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Abstract: 
 I  will discuss the hierarchy of approaches to complex systems, focusing particularly on 

stochastic equations. I discuss how the main families of model advocated by the 
late Benoit Mandelbrot fit into this classification, and how they continue to 
contribute to cross-disciplinary approaches to the increasingly important problems 
of correlated extreme "bursts", and unresolved scales. The burst models 
complement the fluctuation theorems under discussion at NeSEE.  Their 
applications have ranged across science areas as diverse as the heavy tailed 
distributions of intense rainfall in hydrology, after which Mandelbrot named the 
“Noah effect”; the problem of correlated runs of dry summers in climate, after 
which the “Joseph effect” was named; and the intermittent, bursty, volatility seen in 
finance and fluid turbulence. 

 

Based on: Watkins et al,  PRE, 2009 
 
Watkins et al,  in “Extreme Events & Natural hazards: the 

complexity perspective” , AGU Monograph, 2012  
 
Watkins,  GRL Frontiers, 2013, doi:10.1002/grl.50103 
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What problem am I considering ? 
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Integrated bursts in complex time series   
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Many reasons, one example: 
 
Poynting flux in solar wind plasma from NASA 
Wind Spacecraft at Earth-Sun L1 point 
Freeman, Watkins & Riley [PRE, 2000]. 
 

log 
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Why do we want to study it ? 

Data 



What do we already know? 
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Quite a lot in the Gaussian, white noise-based cases 

• Times for white noise level crossings governed by Rice formulas [e.g. Kratz, 
Probab. Surveys, 2006] . 
Amplitudes for exceedances above (high) thresholds governed by  
Pickands Balkema  de Haan theorem  [e.g. Coles, 2001] 
 

•Random walks are H-selfsimilar, so can use  scaling arguments on burst  
problem [e.g. Kearney and Majumdar, J Phys A 2005] (or something very  
close to it) 
 

•Langevin equation seems trickiest case, as has intrinsic (damping) scale,  
and sacrifices H-selfsimilarity for long time stationarity. 



Much less is known in general case 
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Talk first briefly recaps some textbook equations of fluctuations   
• Cold linear (& nonlinear) deterministic dynamics. 
• Cold deterministic dissipative dynamics vs warm stochastic dissipative Langevin   
• Hot, Smoluchowski limit, diffusion equation 

Then considers 2 of the anomalies highlighted by Mandelbrot 
and his modern successors  [c.f. Watkins, GRL Frontiers, 2013] 

  

Then show work in progress [also Watkins et al, PRE, 2009] 
on  bursts in heavy tailed, LRD walks and, time permitting,  
multifractals.  

• First anomaly identified in finance in 1963, heavy tails, Noah effect. 
• Second anomaly was in hydrology 65-68s, long range dependence, Joseph effect 
•United in a fractional hyperbolic noise model in 1969, forerunner of LFSM. 
 



Cold deterministic dynamics 
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'( )x Vm xF ma = −= = 

Nonlinear: e.g. Henon-Heiles perturbed oscillator  

2 2 2 31 1( , ) ( )
2 3

V x y x y x y y= + + −

Linear: e.g. Newton’s falling apple  



Dissipative dynamics: cold & warm  
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( )mx x V xη ′= − − 

Warm (x is now stochastic): Ohmic Langevin 

'( )mx x V x ξη= − − + 

Cold (x is deterministic):  Ohmic 



Hot diffusive dynamics 
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Results in Smoluchowski limit, rather than the 
trajectories followed by the Langevin equation, 
evolves the pdf.  



Mandelbrot’s “anomalies” [1963 – 1974] 
 
• Heavy tailed fluctuations in 1963 in cotton 
prices---advocates α-stable model (J. Business, 1963).  
Then abstracts out H-selfsimilarity idea.  
 
• Hears about River Nile and “Hurst effect”. Initially  
( Selecta) believes  will be explained by heavy tails,  
but  sees that fluctuations are light tailed & applies self-similarity [Comptes  
Rendus1965] in a long range dependent  (lrd) model, source of fractional  
Brownian motion.  Classic  papers on fBm in SIAM Review and Water  
Resources Research, with Van Ness, and Wallis [1968-1969]. 
 
•  Demonstrates  new self-similar  model, fractional hyperbolic noise,  
in  1969 paper with Wallis on “robustness” of R/S. Combines heavy tails & lrd. 
 
• Becomes dissatisfied with purely self-similar models, & advocates  
multifractal cascades, initially in context of turbulence, JFM 1974.   
Subsequent applications include finance  [above story told in his Selecta,  
and in Mandelbrot and Hudson, “The (mis)behaviour of markets”]  
 
 
  



“anomalously”wild symptoms … 
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 Heavier than 
Normal tails 

Wildly fluctuating 
second moment 

Mandelbrot, J. Business, 1963 



… and α-stable cure ?  
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Tails of  ccdf 
for α 1 to 2 

Data 

Mandelbrot, J. Business, 1963 



The α-stable laws 
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Light tail 
Heavy tail 

• Pdfs that have 
 

 
tail exponent in 
range 
 
obey the ECLT  due to Levy, and are attracted to 

an α-stable law. Infinite variance ! 

(1 )( )p x x α− +


0 2α< <



H-selfsimilarity & alpha-stability  
• For walks formed  
from α-stable noises   
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H is selfsimilarity exponent, measures  
roughness. Smaller α, shallower pdf, wilder  
jumps, more roughness. 
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Fractional diffusion equation 
• Capture by modifying diffusion equation [e.g. 

Klafter and Sokolov, OUP, 2012]  
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Using Reisz fractional derivative of order alpha. 
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A new puzzle: the Nile … 

Hurst (1880-1978) studied this dataset from 
point of view of design of  “large and long 
term over-year storage … ‘century storage’” 22 January 2013 17 
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Ideal reservoir  
• Average influx over  
years, need to ensure annual released 
volume equals mean influx: 
 
Accumulated deviation 
of the influx from the  
mean: 
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Range:  
 
 

Standard deviation: 
 
 
Form            against interval         Plot loglog. 
 
White Gaussian noise prediction   
 

(Rescaled) range 
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Hurst found anomalous growth   
of rescaled range, J  about 0.7   
 

Hurst’s effect  
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/ ~ JR S τ

Nature, 1957 
 



Joseph Effect:  
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Pharoah’s dream of 7 years of plenty and 7 years of drought. Now shuffle 

... there came seven years of great plenty throughout the land of Egypt. And 
there shall arise after them seven years of famine ... 
 
Genesis: 41, 29-30. 



Joseph Effect:  
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Pharoah’s dream of 7 years of plenty and 7 years of drought. Now shuffle 

Point is that marginal distribution, of sample at least, unaffected by  
shuffling, but that the two series represent very different worlds for insurers,  
or Pharoahs. Former unlikely to happen without LRD.  

... there came seven years of great plenty throughout the land of Egypt. And 
there shall arise after them seven years of famine ... 
 
Genesis: 41, 29-30. 



fBm, an LRD and H-selfsimilar 
model for the Hurst effect   

• Mandelbrot Comptes Rendus, 1965;  
Mandelbrot & van Ness, SIAM Review 1968;  
Kolmogorov, 1940 “Wiener Spiral” 22 January 2013     23 
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Memory kernel: 
Joseph effect Gaussian jump 

H = d+1/2 



Strength of LRD  
• Measured by dependence  
parameter d 
• d of LRD noise, e.g. fGn 
is related to 
H-selfsimilarity  
exponent of walk, e.g. fBm  
by H=d+1/2.  
 
For white noise d=0 and J=1/2. 
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d=1/2 



• “Fix up” diffusion eqn: correct pdf  for fBm  
[e.g. Wang & Lung, 1990; Lutz, 2001]  
  2( , ) ( ) ( , )p x t t tD p x

t
∂
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0
2( 1/2)( ) 2 HD t D Ht −=

Diffusion equation for fBm ? 
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But  still Markovian and so can’t reproduce correct trajectory-
based information e.g. FPT. NB, fractional time diffusion 
equation  not same as fBm [Lutz, PRE,2001] 

H = d+1/2 



0
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• If particle moves in a  correlated heat bath we 
need full form of Langevin equation:  
 
 
 

• Which can be simplified in LRD special case 
(d≠0) 

  (1 2 )( ) ~ dρ τ τ − +

 Langevin equation for fBm? 

22 January 2013 26 

H = d+1/2 



• Use Riemann-Liouville fractional derivative 
 
 
 

• To re-express the memory kernel as fractional 
derivative 
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 Fractional Langevin equation [Lutz, 
2001] 
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LRD and H selfsimilarity, common 
history ... 

 Recap Mandelbrot (& Wallis), mid 1960s: 2 
departures from AR(1),  “Biblical geoscience” 
illustrations, selfsimilarity exponent H   

•  heavy tails in amplitude, cotton prices. 
“Noah” effect, 40 days and 40 nights of rain. 
•  long range dependence in Nile level. 
7 lean  & 7 fat years: “Joseph effect”. 
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… not necessarily common origin 
• Both models fBm & Levy flights are H-

selfsimilar, only fBm is LRD. 
 

• Fractional Brownian motion: H  = d + ½ 
• Levy flights: H = 1/α, where  α is exponent of 

pdf heavy tail.  
• Both are special cases of H = 1/ α +d 
• To Mandelbrot’s surprise, R/S turned out to 

measure d+1/2(=J), NOT H ! [Mandelbrot & 
Wallis, 1969]. 29 



Linear Fractional Stable Motion, a 
model with heavy tails & Joseph 

effect   

• fBm kernel, but  α-stable rather than  
Gaussian jumps  (e.g. Samarodnitsky & Taqqu book). 
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Memory kernel: 
Joseph effect α-stable jump: 

heavy tails 
H = d+1/α 



Burst scaling in LFSM? 
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Scaling arguments used in Watkins et al, PRE, 2009 



Simulations of light-tailed bursts 
 
 

 
 
 
 
 

• Reasonable agreement in Gaussian (fBm) limit: 
Confirmed findings of  Carbone et al [PRE, 2004] 
who used a DFA inspired variable threshold. 
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Simulations of heavy-tailed bursts 
• Watkins et al, PRE, 2009 found expressions 

also reasonable down to  α ~ 1.6, but to fail 
completely by  α =1. 

 
Nonstationarity of  
walk is a 
conceptual  isssue,  
also technical ones, 
work in progress. 
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 Alternative burst model ? 
• Dependence sometimes seen not in amplitude 

but squared amplitude-essentially in the 
unsigned magnitudes. Natural counterpart of 
the “volatility bunching” seen in finance---
multifractals capture this effect. 
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Scaling of multifractal bursts 
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2 Hβ = −

For fractional Brownian motion we had burst duration 
exponent 
 
 
 
 
 
Replace time by a multifractal time with a scaling function 
zeta then we  have found  
 
 
 
 
 
Effect of multifractality here is to increase effective burst 
duration. Work in progress [Rypdal, Watkins and 
Lovesletten, 2013] 
 
 
 

1 (1 1/ )Hβ ζ= − −



Can model  LRD (d) without 
assuming complete H-selfsimilarity 
 Don’t actually need completely H-selfsimilar 

models to exhibit LRD (just asymptotic)    
In 1980s Granger and Joyeux modified SRD Auto 

Regressive Moving Average  [ARMA(p,q)] 
models to allow LRD  via Fractional Integration 
of order d  [ARFIMA(p,d,q)]. 

Physically interesting:  High frequency p   term(s) 
that turns nonstationary, H-ss random walk 
into weakly stationary AR(p) i.e. dissipation 
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Next steps: 
• Check reasons for discrepancy between scaling arguments and 

numerics in LFSM (“fractional Levy” case). 
 

• Develop analytical and numerical understanding of bursts in 
multifractal random walks. 
 

• Study bursts in FARIMA/fractional Langevin problems.  
 
 

nww@bas.ac.uk 
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