

Evaluating climate-like models

Erica Thompson

Challenges

- Not enough data
 - timescale of desired (detailed) prediction is longer than timescale of (detailed) observational record
- Changing underlying conditions
 - old data may not even be relevant if the system is in a new/changing state
 - how can we define what we are measuring?
- Complex dynamical system
 - can suffer from severe predictability constraints

Data constraints

- Is it feasible to make predictions that are longer-term than your observational record?
 - hurricanes, sea ice, ...
- What gives confidence in model results?
 - agreement with past observations
 - agreement with physical principles
 - agreement with other models

Changing conditions

Statistics:

- What parameters are you trying to estimate?
- Will they remain the same?

Dynamics:

- What physical relationships are you trying to understand?
- Will they remain the same?

Complexity

Initial condition uncertainty:

"the butterfly effect"

Complexity

Structural uncertainty:

How valid are my assumptions?

- Some assumptions may be tested against data
- Some require subjective assessment ("expert judgement")

- Expert judgement is an entirely valid approach
- However... it may lead to disagreements

Confronting imperfect models with data

Models

Confronting imperfect models with data

IPCC methods (2007)

"Likely" (>66%) assessment ranges: Add 60% to multi-model mean Subtract 40% from multi-model mean

IPCC methods (2013)

- AR5 (recently published) changes strategy:
 - Find "very likely" (>90%) range of models,
 based on Gaussian assumption
 - Downgrade probability to "likely" (>66%)

Good practice

- Some aspects of model evaluation can be done with reference to data, where available (Follow Emma's methods)
- Some aspects are inevitably subjective
 - Is the model good enough?
 - Is the assumption good enough?
- Physical insight ("expert judgement") is not an optional extra, it is required
 - Must be done systematically, and justified clearly