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My background 
•  I am a hydrologist 
•  I have worked at the Institute of Hydrology and 

Universities of Leeds, Virginia and Lancaster, with 
visiting positions at UC Santa Barbara, EPFL 
Lausanne, KU Leuven, Uppsala University, and LSE 
London 

•  I have worked on many hydrological models 
(Topmodel, IHDM, SHE, MIPs, DBM….) and 1D/2D 
hydraulic models (HEC-RAS, ISIS, JFLOW,….) 

•  Interests in floods, flood forecasting, future 
change, residence times and travel times of 
pollutants 

•  And uncertainty (Generalised Likelihood Uncertainty 
Estimation, GLUE, methodology) 

 



My background 
•  Started doing Monte Carlo experiments on models 

at the University of Virginia in 1980 (start of GLUE 
and equifinality concepts)  

•  80’s - Used Monte Carlo in continuous simulation for 
flood frequency estimation 

•  Moved to Lancaster 1985, continued GLUE work, 
first publication with Andrew Binley in 1992.  

•  Most recent thoughts on how to do science given 
uncertainties in CRAS Geosciences 2012 paper and 
“GLUE 20 years on” paper in Hydrol. Process. 2013 

•  Current CREDIBLE project on uncertainty in risk 
assessments for natural hazards for NERC  

•  Work has been summarised in two books. 

 



 
 

The books… 

www.uncertain-future.org.uk 
  
 



Increasing 
A
pproxim

ation 
•  The Perceptual Model (ideas) 

•  The Conceptual Model (equations) 

•  The Procedural Model (code) 

•  Model Calibration  (may be difficult?) 

•  Estimation of predictive uncertainty 

•  Model Validation (may be impossible? 
                                 - but a good idea !!) 

The Modelling Process 

•   Declare Success ? 

•   Use in decision making? 



Uncertainty in Environmental Models  
- Why should we be interested in uncertainty? 

•  Models are wrong and are known to be wrong … (Adam Morton) 
•  but might still be useful in real applications….(George Box) 
•  Input and boundary condition data are wrong and are known to 

be wrong   
•  Parameter values might have physical significance, but the 

values we can measure in the lab or field may not be the values 
that are required to make the model work (therefore some 
calibration usually needed) 

•  Observations with which we can check a model are wrong and 
are known to be wrong 

•  Result that may be rather difficult to differentiate between 
different models as hypotheses (the equifinality thesis) 

•  Might there be better ways of doing environmental science?  



Uncertainty estimation methods 
Three different types of problem: 

•   Forward uncertainty estimation (no data to 
assess residuals – must depend totally on 
assumptions about sources of uncertainty) 

•   Model conditioning (historical data to assess 
residuals in calibration period – learn about errors 
for use in prediction) 

•   Real-time data assimilation (can assess residuals 
in real-time and update forecasts and forecast 
uncertainty – especially used in flood forecasting –) 

See Uncertain Future? book 



Hydrology as one of the inexact 
sciences 

Pattern of 
rainfall inputs Pattern of actual 

evapotranspiration 

Discharge estimates (requires “rating curve”) A/E/
D 

Catchment area 

Changes of storage 

Heterogeneity of soils 
& representation of 
flow processes 

Flow through 
bedrock?   

Land Management 
Effects on soil & 
surface 



Hydrology as one of the inexact 
sciences 

The Water Balance Equation 

Q = R – Ea – ΔS 
All of terms subject to both epistemic and aleatory 
uncertainties……and there may be other inputs and 
outputs impossible to measure 
Nancy Cartwright “This Dappled World” – such 
principles are capacities rather than truths when 
applied in practice 



•  Errors in the input and boundary condition data 

•  Errors in the model structure 

•  Errors in estimates of parameter values 

•  Commensurability of modelled and observed variables 
and parameters  

•  Errors in the observations used to calibrate or evaluate 
models 

•  Errors of omission (not always the unknown unknowns) 

•  …… 

 

 

Sources of Uncertainty 



•  Errors in the input and boundary condition data 

•  Errors in the model structure 

•  Errors in estimates of parameter values 

•  Commensurability of modelled and observed variables 
and parameters  

•  Errors in the observations used to calibrate or evaluate 
models 

•  Errors of omission (not always the unknown unknowns) 

Difficult (impossible) to disentangle different sources of 
error without making strong assumptions  

(Water  Science and Technology, 2005) 
 

 

Sources of Uncertainty 



•  Formal statistical approach to likelihoods 
(generally) assumes that the (transformed) errors 
are additive and random (aleatory error) 
conditional on the model being correct 

•  But in environmental modelling, many sources of 
error (in model structure, input data, parameter 
values,….) are a result of lack of knowledge  
(epistemic error) which will result in 
nonstationarity of error characteristics 

•  In extreme cases, data available for calibration 
might even be disinformative. 

 

Types of error and why they are important 



Types of Uncertainty (and why they are important) 

Aleatory Uncertainty 
 
Epistemic Uncertainty 

 System Dynamics 
 

 Forcing and Response Data 
 

 Disinformation 
 
 
Semantic/Linguistic Uncertainty 
 
Ontological Uncertainty 
 

Beven, Leonardo Lecture: Facets of Uncertainty, Hyd.Sci.J. 2014 



Disinformation in calibration data 

Application of WASMOD to Pasa La Ceiba, Honduras 
(from Ida Westerberg, Uppsala) 

 
 



Disinformation in calibration data 

Application of WASMOD to Pasa La Ceiba, Honduras 
(from Ida Westerberg, Uppsala) 

 
 



•  Errors in the input and boundary condition data (A/E/D) 

•  Errors in the model structure (E/D?) 

•  Errors in estimates of parameter values (A/E) 

•  Commensurability of modelled and observed variables 
and parameters (A/E/D) 

•  Errors in the observations used to calibrate or evaluate 
models (A/E/D) 

•  Errors of omission (sometimes known omissions) (E/D?) 

•  The unknown unknowns (D?, becoming E/D) 

 

 

Types of error and why they are important 
Aleatory (A), Epistemic (E) or Disinformative (D)  



Activity 
Make a list of the most important 
uncertainties in your modelling activity. 
Classify these under the following headings: 

 1.  Essentially random 
 2.  Lack of knowledge about how to represent some 

processes (including different theories/belief systems 
about how to do so) 

 3. Lack of knowledge about how to define parameter 
values at scale of the model 

 4. Lack of knowledge about boundary conditions or 
forcing data 

 5. Lack of knowledge about how observables relate to 
model variables in model calibration/evaluation/
verification 

 6. Unknown unknowns 



Activity (2) 
 
What effect do you expect the epistemic 
uncertainties to have on model simulations? 
 
Is there evidence in current model results to 
suggest they might be important? 
 
Is there evidence that some calibration/
evaluation/verification data might be 
disinformative?   



Uncertainty about uncertainty estimation 
•    Many sources of uncertainty in the modelling 
process but can generally only evaluate the 
differences (residuals) between some observed and 
predicted variables (e.g. water levels, discharges, ……) 

•   Leaves lots of scope for different interpretations 
and assumptions about the nature of different 
sources of uncertainty 

•   Model structural error particularly difficult to 
assess (not easily separated from input and other 
uncertainties without making strong and difficult to 
justify assumptions) – often assessed AS IF model is 
correct 

•   Therefore lots of uncertainty estimation methods 



Statistical Uncertainty Estimation 
•  Treat the optimal model as if it were the “true” model 
•  Fit a model to the residuals using appropriate assumptions 

(e.g. residuals are of zero mean and constant variance and 
uncorrelated in time/space - or something more realistic, 
with bias, non-constant variance {heteroscedasticity}, and 
correlated residuals) 

•  Nature of error model defines a likelihood function 
•  Sum of model + error distribution can be used to estimate 

likelihood (probability) of predicting an observation given the 
model 

•  Problem that treating multiple sources of error as if all 
“measurement error” 

 
 



•  Model evaluation normally based on residuals in 
space and time ε(x,t)  

ε(x,t) = O - M(Θ, I) 
  

•  Made up of multiple contributions 

ε(x,t) = εM(θ, εθ, I, εI, x, t) – εC(Δx,Δt, x,t) - εO(x,t) + εr         

where εM(θ, εθ, I, εI, x, t) is the model error (as affected by 
parameter and input error 
 εC(Δx,Δt, x,t)  denotes the commensurability error between 
observed and predicted values 
 εO(x,t) is the observation error, and 
 εr is a random(?) error component 

    
 
 
 
 
 
 

Likelihood and Model Evaluation 



•  As soon as a new observation becomes available then a 
new residual error can be calculating information from 
the new observation as 

 
ε = O - M(Θ, I)  

 
•  Assuming (for the moment) the model to be unbiased, 

the contribution to likelihood function from a single 
residual is assumed (after Gauss) to be given by 

    
 
 
 
 
 
 

Model Calibration and Model Structural 
Error: formal Bayesian approaches 
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•  Applying Bayes equation over n such residuals, assuming 
independence, the contributions can be multiplied so 
that: 
      

 
 
•  For the assumption of the Gaussian distributed errors, 

the final form of the likelihood function is given by.  
       
 
 
 
 
 
 

Model Calibration and Model Structural 
Error: formal Bayesian approaches 
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Assume standard (aleatory) likelihood with Gaussian 
information, mean bias, lag 1 correlation.  
Likelihood ratio for 2 models with similar error variance 
 
 
 
 
 
 
 
 
 
 
See discussions in Beven JH, 2006; CRAS Geosciences, 
2012 
 

Do Statistical Error Models lead to Over-
Conditioning when Epistemic Uncertainty Important? 

Years of data 



Assume standard (aleatory) likelihood with Gaussian 
information, mean bias, lag 1 correlation.  
Likelihood ratio for 2 models with similar error variance 
 
 
 
 
 
 
 
 
 
 
See discussions in Beven J. Hydrol., 2006; CRAS 
Geosciences, 2012 
 

Do Statistical Error Models lead to Over-
Conditioning when Epistemic Uncertainty Important? 

Years of data 

100 
 
 
 

10-20 
 
 
10-40 



•  All these likelihoods based on normal distribution 
assumptions for the errors derive from Gauss assumption 
that errors as probabilities are proportional to square of the 
error (the L2 norm) 

 
 
 
•  Earlier work by Laplace (who independently derived a 

discrete form of Bayes equation in 1816) based on absolute 
errors (the L1 norm, see Tarantola, 2005) 

 
 
 
•  Less affected by outliers….but not so convenient for 

analytical calculations in pre-computer era 
 

An aside…… 
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Generalised Likelihood Uncertainty 
Estimation (GLUE) 

•  Based on rejection of the idea of parameter 
optimisation: will not be robust to calibration period, 
performance measure or measurement errors – concept 
of equifinality 
[Beven, J Hydrology, 2006, Manifesto for the Equifinality Thesis] 

•  Can then only assess the likelihood of different models 
being good predictors of the system of interest  

•  Can reject (give zero likelihood) to those models that 
are not good predictors of calibration data 

•  Can take account of different model structures as well 
as different parameter sets 

•  Can treat complex errors implicitly (so no need for 
formal error model) 

 
 



Uncertainty as a likelihood surface in 
the model space 

Basic requirements of a likelihood as belief 

•  Should be higher for models that are “better” 

•  Should be zero for models that do not give 
useful results 

•  Scaling as relative belief in a hypothesis rather 
than probability 

But how then best to determine weights from 
evidence given epistemic uncertainties?? 



•  Models as multiple working hypothesis about 
functioning of system – can hypotheses be rejected 
on basis of uncertain information available? 

•  Two conflicting requirements (analogy with Type I 
and Type II errors) – do not want to reject a good 
model as non-behavioural because of input error & 
do not want to retain a poor model as behavioural 
by using a compensatory error model  

•  JH Manifesto idea – set up limits of acceptability 
(reflecting observation error, commensurability 
error and input error) prior to running the model 

•  But…“Best available” model may not be “fit for 
purpose” (allowing for uncertainty) 

 

Testing models as hypotheses 



1.  Eliminate obviously disinformative data 
 
2.   Set up limits of acceptability (reflecting 
observation error, commensurability error and 
input error) prior to running the model. 
 
3.   For each model run, evaluate performance 
against limits of acceptability 
 
4.   Check for error reconstruction to improve 
predictions / calculate distributions of errors. 
     
 

A framework for model evaluation 



First criterion: Event mass balance consistency (expectation 
that event runoff coefficient Q / R will be less than one) 

But…difficulty of separating events 
 
 

and impact of an inconsistent event on model results might persist for 
following events, gradually decaying 

Identifying disinformative data 

Master Recession 
Curve 

Separation of 
Events 



Results of runoff coefficient determination for River Tyne at Station 
23006 – plotted against rainfall totals over catchment area as 
estimated from 5 gauges (black – range 0.3 to 0.9) 

 
 

Setting Limits of Acceptability prior to 
running a model 

Master Recession 
Curve 

Beven et al, HESS, 2011 



•  The question that then arises within this framework is 
whether, for an particular realisation of the inputs and 
boundary conditions, εM(θ, I, εI, x, t) is acceptable in relation 
to the terms εO(x,t) + εC(Δx,Δt, x,t). This is equivalent to 
asking if the following inequality holds: 

Omin(x,t) < M(θ, I, εI, x, t) < Omax(x,t) for all O(x,t)   

 where Omin(x,t) and Omax(x,t) are acceptable limits for the 
prediction of the output variables given εO(x,t) and εC(Δx,Δt, 
x,t) 

•  Idseally, limits of acceptability should be evaluated prior to 
running the model (but note I,εI in M(θ, I, εI, x, t) ) 

Limits of acceptability 



Likelihood can be developed based on scaled deviation away from 
observation, with zero value at any time step that prediction 
lies outside limits.  

 
 

Model Evaluation using Limits of 
Acceptability 



Predictive distribution over all behavioural 
models: what if predictions do not 

encompass new observation 
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Limits of acceptability 

Model 

Predictions 



If disinformation can be identified in calibration, 
what to do in prediction? 
•  Given only input data we do not know if the 

next event will be consistent or 
disinformative (can only differentiate a 
postiori when response is observed) 

•  We might still be surprised (the 2008 crash 
as a “25σ event”)  

 
 

 

Allowing for disinformation 



 
 

Informative and disinformative prediction 
bounds in validation 

See Beven & Smith, JHE, accepted  

Disinformative event (post hoc) 

Informative 
event quantiles  Disinformative 

event quantiles  



River Eden: January 2005 event 

 
 

Upstream at Appleby 

Emergency Centre  
at Carlisle 

Public response 
at Carlisle 



Sources of Uncertainty in 
Flood Risk Mapping 



Interactions between Sources 
of Uncertainty 



(from Beven and Alcock,  
Freshwater Biology, 2011)   

Types of error in flood risk mapping 

Source of 
uncertainty  

Aleatory errors Epistemic nature 
 

Design flood 
Magnitude 
 

What is the range of sampling 
variability around underlying 
distribution of flood magnitudes? 

Are floods generated by different types of events? What 
frequency distribution should be used for each type of event? 
Are frequencies stationary? Will frequencies be stationary 
into the future? 

Conveyance 
estimates 
 

What is the random sampling 
variability around estimates of 
conveyance at different flood levels? 
 

Is channel geometry stationary over time?  
Do conveyance estimates properly represent changes in 
momentum losses and scour at high discharges? 
 Are there seasonal changes in vegetation in channel and on 
floodplain?  
Is flood plain infrastructure, walls, hedges, culverts etc. taken 
into account? 

Rating curve 
interpolation and 
extrapolation 

What is standard error of estimating 
the magnitude of discharge from 
measured levels? 
 

Is channel geometry stationary over time? 
What is estimation error in extrapolating rating curve beyond 
the range of measured discharges? 
Does extrapolation properly represent changes in momentum 
losses and scour at high discharges? 



Types of error in flood risk mapping 

Source of 
uncertainty  

Aleatory errors Epistemic nature 
 

Flood plain 
Topography and 
Infrastructure 

What is the standard error of survey 
errors for flood plain topography? 
What is the random error in 
specifying the positions of elements, 
including elevations of flood 
defences? 

Are there epistemic uncertainties in correction algorithms in 
preparing digital terrain map? 
How should storage characteristics of buildings, tall 
vegetation, walls and hedges in geometry be treated? 
Are there missing features in the terrain map (e.g. walls, 
culverts)? 

Model structure 
 

How far do results depend on choice of model structure, 
dimensions, discretisation and numerical approximations? 

Observations used 
in model 
calibration ⁄ 
conditioning 

What is the standard error of 
estimating a flood level given post-
event survey of wrack marks or 
gauging station observations? 

Is there some potential for the misinterpretation of wrack 
marks surveyed after past events? 
Are there any systematic survey errors? 



Types of error in flood risk mapping 

Source of 
uncertainty  

Aleatory errors Epistemic nature 
 

Future catchment 
change 

What process representations for effects of land management 
should be used? 
What future scenarios of future change should be used? 
Are some scenarios more likely than others?) 

Future climate 
change 

What is the variability in outcomes 
owing to random weather generator 
realisations? 

How far do results depend on choice of model structure? 
What process representations in weather generators should 
be used? 
What future scenarios of future change should be used? 
Are some scenarios more likely? 

Fragility of 
Defences 
 
Consequences ⁄ 
Vulnerability 

What are the probabilities of failure 
under different boundary conditions? 
 
What is the standard error of 
for losses in different loss classes? 

What are the expectations about failure modes and 
parameters? 
 
What knowledge about uncertainty in loss classes and 
vulnerability is available? 



The GLUE methodology 
1.  Decide on limits of acceptability prior to running 

model 
2.  Decide on prior distributions for parameters 
3.  Run the model with many parameter sets chosen 

randomly from priors 
4.  Evaluate the model against available observations 
5.  Reject models that are “non-behavioural” 
6.  Weight the remaining models by some likelihood 

measure 
7.  Use ensemble of models in prediction (with 

implicit or explicit handling of residual errors) 



Mexborough: Summer 2007 
Mapped maximum inundation and model predicted flow depths 
for Summer 2007 floods at Mexborough, Yorkshire using 2D 
JFLOW model 



Mexborough Risk Mapping: 
Defining Input Uncertainties 

WinFAP estimate 
of 0.01 AEP (T100) 
flood peak at 
Adwick 
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Google maps API 



Google maps API 



Google maps API 



Google maps API 



The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Google maps API 



Google maps API 



Google maps API 



Formal Bayes 
•  Uncertainty has to be expressed as probability of 

predicting an observation conditional on the model 
(still underlying idea of finding “the model”) 

•  A suitable formal likelihood to represent total error 
or error sources can always be found (and is 
consistent across model parameter sets) 

•  Data is always coherent and information content of 
new data can be evaluated by looking at change in 
discrepancy measure 

•  Prediction bounds should bracket data to required 
90/95% level 

•  Poor use of likelihoods (e.g. ignoring autorcorrelation 
or non-Gaussian residuals) is poor practice 
 
 

 

Differences between formal Bayes and GLUE 



GLUE 
•  Acceptance of equifinality in face of model error, input error 

and observation error (epistemic errors in general) 
•  Uncertainty is not a probability of predicting an observation 

but expressed as empirical prediction limits for behavioural 
models after weighting by informal likelihood measure / degree 
of belief in a model - residuals associated with each 
behavioural model handled implicitly 

•  Prediction limits may then not bracket observations to any 
specified level depending on model and input error (but if 
model can span the observations they might do) 

•  Formal likelihoods can be used as a special case, error model 
simply becomes an additional model component 

•  Poor interpretation of likelihood weights is poor practice 
 
 

 

Differences between formal Bayes and GLUE 



Risk Communication 

•  Decision makers are not interested in 
uncertainties (?) 

•  But uncertainty might make a difference to the 
decision that is made (being more risk averse 
where consequences might be catastrophic) 

•  But how best to convey meaning of uncertainty 
estimates (Faulkner et al., Ambio, 2007) 

•  AND the assumptions on which those estimates 
are based (Beven and Alcock, Freshwater Biology, 2011) 



Communicating the meaning of uncertainty estimates:  
Case of Flood Inundation 



Guidelines for Good Practice as Condition 
Trees 

 
e.g. Decision Structure for design flood estimation 



Summary 
•   May be impossible to separate out sources of error from 
series of model residuals   
•   Epistemic sources of uncertainty result in non-
stationarity in error characteristics (and potential for 
surprise in prediction) 
•   Treating all uncertainties as aleatory can lead to dramatic 
over-conditioning  
•  GLUE approach - allows for equifinality of model 
structures and parameter sets 
•   Limits of acceptability approach as an alternative to 
statistical testing of models as hypotheses 
•   Discussion and agreement regarding assumptions of 
analysis provide a basis for communication of concepts 
 



A paradox to think about in your own 
work… 

•  Generally, the more physical understanding that is 
built into a model, the more parameter values must 
be specified to run the model 

•  The more parameter values that cannot be estimated 
precisely, the more degrees of freedom that will be 
available in fitting the observations (we cannot 
measure effective parameters everywhere). 

•  Therefore the more physical understanding that is 
built into a model, the greater the problem of 
equifinality is likely to be. 

•  A “perfect” model with unknown parameters is no 
protection against equifinality 



Still be done 
1.  Reducing uncertainty depends more on better observation 

techniques than better model structures. Better model 
structures might still be achieved - need more tests for both 
flow and transport 

2.  Will still have to accept that models of both hazard and 
consequences will have limited accuracy – so uncertainty 
estimation will remain important (better likelihood measures 
and need to identify disinformative data) 

3.  Should look more carefully at epistemic uncertainties that 
might lead to surprise – particularly in respect of future non-
stationarities (are we looking at a wide enough range of 
scenarios?) 

4.  Need to communicate the meaning of predictions (and 
uncertainties) to decision makers – it may make a difference to 
the decision process. 

  



in  
Environmental Modelling: 
An Uncertain Future? 
 
Routledge, 2009 
ISBN: 0-415-46302-2 
 
More information at 
www.uncertain-future.org.uk 
 
 

More on these techniques…… 

  
 


