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D Orrell, LA Smith, T Palmer & J Barkmeijer

M O d el I m p erfeCtl O n S (2001) Model Error in Weather Forecasting,

Nonlinear Processes in Geophysics 8: 357-371.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/45_ModelError_2001.pdf

Overview

Multi-model Multi-initial condition forecasting... and golf.

30 April 2008 ST418 Lecture 10 © L.A.Smith



Consider an ensemble of golf balls, placed on the green by a
player who cannot see the hole.

30 April 2008 ST418 Lecture 10 © L.A.Smith



Consider an ensemble of golf balls, placed on the green by a
player who cannot see the hole...

Why might this be considered a PDF forecast for the hole?
30 April 2008 ST418 Lecture 10 © L.A.Smith



Consider an ensemble of golf balls, placed on the green by a
player who cannot see the hole...

First off, we should not treat the distribution as delta functions!
30 April 2008 ST418 Lecture 10 © L.A.Smith



How does adding a second player help?
Note that these points are sampling different distributions,

And even 1f the input noise 1s Gaussian, the output(s) 1s not!
30 April 2008 ST418 Lecture 10 © L.A.Smith



Or a third?
Can a combination of imperfect models be coherently

interpreted as a (physically relevant) probability forecast?
30 April 2008 ST418 Lecture 10 © L.A.Smith



Can a combination of imperfect models be coherently

interpreted as a (physically relevant) probability forecast?
30 April 2008 ST418 Lecture 10 © L.A.Smith



How can we best use these distribution both in practice and in
improving our theory?

(Extract their information content, not their component values)
30 April 2008 ST418 Lecture 10 © L.A.Smith



When would Cross Pollination of the models do better than any one of them?

How can we best use these distribution both in practice and in improving
our theory?
In weather we are playing on a 1,000,000-dimensional green (with ~32

_ well-studied observations).
30 April 2008 ST418 Lecture 10 © L.A.Smith



“Even the losers, get lucky some times”

Take Home Points Tom Petty

Know your goal in ensemble forecasting.
Move towards an information theoretic point of view.
(Fully Probabilistic, No linear or Gaussian assumptions, no RMS, ...)
Avoid Pliable Scores (anomaly correlations, ensemble mean scores)
Is your evaluation score reflecting the thing you are aiming for? Exactly?
What is the information deficit in your forecast system?
Do you have actionable “probabilities”?

CPT aims for a phi-shadow in a more effective bounding box.

Exploiting complementary shortcomings to get one realistic/ valuable
trajectory amidst an ensemble of mostly poor ones.

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



“Even the losers, get lucky some times”

Challenges in Meteorological Forecasting 'o™m P&ty

Legacy Code; Legacy Dreams; Legacy Personnel
Rational Risk Aversion in all Successful Operational Centres
Pre-1960 Cost functions.

Overly-presumptuous DA Schemes

What is your goal in ensemble forecasting? (exactly)

What is the ultimate aim of super-modelling?

CPT allows access to plausible futures single models just can’t reach.

(At the cost of many many implausible “paths” in state space)

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



Raw (uninformed) CPT (for ONR in the late 90’s)

One initial condition at t = 0, 4 models : four one step forecasts.

Four initial conditions at t=1, 4 models : 16 two step forecasts. And so on.

t=0 t=1 t=2

Why do this?
And what is it that comes out?!?

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear
Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64
Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf

Different Models Excel at Different Things

These “things” may be regions, or they may be phenomena.

Regions: by design or by local talent and interest:

Coloured circles
show where each
model is particularly
good, or bad.

Phenomena: Parameterizations that best capture the onset of blocking

may not capture the breakdown of blocking best! El Nino/La Nina,

Drought/Flood (nonlocal drivers) ...

The aim of CPT is to take the best behaviours of each model, then mix and
we cannot know which will be best tomorrow.

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



Different Models Excel at Different Things

These “things” may be regions, or they may be phenomena.

Or Regions of state space.

Smith, L.A. (1992) Identification and
prediction of low dimensional dynamics

Physica D 58 (1-4): 50-76.
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This is real data from a real
annulus...
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http://www.lse.ac.uk/CATS/Publications/Publications PDFs/17_IdentificationAndPrediction_1992.pdf

Different Models Excel at Different Things

These “things” may be regions, or they may be phenomena.

Or Regions of state space.

LA Smith 7 Low dimensional dynamics

Smith, L.A. (1992) Identification and
prediction of low dimensional dynamics
Physica D 58 (1-4): 50-76. A

This is real data from a real
annulus...
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time
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http://www.lse.ac.uk/CATS/Publications/Publications PDFs/17_IdentificationAndPrediction_1992.pdf

Different Models Excel at Different Things

These “things” may be regions, or they may be phenomena.

Or Regions of state space. B | |
LA Smith 7 Low dimensional dynamics

and my RBF model beat CFD... © [
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Different Models Excel at Different Things

The forecast intervals are based on the distribution of local
errors (out of the learning set).

LA Smith ¢ Low dimensional dynamics
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= - Nonlinear RBF model, linear in parameters: but weighted with the data?
Uniform on the attractor or uniform in the state space ->two models....
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Different Models Excel at Different Things

Ensemble predictions up to lead time 256.

L L .
0 50 100 150 200
Lead time, tp

In these forecasts of a simple
“chaotic” circuit, the limitations on
predictability come from model
Inadequacy (structural model error)
not from chaos.

This model could not shadow past
the point where the ensemble
departs from the future trajectory.

Cross Pollination in Time, OHRID
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Different Models Excel at Different Things

CPT was originally designed for low-dimensional models whose skill varied

with location in state space o
n Ensert\blepredicuon'suptoleadtu'-nezss. ' “The Welghtlng IS the hardest pal't.”

Tom Petty

Leonard Smith

100
Lead time, tp

Ensemble predictions up to lead time 256. C. H AO S

A Very Short Introduction

|

0 % 100 0
Lead time, tp

Local Linear Models in a 5 dim delay space from independent learning & training sets.

Figure 7: Ensemble predictions using (a) model 1 and (b) model 2. The

_ Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



Different Models Excel at Different Things

These “things” may be regions, or they may be phenomena.

Regions: by design or by local talent and interest:

D16104 FOX-RABINOVITZ ET AL.: VARIABLE RESOLUTION GCMS D16104
@ ®)
Figure 1. SGMIP stretched grids with the area of interest over the major part of North America used in s D
the following SG-GCMs: (a) C-CAM SG-GCM, (b) GEM SG-GCM (the window corners are listed A number of Numerical Weather Prediction CLOSEX
Models are run at the Met Office

counterclockwise from the Pacific Ocean (137.4°W, 22.8°N), (71.5°W, 6.5°N), (31°W, 41.3°N),
(168.9°W, 69.1°N); it is a regular window in rotated latitude-longitude coordinates for which the equator
h) () ARPEGE SG.GOCM_and () GFOS SG.GOM_Fvery

nasses aver North America fmm north fo sont

Phenomena: Parameterizations that best capture the onset of blocking
may not capture the breakdown of blocking best!

The aim of CPT is to take the best behaviours of each model, then mix and
_ match as we cannot know which will be best tomorrow.

But what is it we are trying to do?

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith




Laplace's Demon (1814)

1) Perfect Equations of Motion (PMS)
2) Perfect noise-free observations
3) Unlimited computational power

Demon’s Apprentice (2007)

I ,\ 1) Perfect Equations of Motion (PMS)
i | | 2) Perfeet noise-frec-observations:
Ly A 3) Unlimited computational power

/ |

Apprentice’s Novice (2012)

1) Perteet Equations-of Motien{RMS) -
2) -Perfeet noeise-free-observations:
3) Unlimited computational power

http://2darts.com/2dtuts/articles/50-terrifying-creatures/
Oct 2012 IEEE eScience: Science in the Dark Leonard Smith



http://2darts.com/2dtuts/articles/50-terrifying-creatures/

Original CPT(2000)

2.6 Multi-model CPT Ensembles

In this section a new method of truly multi-model ensemble forecasting is
presented which attempts to take the limitations discussed above seriously.
Il we accept that each of our models is incorrect. that the “correct initial

PDF” is as ill-defined as the “true initial state”. then we can construct
a multi-model forecasting scheme which will outperform any individual
model both in terms of ¢-shadowing and in terms of the duration for which
the verification remains within the bounding box defined by the ensemble
members, at least in the [imit of huge ensembles.

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of
Nonlinear Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston:

Birkhauser, 31-64

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf

CPT(2000)

The simplest reaction to having M models is to identify the best one,
discard the others. and compute M x N member ensembles under this
single “best” model. Il the models are of comparable quality. then it is
likely that different models will tend to do better in different regions of
state space (i.e., on different days). due to variations in the particular
processes that are important locally. In practice, there is rarely enough
data to identify which one will be the best on a given day. and a reasonable
alternative is to compute M., N-member ensembles, one ensemble under
each model. Note that neither approach can produce a ¢-shadow longer
than the longest ¢-shadow found within the individual models. Tf the M
models really do have independent shortcomings (ideally, il they fail to
i-shadow in different regions of state space). then it is possible to cross
pollinate trajectories between models in order to obtain truly multi-model
trajectories that explore important regions of state space the individual
models just can't reach. This Cross-Pollination in Time (CPT) approach

can outperform both of the methods above.

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear
Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf

CPT (2000)

The basic CPT approach first takes the M N-member ensemble forecasts
made under each model and combines them to form one large set of N x M
points in the model-state space. This large ensemble is then pruned back
to N member states, attempting to maintain a large bounding box while
deleting one member in each pair of relatively close ensemble members
(the details of the PDF are wrong anyway ). These N conditions are then
propagated forward under each of the M models. And so on.

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear
Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf

Original Ikeda Example —or- Circuit Story

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear
Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf

Lorenz ‘95 Two Level System

found in Lorenz|37]. Hansen [24] Orrell [48]. Hansen and Smith [25] and

the references therein. The equations are:

B i amir + 8 de — B+ F - BEY (2.1)
— = —I; 2l Ty 1T — &4 - Ui :
df i 1 b 1abag1 i E.i LN
1=1
dif : i . . hye
—::;;’ = ebyyir (U5 1, — Uiez) — e + ;; L (2.2)
where ¢ = 1,... ,m and j = 1,... ,n and with cyclic boundary conditions

on both the #; and the g;; (that is T, = &1, Y14 = Y1, and so on).
In the computations below F = 10, m = 8 and n = 4. The constants b and
¢ are both equal to 10, so the small-scale dynamics are 10 time faster (and
a factor of 10 smaller) than the large-scale dynamics, while the coupling
coetficients hz and g are both set to unity.

FIGURE 2.1. Schematic of the Lorenz two-scale system.

Smith, L.A. (2000) Disentangling Uncertainty and Error: On the Predictability of Nonlinear
Systems in Nonlinear Dynamics and Statistics, ed. Alistair I. Mees, Boston: Birkhauser, 31-64

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf

Given Four Models, each gets one region very well.

Model |
Moclel 2
Model 3

FIGURE 2.1. Schematic of the Lorenz two-scale system. | Smith



Three Challenges of CPT

Exponentially Growing Ensembles: Prune to maintain diversity

Models need not share common state space: PDA/ISIS DA

Judd, K., Reynolds, C.A., Smith, L.A. and Rosmond, T.E. (2008) The Geometry
of Model Error . Journal of Atmospheric Sciences 65 (6), 1749--1772.

Forming Stable Couples:
Pairing Unigue Brother States (PUBS)
Data Assimilation of Truest Ensemble Signals (DATES)

Quantifying Success: NOT RMS
Perhaps Best RMS?
Is a Probability Forecast an Achievable Aim?

What am I trying to achieve with ensemble forecasting?
| would like to treat imperfect model ensembles as information:
NOT AS LIKELY FUTURES

(A digression on parameter estimation)

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www.lse.ac.uk/CATS/Publications/Publications PDFs/77_Judd_GeomOfModelError_JAS.pdf

Parameters Estimation via Forecasting P(x)

How might we use probability forecasting to estimate parameters?

a) Form a series of ICE ensembles for a given parameter value
b) Compute a series of probability forecasts

c) Select a proper score: -log(p(x)/u(x)) (13 Good, 1952)

d) Compute the score as a function of parameter value.

H Du and L A Smith (2012) Parameter estimation through
ignorance Physical Review E 86, 016213

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf

Parameter Estimation: Correct Model Structure
Empirical IGN = (—Iogzp(xobs))obs Implied IGN = (Expected IGND recase

2 T T T

Note that the Implied IGN

<Z p(x) log,(p(x)/u(x))>
Is less than the Empirical IGN

<Z q(X) log,(p(x)/u(x))>
even at the correct value of a.

&
T

lgnorance relative to climatolo gy
ch &

— i dgn for N
= — Empirical ign for I i
\ / —==oez| o This Information Deficit(s) indicates that the
- 1 (each) forecast scheme can still be
-] improved.

h 1 1 1
17 1.75 1.8 1.85 13 185 2
parameter a

Perfect Model Structure
All Proper Scores agree
Data Assimilation Method Matters
Target uncertain (but exists)
Implied IGN reveals information deficit H Du and L A Smith (2012) Parameter estimation using
ignorance Physical Review E 86, 016213

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith


http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf

Parameter Estimation: Imperfect Model Structure
Empirical IGN = (—Iogzp(xobs))obs Implied IGN = (Expected IGND recase

-2

-25

~

(b)

h

Ignorance relative to climatology
th & h

&

1 m Emipirical Ign Tor 1N
s |miplizd Ign for 1N
s Empirical Ign for DG
I e |iplizdl I Ty DT

1
;M
o

C 1 1
39 3.95 4 405

Model Logistic Map: l(x) = 4x(1 — -1')

Quartic Map: g(x) = l—f. (1 — 222 + 27)

System: F'(xr) = (1 —€)l(x)+ eq(x) with e = 0.1

H Du and L A Smith (2012) Parameter estimation using

ignorance Physical Review E 86, 016213
Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf

Parameter Estimation: IGN in the Logistic Map Model

Empirical IGN = (—Iogzp(xobs))obs Implied IGN = (Expected IGN trecass
g—_ g—ls;‘\ ! /
% -45 % sl {m\\i/

‘g B — |mplied g for I ‘g‘ sl : |
= w—— Eripirical ign for I - 1
-5 e Emiplrical ign for OC L W
e |mipliet g for DE ' — mﬁ‘éﬁ;ﬁm:"h
- =
Perfect Model Structure Imperfect Model Structure
All Proper Scores agree Score matters
DA Method Matters DA Method matters
Target uncertain (but exists) Target indeterminate (none exists)
Implied IGN reveals information deficit Implied IGN reveals info deficit

H Du and L A Smith (2012) Parameter estimation using
ignorance Physical Review E 86, 016213

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf

Target uncertain (but exists) : Be a Bayesian
Target indeterminate (none exists): Bayes ( & the probability calculus) irrelevant.

P(a | Data, ) =P(Data|a,l)P(a|l) /P(Data|l) x P(Data|a, |) P(a|l)
=0

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



Parameter Estimation: IGN in the Henon Map

035 0.35
018 i.05
0.325 Al 0.325F
' 1.15
b o3 10-16 b 13
11.05
10.15
0.275 0.275 0.95
0.14
0.85
0.5k 0.25 :
1.3 1.35 14 1.45 15 1.3 1.35 1.4 1.45 15
a a

FIG. 2. (Color) Parameter estimation for Henon map (a = 1.4; b = 0.3), noise level equals 0.05, given 1024 forecasts at lead time 4. (a)
Cost function based on LS. (b) Cost function based on forecast ignorance.

Remember: Least Squares can be proven to yield the wrong
answer even given an infinite number of observations:

It aims to minimize RMS error which is the wrong target when the
forecast distribution is not Gaussian (even if the observational

uncertainty was GaUSSIan) H Du and L A Smith (2012) Parameter estimation using

ignorance Physical Review E 86, 016213
Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf

Outside PMS:
Target Parameter depends on Noise Level and Lead Time

PARAMETER ESTIMATION THROUGH IGNORANCE PHYSICAL REVIEW E 86, 016213 (2012)

—— noise level=1/B 0
— nioisa level=1/16

S
_+_-

= i | ——noise level=1/32 3 -0.5 _
.§‘ % I_|=——noiss level=1/84 [ o lead 1!ma 1
= - | | —— noise level=1/128 | g 4 J|—lead 1!me 2
E I E lead time 3
o —-1.5¢ : 3 _15 —lzad time 4
- e 2 lead time 5
I
R I : g o
I
2 ! — s
¥ 2° W L o5
[
E I E I
5 [ ! -3k 1
= I g !
=2 : o [
-3.5¢f -3.5f
! 1
! 1
_4 I 1 1 1 1 _a 1 1 1 1
a9 395 4 4.05 4.1 9 3.95 = 4.05 4.1
parameter a parameter a

FIG. 4. (Color online) Parameter estimation for logistic model in the imperfect model scenario, with parameter @ = 4 of the Quartic
system, using inverse noise ensembles. Results from three independent realizations are shown, each given 1024 forecasts; note the consistency
in locating the minimum (). The similarity of these three lines indicates the result is robust. {a) Empirical ignorance scores as a function of

the parameter value for lead time 1 forecast at several noise levels. (b) Empirical ignorance scores as a function of the parameter value and lead
time given at noise level 1/128.

H Du and L A Smith (2012) Parameter estimation using
ignorance Physical Review E 86, 016213

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



http://www2.lse.ac.uk/CATS/Publications/abstracts_Papers/Du&Smith-PhysicsReviewE-016213-2012.pdf

What does a good IC ensemble give us?

In the short term: Better Cluster (recall the golf balls)
In the longer term: a cluster in the wrong place

Multi-model, IC ensembles: many clusters each one in the wrong place
ENSEMBLES/CMIP5 would provide an example.

What does the word “uncertainty” mean in connection with IC or parameter
values when model structure cannot shadow?

How can we best use these distribution both in practice and in improving
our theory?
In weather we are plaving on a 1.000.000-dimensional green (with

30 April 2008 8T418 Lecture 10 © L.A.Smith well-studied observations)
P e 30 April 2008 ST418 Lecture 10 h ©LA Smith

What is your goal in ensemble forecasting?

el

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



Lorenz 96 One Layer Model Worked Example

Consider 4 models, Each individual model is very good over % of the planet.
None can simulate their far side of the planet well.

Each Quadrant has a different value of F in the world.

Each model has a good value of the local F, but a poor estimate of far field F.

Cross Pollination in



Lorenz 96 One Layer Model Worked Example

Consider 4 models, Each individual model is very good over % of the planet.
None can simulate their far side of the planet well.

Each Quadrant has a different value of F in the world.

Each model has a good value of the local F, but a poor estimate of far field F.

Cross Pollination in



CPT, Lorenz 96 M=40 One Layer Model

Forecast each of the N=4
models out a time .

Record the forecast of
the (expected) best
model at each grid point.
(DATES,,.)

Assimilate DATES
using PDA/ISIS

Forecast a second time T.

Form a probability forecasts of this CPT ensemble, contrast with
both of PURE ensembles and large singleton model ensemble.

FIGURE 2.1. Schematic of the Lorenz two-scale system.

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



Lorenz 96 M=40 Worked Example

Consider an m=40 case of Lorenz 96 with different F values on each
guadrant, specifically F={ 8, 12, 14, 10}.

Take N=4 models each with the correct values of F in its local hemisphere,
and a single average value in its far hemisphere.

tau = 2.5 days

Data analysis for single (hereafter PURE) models by PDA/ISIS.
Launch N forecasts for a time tau.
Compute DATES pseudo observations
Data Assimilation of Truest Ensemble States: expected best model at x;

Assimilate DATES obs in (future) window t= (0,tau)
Repeat DATES process on window t=(tau, 2 tau)

Form Probability forecasts from PURE ensemble and DATES ensemble by
dressing and blending.

What would you mean by uncertainty in the IC here?
= There is only uncertainty in the forecast-outcome pair!
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Lorenz 96 M=40 Worked Example

Skill of Probability forecasts from PURE ensemble and from DATES ensembles:

0~

—— D JRE
== Double DATES

|
da ) L
T 1 T

Ignorance relative to climatology
A

i

| | | | | | | |
0 5 10 15 20 25 30 35 40
Location

PURE has 2 bits more information than the climatology
(that is 4x the probability mass placed on the outcome).
PCT, DATES has 2 bits more than PURE: 16x probability of climatology)

What would you mean by uncertainty in the IC here?
: There is only uncertainty in the forecast-outcome pair!
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Lorenz 96 M=4- Worked Example

Skill of P o- embles:

e PLIRE
= Double DATES
m— Single DATES

| | |
] ] =
| 1 T

Ilgnorance relative to climatology

&

PURE has =i
(th at |S ! ] ] | | | ] | ]
0 5 10 15 20 25 a0 35 40
PCTZ DAT Location

What would you mean by uncertainty in the IC here?
A There is only uncertainty in the forecast-outcome pair!
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Probability Forecasts: Chaos

The evolution of this probability distribution for
the chaotic Lorenz 1963 system tells us all we can
know of the future, given what we know now.

It allows prudent quantitative risk management
(by brain-dead risk managers)

And sensible resource allocation.

We can manage uncertainty for chaotic systems
(given a perfect model).

But how well do we manage uncertainty in the
real world? For GDP? Weather? Climate?
20.0
o Do we have a single example of a nontrivial
system where anyone has succeeded (and
willing to offer odds given their model-based
PDFs?)

0.0

BIVIBOARD 3 oyBOSS

Smith (2002) Chaos and Predictability in Encyc Atmos Sci

oV
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Objection has been taken to such forecasts, because they cannot be
always exactly correct,—for all places in one district. It is, however,
considered by most persons that general, comprehensive expressions, in
aid of local observers, who can form independent judgments from the
tables and their own instruments, respecting their immediate vicinity,
though not so well for distant places, may be very useful, as well as"
interesting : while to an unprovided or otherwise uninformed person,
an idea of the kind of weather thought probable cannot be otherwise
than acceptable, provided that he is in no way bound to act in accord-
ance with any such views, against his own judgment.

Like the storm signals, such notices should be merely cautionary
—to denote anticipated disturbance somewhere over these islands,—
without being in the least degree compulsory, or interfering arbi-
trarily with the movements of vessels or individuals,

Certain it is, that although our conclusions may be incorrect—our
judgment erroneous—the laws of nature, and the signs afforded to man,
are invariably true. Accurate interpretgtion is the real deficiency.

Fitzroy, 1862
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Model-based probability forecasts are incomplete without a
quantitative measure of the likelihood of model irrelevance.

Spatial If precip over the Amazon (or Okeefenokee) is
Scales badly simulated, the biomass will be badly
metres  simulated, this missing/extra feedback may lead
to model irrelevance... First local, then global.
v
Km Timescales for such things may be sound — |o
science! =
i
)
1)
1000km <
Target ©
Lead-time | =.
> 0
hours weeks years decades centuries Nt
years
weeks
Temporal
Average
Scale day “No presentation of model-based

probabilities is complete without an
expression of model irrelevance.”
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Shortcomings of State of the Art Models

Missing 2km tall wails of rock!

'V’L: — And long term

! o feedbacks (bio-
feed backs,
albedo, ...)

3

2000

At what lead times do inadequacies in
downstream flow (or precipitation)

"0 result in feedbacks with beyond local
impacts? alter extremes? &c?

lwo At what lead times is it no longer
reasonable to interpret the diversity of
climate models as reflecting the
uncertainty in the future climate?

=500

RDCEP is moving forward to quantify
these limits as it continues to develop
methodology to make the dynamics of
state-of-the-art models available to
decision makers and economists.

N v
P
o S
WS '
=

Observed Heicht — HadCM3 Height

-500
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Is it plausible to provide a PDF of hottest or
stormiest summer day in 2080’s Oxford???

K G e nons User inmerrace http: / /WWW. ukci p.org.u k[

http://ukclimateprojections.defra.gov.uk/content/view/1263/521/#limitations

Using UKCPO9 Ul Manusl  Meed help?

Logged in
as: [enny@maths.ox...

Selecting your UK location first

pe / oL T Logout Thiz page is intended for novice users of the Ul who know what location they are interested in. This page should be used as follows:
P ] A A
3. Thoeftons™ =t L Southamptun\“ BHohton N Logged in users: 2 Step 1: Click on a point on the map (or type in the latitudedongitude coordinates and click "Selact’.

M Esardr A\ B'Sumemnuth AL - g'Be*"'"‘-“‘aH“""gs Step 2: Select a data source of interest from the listthat appears on the right.
e S P 2 4 Portsmouth| Eognor = ﬂ?o “ou have no pending Step 3: Selectthe variable you are interested in and click the "Nesd" button.
Hewton g Weymauth Regis; astbourns b
*""""go e Cee .My.lobs for fou can search by place name or postcode using the box an the righthand side. Mote that clicking a result re-centres and Zooms the map ta the new
] e Lith
Torbaydy S previousty rin jobs lacation but does make a selzction.
h Bixbam Selections on this page are restricted in that only a single ion may he Generator simulations and Marine Model Simulations

Request Status: are not available from this start point.
A ) ) ) )

S Dieppe EU Fead ahout starling your request by making spatial selections in the Ul Manual
P hiap data @2009 Tele Atlas - Term&of Use

Fecano 73608, 51.74064) Hext

) ﬂ m‘” %/ Water Eaton Search place name or postcode to re-centre map:ﬂ
@ Future Climate Change Only \ [ Beckley Search | Clear b
q |
O Future Absolute Climate Values A\ Wood

T — Postoode: OH1 10W

,@ : T Elsfield
Wolvercote \mkk
| Summertown ;
\ Oid Marston \ 5 Select by Latitude / Longitude by:

LY
%‘--:m::;t Latitude: 520018

Wariable

O Change in mean temperature (°C) ﬂ

O Change in mean daily maximum temperature (°C) ﬂ
O Change in mean daily minimum temperature (*C)

O Change intemperature of the coolest day (*C)

Headington E Risinghurst | |Longitude: -0.1044

Oxford [asz0]
Select

ﬁrandpont %
% m Horspar| [StER 2: Select a data source

i a § Atyour chosen location, there is data for following data

g Change intermperature of the warmest day {-'::l jﬁ%ﬂg\‘ : m Comv/ ;SchL;rtfg:o(;“tchlgnr%:g:cﬂgocgr:g!l highlightthe selected
Change in temperature of the coldest night {°C) = ” xford Business i
\ \ by )/,Park South o _ _

; ] e \ e (0]
© Change in temperature of the warmest night (°C) | BN o ||Lonaorine 25 G s e 0 13

. s | , | Kenmnqlnn P
O change in precipitation (%) posscs f"a::""m | | Litemore %g,% Lo UK Protabilistc Proectors of Gt Chznge over
O Change in precipitation on the wettest day (% ﬂ J Wootton Baywats | o SonlortenThanes e e A EEe Al Restor Han

. | Taot Baldon O UK Probabilistic Projections of Climate Change over
O Change in mean sea level pressure (hFPa) oo 3"‘"'"9“'// Land for the River Basin: Anglian

niford | =
O change in total cloud (%) e e - Ve g200a T s - 5 s | [SUE0 % Select a variable
nune 1.25450, 51.604048 | [Flease choose one of the fallowing variables ﬂ

O Change in relative humidity (%)
O Change in specific humidity (%)
O Change in net surface longwave ux 0N m-23 ﬂ

O Change in net surface shorwave ux 0 m-23 ﬂ
O Change in total dowmward surface shortweawve flux 00

-2 i ]

Funded by:

iz, DO T < [

Service hosted at: Science & Technology Facilities Council, Rutherford Appleton Laboraloly.



http://www.ukcip.org.uk/
http://ukclimateprojections.defra.gov.uk/content/view/1263/521/#limitations

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



i Pseudo-orbit Data assimilation

. Start with a pseudo-orbit defined by the noisy observations
Or7r —
U=§

. Generate 1-step ahead trajectories




Pseudo-orbit Data assimilation

Start with a pseudo-orbit defined by the noisy observations
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Generate 1-step ahead trajectories

Define mismatch function and minjmise
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CPDA( U)=a ‘F( ur) - Uy
=]

a=0




‘L Pseudo-orbit Data assimilation

Start with a pseudo-orbit defined by the noisy observations
Or7r —
U=S§

Generate 1-step ahead trajectories

Define mismatch function and minjmise

a o a a 2
CPDA( U)=a ‘F( ut) - Uy
=1




‘L Pseudo-orbit Data assimilation

Start with a pseudo-orbit defined by the noisy observations
Or7r —
U=S§

Generate 1-step ahead trajectories

Define mismatch function and minjmise

a o a a 2
CPDA( U)=a ‘F( ut) - Uy
=1




‘L Pseudo-orbit Data assimilation

Start with a pseudo-orbit deflned by the noisy observations

Generate 1-step ahead trajectories

Define mismatch function and minignise

a o a a 2
CPDA( U):a.‘F( ut)- Uy

ad—>o0

O
O
O
O O

The pseudo-orbit U converges to a trajectory as d@ —> ©

60



i Properties of PDA

There are no local minima other than trajectory of the model

More reliance on model dynamics

Advantageous for long assimilation windows

Not a shooting technique not 4dvar

Does not attempt to stick too closely to the observations
Observations are used to define initial model pseudo-orbit

Doesn’t assume structure of model error is known

Fully nonlinear

No assumptions/requirements for linear dynamics or Gaussian distributions
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Ensembles Members In - Predictive Distributions Out

(1) Ensemble Members to Model Distributions
K is the kernel, with parameters 0,0 (at /east)

_ RN

eps

P1(X)= 2 K(%,51" )/ Neps

Njim
=2 K(O)/ M
Kernel & blend parameters are fit One would always dress (K) and blend
simultaneously to avoid adopting a wide (o) a finite ensemble, even with a
kernel to account for a small ensemble. perfect model and perfect IC ensemble.

Forecast busts and lucky strikes remain a major problem when the archive is small.

J Brocker, LA Smith (2008) From Ensemble Forecasts to

Predictive Distribution Functions Tellus A 60(4): 663.
Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



http://www.lse.ac.uk/collections/cats/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf

Ensembles Members In - Predictive Distributions Qut
For a fixed ensemble size o decreases with time

And if o, = 0, can there be any
operational justification for

Py unning the prediction system.

M Ml . Pl ' (l'al)Pclim

1 Even with a perfect model and

perfect ensemble, we expect 0 to
decrease with time for small ng

l Small :: Neps << Ngim

Lead time

J Brocker, LA Smith (2008) From Ensemble Forecasts to
Predictive Distribution Functions Tellus A 60(4): 663.
Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



http://www.lse.ac.uk/collections/cats/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf

Multi-Model Ensembles In - Predictive Distributions Qut
(3) Model Distributions to Multi-model PDFs

M, NN\
M=w, M, +wM,

But why not fit everything at once?

[ ]
o2
oo
00

The answer for seasonal forecasting goes ?
back to the size of the forecast- M=0w, P+ w,P, +(1-0;-w,)
observation archive.

Cross Pollination in Time, OHRID 6 Sept 2013 Leonard Smith



Ensembles Members In — Normal Predictive Distributions Out
(1) Ensemble Members to Model Distributions

One approach is simply to fit a Normal distribution to the ensemble.
A second would allow an offset in the mean. (What would be a good offset?)
A third would allow the offset and the width to be a function of the ensemble.

There is often good reason to believe the best forecast will not be Normal, as
tonight when a cold front either will, or will not, arrive before the target lead time.

Ideally, the forecast would be conditioned on the ensemble.

J Brocker, LA Smith (2008) From Ensemble Forecasts to
Ci Predictive Distribution Functions Tellus A 60(4): 663.
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Types of probability (after 1.J. Good)

Physical Probability: this is the actual probability of the outcome.
P(BS) zero

Subjective Probability : a(n 1J) Good Bayesian Probability
One Laplace's Demon’s Apprentice or a Rational “Org” would strive for.
An accountable ensemble and an actionable probability. P(BS) small

Dynamic (Evolving) Probability: This is a probability that is expect to change
without any additional empirical information, as when a chess playing
computer is stopped early, or only half of your ensemble has run.

Mature Probability: A mature probability encapsulates all the information
Implied by your knowledge, more compute power is not expected to make an
unexpected different. P(BS) small

If your model is computationally constrained and you would expect a
significant change in the PDF given a different model on a bigger machine,
then your probability is immature. P(BS) required!

3
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Take home questions

How might we better communicate model diversity given the
possibility that we cannot get probabilities useful as such!

Do we have a single example of a nontrivial system where anyone has
succeeded (and willing to bet on their model-based probabilities?)

At what lead times do inadequacies drive (or fail to drive) feedbacks yielding
local impacts? extremes? global impacts?
How far to one go with a simulation model (when to stop: in time? space?)

How can we best deal with models behaving badly?
What prevents the provision of Prob(Big Surprise) with lead time?

How can we improve the communication of insights from simulations
without falling afoul of forecasting good practice?

How to distinguish the value of improvement from the utility of prediction?
Might the provision of probability be maladaptive?
How might we better communicate the inadequacy as well as imprecision

Is the value of qualitative insight at risk of being discarded in favour of
__quantitative mis-information?
. Does Model Inadequacy preclude the rational use of Probability Forecasts
as such?
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Ignorance and the Information Deficit

Empirical IGN = {—log,p(X.p,)? obs Implied IGN = {Expected IGN2 e

The Empirical Ignorance reflects the skill of the forecast in practice.

The Implied Ignorance tells us the skill the forecast claims to have.

If these two values differ, then there is an “Information deficit” in the forecast system,
which gquantifies how overconfident the forecast is.

Information Deficit = Empirical IGN — Implied IGN

Unlike “Potential Predictability” the Information Deficit does not assume that the world
becomes like the model: although incomplete, it can sometimes quantify overconfidence.

H. Du & L. A. Smith Phys Rev E, 2012
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The Circuit and Ensemble Size

Is chaos the dominant uncertainty in practice?

BIVIBIARD 3

Cross Pollination in Time,

by BOSS

There is a long standing claim in
meteorology that going to
ensembles larger than ~16 adds
nothing tangible to the accuracy
for the forecast.

Consider a house that offers
odds based on a 16-member
forecast, and a player who Kelly
bets based on a larger
ensemble...

6 Sept 2013 Leonard Smith



Ensemble predictions up to lead time 256. Ensemble predictions up to lead time 256.
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Figure 7: Ensemble predictions using (a) model 1 and (b) model 2. The! Ensemble predictions using {a) model 1 and (b) model 2. The
From “distance” to climatology to Forecast evaluation:

The IGN relative to climatology only reflects information content when the
distribution 1s a “good forecast”.
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What about “the” Multi-model Case?
Could there be a general result?

Case Dependent Result
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Increasing Real-time Cost
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A Resource Allocation Methodology for Forecasting

Thompson (1957) investigated the improvement of US weather forecasting
as a resource allocation problem.

How should a given investment be spread between:

(a) better obs, (b) better theory, (c) faster computers?

Today we face different alternatives:
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Improving Predictability
Schematic view of value added for improving initial condition uncertainty.
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These curves are not independent.

The curves vary with the target.

Development costs start from different legacy baselines
Historically these “optimised” separately (?draw on separate budgets?)
How to measure “value added” in this context?
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Measures of Predictability

Shadowing Times

Model State

The distribution of i-shadowing times provides an excellent upper bound on predictability.
But they are expensive, perhaps undefined in a forward forecast context, and if the model
is perfect they are all infinite!

Smith, L. A. (2000) 'Disentangling Uncertainty and Error: On the Predictability of Nonlinear
Systems' in Nonlinear Dynamics and Statistics, ed. Alistair | Mees, Boston: Birkhauser, 31-64
Smith, L. A. (1996) Accountability and Error in Ensemble Forecasting. In 1995 ECMWF Seminar
on Predictability. Vol 1, pg 351-368. ECMWF, Reading
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http://www.lse.ac.uk/CATS/Publications/Publications PDFs/40_Disentangling_2000.pdf
http://www.lse.ac.uk/CATS/Publications/Publications PDFs/26_AccountabillityAndError_ecmwf1995.pdf

The Circuit and Ensemble Size
House Odds based onN 8 andN 16
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Figure 10: (Circuit with inverse noise) Graphs of effective interest rate due to increasing
the ensemble size and the initial ensemble-sizes are 8 (left) and 16 (right)

respectively The color bar on the right hand side of each graph indicates the

lead time. Hagedorn, R. and Smith, L. A. (2009) Communicating the value of probabilistic

forecasts with weather roulette. Meteorological Applications 16 (2): 143-155.
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http://www.lse.ac.uk/CATS/Publications/Publications PDFs/78_Weather_Roulette_t.pdf

Data Data Everywhere, and Not a Bit to Bank On

It seems we are surrounded by model
output... but we know that the models
are unlikely to be adequate to inform
the questions we must answer.

What is the rational path forward when
the best available model is known not
to be adequate for purpose?

Claim only insight?
Estimate the probability that your

model probability is misleading?
That is, state the P(Big Surprise)

Cross Pollination in Time, OHRID
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Inspired by Andy Morse (thx andy)
http://4umi.com/coleridge/rime/1
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http://4umi.com/coleridge/rime/1

Distinguishing Three Distinct Situations
Weather-like Tasks

October October-December
9.0
A very nice . g
presentation of 12 gy % x  FOT
. . 8.0 ¢ +
information. 3 e ; »
;]ﬁ || B + Iy _1 Fi :': /
) + . =
Are these E LI i 7 EETI I- /A
actionable 3 : : g i - 7
N " £ ¥ =xz000 = b6 u ¥
probabilities S - g §
4 27 e . *
- ¥ x I 2 00 Ll 7
= * o
_L:-_-E [ & ] ; ; “
» +
» + 5.0 -
ri * +
o 4.5 ¢ »
2010
6 4.0
See: Brt')cker, J. and Smith, L. A. (2008) » Dbservations 1981-2010 & 1981-2010 Average E
From Ensemble Forecasts to Predictive
Distribution Functions Tellus A 60(4): 663. 202 outlook:  + Oct  + Oct-Dec

http://www.metoffice.qgov.uk/media/pdf/n/3/A3-plots-temp-OND.pdf
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http://www.metoffice.gov.uk/media/pdf/n/3/A3-plots-temp-OND.pdf
http://www.lse.ac.uk/CATS/Publications/Publications PDFs/74_Broecker_PDFs_tellus_2007.pdf

Proper Scores for formation and evaluation

A score S(p(x), X) is proper if, for any two probability densities
p(x) and q(x):

f:; 2)q(z df:}ff; (8)

In words: the minimum of the left hand side over all possible choices of p(x)
15 obtained if p(x) = q(x) for all . A score is strictly proper if this happens
only if p{x) = q(x) for all x.

So the expected score will be a minimum when the verification
is drawn from the forecast distribution being evaluated.

This does not imply there is a “true” density function, nor that
the forecaster is human (and so might “hedge” her forecast).

(How might a parameter estimation algorithm “hedge”?)

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance of Being Proper
Weather and Forecasting 22 (2), 382-388
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http://www.lse.ac.uk/collections/cats/papersPDFs/JB&LAS_ImportanceBeingProper_2006.pdf

Local Scores and Distant Scores

IGN = -log(p(X)) Good(1952)

Local Scores: Local scores depend only on the value of p(z) at z = X.
IGN is the only proper local score for continuous variables.

S(p(x), X) = Ip(z)2 dz — 2 p(X)

Distant Scores: The proper linear score is distant in that the score depends
on the structure of p(z) far from the outcome x.

All proper polynomial scores are distant: the score includes a term that
rewards the forecaster for the shape of the distribution independently of p(x).

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance

of Being Proper Weather and Forecasting 22 (2), 382-388

6 Sept 2013 Leonard Smith
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http://www.lse.ac.uk/collections/cats/papersPDFs/JB&LAS_ImportanceBeingProper_2006.pdf

How can we know our simulation models are inadequate?
Science is more than simulations  Missing 2km tall walls of rock!

' > e And long term
When does N ~ feedbacks (bio- 2000

“Sit and Think” trump W A ;ngdzacihs;,

“Simulate and Count”?

Example: When we
know moist air must go
over or around in (and
only in) the real world!

1500

If our models cannot reproduce today’s
driving meteorological phenomena, can
we expect them to get second order
feedbacks “"well enough”?

One-way coupled regional models
cannot account for missing physics or
inactive feedbacks.

At what lead times do inadequacies in
downstream flow (or precipitation)
result in feedbacks with beyond local
impacts? alter extremes? &c?

1000

500

!

Can we provide Prob(Big Surprise) 500

with lead time? Observed Height — HadCM3 Height




Climate Models: “Included” vs “realistically simulated”

Modeling the Climate System

cludes the Atmosphere,
Land, Oceans;iCe, and Biosphere

ransition
olid to Vapor
Evaporative
and Heat Energy Cumulus Cirrus Clouds Atmospheric
Stratus Clouds Aerosols Exchanges Clouds GCMm
ipitation now Cover
ration

Atmosphere
(Temperature, Winds,
and Precipitation)

------ e P Stratus Clouds

Atmospheric Model Layers

Karl and Trenberth 2003

The detail you see above is what is missing in
HadCMa3: the large squares reflect model grid
resolution, the detail reflects the difference between
the observed surface height and the model surface
height, “constant” within a grid point,

A very schematic schematic reflecting
phenomena the model “includes”.
(Note the turtle)
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Climate in Practice: In-sample examples.

Climate models are based on well-established physical
principles and have been demonstrated to reproduce observed
features of recent climate (see Chapters 8 and 9) and past climate
changes (see Chapter 6). There 15 considerable confidence that
Atmosphere-Ocean General Circulation Models (AOGCMs)
provide credible quantitative estimates of future climate
change, particularly at continental and larger scales. Confidence
in these estimates 15 higher for some climate vanables (e.g..
temperature) than for others (e_g.. precipitation). This summary
highlights areas of progress since the TAR: Page 591

A report of Working Group | of the
Intergovernmental Panel on Climate Change
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What is a “Big Surprise”?

Big Surprises arise when something our simulation models cannot mimic turns out to
have important implications for us.

Often we can identify cases where we are “leaking probability” when a fraction of our
model runs explore conditions which we know they cannot simulate realistically.
(Science can warn of “known unknowns” even when the magnitude remains unknown)

Big Surprises invalidate (not update) model-based probability forecasts, the I in P(x|J)
(Arguably “Bayes” does not apply as this is not a question of probability theory.)

How might we better communicate the inadequacy as well as imprecision?

Financlal and energy market assumptions

Condition explicitly on the euro not collapsing [Bank of England].

Provide subjective estimates of the probability that the model is
misinformative in the future [P(BS)].

Refuse to issue a quantitative forecast, probability or otherwise [UK ML].
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Communicating the Relevant Dominate Uncertainty

No scientist is admired for failing in the attempt to
solve problems that lie beyond his competence.”
P.D. Medawar

Good science can significantly improve the science in a model
without decreasing Prob(BS)

Following Medawar’s advice, scientists typically avoid the intractable
parts of a problem, even when uncertainties there dominate the
overall uncertainty of the simulation.

Clarifying the uncertainty most relevant to the decision maker, in
terms of dominating the uncertainty in the outcome whether,
modelled or not, would aid the use of projections in decision support.

Alternatives better than the probability of a big surprise would be
welcome.
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Objection has been taken to such forecasts, because they cannot be

always exactly correct,—for all places in one district. m,
considered by most persons that general, comprehensive expressions, in

aid of local observers, who can form independent judgments from the

UK: severe weather warning# tnstruments, respecting their immediate vicinity,
| Rainfall | Pressure | tloud | Warnings ':‘?f distant p‘ﬂm, may be Tery l.lﬂﬁfl.ll as Wﬁll as
[ Westher | wind | remperature | w | ganvwa gn unprovided or otherwise uninformed person,

Latest/recent

o e et s T . Of weather thought probable cannot be otherwise
ALL WARNINGS: Sun 12 to Thu 18 . ¢ .vided that hﬂ is in no wa bﬂm‘d to act ill mrd—-

news, against his own judgment.
ignals, such notices should be merely cautionary
L ted disturbance somewhere over thme islands,—
mesear@ least degree compulsory, or interfering arbi-
ceror ements of vessels or individuals.
o at although our conclusions may be incorrect—our
—the laws of nature, and the signs afforded to man,
Accurate interpretgtion is the real deficiency.
These are Fitzroy, 1862

Risk of

RISK OF
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Structural uncertainty IS noted in the IPCC ARA4.

A report of Working Group | of the 10
Intergovernmental Panel on Climate Change

Global Climate Projections

The effects of uncertainty in the knowledge of Earth system
processes can be partially quantified by constructing ensembles
of models that sample different parametrizations of these
processes. However, some processes may be missing from
the set of available models, and alternative parametrizations
of other processes may share common systematic biases.
Such limitations imply that distributions of future climate
responses from ensemble simulations are themselves subject to
uncertainty (Smith, 2002), and would be wider were uncertainty

due to structural model errors accounted for.

Admittedly, quantitative statement of the systematic errors are not easily found...
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