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Objectives

The workshop is intended to be a forum for interaction between statisticians,
stochasticists, climate modelers, ocean observers and data assimilators. The goal
Is to develop observation strategies and design computer expernments to better
understand the model and data uncertainties that relate directly to oceans and
ocean-related feedback mechanisms. The timing is good in that the studies that
form the basis for the fifth assessment report of the IPCC are expected to be
finished before the workshop.
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Overview

A climate scientist turns to a policy maker and says:
“Our climate model is broken”
“Have you tried tuning it off and turning it back on again?”

The next day , the policy maker comes over and says
“Our government is broken”

Climate science in support of policy making could benefit from something more.
Over the next hour, | am going to suggest that:
« we do not know the space and time scales on which today’s climate
simulations are informative for adaptation.
« significant improvement requires re-design, not mere reinterpretation.
« 2002 was the time to discuss this in public, but now is better than later.
» the ocean should justify more attention (both obs and cpu).

 there is a way forward, which is arguably safer, protects the credibility of
science, and yields better policy and decision support. (?and science?)
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The Forecast Problem: 1951

THE FORECAST PROBLEM

By H. C. WILLETT

Massachusetts Institute of Technology
TRODUCTORY REMARK ol ae ' AR )
INLRO i ¢. Mathematical techniques of extrapolation—based
The Unsatisfactory Progress of Weather Forecasting : . . i . .
as a Science. Probably there is no other field of applied OIL VallOUs IllampU13t10nS of the Cquatlons of motion
science in which so much money has been spent to s s y 3 41
efiect so little real progress as in weather forccasting. and .(:Olllt]nu]ty' J\C.Cura:te W ea't]h?r fO] ecabf.mng. by ?lathlf-
COMPENDIUM matl.ca computatilon 18 an ultimate o Jcctn.e or the
e attainment of which nearly every meteorologist hopes,
but as a practical reality it appears today to be quite as
METEOROLOGY 3 A L y0 10 g
istant as when Richardson [8] made his classical con-
tribution to the problem in 1922. Richardson failed

Prepared under the Direction of the

 Commte e Cimentm St omsiony, completely to derive, from the theoretical equations,
" 6 soveHToN, chmn satisfactory forecasts even of the short-range (6-hr)
| changes of the meteorological elements. This failure was

FHHAS B MALORG doubtless caused in part by his efforts to deal with all

of the variables at once, which complicated his calcula-
tions to a point where he was unable to identify the
sources of his errors,

Science advances to provide actionable information.
e It did not take weather forecasting another 30 years!
Failure to clearly distinguish where todays science is

N not actionable today harms both science and policy.
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Types of Uncertainty
Kinds of Probability and

(Re)Designing Climate Simulations from Scratch
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Aims

Which kind of probabilities shall we consider this week?

Which types of uncertainties shall we consider this week?

Can we remain clear on what is it the probability of we are speaking, exactly?
(How do we get out of model-land to actionable (real world) information?)

Extracting quantitative insight from model large complex models involves
discussion of:

Fidelity, Experimental Design, RDU, Prob(Big Surprize),

Distinguishing observables from the model name sakes,

Embracing model inadequacy,

A fundamental challenge to the interpretation of model-based probabilities
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Rational Decisions

Bayesians, Doogians, and
h . . Journal of the Royal Statistical Sociely. Series B
{Methodological)
P yS I C I StS Vol 13, P?n?qlrijgf-z}, pp. 107-114

No (few) physicists would argue that probabilities are not conditioned on the
information available (something known/believed “now”)

Consider Kelvin’s Gambit:

It seems, therefore, on the whole most probable that the sun has not illuminated the earth for
100,000,000 years, and almost certain that he has not done so for 500,000,000 years. As for the
future, we may say, with equal certainty, that inhabitants of the earth can not continue to enjoy the
light and heat essential to their life for many million years longer unless sources now unknown
to us are prepared in the great storehouse of creation.

On the Age of the Sun’s Heat
Sir William Thomson (Lord Kelvin)
Macmillan's Magazine, vol. 5
(March 5, 1862), pp. 388-393.

“A good Bayesian does better than an non-Bayesian,

but a bad Bayesian gets clobbered.”
Herman Rubin (1970) quoted by 1.J. Good:
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Types of Probability (Forecasts)

(o) Tautological Probability. A probability P(E|H) the value of which is specified in
the definition of H. (“a fair coin”, H is called “a simple statistical hypothesis”)
(i) Physical Probability: P(x) “True probability” (Laplace’s Demon/Inf Rat Org)
(i) Psychological Probability: “Personal probability inferred from one’s behaviour.”
(i) Subjective Probability: P(x|G) probability of x given our information G is true
(Demon’s Apprentice/?semi-finite Rational Org?)
(iv) Logical Probability: “Hypothetical subjective probability when you are perfectly
rational and infinitely large . “Credibility” Russell (1948)
(Infinitely large Rational Org; Laplace Demon ?or Apprentice?)
(v) Dynamic Probability: P,(x| 9,<G) when an algorithm encapsulating G has not
yet terminated (finite algorithm, merely still running).
Dynamic in the sense that this probability is expected to change without any
empirical information (by reflection only).
(vi) (Im)Mature Probability: P(x|] g<G) when G is known (not) to be encapsulated in g.
Immature in that this probability is expected to change without addition
reflection or additional empirical observation even after the algorithm finishes.

Rational Decisions I. J. Good (1952) Journal of the Royal Statistical
Society. Series B (Methodological) Vol. 14, No. 1, pp. 107-114
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Types of Probability (Forecasts)

() Physical Probability: P(x) “True probability” (Laplace’s Demon/Inf Rat Org)

(i) Subjective Probability: P(x|G) probability of x given our information G is true
(Demon’s Apprentice/?semi-finite Rational Org?)

(vi) (Im)Mature Probability: P(x|] g<G) when G is known (not) to be encapsulated in g.
Immature in that this probability is expected to change without addition
reflection or additional empirical observation even after the algorithm finishes.

Rational Decisions I. J. Good (1952) Journal of the Royal Statistical
Society. Series B (Methodological) Vol. 14, No. 1, pp. 107-114

The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith



Physical Probability and My Subjective Probability

“Whether or not physical probability actually exists, it is often convenient to
speak as if did.” |.J. Good

“Physical probability automatically obeys axioms, subjective probability
depends on axioms, and psychological probability neither obeys axioms nor
depends very much on them.” 1.J. Good p74

My Subjective Probability is then my best attempt to estimate “the”
Subjective Probability, just as Laplace saw astronomy related to his Demon.

The thinking of Doogian Bayesians is very close to that of Physicists
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Do weather forecasts provide actionable probabilities?

EXETER HQ SITE
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Percentages

& probability forecast can give a percentage of how likely a defined event is to occur, which can help users to assess the risks associated with
particular weather events to which they are sensitive.

Ensembles are designed to estimate these probabilities by sampling the range of possible forecast outcomes, The prn:ul:ual:nilityr of a particular
event ocourring is estimated by counting the proportion of ensemble members which forecast that event to ocour, So if six out of the 24

members predict more than 5 mm of rain at 4 specified location in & defined period, we would estinate thers to be 8 1-in-4, or #5%, chance

of the event happening,

http://www.metoffice.gov.uk/research/areas/data-assimilation-and-ensembles/ensemble-forecasting/decision-making

Bayesians can do better than this “naive probability”, but how much better?
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Do seasonal forecasts provide actionable probabilities?

October October-December
13 0.0
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X ) . ) i "
information. A S 2 .
£ 1§ ¥ ’ 2 75 + 7
- i = - *
Are these . P ox ! 2 Lo il /A
tionabl § 3 7
ac IOna. . e :-f i ] xzmui :EL 6.5 t l - + /ff
probabilities? N s 2 .
- ¥ x I 2 50 ; = 7
Perhaps, Yes! g X x % 5. ¢
g 8 : iy
: ; : .
- + 5.0 B
7 - +
» 4.5 ¢ »
See: Brocker, J. and Smith, L. A. (2008) ® w2010
From Ensemble Forecasts to Predictive 6 4.0

Distribution Functions Tellus A 60(4): 663.

w Observations 1981-2010 @ 1981.2010 Average  *

202 outlook: + Oct + OctDec

http://www.metoffice.gov.uk/media/pdf/n/3/A3-plots-temp-OND.pdf
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Who could provide actionable probabilities?
Laplace's Demon (1814)

1) Perfect Equations of Motion (PMS)
2) Perfect noise-free observations
3) Unlimited computational power

Demon’s Apprentice (2007)

,\ 1) Perfect Equations of Motion (PMS)
i é Y 2) -Perfeetnoise-free-observations:
L 3) Unlimited computational power

Demon’s Novice (2012)

1) Perfeet Equations-of Metien-(PMS) -
2) -Perfeetnoeise-free-observations
3) Unlimited computational power

http://2darts.com/2dtuts/articles/50-terrifying-creatures/
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Probability of what exactly?
Do UKCPQ9 provide actionable probabilities ?

Real World Event:

For example, if a projected temperature change of +4.5°C is associated with the 90% at a parbicular location in the
2080s for the UKCPO9 medium emission scenario, this should be interpreted as it is projected that there 1s 3 90%
likelihood that temperatures at that location will be equal to or less than 4.5°C warmer than temperatures in the
1961-1990 baseline penod. Conversely, there I1s a3 10% likelihood that those temperatures will be greater than
4.5°C warmer than the baseline period. Last updated: Sunday, 11 March 2012

http://ukclimateprojections.defra.qov.uk/23208 Oct 7,2013

Model Land:

® Correct interpretation of UKCPD9 probabilities:

An 80% probability level 15 indicating that 80% of the model runs fall at or below that value and 20% of the
model runs are above that value.

Last updated: Tuesday, 03 April 2012

http://ukclimateprojections.defra.qov.uk/21680 Oct 7 2013

“...they are just tying themselves in knots...
The point has been accepted but has not been internalised.”
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Definitions

Predictability (working def?): The property of being able to make probabilistic
forecasts (in silico or via reflection) with a rational expectation of having more
skill than the most naive rational forecast at hand (say, the climatological
distribution).

Alt: Predictability: The possibility of making an “informative forecast” P(x|Q)

g: Background Knowledge and information to hand, including u(x) if it exists.

A naive forecast in this case is P_;,(X|g), our best approximation of p(x)

G : Ideal (“complete”) background Knowledge (think of Laplace’s Demon)

G: (True if incomplete) background Knowledge (the Demon’s Apprentice)
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Definitions

g(x|G): An (ideal) subjective probability of x given (True if limited) information G
Good’s Statistician’s Stooge, Demon’s Apprentice

pP(x|g): An accessible (“my”) subjective probability of x given g <= G.

Probability or Predictive Distribution: a positive definite function over
observable values that integrates to one. Perhaps from a model.

(see Brocker, J. and Smith, L. A. (2008)
From Ensemble Forecasts to Predictive Distribution Functions
Tellus A 60(4): 663)

Aim:

“Decision-relevant probability forecast”: one that can be used rationally by
decision makers as the probability of x (via the probability calculus, the tools of
decision theory, ...)

How would the novice know if he were doing badly?
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H. Du & L. A. Smith Phys Rev E, 2012
An lllustrative example of the Information Deficit

Empirical IGN = {—log,p(X.p,)? obs Implied IGN = {Expected IGN2 e

The Empirical Ignorance reflects the skill of the forecast in practice.

. . . <Z q(x) l0g,(p(x)/u(x))>
The Implied Ignorance is the skill the forecast claims to have, averaged of forecasts.

The Expected IGN is the expectation of IGN(p(x)) if the outcome was drawn from p(X)
<Z p(x) log,(p(x)/u(x))>

If these first two values differ, then there is an “Information deficit” in the forecast

system, which quantifies how overconfident the forecast is.

Information Deficit = Empirical IGN — Implied IGN

Unlike “Potential Predictability” the Information Deficit does not assume that the world
becomes like the model: although incomplete, it can sometimes quantify overconfidence.

p(x) a forecast probability
g(x) ideal forecast | information
M(x) “prior” or natural measure
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Parameter Estimation: Correct Model Structure
Empirical IGN = (—Iogzp(xobs))obs Implied IGN = (Expected IGND recase

2 T

Note that the Implied IGN
<Z p(x) log,(p(x)/u(x))>
IS less than the Empirical IGN

<Z q(x) 10g,(p(x)/u(x))>

lgnorance relative to climatolo gy
i i
i

1 even at the correct value of a.
sk m— |mpliad ign for IN 1
m— Erripirical kgni for IN
\ / S This Information Deficit(s) indicates that the
1 (each) forecast scheme can still be
1 Improved.

h 1 1 1
1.7 1.75 1.8 185 1.9 145 2
parameter a

Perfect Model Structure
All Proper Scores agree
Data Assimilation Method Matters
Target uncertain (but exists)

Implled IGN reveals information deficit H Du and L A Smith (2012) Parameter estimation using
iIgnorance Physical Review E 86, 016213
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But what is my model is structurally imperfect?
Parameter Estimation: Imperfect Model Structure
Empirical IGN = (—Iogzp(xobs))obs Implied IGN = (Expected IGND recase
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Structural Model Error: parareter =
Model Logistic Map: [ ( ) =4x(l —x)

Quartic Map: g(r) = —r(l — 2% 4 27)

System: F(r) = (1 —e)l(x) + eq(x) with e = 0.1

H Du and L A Smith (2012) Parameter estimation using

; iIgnorance Physical Review E 86, 016213
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H Du and L A Smith (2012) Parameter estimation
using ignorance Physical Review E 86, 016213

Parameter Estimation: IGN in the Logistic Map Model

Empirical IGN = (—Iogzp(xobs))obs Implied IGN = (Expected IGND recase
% g % sl {hl\\i/
o £
2 g
% _ — i dgn for N g L : i
= m— Eipiica ign for I & __‘q__i-_"i-__q________________,___
=k m Emplrical ign for DC -k . |
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Perfect Model Structure Imperfect Model Structure
All Proper Scores agree Score matters
DA Method Matters DA Method matters
Target uncertain (but exists) Lead-time matters
Implied IGN reveals information deficit Target indeterminate (none exists)

Implied IGN reveals info deficit
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Smith, L.A. and Stern, N. (2011)

Uncertainty in science and its role in climate

Kl n dS Of Un Certal ﬂty policy in Phil. Trans. R. Soc. A 369.

Good
Probabilities
here only

): related to outcomes
which we do not know precisely, but for which we believe robust, decision-

relevant probability_statements can be provided. This is also called
‘statistical uncertainty’ [10-12].

— Ambicuity (Knichtian uncertaintv): related to outcomes (be they known,
unknown or disputed), for which we are not in a position to make
probability statements.! Elsewhere called ‘recognized ignorance’ [11,12]
and ‘scenario uncertainty’ [10]. Ambiguity sometimes reflects uncertainty

Policy makers
deal regularly
with these other
uncertainties as
well.

How well does
climate modelling
communicate
these others?

in an estimated probability, and is then referred to as ‘second-order
uncertainty’.

— Intractability: related to computations known to be relevant to an
outcome, but lying beyond the current mathematical or computational
capacity to formulate or to execute faithfully; also to situations where we
are unable to formulate the relevant computations.

— Indeterminacy: related to quantities relevant to policy-making for which

no precise value exists. This applies, for instance, with respect to a

model parameter that does not correspond to an actual physical quantity.

It can also arise from_the honest diversitv_of views among people,
regarding the desirability of obtaining or avoiding a given outcome. Noting

indeterminacy reminds us of the difference between a situation where no
fact of the matter exists from the case in which there is a fact of the matter
but it is not known precisely.

ISome argue that a probability can always be assipned to any outcome. We wish to sidestep
this argument, and restrict attention to decision-relevant probabilities in discussions of policy.

;’!]' Subjective probabilities may be the best ones available, and vet judged not good enough to
quantitatively inform (as probabilities) the kinds of decisions climate policy considers. We return

‘to this point below.

th


http://www.lse.ac.uk/CATS/Publications/Publications%20PDFs/86_SmithStern_Uncertainty_2011.pdf

Insight without Quantitative Guidance

The robustness of the result suggests that even model-planets rather different
from our best model-earth warm up about the same!

Because of the various simplifications of the model
described above, it is not advisable to take too seriously
the quantitative aspect of the results obtained in this
study. Nevertheless, it is hoped that this study not
only emphasizes some of the important mechanisms
which control the response of the climate to the change

of carbon dioxide,

The Effects of Doubling the CO, Concentration on the Climate
of a General Circulation Model

SYUKURO MANABE aND RicHarp T. WETHERALD

Geophysical Fluid Dynamics Laboratory/ NOAA, Princeton Unsversity, Princeton, N.J. 08540
(Manuscript received 6 June 1974, in revised form 8 August 1974)

Lt is important to stress that our approach to the specification of discrepancy can
only be_expected to capture a subset of possible structural modelling errors and
should be regarded as a lower bound. This is because models tend to share certain
common systematic biases, which can be found in diverse elements of climate
including multiannual means of basic quantities such as surface temperature

PHILOSOPHICAL THE ROYAL A

Insight for mitigation is as good as it gets. TANSACTION soCIETY /A

These quotes warn against using probabilities in adaptation.

regional climate change from perturbed physics
ensembles
B Booth, M Collins, G R Harris, D.M.H Sexton and M.J Webb




Structural uncertainty IS noted in the IPCC ARA4.

A report of Working Group | of the 10
Intergovernmental Panel on Climate Change

Global Climate Projections

The effects of uncertainty in the knowledge of Earth system
processes can be partially quantified by constructing ensembles
of models that sample different parametrizations of these
processes. However, some processes may be missing from
the set of available models, and alternative parametrizations
of other processes may share common systematic biases.
Such limitations imply that distributions of future climate
responses from ensemble simulations are themselves subject to
uncertainty (Smith, 2002), and would be wider were uncertainty

due to structural model errors accounted for.

Admittedly, quantitative statement of the systematic errors are not easily found...
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Limitations of (today’s) science were clearer in the past.

Carbon Dioxide and Climate:
A Scientific Assessment

Report of an Ad Hoe Study Group on Carbon Dioxide and Climate
Woods Hole, Massachusetts

July 23-27, 1979

o the

Climate Rescarch Board

Amembly of Mathematical and Physical Seiences

National Research Council

NATIONAL ACADEMY OF SCIENCES
‘Washington, D.C. 1979

The AR5 WG1 document will contain little new actionable
information. It reassures us of things long known...

...but the pull for this
information is CllMATE CHANGE

increasing...

WORLD METEOROLOGICAL ORGANIZATION UNITED NATIONS ENVIRONMENT PROGRAMME
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

1990

In this century: An SPM resembles Highlights Approved by Policy Makers
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Have we gone so far as seeking valueless numbers?

When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind...

Lord Kelvin (1883)

Lecture on "Electrical Units of Measurement"
(3 May 1883),

Popular Lectures Vol. I, p. 73.

Charney (1956)

This line of argument may have been overplayed, at least in terms of forecasting
(perhaps not in terms of understanding).
The provision of immature probabilities to decision makers

et risks the credibility of all science-based policy.
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So how do we avoid this:

FOOVASE TUAMLCTLINIG W WEana

¥V 1 N TN

predictions are wrong
sorry for any inconvenience
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O C e an I\/I O d el | I n g Forward-in-time upwind-weighted methods in ocean modelling

Matthew W. Hecht*

Los Alamos National Laboratory, Computers and Computational Sciences Division, MS B296,
Los Alamos, NM 87545, U.S. A

2. PRIMITIVE EQUATION OCEAN MODELS

The primitive equations are derived from the Navier Stokes equations, with hydrostatic and
shallow approximations being made. The Boussinesq approximation is also usually, though
not always, made. These issues are discussed thoroughly in Reference [8].

Consider the impact of these approximations in terms of systematic divergence of state
space trajectories either from the full equations or from unrealistic ocean drivers of
non-ocean climatic processes.

What are the time scales on which the model-ocean loses realism?

What are the time scales on which (perfectly modelled) non-ocean processes driven by
this model-ocean lose fidelity and would invalidate model-climate for decision support?

Are these time scales (a) long relative to policy questions on the table? (b) swamped by
other model-components behaving badly?
If not then the model ocean is a candidate for the RDU

Can we separate this line of reasoning from the study of the model itself?
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Ocean Modelling

Forward-in-time upwind-weighted methods in ocean modelling

Matthew W. Hecht*1

Los Alamos National Laboratory, Computers and Computational Sciences Division, MS B294,
Los Alamos, NM 87545, U.S. A

Bryan et al. [7] explained that the grid-Reynolds and grid-Peclet numbers must remain less
than or equal to 2 in order to ensure that dissipation is sufficient to control this grid-point
noise (this argument can also be found in the book of Griffies [8, Chapter 18]). In practice
this_constraint is most often violated. and with reasonable justification: One generally does not
want to heavily smooth the entire model solution in order to control unphysical oscillations
at a relatively few problem points.

Problem points, however, remain problematic.

It is in making decisions like this that the policy aims are central to the science.

Or more realistically: when the model output is deployed for policy relevance, it
is important that someone recall the impacts of decisions “like this”.
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Intuitive examples: Planetary Dynamics

At best, our models hold only in certain circumstances. This
i1s true even for our “Laws of Physics:” Newton’s Laws are still
celebrated for their successful prediction of the planet Neptune,
although two historical facts (that one of the scientists who
predicted Neptune also predicted the planet Vulcan, and that
Vulcan was “observed” for many years) are less commonly found
in physics texts. In the case of Vulcan, the then known Laws of
Physics were applied outside their range of validity. By its very
nature, this kind of failure is inconceivable before it is observed
to have happened; because we cannot assign a meaningful
probability to this occurrence, all results at the boundaries of our
understanding must be treated as fundamentally uncertain.

Smith, L.A. (2002) What might we learn from climate
forecasts? Proc. National Acad. Sci. USA 4 (99): 2487-2492.
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Model Relevance and the Location of the Earth

If our computer model
is based on Newton'’s
Laws, and the Question
is the location of the
Earth in 108 years....

Monte Carlo sampling of
from a prior distribution
of initial condition and
mass of each major
planet will yield a final
time distribution one
thousand years hence,
from which we can form
a sensible PDF.

Bayesian Discrepancy terms, based on different integration schemes,
compilers and computer hardware may yield valuable information.
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The Probability of being outside the 99% level?

Our models allow us to draw a balloon in space that captures 99%
of the model-earth trajectories.

And our/my subjective probaq?flity that our Earth will fall outside
that corresponding real-world/balloon might rationally be ~1%

The orange balloon
corresponds to a
probability contour for
capturing the Earth.
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Model Relevance and the Location of Mercury

If our computer model is
based on Newton’s Laws,
and the Question is the
location of Mercury....

Then this approach is
absurd.

Newton’s Laws are long
known to fail for Mercury.

And science could warn us
the Newtonian-PDF was
misleading long before
General Relativity
provided an empirically
adequate model!

Discrepancy based on different integration schemes, etc, will lead to over-
confidence, belief in spurious accuracy and bad decision making!
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The Probability of being above the 99% level?

Our model allows us to draw a balloon in space that captures 99%
of the model-earth trajectories.

And our subjective probability that the real earth will fall outside
that corresponding real-world balloon might be rationally be ~1%

And for Mercury?

Our subjective probability that the real Mercury will fall outside the

real-world balloon corresponding to the volume that captures 99%
of our model-Mercury trajectories... might be  say, ~90%!

For Mercury, relevant science is more informative than the Newtonian model.

Sit and think, don’t just simulate and count!
The Role of Oceans ir 7 SUN
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The AR4 acknowledges this shortcoming explicitly

Uncertainty and the IPCC Sixty-Forty Rule

MuLti-MopeL Averages anND AssesseD Ranges For Surrace WaARMING

| 1 1 L
A2 @IPCC 2007: WG1-AR4
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Figure SPM.5. Solid lines are multi-model global averages of surface warming (relative to 1980-1999) for the scenarios A2, A1B and B1,
shown as continuations of the 20th century simulations. Shading denotes the +1 standard deviation range of individual model annual
averages. The orange line is for the experiment where concentrations were held constant af year 2000 values. The grey bars at right
indicate the best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios. The assessment of
the best estimate and likely ranges in the grey bars includes the AOGCMs in the left part of the figure, as well as results from a hierarchy
of independent models and observational constraints. {Figures 10.4 and 10.29}

The conditional forecasts
(projections) are the grey bars
(right); they differ from the
ensemble distributions left and
centre.

On what space and time scales
can decision makers (and
economic modellers) have
rational confidence in model
based probabilities?

The IPCC does not interpret the diversity of ensembles as directly
reflecting the probability distribution of future Global Mean Temperature.




An Intuitive example: The Last Solar Ecllpse

So for Newton's Laws, the story goes something like this:

Our model does not have sufficient fidelity for Mercury
on time scales of either target question. probaiy
This lack of fidelity will surely impact the locations of the other planets,

Estimate of this impact can be obtained via back of the envelope calculation.

For the particular question of the last solar eclipse this appears (say) not to be the
Relevant Dominant Uncertainty:

» Mercury’s violation of Newton’s Laws does not limit us here.
* Focus Resources elsewhere.
« Quantify the (shorter) time-to-(in)fidelity of our models of tidal breaking.
Do we even need Mercury in the model for the last solar eclipse?!?

For the particular question of the future location of Mercury, this is arguably the RDU:
* Is there a multi-model emulation fix : No
« Is there an empirical fix: ?unlikely on these time scales?
« Obtain (or wait for) resources to code General Relativity.
There is no quantitative decision-relevant info, other than the fact itself.

In the second case, the rational policy approach is
risk management, not cost benefit analysis
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Structural Model Error: Internal Consistency

Smith, L.A. (2002) What might we learn from climate
forecasts? Proc. National Acad. Sci. USA 4 (99): 2487-2492.

_ we can never make objective
probability statements on the basis of our climate simulations.
What we can do is establish their internal consistency: we can
determine for which phenomena and on which time scales our
models might reflect reality.

- Real statisticians will immediately object,
of course, that capturing the phenomena “in-sample™ does not
guarantee our ability to capture it “out-of-sample,” that is, in the
future. This 1s true, but we are seeking only a necessary
condition: if our models cannot capture the phenomena of
interest over the data period from which the model was con-
structed, say 1950-2000, then those interested only in economic

impacts should not even look at the statistics of those phenom-
ena in 2000-2050.
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Shortcomings of State of the Art Models

Missing 2km tall walls of rock!
: ’V’L: A.;- And long term
X " o feedbacks (bio-
i feed backs,
albedo, ...)

At what lead times do inadequacies in
.0 downstream flow (or precipitation)
result in feedbacks with beyond local
impacts? alter extremes? &c?

wo At what lead times is it no longer
reasonable to interpret the diversity of
climate models as reflecting the
uncertainty in the future climate?

- 1000
We can quantify these limits as it

continues to develop methodology to
make the dynamics of state-of-the-art
s mModels available to decision makers
and economists.

Or we can redeploy resources used
1o beyond these limits to better inform
policy.

A decision makers needs one and only one thing:
A deadline.

-500
e e —eeem -2 Uncertainty Banff 7 Oct 2013 Leonard Smith
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Model-based probability forecasts are incomplete without a
quantitative measure of the likelihood of model irrelevance.

Spatial If precip over the Amazon (or Okeefenokee) is
Scales badly simulated, the biomass will be badly
metres  simulated, this missing/extra feedback may lead
to model irrelevance... First local, then global.
v
Km Timescales for such things may be sound — |o
science! =
=
)
1)
1000km =
Target ©
Lead-time | -=.
> o
hours weeks years decades centuries N
years
weeks
Temporal “No presentation of model-based
Average —_ . .
scale ./ 4ay  Probabilities is complete without an

expression of model irrelevance.”
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Relevant Dominant Uncertainty (RDU):

The RDU is the source of uncertainty or error that is the primary
limit on the fidelity of our probability forecasts. It could be

knowledge of natural measure (more obs)

knowledge of simulation PDF (from the ensemble)
knowledge of most relevant current model states (DA)
model fidelity w.r.t reality for a given forecast target (Ml)

Communicating Dynamic or Immature Probability forecasts
will carry less risk to the credibility science-based decision
support when the RDU is discussed and your Probability of
a Big Surprise is provided, explicitly.
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How Would We (Re)design for Policy?

Start with a decision/policy target guestion:

What is the target question?

What are the relevant phenomena?

On what time scales do we have high fidelity simulation?

Might these reach the time scales of interest? If yes: Simulate!
What is the Relevant Dominant Uncertainty (RDU)?

What kind of uncertainty limits the fidelity of simulation?

What is the Probability of a Big Surprise?

Is the available simulation sufficiently informative to justify the

the resources required to make it? If yes: Simulate!

Clear Disclosure: Are Actionable Distributions In-Hand
(or likely to be available soon)

Weather models look more like simplified climate models.
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Run Time Ratio

The Constraints on Simulation Modelling for Prediction

What are the challenges we face with interpreting model simulations
In different regions of this schematic?

Complex Models
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Run Time Ratio

What are you constrained by?

For decision support, the model has to run faster than real time.
The larger the lead time, the fewer ensemble members you can run to examine sensitivity.

Complex Models

A
We will quantify complexity in terms of a model’s run-time-ratio.
1000 A model with run-time-ratio of 10 will run 10x slower than the system
100 being modelled.
10
Forecast
1 —>
Lead time
0.1
0.01 (That is, it will take ten years to simulate one model-year.
Sometimes fine for science, never good for decision makers.)
0.001
This impacts ensemble size, maximum lead time considered, and
0.0001 which phenomena to “include” in the model.
\ 4
Simple Models

Leonard Smith



Run Time Ratio

What are you constrained by?

this leads to immature probabilities.

Complex models may not fit in current hardware, even if you know what you would build.
And the more complex your model, the fewer “simulation hours” you will have.

Complex Models

1000
100
10
Forecast
1 —>
Lead time
0.1
0.01 Inaccessible
0.001 Accessible
0.0001 Technological Constraints
v
Simple Models
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Run Time Ratio

What are you constrained by?

Requirements for model fidelity sets a lower bound on the complexity with lead time.
Almost always, the model is required to grow more complex at larger lead times.
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What are you constrained by?

be expected to
Limits of current scientific/economic/mathematical knowledge mean the model may prove

Iinadequate. We will tolerate this as long as the Prob(Big Surprise) < 0.05 (Basel I11/Solvency 1)
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Run Time Ratio

What are you constrained by?

The decision you take will depend on how these three curves lie.
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Run Time Ratio

What are you constrained by?

The decision you take will depend on how these three curves lie.
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Run Time Ratio

What are you constrained by?

What are the challenges we face with interpreting model simulations
In different regions of this schematic?
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Run Time Ratio

What are you constrained by?

We need to be above the green line, below the red, and to the left of the blue.
So we could make a relevant 100 day simulation and have it a tomorrow.
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Run Time Ratio

What are you constrained by?

But in this case, this “100 day” model is out of our reach.
Of course we can build it anyway, call it “best available” knowing it is both
best and irrelevant; and pass it on (saying clearly that Prob(B.S.)~1)
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Run Time Ratio

Decision Support Model (Designed to deliver)
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A

Value Added

Resource Allocation Methodology for Forecasting

Thompson (1957) investigated the improvement of US weather forecasting
as a resource allocation problem.
How should a given investment be spread between:

(a) better obs, (b) better theory, (c) faster computers?
Today we face additional options alonglwith model complexity per se:
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What about “the” case for Multi-models?
The answer depends on the strategy

Optimised single

t 4
Quality Models (each) e model structure
- . ensemble
100 Careful e-formation (?each?) .
Complementary Dynamical ,° R
weaknesses (across) o e

Similar models
Uncoordinated
e-formation

Value in Application

Increasing Real-time Cost

How might structural independence be enhanced? (in space stations?)

Could there ever be a general result?

Leonard Smith

' DTC & NUOPC Ensemble Design Workshop 10 Sept 2012



Climate in Practice: In-sample examples.

Climate models are based on well-established physical
principles and have been demonstrated to reproduce observed
features of recent climate (see Chapters 8 and 9) and past climate
changes (see Chapter 6). There 15 considerable confidence that
Atmosphere-Ocean General Circulation Models (AOGCMs)
provide credible quantitative estimates of future climate
change. particularly at continental and larger scales. Confidence
in these estimates 15 higher for some climate vanables (e.g..
temperature) than for others (e_g.. precipitation). This summary
highlights areas of progress since the TAR: Page 591

A report of Working Group | of the
Intergovernmental Panel on Climate Change
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A dangerously schematic schematic

Climate Model Schematic Climate Model (the squares)

| Incoming Solar
oing Heat
Energy ol
Transition from
Solid to Vapor Cirrus Clouds
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STt &IOS and Heat Energy Atmosphere

L e
Snow Cover Clouds

Evapbraﬂoﬁ :

HadCM3 missing elevation
2min x 2min obs — HadCM3

‘included” vs
‘realisitically simulated”

httD://WWW.Windows.ucar.edu/tour/link:/FFrth/cIimate/cl'! nagd(%l_s,gllit[nl .
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http://www.windows.ucar.edu/tour/link=/earth/climate/cli_models3.html

(iowa@Comprehensive Earth System Models
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Models on Stage: Model Depth and Equidismality

Model depth (relevance of being “based on the laws of physics” to skill) can

be explored through comparison with Simple Surrogate models.

Smith, L.A. (1992) Identification and prediction of low
dimensional dynamics Physica D 58 (1-4): 50-76.

That is not to say a model more in accord with the laws of physics will not
ultimately provide the ideal forecast, merely that the models in hand today
can lay no a priori claim on doing so!

Surrogate models aide in distinguishing equifinality from equidismality.

Models for science based policy should always be benchmarked against
simple model never merely against each other!
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Climate Forecasting by Hand

» Take the last hundred twenty nine years of global mean temperature, T 1.

* Find the 128 one-year changes by subtracting T_(i-1) from T _i

« Add each of these 128 numbers to this years global mean temperature to
get a 128 member “ensemble forecast” for next year.

« Draw a distribution* over these 128 points and call it a probability forecast
for next year.

» Repeat for 2 year (direct) forecasts, then 3 years, 4, 5, ... 10.

You can do this in a day. By hand:

1

Temperature

15.5
0.05-0.95 m 0.2-0.8 m 0.35-0.65 =
0.15-0.85 m 0.3-07 = 0.45-0.55 =
145 | i
14 ]
135 .
13 1 1 1 1
1960 1870 1980 1990 2000 2010
Year * true cross-validation throughout

FIG. 5. As in Fig. 4, but for every fifth launch from the DC model.
The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith




JOBNAME: JCLI 00#) 2013 PAGE: 1 SES5: 8 OUTPUT: Wed Jul 31 14:17:29 2013 Total No. of Pages: 14
Jams/jcli/)jehDI1200485

MONTH 2013 SUCKLING AND SMITH 1

An Evaluation of Decadal Probability Forecasts from State-of-the-Art Climate Models™

EmMA B. SUCKLING AND LEONARD A. SMITH

Centre for the Analysis of Time Series, London School of Economics, London, United Kingdom

{(Manuscript received 26 July 2012, in final form 12 May 2013)

ABSTRACT

While state-of-the-art models of Earth’s cimate system have improved tremendously over the last 20 yr,
nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system re-
alistically. Contrasting the skill of these models not only with each other but also with empirical models can
reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify
their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual

global-mean and regional-mean temperatures from the EU ENSEMBLES project is contrasted with several
empincal models. Both the ENSEMBLES models and a “dynamic climatology™ empirical model show prob-
abilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model,
however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to
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F1G. 4. Forecast distributions for HadGEM2 (UKMO) for the
5th-95th percentile. The HadCRUT3 observed temperatures are
shown in blue. The forecasts are 10 yr long and launched every Syr,
and so the fan charts would overlap; to avoid this they are pre-

sented in two panels: forecasts launched in 10-yr intervals from
(top) 1960 and (bottom ) 1965.
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the simulation models tend to have positive scores (less skill) than the DC model at every lead
time.
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Is this just one over-tuned empirical model?

On decadal time scales,
rather simple empirical
models produce probability
forecasts which
systematically outperform
state-of-the-art GCMs.

Of course GCMs provide
insight into mechanisms
and phenomena otherwise
inaccessible.

Overselling the fidelity
of “physics-based”
models puts the
credibility of all
science-based policy
making at risk.
Needlessly.
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Fia. 10. Ignorance of the Prelaunch DC and Prelaunch Trend models relative to the standard
DC model as a function of lead time. The HadGem2 model from ENSEMBLES is also shown.
It is shown that the Prelaunch DC model is not significantly less skillful than the standard
DC model and is robust to variations in parameter tuning. The Prelaunch linear trend model
is, however, generally shown to be less skillful than the standard DC model. The bootstrap
resampling intervals are illustrated at the 10-90%* percent level.

Suckling and Smith (2013) J Climate, in press
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Take home message

On the ten year forecast time scale, empirical models more than hold
their own in head-to-head forecast evaluation with simulation models.

On longer time scales, physics-based simulation models will be required
to obtain hi-fidelity forecasts.

But that fact is not evidence that today’s physics-based simulation
models can provide hi-fidelity forecasts on either decadal or century time
scales.

Users might embrace this for better climate services.

But why weren’t these simple straw men models in the AR3?

(None of this challenges the basic physics of global warming, of course.)

The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith



This looks a lot like:

FAOOVASS TCATLCTAGNE Wre WEana

¥V 1O W ISR e

From an Oxford Bus Shelter:

X30 N30 predictions are wrong

sorry for any inconvenience
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The traditional approach

Smith, L.A. (2002) What might we learn from climate
forecasts? Proc. National Acad. Sci. USA 4 (99): 2487-2492.

he traditional approach to climate modeling is to build the
most complicated model that will fit inside the largest
computer available, run it once, and see what happens. This
approach yiclds a singlc “‘best-gucss™ forccast. Yct cven in high

school physics, we learn that an answer without “error bars”
1S no answer at all.

So what do we find in the AR5?

The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith
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Figure 9.7: Relative error measures of CMIP5 model performance, based on the global seasonal-cycle climatolozy
(1980-2005) computed from the historical expenments. Rows and columns represent individual vanables and models.
respectively. The emvor measure 15 2 space—fime root-mean-square error (RMSE). which. treating each vanable
separately, 15 portrayed as a relative error by normalizing the result by the median emor of all model results (P.
Gleckler, Taylor, & Doutnaux, 2008). For example, a value of 0.20 indicates that a model’s RMSE 15 20% larger than
the median CMIPS error for that vanable. whereas a value of —0.20 means the emror 15 20% smaller than the median
error. No colour (white) indicates that model results are cumrently unavailable. 4 diagonal split of a gnd square shows
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The Danger of Rank Order Beauty Contests

Figure 9.7: Relative error measures of CMIP5 model performance, based on the global seasonal-cycle climatology
(1980-2005) computed from the historical experiments. Rows and columns represent individual variables and models,
respectively. The error measure 1s a space—time root-mean-square error (RMSE), wluch, treating each vanable
separately, 1s portrayed as a relative error by normalizing the result by the median error of all model results (P.
Gleckler, Taylor, & Doutriaux, 2008). For example, a value of 0.20 indicates that a model’s RMSE 1s 20% larger than
the median CMIP5 error for that vanable, whereas a value of —0.20 means the error 1s 20% smaller than the median
error. No colour (white) indicates that model results are currently unavailable. A diagonal split of a grid square shows
the relative error with respect to both the default reference data set (upper left triangle) and the alternate (lower right
triangle). The relatrve errors are calculated independently for the default and alternate data sets. All reference data used

in the diagram are summarized in Table 9.3. .
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Climate in Practice: In-sample examples.

This graph tends to leave the impression models do rather well.

FAQ 8.1, Figure 1. Global mean ] 0 B o ' ' ' b ' N i
near-surface temperatures over the 20th

century from observations (black) and as B i

obtained from 58 simulations produced 6 B 7

by 14 different climate maodels driven by 3 - -

both natural and human-caused factors ~ 0.5+ —

that influence climate (yellow). The .2? L _

mean of all these runs is also shown < L i

(thick red line). Temperature anomalies E B i
are shown relative to the 1901 to 1950 o

mean. Vertical grey lines indicate the g B I

timing of major volcanic eruptions. ® 0 . 0 K ]

(Figure adapted from Chapter 9, Figure — - I

9.5. Refer to corresponding caption for 5 - e

further details.) S L J
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Anomalies

Final Draft (7 June 2013) Chapter 9 IPCC WGI Fifth Assessment Report
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1990 1s indicated by yellow shading: vertical dashed grey lines represent times of major volcanic eruptions. (a) Single
simulations for CMIP5 models (thin lines); multi-model mean (thick red line); different observations (thick black lines).
Observational data (see Chapter 2) are HadCRUT4 (Morice, Kennedy, Rayner, & Jones, 2012), GISTEMP (Hansen,
Ruedy, Sato, & Lo, 2010), and MLOST (Vose et al., 2012) and are merged surface temperature (2 m height over land
and surface temperature over the ocean). All model results have been sub-sampled using the HadCRUT4 observational
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(Re)Designing Climate Modelling for Policy

The basic idea is simply to consider the limited fidelity of the model before submitting
the climate model runs; then redeploy resources due to shorter runs.

And explicitly discussing model inadequacy, big surprises, RDUs, and other central
guestions with policy makers at the beginning of the simulation process, not the end.

The limitations can be quantified through shadowing experiments, but at the moment
reflection on the processes involved suggestion the duration exceeds rational
expectations of fidelity (NARCAP divergence).

Pseudo-orbit Data Assimilation can provide information on the structure of model
error. (and might prove rather useful in ocean models and reanalysis independently.

It opens up the options of doing time slice and temperature slice experiments with
operational weather model resolutions.

In short, following Charney’s triad, with fewer obs but aided by physical insight

Establishing what we can in fact do with fidelity, rather than using any means
required to get “an” answer, and then (falsely) calling it “best available”.

The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith



Data Data Everywhere, and Not a Bit to Bank On

One is sometimes surrounded by model-
based probabilities from models known
unlikely to be adequate to inform the
guestions we must answer.

What is the rational path forward when the
“best available” model is believed not to be
adequate for purpose?

Estimate the probability that your model
probability is misleading?
That is, state the P(Big Surprise)

Or refocus computer experiments in the

limited arena where they truly are policy
relevant, and state the P(Big Surprise)

- The Role of Oceans in Climate Uncertainty

Banff

Inspired by Andy Morse (thx andy)
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Thank you

FOOVASE TOATLCTAGNE Whe WEana

¥V 7 W IR

From an Oxford Bus Shelter:

predictions are wrong

sorry for any inconvenience
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Objection has been taken to such forecasts, because they cannot be
always exactly correct,—for all places in one district. It is, however,
considered by most persons that general, comprehensive expressions, in
aid of local observers, who can form independent judgments from the
tables and their own instruments, respecting their immediate vicinity,

though not so well for distant places, may be very useful, as well as"

interesting : while to an unprovided or otherwise uninformed person,
an idea of the kind of weather thought probable cannot be otherwise
than acceptable, provided that he is in no way bound to act in accord-
ance with any such views, against his own judgment.

Like the storm signals, such notices should be merely cautionary
—to denote anticipated disturbance somewhere over these islands,—
without being in the least degree compulsory, or interfering arbi-
trarily with the movements of vessels or individuals,

Certain it is, that although our conclusions may be incorrect—our
judgment erroneous—the laws of nature, and the signs afforded to man,
are invariably true. Accurate interpretgtion is the real deficiency.

Fitzroy, 1862
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What is a “Big Surprise”?

Big Surprises arise when something our simulation models cannot mimic turns
out to have important implications for us.

In some cases where we are “leaking probability” when a fraction of our model
runs explore conditions which we know they cannot simulate realistically.
(Science can warn of “known unknowns” even when the magnitude remains
unknown)

Big Surprises invalidate (not update) model-based probability forecasts,
the gin P(x|G). “Bayes” is irrelevant outside of probability theory.

How might we better communicate inadequacy as well as imprecision?

Condition explicitly on the euro not collapsing [Bank of England].

Financlal and energy market assumptions

Provide subjective estimates of the probability that the model is
misinformative in the future [for example, the P(BS)].

Refuse to issue a quantitative forecast, probability or otherwise [UKML].
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Measures of Predictability

Shadowing Times

Model State

The distribution of i-shadowing times provides an excellent upper bound on predictability.
But they are expensive, perhaps undefined in a forward forecast context, and if the model
is perfect they are all infinite!

Smith, L. A. (2000) 'Disentangling Uncertainty and Error: On the Predictability of Nonlinear
Systems' in Nonlinear Dynamics and Statistics, ed. Alistair | Mees, Boston: Birkhauser, 31-64
Smith, L. A. (1996) Accountability and Error in Ensemble Forecasting. In 1995 ECMWF Seminar
on Predictability. Vol 1, pg 351-368. ECMWF, Reading
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Is chaos the dominant uncertainty in practice?

BIVIBOARD 3 .,BOSS

Observed minus HADCM3 altitude 2 min x 2 min resolution (meters)
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1500
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Ensemble predictions up to lead time 256. Ensemble predictions up to lead time 256.
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Figure 7: Ensemble predictions using (a) model 1 and (b) model 2. The! Ensemble predictions using {a) model 1 and (b) model 2. The
From “distance” to climatology to Forecast evaluation:

The IGN relative to climatology only reflects information content when the
distribution 1s a “good forecast”.
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Target uncertain (but exists) : Be a Bayesian
Target indeterminate (none exists): Bayes ( & the probability calculus) irrelevant.
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Target uncertain (but exists) : Be a Bayesian
Target indeterminate (none exists): Bayes ( & the probability calculus) irrelevant.

P(a | Data, ) =P(Data|a, ) P(a|l) /P(Data|l) ¥ P(Data|a, |) P(a|l)
=0
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Free exchange

Hot air

Are models that show the economic effects of climate change useless?

Oct 5th 2013 | From the print edition FlLike 87 W Tweet < 97|

}237915686934' = Jac Depczyk

MODELS simplify. They are supposed to. It is a feature, not a bug. Their formulae may be
complex but models deliberately omit some things in order to focus on others. They also
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Value Added

100

Improving Predictability
Schematic view of value added for improving initial condition uncertainty.
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... plus your favourite here ...

Increasing Real-time Cost g

These curves are not independent.

The curves vary with the target.

Development costs start from different legacy baselines

Historically these “optimised” separately (?draw on separate budgets?)
How to measure “value added” in this context?
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Examples of Probability Forecasts
Weather-like Tasks

BIVIB'OARD =3 sy BOSS

Ensemble predictions up to lead time 256.

L I
150 200

0 50 100
Lead time, lp

In these forecasts of a simple “chaotic”
circuit, the limitations on predictability
come from model inadequacy (structural
model error) not from chaos.

This model could not shadow past the
point where the ensemble departs from
the future trajectory.

Lo LILULULD WOLIE (O] LLUUIGL L CULIL | LLIVAGL . L
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How did we get to post code probabilities in 2080s?

(It would be interesting to trace how the idea that climate models could
provided quantitative insight came about.)

Because of the various simplifications of the model
described above, it is not advisable to take too seriously
the quantitative aspect of the results obtained in this
study. Nevertheless, it 1s hoped that this study not
only emphasizes some of the important mechanisms
which control the response of the climate to the change
of carbon dioxide,

The Effects of Doubling the CO, Concentration on the Climate
of a General Circulation Model!

SYUkURO MANABE anND Ricuarp T. WETHERALD

Geophysical Fluid Dynamics Laboratory/ NOAA, Princeton Unsversity, Princeton, N.J. 08540
(Manuscript received 6 June 1974, in revised form 8 August 1974)

Mechanisms == Insight

he Role of Oceans in Climate Uncertainty Banff



Distinguishing Weather-like and Climate-like tasks

Weather-like forecasting tasks:
model lifetime is long in comparison to the typical forecast lead-time
large archive of truly out-of-sample forecast-outcome pairs
arguably extrapolation in time but interpolation in state space

Here the same model is deployed many times in similar circumstances and one
can learn from past mistakes.

Climate-like forecasting tasks:
lead-times of interest are far longer than the lifetime of model
forecast-outcome archive is very small, arguably empty
lead-times of interest are long compared to the career of a researcher.

By the nature of the problem there are no true out-of-sample observations.

Best practice principles of forecasting differ in these two settings.

There is also the Perfect Model Scenario, where known mathematical
systems (known if forgotten) play the role of the model and of the target system.
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Value Added

100

Improving Predictability
Schematic view of value added for improving initial condition uncertainty.
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Decision Support Given only Immature Probabilities

Provide Stories in addition to (?rather than?) Numbers
Distinguish Immature Probability from Physical Probability
Balance “Based on the Laws of Physics™ with P(BS)

Clearly distinguish statements regarding the probability of the
next model run from those on the probability of the true target.

Demonstrate relative skill of empirical surrogate models
(Smith, 1992, 1997; Suckling and Smith 2012)

ldentify and discuss the RDU and the timescales for tackling it.
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Structural Model Error

Smith, L.A. (2002) What might we learn from climate
forecasts? Proc. National Acad. Sci. USA 4 (99): 2487-2492.

Most climate models are large dynamical systems involving a
million (or more) variables on big computers. Given that they are
nonlinear and not perfect, what can we expect to learn from them
about the carth’s dimate? How tan we determine which aspects of
their output might be useful and which are noise? And how should
we distribute resources between making them “better,” estimat-
ing variables of true social and economic interest, and quantifying
how good they are at the moment? Just as ““chaos” prevents
accurate weather forecasts, so model error precludes accurate
forecasts of the distributions that define climate, yielding uncer-
tainty of the second kind. Can we estimate the uncertainty in our
uncertainty estimates? These questions are discussed. Ultimately,
all uncertainty is quantified within a given modeling paradigm; our
forecasts need never reflect the uncertainty in a physical system.

“Laws, where they do apply, hold only ceteris paribus.”
Nancy Cartwright (1)
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Laplace’s Demon, its Apprentice and Good’s « Rational Org
Perfect Model Scenario

Traditional risk management under
uncertainty is straightforward in a
chaotic system (given a perfect model and
large observational archive).

It is only a matter of investment, to
extract parameters, probability forecasts
that are actionable, &c

Judd, K. and Smith, L. A. (2001)
Indistinqguishable States |I: The Perfect Model
Scenario, Physica D 151: 125-141.

These results do not generalise to even the
most simple real-world systems best
modelled by chaotic models.

BIVIBOARD 3 .,

Smith (2002) Chaos and Predictability in Encyc Atmos Sci
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Measures of Predictability
Decay of Predictability

In this talk, consider the time required before
an initial ensemble provides negligible
information given the natural measure.

- 2 p(x) log,(p(x)/u(x))

If either the ensemble or the model is
imperfect, the relevant time is related to

- 2 q(X) l0g,(P(X)/u(x))

And perhaps the most interesting quantity is

- 2 q(x) log,(p(x)/q(x))

where
p(X) a forecast probability
g(x) ideal forecast | information
M(X) “prior” or natural measure

Smith, L. A. (1996) Accountability and Error in Ensemble Forecasting. In 1995
ECMWF Seminar on Predictability. Vol 1, pg 351-368. ECMWF, Reading we WI” return to thiS point

e o
z b Smith (2002) Chaos and Predictability in Encyc Atmos Sci
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Probability Forecasts: Chaos

The evolution of this probability distribution for
the chaotic Lorenz 1963 system tells us all we can
know of the future, given what we know now.

It allows prudent quantitative risk management
(by brain-dead risk managers)

And sensible resource allocation.

We can manage uncertainty for chaotic systems
(given a perfect model).

But how well do we manage uncertainty in the
real world? For GDP? Weather? Climate?
20.0
o Do we have a single example of a nontrivial
system where anyone has succeeded (and

" willing to offer odds given their model-based
PDFs?)
g BIVEJARD 3 .,BOSS
0,50
0.00

Smith (2002) Chaos and Predictability in Encyc Atmos Sci

? C
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Ocean Modelling

Structural biases affecting the AMOC?

Danny Williamson, Adam Blaker
March 25, 2013

When quantifying the uncertainty in model based projections of the
AMOC or any climate process it is important to identify and quantify the
uncertainty introduced by structural deficiencies in the climate model. At a

- The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith



INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 50:1159-1173

Published online 6 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOL 10.1002/fd.1136

Ocean Modelling

Forward-in-time upwind-weighted methods in ocean modelling

Matthew W. Hecht*1

Los Alamos National Laboratory, Computers and Computational Sciences Division, MS B294,
Los Alamos, NM 87545, U.S. A

The motivation given by Gerdes et al. for using FCT was the concern over unphysical
extrema in the tracer fields, identified in the Gulf of Guinea. Similar concerns with spurious
tracer extrema have since motivated its use in many modelling studies, and FCT remains
a supported option in newer versions of the model code [6]. Concerns with unphysical ex-
trema, oscillatory behaviour, temporal accuracy and data structure have motivated the devel-
opment and subsequent use of other consistently forward-in-time upwind-weighted methods
for tracer transport. A number of problems in ocean modelling have been addressed with
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Parameters Estimation via Forecasting P(x)

How might we use probability forecasting to estimate parameters?

a) Form a series of ICE ensembles for a given parameter value
b) Compute a series of probability forecasts

c) Select a proper score: -log(p(x)/u(x)) (13 Good, 1952)

d) Compute the score as a function of parameter value.

H Du and L A Smith (2012) Parameter estimation through
ignorance Physical Review E 86, 016213
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Physical Probability and My Subjective Probability

Whether or not physical probability actually exists, it is often convenient to
speak as if did. 1.J. Good

Logical Probability/Credibility: “Hypothetical subjective probability when you
are perfectly rational and infinitely large. (?requires a perfect model?)

“Logical probabilities are liable to be unknown in practice”
1.J. Good p74

“Whether or not physical probability is regarded as distinct from ...., it is often

convenient to talk as if it were distinct.”
1.J. Good p66

Physical probability automatically obeys axioms, subjective probability
depends on axioms, and psychological probability neither obeys axioms nor
depends very much on them.” 1.J. Good p74

My Subjective Probability is then my best attempt to estimate “the”
Subjective Probability, just as Laplace saw astronomy related to his Demon.

The thinking of Doogian Bayesians is very close to that of Physicists
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Types of probability (after 1.J. Good)

Physical Probability: this is the actual probability of the outcome.
P(BS) zero

Subjective Probability : a(n 1J) Good Bayesian Probability
One Laplace's Demon’s Apprentice or a Rational “Org” would strive for.
An accountable ensemble and an actionable probability. P(BS) small

Dynamic (Evolving) Probability: This is a probability that is expect to change
without any additional empirical information, as when a chess playing
computer is stopped early, or only half of your ensemble has run.

Mature Probability: A mature probability encapsulates all the information
Implied by your knowledge, more compute power is not expected to make an
unexpected different. P(BS) small

If your model is computationally constrained and you would expect a
significant change in the PDF given a different model on a bigger machine,
then your probability is immature. P(BS) required!

S

The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith



Targets of Probabilistic Forecasting:

- the past : LHR temp on 14 July 1779

- the next model run:  Climate sensitivity of the next cpdn run to
come home

- the future: LHR temp on 14 July 2013

- a Real*8 number: Best available parameter value for a given

forecast target

Our failure to clearly distinguish the probability distribution of temperature-in-
the-model, vs temperature as measured on a thermometer causes serious
confusion amongst decision makers.

Is uncertainty in a past value of the same type as uncertainty in a future value?
Certainly the approaches to reducing it can be vastly different, as can the
elements contributing it.
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The Circuit and Ensemble Size

Is chaos the dominant uncertainty in practice?

BIVIBDARD 3 by BOSS

There is a long standing claim in
meteorology that going to
ensembles larger than ~16 adds
nothing tangible to the accuracy
for the forecast.

Consider a house that offers
odds based on a 16-member
forecast, and a player who Kelly
bets based on a larger
ensemble...
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Take home questions (in the paper)

How might we better communicate model diversity given the
possibility that we cannot get probabilities useful as such!

Do we have a single example of a nontrivial system where anyone has
succeeded (and willing to bet on their model-based probabilities?)

At what lead times do inadequacies drive (or fail to drive) feedbacks yielding
local impacts? extremes? global impacts?
How far to one go with a simulation model (when to stop: in time? space?)

How can we best deal with models behaving badly?
What prevents the provision of Prob(Big Surprise) with lead time?

How can we improve the communication of insights from simulations
without falling afoul of forecasting good practice?

How to distinguish the value of improvement from the utility of prediction?
Might the provision of probability be maladaptive?
How might we better communicate the inadequacy as well as imprecision

Is the value of qualitative insight at risk of being discarded in favour of
guantitative mis-information?

The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith



Forecast Breakdowns, Estrangement & Shadowing

circuit

1) model quality
i) model depth

Predictability of the Zeroth kind: Shadowing (after the fact)
On time scales the model cannot phi shadow, no operational justification to run it
in terms of decision-relevant probabilistic forecasts.
-> experimental design

ii) model depth (relevance of being “based on the laws of physics” to skill)
Comparison with Simple Surrogate models. (emma)

That is not to say a model more in accord with the laws of physics will not ultimately
provide the ideal forecast, merely that the models in hand can lay no claim to doing
so!
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Aims and Discussion given Mature (Subjective) Probability

Deduce IGN: Additional Information (Obs, DA, N_ens, parameters, Multi-model)
Report Info Deficit,

Report FDE

Identify State Dependent Model skill?

Report Shadowing time Distribution

Determine/Research RDU

?lkeda Figure?
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Communicating the Relevant Dominate Uncertainty

No scientist is admired for failing in the attempt to
solve problems that lie beyond his competence.”
P.D. Medawar

Good science can significantly improve the science in a model
without decreasing Prob(BS)

Following Medawar’s advice, scientists typically avoid the intractable
parts of a problem, even when uncertainties there dominate the
overall uncertainty of the simulation.

Clarifying the uncertainty most relevant to the decision maker, in
terms of dominating the uncertainty in the outcome whether,
modelled or not, would aid the use of projections in decision support.

Alternatives better than the probability of a big surprise would be
welcome.
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Proper Scores for formation and evaluation

A score S(p(x), X) is proper if, for any two probability densities
p(x) and q(x):

f:; 2)q(z df:}ff; (8)

In words: the minimum of the left hand side over all possible choices of p(x)
15 obtained if p(x) = q(x) for all . A score is strictly proper if this happens
only if p{x) = q(x) for all x.

So the expected score will be a minimum when the verification
is drawn from the forecast distribution being evaluated.

This does not imply there is a “true” density function, nor that
the forecaster is human (and so might “hedge” her forecast).

(How might a parameter estimation algorithm “hedge”?)

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance of Being Proper
Weather and Forecasting 22 (2), 382-388
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Proper Scores for formation and evaluation

IGN = -log(p(X)) Good(1952)
S(p(x), X) = Ip(z)2dz -2 p(X)  Proper linear score

Ignorance and the proper linear score are proper scores, but
the proper linear score is not local.

Within PMS, proper scores agree that the true parameters are
“best.”

If the model structure is incorrect, proper scores need not
agree on the optimal parameter value.

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance of Being Proper
Weather and Forecasting 22 (2), 382-388
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Local Scores and Distant Scores

IGN = -log(p(X)) Good(1952)

Local Scores: Local scores depend only on the value of p(z) at z = X.
IGN is the only proper local score for continuous variables.

S(p(x), X) = Ip(z)2 dz — 2 p(X)

Distant Scores: The proper linear score is distant in that the score depends
on the structure of p(z) far from the outcome x.

All proper polynomial scores are distant: the score includes a term that
rewards the forecaster for the shape of the distribution independently of p(x).

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance

of Being Proper Weather and Forecasting 22 (2), 382-388

Banff 7 Oct 2013 Leonard Smith
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Evaluating Probability Forecasts

In practise, the vast majority of simulation based probability forecasts
target a(n effectively) continuous variable (the temperature at LHR,
wind speed at ORD, wave height at Dover, GDP of Great Britain ...)

Approaches to forecast evaluation (also called “verification”) include:

a) First reducing a PDF to a scalar value, and evaluating that number.
b) Reducing the target variable to a binary variable via a threshold

c) Casting to target into terciles, quartiles, ... (hereafter few-tiles).

d) Evaluation of the continuous target or fine-grained proxy.

In forecast evaluation, it is critical to separate the role of the context
(scalar, threshold, few-tile, continuous) from the role of the score.
(Each should be justified prior to the analysis.)
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Weather in Practice: Demonstrating true skill out-of-sample
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Figure 5. Mlustration of the resualts of Weather Roulette for predicting with a 10-day lead Gme in which quintile-category the 2 m lemperatures at

London-Heathrow will fall during the period 11 May -7 Jene 2006, (a) Probabilities of the verifying categories as predicted by the dressed HRES

forecast (open diamonds) and the dressed EPS forecasts (flled squares); (b logarithm of the acoumulated capital when playing the dressed EPS
apainst the HRES forecast ender the “fully proper” variant.

Skill, in bits or interest rates, of ensemble forecasting LHR temperatures.
Similar results are found in the 3 years after this paper was published.

R Hagedorn and LA Smith (2009) Communicating the value of probabilistic forecasts with
weather roulette. Meteorological Applications 16 (2): 143-155.

The Role of Oceans in Climate Uncertainty Banff 7 Oct 2013 Leonard Smith



http://www2.lse.ac.uk/CATS/publications/papersPDFs/78_Weather_Roulette_t.pdf

Take-home Points and Questions

Measures of predictability need to be local, if predictability varies with the state.
It is useful to distinguish mathematical, weather-like and climate-like tasks.

Information content (relative entropy) of the forecast is a good measure of
predictability in weather-like tasks.

The information deficit is a useful statistic for understanding the fidelity of probability
forecasts.

How would you approach resource allocation to improve operational forecasting?

Real-world probability forecasts consistently fail consistency tests.
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Relevant Dominant Uncertainty (RDU):

In Reality (FDE): RDU is chaos
RDU is Model error
RDU is initial distribution

Weather : Blend
Climate: think!

Downside: go bust/over confident over-committed
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Resource Allocation

Use the Information Deficit to Improve lkeda Forecasts

Lastly, we can improve the forecast in a variety of different
ways, and use the information deficit to judge which buys the
best forecast improvement:

a) Reducing/Increasing the observational noise
b) Increasing the ensemble size

c) Improving the ensemble interpretation scheme
d) Other...
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As the blue band indicates, without human influences, global average
temperature would actually have cooled slightly over recent decades.
With human influences, it has risen strongly (black line), consistent
with expectations from climate models (pink band).

http://www.ipcc.ch/publications and data/ar4/wgl/en/figure-spm-4.html

http://www.globalchange.gov/images/cir/pdf/20page-highlights-brochure.pdf

Statistical post-processing: These are anomalies, not temperatures.
Parameterization of cloud formation is a bit of a distraction when
we are missing two kilometre tall walls of rock...
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Run Time Ratio

Where have we designed operational models?

My subjective view of operational weather (< 10 days), seasonal (< 18
months), and hires Climate (< 80 years) models each fall.
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Types of Probability (Forecasts)

() Physical Probability: P(x) “True probability” (Laplace’s Demon/Inf Rat Org)

(i) Subjective Probability: P(x|G) probability of x given our information G is true
(Demon’s Apprentice/?semi-finite Rational Org?)

(v) Dynamic Probability: P,(x| 9,<G) when an algorithm encapsulating G has not
yet terminated (finite algorithm, merely still running).
Dynamic in the sense that this probability is expected to change without any
empirical information (by reflection only)

(vi) (Im)Mature Probability: P(x|] g<G) when G is known (not) to be encapsulated in g.
Immature in that this probability is expected to change without addition
reflection or additional empirical observation even after the algorithm finishes.

Rational Decisions I. J. Good (1952) Journal of the Royal Statistical
Society. Series B (Methodological) Vol. 14, No. 1, pp. 107-114
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