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Global aerosol and climate

Direct effect Indirect effect

Used for air quality too but our focus is climate relevant outputs



Modelling global aerosol

We use the global aerosol model GLOMAP (Mann et al. 2010)

A microphysical modal model simulating the evolution of global aerosol
including sulphate, sea-salt, dust and black carbon
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Aerosol model outputs

— from a single run
CCN concentration
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Aerosol model outputs

- from multiple runs with different model settings

B CCN concentration

CCN concentration




Why use statistics for
understanding uncertainty?

* Traceable (and testable) framework

* Using probability allows us to infer things that we couldn't
otherwise.

Quantification Understanding

How reliable is Are my conclusions
my model robust?
prediction? How can the

uncertainty be

reduced?



Global aerosol model notation

Y= f(X)

Aerosol model f

Aerosol model inputs/drivers/initial conditions/structures X

Aerosol model output Y

Bold letters are used to

denote X and Y are
vectors or matrices

X and Y are random variables with probability distributions
X~GyandY ~ Gy
f is also uncertain

Capital letters are used to
denote X and Y are

random variables
(unknown)




Probability distributions for
uncertainty

X~ Gy and Y ~ Gy

* Properties of the probability density functions Gy and Gy
represent the uncertainty usually described by its moments

* Mean is the central value — model estimate
* Variance is the spread — uncertainty about the model estimate

» Skewness and kurtosis reveal more about the shape

* QOur interest lies in the mean and variance but the shape is ( - J
important for quantification and interpretation




Mean and variance

« E[Y]: estimated by [i = Z7=1% - the expected value

N2
Yi=1(yji— 1)
n—1

 Var[Y]: estimated by 4?2 j=1,2,...,n




Conditional probability

* Always working with conditional probabilities

* We are in fact looking for Gy given Gy therefore we use Y| X and
Yle and YleJ

* There are also other factors upon which Y could be conditioned, e.g.
the model, the model runs, observations, initial conditions

We usually use notation to show what we HAVE considered

Experience shows that this work opens ups the discussion on
dependency of results

* The robustness of Y can be tested by changing the conditions

: : : i . 11 J
* With GLOMAP we use sampling to find conditional probabilities [
conditioned on parameter uncertainty




Why do model ensembles?

* Model uncertainty:
Initial condition uncertainty — mostly weather models
Parametric uncertainty — all computer models
Structural uncertainty — different computer models

* Repetition necessary to measure uncertainty
Gy and Gy can not be measured by a single number
We can’t derive things analytically

* It's important to know which uncertainties are represented in
an ensemble and which aren't.

[12])




Model ensembles

Initial condition ensembles
* Repeated model runs with changing initial condition
* Common for weather prediction

Multi-model ensembles (MME) Y is usually

* Compare models attempting to simulate the same thing similar between
the ensembles

but X changes
in each

* Target structural uncertainty

Perturbed physics ensembles (PPE)
* Repeated model runs with changing parameter values
- Target parameter uncertainty

GLOMAP is part of the international AEROCOM initiative —an MME

In GLOMAP we do PPE to target parameter uncertainty where
parameters represent process and emission uncertainties



Discussion: language

* | define the uncertainties according to what | think can be
investigated in particular ensembles

What is the difference between a
parameter perturbation and a structural
perturbation?

Can boundary conditions/initial
conditions/parameters/inputs be
represented by parameters?




Multi-model ensembles -
MMES

Target structural uncertainty

* Look at models with different structures denoted X
Processes are coded differently
Processes are treated differently

 Use summary statistics to represent Gy

* How do the different ways processes are treated affect the
model results?

* Use maps and graphics and comparison to observations to try
to understand structural uncertainty Gy where X here [ e J
represents different model structures




AEROCOM - MME of aerosol

models
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Problems with MMEs

Ensemble of opportunity
Because the experiment is
not designed to target
particular sources of
uncertainty it is difficult to
know what is causing model

Models are not independent
Models share code as people
move modelling groups or
collaborate. Some modelling
centres also have multiple
models

diversity

Common errors
All models tend to represent the
same processes depending on
current scientific understanding

Single model runs
Modelling groups only submit
their ‘best’ model run




Discussion: communicating

structural uncertainty

Probability
Do people really Presenting
think ensembles
probabilistically When presented

despite the with a central
limited value and spread
ensembles? How is the natural way
do they use them of thinking like
effectively? the Gaussian
distribution?




Useful results from MMEs

* Although it is difficult to define X for different structures using
different models can provide important information on model
diversity

* Different metrics are used to represent Y helping to
understand what is well/poorly modelled given current
understanding

* Regional/temporal comparison of MME can help to identify
processes with large structural diversity therefore areas for
model development or the need for further understanding

(0]




Ways forward for MMEs

* Related models are removed from the ensemble

Dependence between models is reduced

* Discrepancy can be used in the statistical modelling to account
for common biasses

* Combine PPE and MME studies to account for and compare
multiple sources of uncertainty




Discussion: two paradigms for
MMEs

Truth + error Exchangeability

The model runs all Reality could be any
represent reality with one of the model runs
some error

As more models are Model uncertainty is
added the uncertainty some representation of
reduces model spread

In any case........but justifiable?
Multi-model ensembles agree better with observations when the average is
used.
Weighted averaged can be better if the weights can be calculated.




Perturbed physics ensembles -
PPES

* Target parameter uncertainty

* Parameters are values used within the code to represent something
in reality — sometimes measurable

* Parameter values chosen to give model output closest to
observations

* Additional parameters added often without considering whether the
definition of other parameters may have been changed by the
additional model development.

* At any point in time a parameter is probably doing more than it was
designed to do - we know that there are things happening in the real [ 23 J
system that can't be modelled with current technology.




X and Yina GLOMAP PPE

* In general, Y denotes all model outputs
* From now on we will only consider a single scalar model output, Y
* We consider only monthly mean cloud condensation nuclei (CCN) in
a single model grid box
* This simplifies the statistics

* In general, X denotes all model inputs, drivers, parameter values,

initial conditions
* Unless specified otherwise we use X to denote model parameters

and scaling of some inputs — hereon in called model inputs
- X ={X,X, ..., Xn} with ninputs
Y. i . del i We have added
; is a specific uncertain model input narameters to perturb

Y — f(X) model inputs that are not

traditionally considered
parameters




Small letters are used to

AerOSOl mOdel nOtathn denote realisations of

XandY

X = {xlr X2, X3, X4, X5, Xg, X7, x8} )
y = Monthly mean CCN concentration

# Perturbation Settings (Initial Experiment)

: in each grid box k
1000.00
ACT=20.5e-9 500.00
SE_SO0L=0.0285
SE_INS=0.0285 200.00
NCRITFAC=0.259
NMOL=5.04el 00.00
ANTHPARFRAC=0.000102 50.00
EMFRAC=0.704
EMSSFRAC=0.177 20.00
NSCAVACT=41.0e-9
10.00
2.00

2.00
# Run The Model

1.00
0.50

echo "Running The Model"

-

jiinpas
if (test $MACHINE = "arcl") W damiii. .
. 4 0.10
mpirun ./glomap.exe
0.05

Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W.: Mapping the uncertainty in global CCN using

emulation, Atmos. Chem. Phys., 12, 9739-9751, doi:10.5194/acp-12-9739-2012, 2012.



Expert elicitation - what is the
parameter uncertainty Gy.?

A subjective method but in uncertainty analysis actually aimed at
removing subjectivity

Experts are encouraged to discuss the model and its parameters

Encourage experts to push the ranges on the parameter values that
they would normally choose

Document all evidence and expert opinions that lead to Gy,

A statistician is present to avoid common problems such as [ 26 J
anchoring and to form the probability distributions




Frequency

2000
]

1500
|

1000
1

500
1

X1

Finding the probability
distributions for X

Histogram Kernel density Empirical CDF
: 2 J : : . 2 0 : J 4 2 0
Boxplot
I I I
-4 -2 0
> summary (x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
—-3.814000 -0.670600 -0.013300 -0.00362% 0.665500 3.648000




Quantiles to elicit the
probability distributions

* The quantiles may be used to describe data or uncertainty
* The 100 quantiles are called the percentiles

* Median - 50t percentile
* Interquartile Range (IQR) — 25t — 75t percentile

* Can be used alone for description

* If a probability distribution is required you can try to match
the percentiles

* Percentiles seem to be more intuitive and easier to explain




SHELF - The Sheftield
Elicitation Framework

The Sheffield Elicitation Framework SHELF v2.0
ELICITATION RECORD - Part 2 — Distribution
Quartile Method
Elicitation title | X4
Session Experts - KC, JP, GM, KP, DS, P§
Date 01.07
Quantity AIT_WIDTH
Start time 11.18
Definition Modal Width — Accumulation mede width sigma
Evidence Philip uses 1.59
Heizenberg in Doc, 1.3 to 1.9 with mean 1.4
Plausible range | 1.210 1.8
Upper and KC IP GM__ | KP DS PS
lower quartiles || | 12 |12 |2 12 |12 fi2
Q1 1.4 1.35 1.33 1.3 1.35 1.35
M 1.5 1.5 1.40 1.4 1.5 1.5
Q3 1.6 1.6 1.55 1.5 1.65 1.65
u 1.8 18 18 18 18 18
The Sheffield Elicitation Framework
Fitting
normal

The Sheffield Elicitation Framework

SHELF v2.0

Group
elicitation

lower quartile: 1.4

|
12 12 13 14 15

median: 1.5

T T T 1
12 14 15 16 18

Sum of squares: 0.000118
0.05 quantile: 1.2
0.95 quantile: 1.7

10 20

00

T T T T T T
12 14 16 18

Scaled Beta( 144 ,1.77)
mean= 147 ,sd= 0146

upper quartile: 1.6 Fitting and

feedback

T T T
15 15 16 17 18

Frequency
30000
I

Four equally
probable intervals

10000
L

70000
)

50000
L

[
L

Fraquency
I I |

0e+00 2e+D4 4e+04 Be+04 Be+D4  1ev0S

Histogram of rb

Histogram of rb * (1.8 - 1.2) + 1.2

oo

U (15-12)+12

quantiles best fit
0.25 1342351
033 1380986
0.50 1.462800
0.66 1.544153
0.75 1594479

PRS-

The Sheffield Elicitation Framework

SHELF v2.0

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.200 1.350 1.462 1.469 1.582 1.800

Chosen
distribution

Beta(1.44.1.77) on the standardised scale.

T 1




Marginal and joint probability
V= f(X)

* Each model input X; has a pdf Gy, - the marginal distribution of X;

* Any combination of X; and X; has a joint probability distribution
GXL.J.

* Very difficult to consider the joint uncertainty space a priori but

experts are encouraged to think about interactions between
parameters

* We generally want to know the marginal Gy given the Gy

* Interest also in Gy given Gk, and Gy given GX”. etc. to understand

how uncertainty in model inputs leads to uncertainty in model
output

* If things are Gaussian all the joint probabilities can be derived,
otherwise we use sampling [ 30 J

* In GLOMAP X; are mostly not Gaussian — need sampling




GLOMAP Elicitation

— Have decided on the uncertain inputs

BCOC mass emission rate (fossil fuel) 0.5 2.0
BCOC mass emission rate (biomass burning) 0.25 4.0 X — {Xll XZ ) X3 ) ) XZ 7 X2 8 }
BCOC mass emission rate (biofuel) 0.25 4.0
Sea spray mass flux (coarse/acc) 0.2x 5.0x Particle and
502 emission flux (anthropogenic) 0.6x 1.5x — precursor gas
S0O2 emission flux (volcanic) 0.5x 2.0x emission
Biogenic monoterpene production of SOA 5Tg/a 360Tg/a rates USe the marglnals GXl tO Sample
Anthropogenic VOC production of SOA 3Tg/a 160Tg/a _
DMS mass flux 0.5x 3.0x GX o {le’ GXZ’"- ’ GX27, GXZS}
BCOC mode diameter (fossil fuel) 30 nm 80 nm n assumlng lndependence
BCOC mode diameter (biomass burning) 50 hm 200 nm .
BCOC mode diameter (biofuel) 50 nm 200 nm - Pro_pertles o_f
Subgrid conversion of SO2 to S04 ("primary SO4“) 0% 1% emitted partICIeS
Mode diameter of "primary SO4" 20 nm 100 nm Parameter Lower Upper
- BL nucleation rate k[H2504] 4E-7 2E-04
FT nucleation rate (BHN) x0.01 X10 MicrophVSical
Ageing "rate" from insol to sol (monolayer) 0.3 5 rates
Modal width (accumulation) 1.2 1.8 "
Modal width (Aitken) 12 1.8 Model “Structural
-
Lee, L. A., Pringle, K. J,, Reddington, C. L., Mode separation diameter (nucleation/Aitken) 9nm 20 nm choices”
Mann, G. W., Stier, P, Spracklen, D. V., Pierce, J. R., Mode separation diameter (Aitken/accumulation)  x1.5 x3 B
and Carslaw, K. S.: The magnitude and causes of Cloud drop activation dry diameter - 0 -
uncertainty in global model simulations of cloud Reaction SO2 + 03 in cloud water (clean) oriea ones | L Cloud
condensation nuclei, Atmos. Chem. Phys., 13, 8879- Reaction S02 + 03 in cloud water (polluted) pH=3.5  pH=5 processing
8914, doi:10.5194/acp-13-8879-2013, 2013. -
Nucleation scavenging dry D (above activation) 0 nm 100 nm n
Nucleation scavenging fraction (T> -15C) 0.2 0.99 - Dry and wet
Dry deposition velocity (Aitken) x0.5 X2.0 depos ition
Dry deposition velocity (accumulation) X0.1 X10.0 _




Discussion points: elicitation

How much is expert judgement used, without
explicit declaration?

What is the alternative to expert elicitation?

Expert elicitation is subjective, how subjective
are objective statistics?




Experimental design for
uncertainty

* In GLOMAP can’t brute force sample from all probability
distributions

* Aim to find maximum information in the fewest runs

* Different designs include:
Random sampling — poor space-filling properties
Factorial design — quickly becomes very large
Maximin latin hypercube — good space-filling and marginal properties
Sobol sequence — good space-filling properties
Hybrid designs — mixture of designs to target regions
‘Targetted’ design —aim to reduce particular variances in an ensemble

* With GLOMAP we use the maximin latin hypercube implemented via
R.




Parameter2

0.4

1.0

0.8
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02

0.0

Experimental design II

* First step — space fill with latin hypercube

* If necessary target regions of the uncertainty space
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Emulation

Fill in the gaps between the limited runs
— |large sample necessary

<

@)

o’

0 147 2016
m L 5

S Q)
9 e141.8 ~
o 144.824

. 147.48;7

log10(BL_NUC)

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol model to quantify

sensitivity to uncertain parameters, Atmos. Chem. Phys., 11, 12253-12273, d0i:10.5194/acp-11-12253-2011, 2011.



Emulated CCN

120

Emulation II

140 150

130

110

log10(BIO_SOA)
05 1.0

0.0

-0.5

Find marginal relationships

= Blo88k

0.0

0.2

04 0.6
Standardised input range

0.8

1.0

Frequency
200 400 600 800

0

L

log10(BL_NUC)

1

Build up output distributions

L 2 2 L 2 00— 9—8 99 L 2 .
110 120 130 140 150
Emulated CCN




Emulation III - the Gaussian
Process .

. 130{%6

1.0

log10(BIO_SOA)
05

0.0

-0.5

log10(BL_NUC)

* Non-parametric but takes advantage of the conditional multivariate
mathematics and Bayes Theorem

* Each model run is assumed to have a Gaussian distribution with zero
variance - the marginal

* Together all model runs have a multivariate Gaussian distribution
whose mean, variance and covariances can be calculated — the joint

* All unknown model runs have a conditional multivariate Gaussian
distribution which can be calculated — the conditional

* We sample from this conditional distribution and use these to
estimate GLOMAP where we don’t have runs [ 37 J

* The variance in the conditional distribution gives us a measure of
emulator uncertainty




Why is Gaussian so popular?

34.1%| 34.1%

.1 13.6% 13.6% "]

=30 =20 =10 M lo 20 30
* The Gaussian (normal) is convenient mathematically
It is sensible in a lot of cases
Other distributions can be transformed to Gaussian
The mean and median are the same, or at least similar

Conditional and multivariate Gaussians are also Gaussian so
still mathematically convenient




Emulation IV - the maths

The Gaussian process prior — specified by the

mean and covariance functions

* The mean function — the output is some function
of the inputs

E{f)|By=hx)"B. h()=(1,xT)
 The covariance function — the output is some function of
the inputs with error dependent on the distance between
points and the output ‘smoothness’
cov{f(x), f (X))o} =0"c(x,x")
c(x,x")=exp{—(x —x) R(x —x')}
 The parameters in the statistical function p(B.02) x

will be estimated by the known points
(trainine data)

()




Emulation V - the maths

The Gaussian process posterior — also

specified by the mean and covariance
functions

 The mean function goes through the training
points

m*(x)=hx)T B+t(x)T A" (y—Hp)
e The covariance function — there is zero error at the

training points and it gets bigger as you move away from
them

G2e(x,x")* =62 (cx,.x")—t)TA t(x)) + (h(x)T 40
—to)'A "' ATD NV heHT —txHTATITH)T)




Emulation VI - the maths

The Gaussian process posterior — the

dependency on the training data

H' = (h(x1).....h(xy)).

( | c(x1,x2) - c(x1,xn)\

c(x2,%x1) 1

Used
A=

DiceKriging
in R

\c(x,,,xl) | )
B — (HTA—IH)—IHTA—Iy

and

"D yT(A—I_A—IH(HTA—]H)—IHTA—I)y
o< =

n—q-—2



Emulator validation

North Atlantic (40.0°W, 40.0°N)

Are the emulator e
estimates close to the |

: S 400f

GLOMAP points? 2 ol

GLOMAP CCN (cm™%)

a) JAN emulator validation b) JAN emulator uncertainty

100

50.0
95 20.0
90 10.0
85
80
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Uncertainty analysis (UA)

* What is the uncertainty in the output due to the uncertain
inputs?

* What is the variance of E|Y|X] ?

* We sample from Gy over all X and use the emulator to
calculate the associated variancein Y

Sample 140,000 emulator runs for

GLOMAP UA and SA — would take
~190 years with GLOMAP




UA I

* Carried out UA on each of the model grid boxes separately
and plotted in a map

Emulator mean CCN -+ Emulator standard deviation _, -s
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Sensitivity analysis

* Uncertainty in which parameter leads to most uncertainty in
the model output? Which Gy, variance results in the biggest

portions of Gy variance?
Var(Y) = X;Wi+ XiciWij+ .+ 2 Wi o
Vi :Wi, Vi,j=Vi+Vj +Wi,j
R
=
Var(Y)

ZS + 3 S+ +Sp,., =1

i<j

[45)




SA — main effect and total effect

* Main effect — percentage of variance that could be reduced if
we learn X; (or by how much it’s irreducible if it can’t be
learnt)

S; = Vi /var(Y)

* Total effect — percentage of variance that remains unexplained
if we learn everything but X;

Sti=Vgi/var(Y)=1-5_;

* By comparing main and total effect we learn about
interactions ( =8 J

Used sensitivity in R



SA II - mapping the results
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SA III - time series of results
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Learning about computer
models

* Visualising the results over space and time can help to learn
about the computer model

* Even without observations we have learnt about the model

* How does the model behaviour compare to what we know
scientifically?

* Are the models of any use? Adequate for purpose

* Using models to predict — more justifiable if we know the
model behaviour is consistent with science and responds as
expected

4]




Learning about GLOMAP

* The model responds to perturbations in multiple inputs as
expected from current knowledge

* The model responses show emissions transport consistently
with current knowledge

* The model seasonality is consistent with current knowledge

* We have also learnt which of the perturbations lead to the
largest uncertainties and which uncertainties need to be
improved

* We have also learnt which model perturbations don’t cause a
significant model response




Ways forward for PPE

* More model outputs to be studied
* Better emulators for multivariate data?

* Observationally constrained PPEs




Comparing models and
observations

* Learnt about GLOMAP but how consistent is it with
reality?

Is the model at all consistent with observations?

What metrics should be used?

* How many metrics help avoid compensating errors?

* How good is good enough?
* Can a model just be fit for purpose?




History matching

Implausibility measure for a single model output:

()2 — (Zf — Lk [1‘;(}()])2 IChOOEGathreshold Ermrl,]
L) = Nz —ElF N

Implausibility measure for multivariate model
output:

I(x) = (z = E[f(x)]) Var [z = E[f()]] " (z = E[f(x)])

Include the emulator variance, discrepancy
variance and observation error:

Var [z — E [f(x)]] = Var[f(x)] + Var [n] + Var [e]



AMOC (Sv)

History matching HadCM3,
using climateprediction.net

B

25

20

15

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P. Jackson, L.,
Yamazaki, K. (2013),

History matching for exploring and reducing climate model parameter space using

observations and a large perturbed physics ensemble, Climate Dynamics, 41(7),
1703-1729.
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History matching

@ We have found models with more realistic ocean circulations.

@ History matching has lead us to a region of parameter space that
might contain even better models.

@ We further reduce this space using 5 further constraints:

1 SST in the sub-tropical gyre Space Reduction 82.5%

2 SSS in the sub-polar gyre Space Reduction 29.8%

3 The STG is stronger west of 75°W than to the east at 30°N.
Space Reduction 0.4%

4 The SPG is 1.5 times stronger in the labrador sea than to the

west of Greenland. Space Reduction 8.2%
5 SST around iceland. Space Reduction 4.5%

@ The remaining space is 0.47% of the original space.
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Calibration

* Find the ‘best’ model parameter values
* Must include discrepancy
* Discrepancy can be modelled as a Gaussian process

* Posterior introduced earlier becomes the prior and the
observations are used to update it for a new observationally
constrained posterior

* Can estimate the calibration parameters from the posterior
taking into account parameter uncertainty, discrepancy and
observational error

We represent the relationship between the observations z, the true process ((-) and the
computer model output 7(-, ) in the equation

<= G(JI) + e = ,U?](.Ll!{j_, 6) + d("’c{-‘) + €4, (7)

[s¢)

where ¢; 1s the observation error for the 7th observation, p i1s an unknown regression pa-
rameter and d(-) 1s a model inadequacy function that is independent of the code output

’l( Ty ) . Kennedy, M. and O'Hagan, A. (2001). Bayesian calibration of computer models (with discussion). Journal of the
Royal Statistical Society, Series B. 63, 425-464.




Including observation error
and discrepancy

* We know they exist so must account for them
* They are very hard to specify

Observation error Discrepancy

Include: Models cannot

- measurement error simulate exact
- scale differences reality
(time and space)
- variability




Discussion: what is the ‘best’
model?

History matching
Rule out parts of parameter space
inconsistent with current set of observations

Calibration
Find parameters that match the current
observations most consistently




Discussion: communication
and education

How much statistics do you need to
understand?

Do you need to understand all aspects of

statistics to use them?

Who should be using them?
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