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Overview

What 1s the Aim? (““What 1s the Product?”’)

Where 1s the value? (“Where 1s their pain?”)

Risk Management, Decision Support and Forecasts

How Ensemble Prediction Systems (EPS) Add Value

Socio-economic valuation of forecast information:
Proofs of Concept, of Information, and of Value

Questions any forecast provider should answer/be asked

2 Feb 2006




What 1s the Product? (And what is 1t worth?)

Weather:

Case Load:
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LSE-CATS Weather-Health Daily Risk Management Page

Temperature °C

Day

Temp

Thresh

Cases

Max Exp Cases

Exp Cases

Cumulative Cases

your time, energy, cash

Is this relevant?
Is 1t accurate?
Is 1t useful?

How does it work?




What 1s the Product? (And what 1s 1t worth?)

LSE-CATS Weather-Health Daily Risk Management Page

Is this relevant?
Weather:

Temperature °C

But you have to
LT ask the last two

Thresh

G T T questions down
Max Exp Cases 3 3
here!

Exp Cases

Is 1t accurate?
Is 1t useful?

Cumulative Cases

Case Load:

We will come back to
a schematic of this
figure in the seasonal
context. First;

2 Feb 2006 How does it work?




The parable of the three statisticians.

ity

Three non-Floridian statisticians come to a river, they want
to know if they can cross safely. (They cannot swim.)
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Three non-Floridian statisticians wish to cross a river.
Each has a forecast of depth which indicates they will drown.

Forecast 1

Forecast 2

4

Forecast 3

So they have an ensemble
forecast,with three members




Three non-Floridian statisticians wish to cross a river.
Each has a forecast of depth which indicates they will drown.
So they average their forecasts and decide based on the ensemble mean..

[s this a good 1dea?
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Ensembles may have lots of information, we must be
careful not to destroy or discard 1it!

Note that, as 1n health risk-management, the statisticians:
 have a nonlinear utility function
including a very asymmetric risk/utility function
(overly deep by 2 inches << shallow by 2 inches)
* do not care about the river depth per se.




Take Home Message:

If you have an ensemble, use it. (The ensemble mean is meaningless!)
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Take Home Message:

The relevant question i1s one of decision support, not forecasting.
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The NAG Board (Not a Galton Board)
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This 1s a NAG Board

Uncertainty in the NAG board
corresponds to predicting with a
collection (ensemble) of golf balls...

Ensembles inform us of uncertainty
growth within our model!

But reality 1s not a golf-ball; this EPS

§ must deal with model inadequacy.

Nevertheless, weather EPS are usetful!
Operational Day ~10 Weather Ensembles:
US and European Services: 1992

Canada: Now.




Model Inadequacy and our three non-Floridian statisticians.

As 1t turns out, the river 1s rather shallow.

Model inadequacy covers things in the system but left out
of the model.

The real question was could they make it across, the depth
of the river was only one component. ..
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Decision Support and Forecasts

Time to Decide Revise Health Event
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Decision Support and Forecasts

Time to Decide Revise Health Event

What 1s the cost of delay? |
of revised action? | i

of getting i1t wrong?

of a non-event action?
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Decision Support and Ensemble Forecasts

Time to Decide Revise Health Event
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LSE-CATS Weather-Health Daily Risk Management Page LSE-CATS Weather-Health Daily Risk Management Page
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In this kind of decision support ensembles can yield:

we see the uncertainty in likely case load in both A & B
but we also see the substantially greater risk in B

This information depends on the full EPS, not just the probability of weather on each day.
2 Feb 2006



Take Home Messages:

Ensembles are always valuable in nonlinear models, when they
warn you that the model does NOT know what will happen.
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A Schematic Seasonal Example

LSE-CATS Weather-Health Weekly Health Management Page
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Weekly Precip (mm)

Weather

th t of
Weather Onset o Event healtyf event

Event health event

Note the delay between Precip on Onset

In this case we do not know if there will be on event, but
2 Feb 2006 at least we know that we do not know!




A Schematic Seasonal Example

LSE-CATS Weather-Health Weekly Risk Management Page
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In this case we know the model does “expect” an event.
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Take Home Messages:

A good EPS can also indicate what the likely alternatives are,
and thus assist in decision support.
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Take Home Messages:

Focus on information content, #of on meteorological accuracy.
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The proof of the pudding is 1n the eating.
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The proof of predictability 1s 1n the utility.

Establishing positive socio-economic benefit from an EPS
usually takes four steps.

Timescales make sense (re: decision support)
* Proof of Concept Historical/Theoretical causal connections OK.

Models work on toy targets (internal consistency
Forecasts contain relevant information for

relevant empirical targets.
Risk management scenario viable.

* Proof of Information

End-to-end hindcasts on actual target data.
e Proof of Value [s the insight demonstrated worth more than
the full cost of the decision support system?

e Real-time Demonstration System deployed and proven in real time.

Scientifically, success at each stage is interesting, valuable, and exciting.
From a users point of view, anything less than PoV is incomplete.
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Take Home Messages:

Require “verification” on relevant, semi-independent, real
target, observations!
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Take Home Messages:

The goal 1s utility, not optimality. (Decision aid, not decision made)
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Take Home Messages:

If you have an ensemble, use it.

The relevant question 1s one of decision support, not forecasting.

Ensembles are always valuable in nonlinear models, when they
warn you that the model does NOT know what will happen.

A good EPS can also indicate what the likely alternatives are,
and thus assist in decision support.

Focus on information content, not on meteorological accuracy.

Require “verification” on relevant, semi-independent, real
target, observations!

The goal 1s utility, not optimality. (Decision aid, not decision made)

[f one forecast 1s good, then 50 forecasts will be better!
(but not 50 times better)
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A Few Examples

Charley: Has to make simple binary decisions.

Charles: Simple decisions, but not binary!

Charlotte: Difficult optimization decisions, and real verifications!
Charlemagne: Earth shattering responsibility!
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Should I Stay or Should I Go?
A Cost-Loss Example

Charley 1s a contractor who makes cement patios. Every
Saturday he has to decide whether to put in a new patio, or play

golf.
If he works and then it freezes overnight, the cement 1s ruined.
How would Charles use ensemble forecasts?

In theory, he can work out an optimal probability of freezing,
above which he plays golf.

In practice, the construction companies often set a threshold for,
say, rain without doing the “cost/loss” calculation.

This one you can easily find in books...
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Where should I bet?
A Weather Derivatives Example
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Charles, a graduate from the LSE; trades weather
derivatives.

He rather to go home flat (no open risk every night).
He wants life to be interesting (he 1s NOT risk avoiding).

And he does not really care what the real temperature 1s,
only the official temperature.

How would Charles use ensemble forecasts?



Scenario-based cumulative HDD forecasts.

Southern England cumulative HDDs
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This cumulative information on total energy requirements
1s simply not in a single hi-res forecast.
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Can I be more efficient?
A Wind Farm Example

Charlotte runs wind farms. She does not have a yes/no
decision, but a “how much” decision. How much energy
should she contract to sell tomorrow, given that if she
doesn’t produce that much she will have to buy it on the
spot market?

How would Charlotte use ensemble forecasts?

RENEWABLE
ENERGY

[+ ier.com/locate/renene

Using medium-range weather forcasts to
improve the value of wind energy production

M.S. Roulston >, D.T. Kaplan ¢, J. Hardenberg **,

2 Feb 2006 L.A. Smith*®




594 M.S. Rowlsten et al. / Renewable Energy I8 (2003) 385-002

Charlotte 1s interested
in windspeed, but she

1s more interested in

pOWEer.
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Fig. 5. The profile of wind turbine output as a function of wind speed that was used for the study.




SYSTEM DEMAND FROM 1/1/1999

SYSTEM MARGINAL PRICE FROM 1/1/1999

GBP / Mwh

=]
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DAYS

SYSTEM DEMAND FROM 1/7/1999

13 20
DAYS
SYSTEM MARGINAL PRICE FROM 1/7/1999

GBP / MWh

5

10 15 20
DAYS

25

Fig. 6. Samples of UK system demand and the system marginal price for January and July 1999. In the
demand panels the thick line is the actual demand and the thin line is the demand predicted using Eq.

(A2) described in the Appendix.
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In fact, she cares
about demand as well

as supply!

So how do we
evaluate all of this
end-to-end?

We take probabilistic
wind forecasts, turn
them into probabilistic
power forecasts, turn
that in to bids, and the
bids into income
based on the observed
prices.
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Fig. 7. Relative mean weekly net income as a function of forecast lead time for five different wind
forecasting methods described in the text. Panels (a)—~(e) are normalized with respect to the profits of a
generator using the climatological wind model. Panel (f) compares the climate condtioned on the ensemble
forecasts with the climate conditioned on the best-guess forecast. The error bars are the standard errors
obtained by resampling with replacement [3].

This 1s a comparison of
relative income using
strategies based on
climatology, the hi-res,
and the ensemble.

With bootstrap bars.

Bigger 1s better!

But what does this really
mean?




Charlotte could have run a more profitable UK
wind farm 1n the 1999 under NETA rules.

(a) CLIMATOLOGY

NET INCOME / GBP
I
o

I
]
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_30 1 1 1 1 1 1 1 1 | | |
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Avoiding foreseeable losses

(b) CLIMATE CONCHTIONED ON 4 DAY ENSEMBLE FORECAST

NET INCOME / GBP

'\

Not perfect, just better.
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Could this work 1n practice?
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Case Study 1. Cal ISO Weather Forecast Error and
Potential Cost
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CALIFORNIA 1SO

4 regions, 20 stations, one ultimate demand forecast:
245 Bl generation.
How should we interpret
the forecast distribution?

SDGE on Oct10 2003




Cost

SDGE on Oct10 2003
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MW forecast error

If we really
believed that PF3
was a probability
forecast, then we
would maximise
our expected utility
(and lose money!).
in 2003
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From Smith, Altalo & Ziechmann (2004)

Figure 6: Relative costs of PF1 forecasts versus the Cal ISO surrogate forecasts for days in July
2002, a positive value represents a savings of using PF1. Note the significant savings on July 9t
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Every model provides a
“package” for each station,
there 1s more info than mere
model temperature.

AVN mos

ETA mos
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From the station forecasts of each model,
@ make a region temperature forecast for each region

T T

AVN_mos
ETA mos
MRE:
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From the station forecasts of each model,
make a region temperature forecast for each region

AVN_mos
ETA mos
MRF

Combine the region temperature
forecasts from each model to a
regional forecast
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From the station forecasts of each model,
make a region temperature forecast for each region

AVN_mos
ETA mos
MRF

Combine the region temperature
forecasts from each model to a
regional forecast

Compute demand from these regional
temperatures.
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From the station forecasts of each model,
make a region temperature forecast for each region

AVN_mos
ETA mos
MRF

Now, combine the region
temperature forecasts from each
model to a regional forecast

Compute forecast demand from these regional
temperatures.

Compute the expected cost of
this error in demand forecast
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From the station forecasts of each model,
make a region temperature forecast for each region

AVN_mos
ETA mos
MRF

Now, combine the region
temperature forecasts from each
model to a regional forecast

Compute forecast demand from these regional
temperatures.

Take regional temperatures computed from the

observed station data Compute the expected cost of
this error in demand forecast
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From the station forecasts of each model,
make a region temperature forecast for each region

AVN_mos
ETA mos
MRF

Take regional temperatures computed from the
observed station data

< > Compute “perfect weather info” demand.

2 Feb 2006

Now, combine the region
temperature forecasts from each
model to a regional forecast

Compute forecast demand from these regional
temperatures.

Compute cost of error in
demand forecast




From the station forecasts of each model,
make a region temperature forecast for each region

AVN_mos
ETA mos
MRF

Now, combine the region
temperature forecasts from each
model to a regional forecast

Compute forecast demand from these regional
temperatures.

Take regional temperatures computed from the
observed station data

~ ~ ~

Compute “perfect weather info”

demand.
O

For details see: Smith Ziehmann & Altalo (2004) Public Utilities Fortnightly (in preparation)
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From the station forecasts of each model,
make a region temperature forecast for each region
W

T T T T
AVN_mos
ETA mos
NRF

Now, combine the region temperature
forecasts from each model to a regional
forecast

Compute forecast demand from these regional temperatures.

Take pbserved regional temperatures|computed from the
observed station data

|
All that remains now is to: Q
» repeat this on all days in the summer,

» introduce distribution kernels at the right place
e use expected utility —or- isopleths?

» optimise and (cross-)validate the entire model (on a small data set)

e tfrue out-of-sample testing.
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CALIFORNIA 1SO

4 regions, 20 stations, one ultimate demand forecast: generation.
205 How should we interpret the
forecast distribution?
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From Smith, Ziehmann & Altalo (2004)

Figure 6: Relative costs of PF1 forecasts versus the Cal ISO surrogate forecasts for days
in July 2002, a positive value represents a savings of using PF1. Note the significant

savings on July 9t
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Wave Safety-case Example
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Shell 1s incorporating these ideas mto their safety forecasts.
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How big 1s a “low probability” to you?

FEbDd THIE DIREDTOR OF (D ETSN DERODE DAY
I

THE DAY AFTER

N CINEMAS MAY, 2
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Although we estimate that the chances
of a 'Big Chill' in the next hundred years
has a low probability, we don't know
how low, and if it happened it would
have a very high impact” UrvIO

60% |
30%-50% 12
10%-25% 8
0% |




When 1s a probabilistic Forecast
not a probability forecast?

?Whenever you’ d not apply it as a probability forecast?

Numerate user’s who have useful utility functions can detect that an

operational forecast gives bad decision-support when used to maximise
their expected utility!

On the other hand, the ECMWF ensemble is repeatedly found to provide
valuable decision support in terms of 1dentifying when a user’s bespoke
forecast 1s likely to be unusually poor.

The evaluations above considered ECMWE
miormation as probability forecasts!
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What 1s a Probability Forecast?

Given:
* a complete, finite set of mutually exclusive events
e some symmetry assumptions

Then we can construct (empirically) useful probability forecasts.
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What 1s a Probability Forecast?

These are good assumptions for rolling dice:

o

Not so good for rolling gold bars!
Probabilities assigned to random events are rather different
than probabilities which reflect only our ignorance.

It 1s best to bet on (or advise regarding) only the former!
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An “If I ruled the world” Example

Charlemagne (not her real name) rules the world, he 1s
honestly concerned with the both the short run (social security)
and the long run (the state of societies in 2100).

What should s/he do about carbon dioxide emissions?

GOTO LSE STUDENT SLIDES
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