap-

ter 1]. The model assumes a linear production function (Assumption 4) and makes the following

assumption on the wage-setting mechanism:

ASSUMPTION 5. The wage is determined using the generalized Nash solution to the bargaining

problem faced by firm-worker pairs. The bargaining power of workers is β ∈ (0, 1).

We begin by determining the equilibrium wage. The worker’s surplus from a match with a

firm isW = ∆v. We assume that the government uses a lump-sum tax to finance the UI system

such that an increase dw in the bargained wage raises the worker’s post-tax income by dw and

and concave production function, Michaillat [2014] shows that the public-employment multiplier λ, defined as the ad-
ditional number of workers employed when one more worker is employed in the public sector, is countercyclical. The
public-employment multiplier satisfies λ = 1/

[
1 + (εld/εls)

]
and it is countercyclical because εld/εls is procyclical.
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leads to a utility gainW ′(w)dw = v′(ce)dw.11 The firm’s surplus from a match with a worker is

F = 1 − w because once a worker is recruited, she produces 1 unit of good and receives a real

wage w. Accordingly, F ′(w) = −1. The generalized Nash solution to the bargaining problem

is the wage w that maximizes W(w)β · F(w)1−β . The first-order condition of the maximization

problem implies that the worker’s surplus each period is related to the firm’s surplus by

β · W
′(w)

W(w)
+ (1− β) · F

′(w)

F(w)
= 0.

UsingW ′(w)/W(w) = v′(ce)/∆v and F ′(w)/F(w) = −1/(1− w), we obtain

w = 1− 1− β
β
· ∆v

v′(ce)
. (16)

After a cut in UI benefits, which increases ∆v but does not affect ce, the bargained wage decreases.

The reason is that the outside option of jobseekers decreases after the cut in benefits, so they are

forced to settle for a lower wage during bargaining.

With a linear production function, equation (2) imposes that w · (1 + τ(θ)) = 1, which can be

interpreted as a free-entry condition. Combining this condition with the expression for the wage

yields

τ(θ)

1 + τ(θ)
=

1− β
β
· ∆v

v′(ce)
. (17)

Figure 3(d) depicts the equilibrium of this model in a (l, θ) plane. Equation (17) defines a perfectly

elastic labor demand, which determines equilibrium tightness. Equilibrium employment is read

off the labor supply curve. The following proposition characterizes the response of labor market

tightness to a change in UI and the elasticity wedge:

PROPOSITION 7. Under Assumptions 4 and 5, ∂θ/∂∆c
∣∣
ce
> 0 and 1 − (εM/εm) < 0. More

precisely,

1− εM

εm
= −1− η

η
· 1 + εd

εd
.

11If the government used a linear income tax to finance UI,W ′(w) would also depend on the tax rate.
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Proof. We differentiate equation (17) with respect to ∆c, keeping ce constant. Since the elasticity

of τ with respect to θ is η · (1 + τ(θ)), we obtain

η · ∆c

θ
· ∂θ
∂∆c

∣∣∣∣
ce

= v′(cu) · ∆c

∆v
.

It follows that ∂θ/∂∆c
∣∣
ce
> 0. Using (14), we infer that

εM − εm =
l

1− l
·
(
1 + εd

)
· 1− η

η
· v
′(cu) ·∆c

∆v
.

Lemma 1 tells us that εm/εd = [l/(1− l)] · (v′(cu) · ∆c/∆v). Combining the expressions for

εM − εM and εm yields the desired expression for 1 − (εM/εm). As εd > 0 and 0 < η < 1, the

expression establishes that 1− (εM/εm) < 0.

Figure 3(d) provides an illustration for the results of the proposition. After a reduction in UI,

jobseekers search more, shifting the labor supply curve outward by a distance A–C, which mea-

sures the microelasticity. In addition when UI falls, jobseekers face a worse outside option, the

bargained wage falls, which shifts the labor demand upward and raises equilibrium labor market

tightness. This increase in tightness is a wage externality. The corresponding increase in employ-

ment is represented by distance C–B. The increase in equilibrium employment is given by the

distance A–B, which measures the macroelasticity. Because of the wage externality, A–B is larger

than A–C and the macroelasticity is larger than the microelasticity.

As depicted in Table 2, column (3), Proposition 7 implies that optimal UI should be procyclical

relative to Baily-Chetty: optimal UI is higher than Baily-Chetty in a tight economy and lower in a

slack economy. Intuitively, the economy is slack when the bargaining power of workers and wages

are too high. In that situation, lowering UI is a way to reduce wages and increase tightness, which

improves welfare. The converse holds in a tight economy.

In this model, fluctuations in workers’ bargaining power are a simple to obtain fluctuations

in tightness and unemployment. Proposition 8 establishes that the elasticity wedge is acyclical;

therefore, the externality-correction term is expected to be symmetric in slack and tight economies:

PROPOSITION 8. Under Assumptions 4, 5, and 3, the elasticity wedge is acyclical. An in-

crease in workers’ bargaining power decreases tightness and has no effect on the elasticity wedge:
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∂θ/∂β
∣∣
∆v

< 0 and ∂
[
1− (εM/εm)

]
/∂β

∣∣
∆v

= 0.

Proof. Equation (6) implies that εd = 1/κ. Under Assumption 3, both κ and η are constant

parameters. The cyclicality of 1− (εM/εm) follows from the expression in Proposition 7.

It is conceivable that both the labor-demand externality of Section 4.1 and the wage externality

of Section 4.3 are present in reality.12 In that general case, our formula (15) would remain true

and the cyclicality of UI would still be given by the sign of the elasticity wedge. If the elasticity

wedge is negative in tight economies because the wage externality dominates and positive in slack

economies because the labor-demand externality dominates, then optimal UI could be more gener-

ous than Baily-Chetty both in slack and tight economies. In the end, empirical analysis is required

to evaluate the sign and cyclicality of the elasticity wedge.

5 A Quantitative Exploration

In this section we show how our optimal UI formula can be combined with available empirical evi-

dence to explore quantitatively how optimal UI varies over the business cycle. We first approximate

our formula to express it in terms of estimable sufficient statistics. To obtain realistic numbers, we

introduce a minor modification to the formula such that it applies to a dynamic environment. Next,

we discuss the estimates of the statistics found in the empirical literature. As there is no definitive

empirical evidence on the sign, let alone the magnitude, of the elasticity wedge, we explore a range

of scenarios corresponding to the three models of Section 4.

5.1 Approximation of the Formula in Sufficient Statistics

The appendix shows that formula (15) remains valid in the steady state of a continuous-time dy-

namic model with no time discounting by dividing τ(θ) by u, where u = s/(s + e · f(θ)) is

steady-state unemployment with job-destruction rate s. We use this modified formula below.

To implement the formula, we assume v(c) = ln(c), corresponding to a coefficient of relative

12Cahuc and Wasmer [2001] and Elsby and Michaels [2013] develop matching models in which firms have a con-
cave production function and wages are determined with the bargaining protocol of Stole and Zwiebel [1996]. In these
models, UI would generate both a labor-demand externality and a wage externality.
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risk aversion ρ = 1.13 We normalize the disutility from job search, k, so that k(e) = 0 at the

optimum. One simple way to interpret this assumption is that the costs of search while unemployed

are of same magnitude as the costs of work while employed (which are not modeled) so that the

welfare gain from employment is exactly ∆v = v(ce)−v(cu). We also assume that unemployment

is small relative to employment so that l ≈ 1 and hence 1/φ ≈ v′(ce) = 1/ce. Under these

assumptions, optimal UI approximately satisfies

w

∆c
− 1 ≈ 1

εm

(
ce

cu
− 1

)
+

1

1 + εd
·
(

1− εM

εm

)[
ln(ce/cu)

1− cu/ce
+
(
1 + εd

) ( w
∆c
− 1
)
− η

1− η
· w

∆c
· τ(θ)

u

]
. (18)

The first term is the Baily-Chetty term. The second term is the externality-correction term, propor-

tional to the elasticity wedge times the deviation from the generalized Hosios condition.

Naturally, the replacement rate depends on the generosity of UI. In our model, cu/ce ≈ 1− α ·

(∆c/w) when l ≈ 1. When ∆c = 0, there is perfect insurance and cu/ce = 1. In reality, the unem-

ployed receive less profits than average but they are also partially self-insured with savings, spousal

income, or home production. Formula (18) carries over unchanged with partial self-insurance in

the form of home production when unemployed by replacing cu/ce by the actual consumption

smoothing benefits generated by UI.14 We ignore this aspect in our numerical illustration because

relatively little is known on the cyclicality of the consumption smoothing benefits of UI.15

5.2 Empirical Evidence

Formula (18) combined with cu/ce ≈ 1− α · (∆c/w) relates the replacement rate to six estimable

statistics: η, α, τ(θ)/u, εd, εm, and εM/εm. We survey the empirical literature providing empirical

estimates for these statistics. We use these estimates in the illustration of Table 3.
13Many studies estimate the coefficient of relative risk aversion. A value of 1 is on the low side of available

estimates but is consistent with labor supply behavior [Chetty, 2004, 2006b]. Naturally the higher risk aversion, the
more generous optimal UI.

14Gruber [1997] estimates the consumption smoothing benefits of UI and uses these empirical results to simulate
optimal UI using the conventional Baily-Chetty formula.

15See Chetty and Finkelstein [2012] for a survey.
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Estimates of η, α, τ(θ)/u, εd, εm. We set η = 0.7, in line with empirical evidence [Petrongolo

and Pissarides, 2001; Shimer, 2005]. We set α = 2/3 which is a standard estimate for the labor

share. There is relatively little empirical evidence on τ(θ) defined as the share of employees

devoted to recruiting. Villena Roldan [2010] provides an estimate of τ(θ) = 2.5% when the

unemployment rate is 5%, based on the National Employer Survey conducted by the Bureau of

Labor Statistics in 1997. More evidence on the amplitude and cyclicality of τ(θ) would be very

valuable. The statistic τ(θ)/u captures the slack or tightness of the economy, and we will present

optimal UI for various values of τ(θ)/u corresponding to different points in the business cycle.

There is little empirical work estimating the elasticity εd of job search effort with respect to

the job-finding rate. Empirically, εd seems to be close to zero because labor market participation

and other measures of search intensity are, if anything, slightly countercyclical even after control-

ling for changing characteristics of unemployed workers over the business cycle [Shimer, 2004].

Hence, we set εd = 0.

Many studies estimate the microelasticity εm.16 The ideal experiment to estimate εm is to

offer higher unemployment benefits to a randomly selected and small subset of individuals within

a labor market and compare unemployment durations between these treated individuals and the

other jobseekers. In practice, εm is estimated by comparing individuals with different benefits in

the same labor market at a given time, while controlling for individual characteristics. Most studies

evaluate the elasticity of the job-finding probability with respect to benefits, which approximately

equals εm in normal circumstances with a replacement rate around 50%. In US administrative data

from the 1980s, the classic study of Meyer [1990] finds an elasticity of 0.9 with few individual

controls and 0.6 with more individual controls. In a larger US administrative dataset from the early

1980s, and using a regression kink design to better identify the elasticity, Landais [2012] finds an

elasticity around 0.3. Based on this evidence, we set εm = 0.5.

Estimates of the Elasticity Wedge, 1 − (εM/εm). The elasticity wedge can be estimated either

directly or indirectly by obtaining an estimate for εM and comparing it with an estimate for εm.

The wedge is the most important sufficient statistic in our theory and yet the hardest to estimate.

The indirect approach is complicated. Estimating εM is inherently more difficult than estimat-

16See Krueger and Meyer [2002] for a survey.
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ing εm because it necessitates exogenous variation in UI benefits across comparable labor markets,

instead of exogenous variations across comparable individuals within a single labor market. The

ideal experiment to estimate εM is to offer higher unemployment benefits to all individuals in a

randomly selected subset of labor markets and compare unemployment rates between these treated

labor markets and the other labor markets. Having obtained an estimate of εM , we would need

to compare it with estimates of εm to sign the elasticity wedge. This is an additional difficulty as

estimates of εm vary significantly across samples, settings, and identification strategies.

A more promising approach is to estimate directly the elasticity wedge. We show in Section 4

that the labor-demand externality (increased search reduces tightness and the job-finding rate) leads

to a positive elasticity wedge while the wage externality (higher UI increases bargained wages)

leads to a negative elasticity wedge.

Several papers have tried to estimate directly the sign and magnitude of the labor-demand

externality. Early studies find that an increase in the search effort of some jobseekers, induced by

a reduction in UI or by job training programs, has a negative effect on the job-finding probability

of other jobseekers. Absent a wage externality, this result implies 1 − (εM/εm) > 0 [Burgess and

Profit, 2001; Ferracci, Jolivet and van den Berg, 2010; Gautier et al., 2012; Levine, 1993]. The

estimates range from 1− (εM/εm) ≈ 0.3 in Denmark [Gautier et al., 2012] to 1− (εM/εm) ≈ 0.5

in the US [Levine, 1993].17 The literature however has not reached a complete consensus: for

instance, Blundell et al. [2004] do not find any significant spillover effects of a job training program

in the UK.

More recently, using a large change in UI duration for a subset of workers in a subset of

geographical areas in Austria, Lalive, Landais and Zweimüller [2013] find a significant labor-

demand externality that translates into a wedge 1 − (εM/εm) ≈ 0.25 > 0. Crepon et al. [2013]

analyze a large randomized field experiment in France in which some young educated jobseekers

are treated by receiving job placement assistance. The experiment has a double-randomization

design: (1) some areas are treated and some are not, (2) within treated areas some jobseekers are

treated and some are not. Interpreting the treatment as an increase in search effort from eC for

control jobseekers to eT for treated jobseekers, their empirical results for long-term employment

17See Table 3, column (1) in Gautier et al. [2012] and Table 5, column (1) in the working-paper version of Levine
[1993], available at http://dataspace.princeton.edu/jspui/handle/88435/dsp01wh246s14w.
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translate into an elasticity wedge 1− (εM/εm) = 0.37.18 Crepon et al. [2013] also find suggestive

evidence that the elasticity wedge 1− (εM/εm) is countercyclical as in the model of Section 4.1.19

The presence of a labor-demand externality does not necessarily rule out a wage externality

that also affects the elasticity wedge. The studies discussed above cannot typically capture a wage

externality.20 The best way to measure the wage externality might be to look directly at whether a

more generous UI increases wages. A number of studies have investigated whether longer unem-

ployment durations due to more generous UI benefits affect the re-employment wage. Most stud-

ies find no effect on wages or even slightly negative effects [for example, Card, Chetty and Weber,

2007]. However, longer durations induced by more generous UI benefits may affect the wage offers

received (for example, if the duration of unemployment spells affects the productivity of the unem-

ployed or is interpreted by employers as a negative signal of productivity). Schmieder, von Wachter

and Bender [2012] find a negative effect on wages of longer durations due to more generous UI

in Germany. Interestingly, they further decompose the effect on wages into a reservation-wage

effect and an effect on wage offers and find zero reservation-wage effect. The reservation wage

effect is obtained by controlling for the duration of the unemployment spell. Lalive, Landais and

Zweimüller [2013], using the same approach, do find a positive reservation-wage effect for the

population of Austrian unemployed eligible for a very large increase in the potential duration of

their UI benefits but this effect is very small in magnitude. These results suggest that the wage

externality might be small although more empirical work would be very valuable.

18Compared to control jobseekers in the same area, treated jobseekers face a higher job-finding probability:[
eT − eC

]
· fT = 5.7%. But compared to control jobseekers in control areas, control jobseekers in treated areas

face a lower job-finding probability: eC ·
[
fT − fC

]
= −2.1% (Table 10, column 1, Panel B). Therefore the increase

in the job-finding probability of treated jobseekers in treated areas compared to control jobseekers in control areas is
only

[
eT · fT

]
−
[
eC · fC

]
= 5.7− 2.1 = 3.6%. By definition, the microelasticity is proportional to

[
eT − eC

]
· fT

and the macroelasticity is proportional to
[
eT · fT

]
−
[
eC · fC

]
, implying that εM/εm = 3.6/5.7 = 0.63.

19They estimate that the wedge is larger in geographical areas and time periods with higher unemployment. For
example, εM/εm = (14.5 − 7.6)/14.5 = 0.48 during the 2008–2009 recession in areas with high unemployment,
compared with εM/εm = (3.5 − 0.9)/3.5 = 0.74 otherwise (Table 11, Panel A, column (2)). The numbers vary
somewhat across groups and specifications so this evidence is only suggestive.

20To see this, suppose group T receives more generous UI benefits while group C does not, and group T bargains
for higher wages while group C does not. The ability of each group to bargain separately for a wage seems the
most plausible assumption as differential UI benefits are typically based on observable characteristics such as age,
geographical location, or industry. With linear production, the higher wage of group T does not affect group C so
the studies focusing on group C cannot capture the wage externality. In the case of job-placement treatment, as in
Crepon et al. [2013], no wage externality is expected in treatment or control group so the analysis captures a pure
labor demand externality.
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Table 3: Solutions of the optimal UI formula across the business cycle

(1) (2) (3)

Elasticity wedge, 1− (εM/εm) positive zero negative

Effect of UI on tightness positive zero negative

Panel A: Very slack τ(θ)/u = 0.03

Notional unemployment: 11% εM/εm = 0.3 εM/εm = 1 εM/εm = 1.5

Optimal UI replacement rate 0.76 0.50 0.36

Panel B: Slack τ(θ)/u = 0.15

Notional unemployment: 7.3% εM/εm = 0.5 εM/εm = 1 εM/εm = 1.5

Optimal UI replacement rate 0.62 0.50 0.40

Panel C: Efficient τ(θ)/u = 0.47

Notional unemployment: 5.2% εM/εm = 0.7 εM/εm = 1 εM/εm = 1.5

Optimal UI replacement rate 0.50 0.50 0.50

Panel D: Tight τ(θ)/u = 0.8

Notional unemployment: 4.5% εM/εm = 0.9 εM/εm = 1 εM/εm = 1.5

Optimal UI replacement rate 0.48 0.50 0.64

Notes: The table presents the replacement rate T = 1 − (∆c/w) of the optimal UI system for a range of values
for the elasticity wedge and τ(θ)/u. The replacement rate is obtained by solving formula (18) given that cu/ce =
1− α · (∆c/w). The formula provides optimal UI in a dynamic model with partial self-insurance when v(c) = ln(c)
(corresponding to a coefficient of relative risk aversion ρ = 1) and l ≈ 1. We set the labor share at α = 0.66, the
elasticity of the matching function with respect to aggregate effort at η = 0.7, the elasticity of search effort with
respect to the job-finding rate at εd = 0, and the microelasticity of unemployment with respect to the consumption
gain from work at εm = 0.5.
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5.3 Illustrative Results

As the empirical evidence is suggestive of a labor-demand externality but cannot definitively rule

out a wage externality, we consider various scenarios for the elasticity wedge, corresponding to

the range of models discussed in Section 4. Table 3 displays the optimal UI obtained with our

approximated formula (18) across the business cycle for different values of the elasticity wedge,

1 − (εM/εm). The goal of the table is to quantify the deviations from Baily-Chetty caused by the

business cycle in several numerical examples. The levels of UI in the table are only illustrative as

they depend on the magnitudes of a number of statistics that are not well known.

Column (1) considers the case εM/εm < 1 as in the model with rigid wage and concave pro-

duction presented in Section 4.1. In this model, εM/εm is expected to be procyclical so we set

it from a low value of 0.3 is a very slack economy up to 0.9 in a tight economy. Column (2)

considers the case εM/εm = 1 as in the model with rigid wage and linear production presented in

Section 4.2. Column (3) considers the case εM/εm > 1 as in the model with Nash bargaining and

linear production presented in Section 4.3. In this model, εM/εm is not expected to be cyclical so

we set εM/εm = 1.5 uniformly across rows.

Each panel corresponds to a certain stage of the business cycle proxied by the value of τ(θ)/u.

To help interpretation, we construct the notional labor market tightness and unemployment rate

that correspond to the value of τ(θ)/u of each panel when search effort is constant at e = 1. The

notional values of labor market tightness and unemployment rate are not the equilibrium values

because they do not account for the adjustment of search effort to labor market conditions and UI.

In the steady-state of a continuous-time matching model with effort e = 1 and job-destruction rate

s, the unemployment rate is related to labor market tightness by u(θ) = f(θ)/(s + f(θ)) and the

ratio of recruiters to producers is related to labor market tightness by τ(θ) = (s·r)/ [q(θ)− (s · r)].

We set s = 0.009, f(θ) = 0.17 · θ0.3, and q(θ) = 0.17 · θ−0.7 using the calibration of Michaillat

[2014].21 In addition, we set r = 0.5 such that the fraction of workers who are recruiters is 2.5%

when the unemployment rate is 5%, in line with the empirical evidence in Villena Roldan [2010]

discussed above. Panel A report results for τ(θ)/u = 0.03, corresponding to a notional tightness

of 0.06 and a notional unemployment rate of 11%. Panel B report results for τ(θ)/u = 0.15,

21This calibration relies mostly on data collected by the Bureau of Labor Statistics with the Job Opening and Labor
Turnover Survey over the 2001–2011 period.
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corresponding to a notional tightness of 0.27 and a notional unemployment rate of 7.3%. Panel

C report results for τ(θ)/u = 0.47, corresponding to a notional tightness of 0.87 and a notional

unemployment rate of 5.2%. Panel D report results for τ(θ)/u = 0.80, corresponding to a notional

tightness of 1.48 and a notional unemployment rate of 4.5%. The economy is slack in Panel A

and Panel B because the optimal replacement rate is higher in column (1) than in column (2)

and higher in column (2) than in column (3), indicating that the deviation from the generalized

Hosios condition is necessarily positive. The economy is efficient in Panel C because the optimal

replacement rate is the same in the three columns, indicating that the generalized Hosios condition

holds. The economy is tight in Panel D because the optimal replacement rate is higher in column

(3) than in column (2) and higher in column (2) than in column (1), indicating that the deviation

from the generalized Hosios condition is necessarily negative.

Three points are worth noting from Table 3. First, the optimal replacement rate given by the

Baily-Chetty formula (0.50 in column (2)) is constant across the cycle because we assume that

εm is constant.22 This replacement rate is slightly higher than in the optimal UI simulations of

Gruber [1997] because we abstract from self-insurance. Second, in the scenario 1− (εM/εm) > 0

of column (1), optimal UI is strongly countercyclical, going from 0.76 in a very slack economy

to 0.48 in a tight economy. The fluctuations in optimal UI are asymmetric: the increases are very

large in slack economies and the decrease is only modest in a tight economy. The asymmetry is due

to the fact that the elasticity wedge is very positive in slack economies (1−(εM/εm) = 0.7 in Panel

A) and close to zero in a tight economy (1 − (εM/εm) = 0.1 in Panel D). Third, in the scenario

1− (εM/εm) = −0.5 of column (3), the optimal UI replacement rate is strongly procyclical, going

from 0.36 in a very slack economy to 0.64 in a tight economy. Table 3 shows that the discrepancy

from the Baily-Chetty formula can be quantitatively large over the business cycle for realistic

estimates of the sufficient statistics. The striking difference between the scenarios in columns (1)

and (3) underscores how crucial it is to obtain accurate estimates of the elasticity wedge.

22Obviously, if εm or the ability to self-insure change with the business cycle, the optimal UI replacement rate given
by the Baily-Chetty formula also changes with the business cycle. Our theory focuses on the cyclical deviation from
Baily-Chetty.
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6 Conclusion

Our paper analyzes optimal UI over the business cycle in a generic matching model. For a given

UI system, the level of labor market tightness that maximizes welfare is given by the generalized

Hosios condition. We say that the economy is efficient if tightness is at this optimal level, slack if

tightness is too low, and tight if tightness is too high. Our formula for optimal UI is the sum of the

standard Baily-Chetty term, which trades off search incentives and insurance, and an externality-

correction term, which is positive if UI brings the economy closer to efficiency, negative if UI drives

the economy farther away from efficiency, and zero if UI has no effect on aggregate efficiency.

Formally, the externality-correction term is equal to the deviation from the generalized Hosios

condition times the marginal effect of a change in UI on tightness. When the economy is slack, UI

should be more generous than the Baily-Chetty formula if an increase in UI raises tightness and

less generous if an increase in UI reduces tightness.

The effect of UI on tightness is measured by the wedge between micro- and macroelasticity of

unemployment with respect to UI. Hence, this wedge is the crucial statistic that governs optimal

UI relative to the Baily-Chetty benchmark over the business cycle. The wedge can be negative

or positive depending on the model. Hence, empirical evidence on the sign and magnitude of the

wedge is required to implement our formula fruitfully and deliver quantitative guidance for policy.

A number of recent studies have found evidence of labor-demand externality whereby a decrease

in search effort for some group of workers has a positive impact on the job-finding rate of other

workers in the same labor market. This result suggests that the macroelasticity is smaller than

the microelasticity, and that an increase in UI raises tightness. However, these findings are not

definitive as little is known empirically about the effect of UI on wages. More empirical work

comparing the two elasticities would be very valuable.

In principle, our methodology could be applied to the optimal design of other public poli-

cies over the business cycle. We conjecture that a policy that maximizes welfare in an economy

with inefficient fluctuations obeys the same general rule as the one derived in this paper for UI.

The optimal policy is the sum of (a) the optimal policy absent any inefficient cycle and (b) an

externality-correction term when the economy is slack or tight. If a marginal increase of the pol-

icy increases tightness, the corrective term is positive in a slack economy and negative in a tight
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economy. For example, using the same methodology in a model in which public good provision

increases tightness, Michaillat and Saez [2013] show that it is desirable to provide more public

good than in the Samuelson rule when the economy is slack, and less when the economy is tight.

We conjecture that the rule could also be applied to income taxation. In the model of Michail-

lat and Saez [2013], if high-income earners have a lower propensity to consume than low-income

earners, then transfers from high incomes to low incomes stimulate aggregate demand and increase

tightness. As a result, the top income tax rate should be higher than in the Mirrleesian optimal top

income tax formula in a slack economy, and lower in a tight economy. The rule could also apply to

monetary policy, which can be seen as a special case where the traditional term is zero as monetary

policy is only useful to stabilize the economy. This broad agenda in normative analysis could help

bridge the gap between optimal policy analysis in public economics and business cycle analysis in

macroeconomics.

This agenda is closely related in spirit to the general conceptual framework laid out by Farhi

and Werning [2013] to study optimal macroeconomic policies in environments with price rigidi-

ties. They obtain the same decomposition of optimal policy into standard formulas plus a corrective

term. Their corrective term arises not because of matching frictions but because of the price rigidi-

ties. In related work, they apply their framework to a standard New Keynesian model to analyze

macroeconomic policies in fiscal unions [Farhi and Werning, 2012b] and to analyze optimal capital

controls [Farhi and Werning, 2012a].
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Appendix: Dynamic Model
We extend our static model to a dynamic environment. We work in continuous time.

Labor market. At time t, the number of employed workers is l(t) and the number of unemployed
workers is u(t) = 1− l(t). Labor market tightness is θt = vt/(et · ut). Employed workers become
unemployed at rate s > 0. Unemployed workers find a job at rate e(t) · f(θ(t)). Thus, the law of
motion of employment is

l̇(t) = e(t) · f(θ(t)) · (1− l(t))− s · l(t). (A1)

In steady state l̇(t) = 0. Hence, employment, effort, and tightness are related by

l =
e · f(θ)

s+ e · f(θ)
. (A2)

It is convenient to define the function L by L(x) = x/(s + x). The elasticity of L with respect to
x is 1− L. It is because l = L(e · f(θ)) in the dynamic model instead of l = e · f(θ) in the static
model that the factor 1− l appears in many formulas of the dynamic model.

Firms employ n(t) producers and l(t)− n(t) recruiters. Each recruiter handles 1/r vacancy so
the law of motion of the number of employees is

l̇(t) = −s · l(t) +
l(t)− n(t)

r
· q(θ(t)). (A3)

In steady state l̇(t) = 0. Hence, number of employees, number of producers, and tightness are
related by

l = (1 + τ(θ)) · n (A4)

where
τ(θ) =

s · r
q(θ)− (s · r)

.

Optimization Problems and Equilibrium. Let σ > 0 be the time discount factor. Given {w(t)}
and {θ(t)}, the firm’s problem is to choose the number of employees {l(t)} and the number of
producers {n(t)} to maximize the discounted stream of profits∫

t≥0

e−σ·t · [y(n(t))− w(t) · l(t)] dt

subject to the law of motion (A3). Given {ce(t)}, {cu(t)}, and {θ(t)}, the worker’s problem is to
choose effort {e(t)} and employment probability {l(t)} to maximize the discounted utility stream∫

t≥0

e−σ·t · {l(t) · v(ce(t)) + [1− l(t)] · v(cu(t))− [1− l(t)] · k(e(t))} dt (A5)
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subject to the law of motion (A1). In equilibrium, {θ(t)} ensures that that the time paths {l(t)}
given by the laws of motion (A1) and (A3) coincide. The government’s problem is to choose
{ce(t)} and {cu(t)} to maximize the discounted welfare stream (A5) subject to firms and workers
behaving optimally, the labor market being in equilibrium, and the resource constraint (3).

Steady State with No Time Discounting. We focus on the steady state of the model with no time
discounting (σ = 0). Firms, workers, and government maximize the flow value of profits, utility,
and welfare subject to steady-state constraints. Given w and θ, the firm chooses n to maximize
y(n)− w · l subject to (A4). The optimal employment level satisfies

y′(n) = (1 + τ(θ)) · w. (A6)

Given θ, ce, and cu, the representative worker chooses e to maximize

l · v(ce) + (1− l) · v(cu)− (1− l) · k(e) (A7)

subject to (A2). The optimal search effort satisfies

k′(e) =
l

e
· (∆v + k(e)) . (A8)

Finally, the government chooses ce and cu to maximize (A7) subject to (A2), (A4), (A6), (A8), and
to the resource constraint (3).

The resource constraint links cu/ce to w/∆c when the production function is y(n) = nα. First,
we can rewrite the firm’s optimality condition as α · y(n)/n = (1 + τ(θ)) · w, which imposes

y(n) =
1

α
· w · l.

The labor share is α in the model. Then, we rewrite the resource constraint as follows:

cu + l · (ce − cu) =
1

α
· w · l

cu/ce

1− cu/ce
=

l

α
·
( w

∆c
− α

)
cu

ce
=

(w/∆c)− α
(w/∆c) + α · (1− l)/l

.

If l ≈ 1, we obtain cu/ce ≈ 1− α · (∆c/w).

Modification of the Static Results. We now describe how the static results are modified in the
dynamic model with no time discounting. These results are obtained by following exactly the same
steps as in the static model. To obtain most of the results, we assume that k(e) = 0 in steady state.

Lemma 1 remains valid. The formula of Lemma 2 becomes

θ

l
· ∂l

s

∂θ

∣∣∣∣
∆c,ce

= (1− l) · (1 + εd) · (1− η)
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Equation (14) becomes

εM = εm + l ·
(
1 + εd

)
· (1− η) · ∆c

θ
· ∂θ
∂∆c

∣∣∣∣
ce

(A9)

and the formula of Proposition 2 becomes

1− εM

εm
= −(1− l) · (1− η) · 1 + εd

εd
· ∆v

v′(cu) ·∆c
· ∆c

θ
· ∂θ
∂∆c

∣∣∣∣
ce
.

The formula of Proposition 3 becomes

w −∆c

∆c
=

l

εm
·
(
v′(cu)

v′(ce)
− 1

)
+

1

1 + εd
· w

∆c
·
(

1− εM

εm

)
·
[

∆v

w · φ
+

(
1− ∆c

w

)
·
(
1 + εd

)
− η

1− η
· τ(θ)

1− l

]
.

where φ satisfies equation (12). The formula of Proposition 4 becomes

1− εM

εm
=

[
1 +

η

1− η
· α

1− α
· 1

1 + εd
· τ(θ)

1− l

]−1

.

Proposition 5 remains valid: 1−(εM/εm) is countercyclical. Proposition 6 remains the same. With
no time discounting, the wage obtained with Nash bargaining is

w = 1− (1− l) · 1− β
β
· ∆v

v′(ce)

Using (A9), we infer that the gap between εM and εm in the model of Section 4.3 satisfies

εM − εm = l · (1 + εd) · 1− η
η
·
[

∆c · v′(cu)
∆v

− εM
]

The discouraged-worker elasticity satisfies εd = (1 − l)/(κ + l) (in the static model, εd = 1/κ).
Thus, Lemma 1 implies that

εm =
l

κ+ l
· ∆c · v′(cu)

∆v

Under Assumption 3, the formula of Proposition 7 becomes

1− εM

εm
= −κ ·

(
l + κ

1 + κ
· η

1− η
+ l

)−1

.

Unlike in Proposition 8, 1− (εM/εm) is not acyclical but slightly procyclical; however, the fluctu-
ations of 1− (εM/εm) are small because l does not fluctuate much over the business cycle.
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