Abstract: Queuing the Wrong U

Just as there are many different types of uncertainty, there are many different types of models. The
best technique for quantifying and communicating uncertainty will depend on the nature of that
uncertainty: is it mere imprecision in a well-defined number (as with the square-root of two),
intractability (as when we know how to compute the answer, but have not yet been able to carry out
the calculation), indeterminacy (as when there is no well-defined target about which to be
iImprecise) or other. The relevance of UQ to a decision maker or scientist will also depend on the
type of quantitative model that is considered: is the model intended to explain, or to forecast, or to
provide a quantitative analysis of the past?

When a perfect model is available, many of these distinctions collapse. In practice, attempting to
guantify one type of uncertainty via a model which may not even display that kind of uncertainty is a
nonsense. One must be careful not to confuse the diversity of our models for the uncertainty in our
future. Or a well-defined probability forecast for what the next model simulation will report, with a
probability forecast for the world. How is UQ to recognize the line between sensitivity analysis and
probability forecasting? These questions will be addressed in the context of climate

science, and more broadly that of science in support of decision making. The ways and means of
UQ are shown to vary with type of model considered, the extent to which that model class is
deemed adequate for purpose in a specific application, and whether or not the relevant dominant
uncertainty (known from the science, but perhaps absent from the models) has been considered.
Uncertainty Quantification may prove to be a very wide field, extending well beyond the bounds of
the probability calculus.
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There are many different types of uncertainty.

Best practice requires UQ communicate the RDU (the dominant uncertainty
relevant to the question at hand) not merely the easiest U to quantify!

Imprecision: There is a well defined value, it is merely unknown:
314t digit of the V2
Intractability: The target may be well-defined, but using/determining it would
prevent completion of the required calculations.
Height of the Andes in a GCM

Indeterminacy: There is no true value of be uncertain of.
“The radius” of the Earth (as it not a sphere!)
The value of Newton’s gravitational constant G

To be of value in application UQ must move well beyond “imprecision”
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Relevant Dominant Uncertainty

_ Initial Condition Uncertainty
(RDU is in IC)

Diversity of IC ensemble
0.04} reflects uncertainty in the future.
(“More” ICs captures RDU)
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D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather
Forecasting, Nonlinear Processes in Geophysics 8: 357-371.

Dec 5 2012 AGU: Q-ing the Wrong U Leonard Smith



Relevant Dominant Uncertainty

42 _ Initial Condition Uncertainty Structural Uncertainty
¢ (RDU isin IC) (RDU is Model Inadequacy)
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D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather
Forecasting, Nonlinear Processes in Geophysics 8: 357-371.
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The Galton Board (Galton 1889)
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The Galton Board (Galton 1889)

(quincunx)
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The NAG Board

Not A Galton Board (2000)
Constructed for the
150t Birthday of the RMS

A given golf ball does
not have a 50/50
chance of going to the
right (left) of the next

- "

LA Smith (2007) Chaos A Very Short
Introduction. OUP.

)
£
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Quantifying Uncertainty in the Initial Condition

In the NAG board, UQ due to IC
uncertainty corresponds to
considering a collection
(ensemble) of golf balls...

IC UQ via ensembles informs us
of uncertainty within our model!

If ICU is not the RDU, then this Is
merely a sensitivity analysis of the
model, and need not quantify the
uncertainty in our future.

The uncertainty in the next golf
ball is quantified...

ong U Leonard Smith



Model Diversity does not Q the relevant U

But reality is not a golf ball...

... reality is a red rubber ball.

What exactly does the distribution of
1024 golf balls tell us about where
the one (and only) red rubber ball
falls?

While we never see similar initial
states, we can still learn from our
mistakes!(in this weather-like case)

ong U Leonard Smith



NAG Weather and the Forecast-Outcome Archive
 Dec 14 Dec15  Dec 16 Dec 17 and soon...
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Quantifying Uncertainty in the Initial Condition

The uncertainty in the next golf
ball is quantified, but there comes
a point where better quantifying
that uncertainty does not better
quantify the uncertainty most
relevant to the target: the red ball.

ong U Leonard Smith



Science can anticipate RDU surprises beyond model-land

_ Interpreting even weather-like
& distributions is a challenge!

. J Brocker & LA Smith (2008) From Ensemble
| Forecasts to Predictive Distribution Functions
| Tellus A 60(4): 663 D

|| Scientific speculation can help:
~ rubber balls will bounce more,
. will carry less angular

~ momentum, will...

These scientific insights can
qualitatively inform the use of
the quantitative golf ball
distributions.

ong U Leonard Smith



Science can anticipate RDU surprises beyond model-land

s Climate predictions require
¥ extrapolating out of the

- observed golf ball-rubber ball
~ archive: into the known-to-be-
- different (?perhaps still fluid?)
~ unknown.

~ The best we can hope for Is
 sensible consistency in

~ distribution between our models
(“the details do not matter”).

Scientific insight/speculation
can anticipate “Big Surprises”
(things our models cannot do)

ong U Leonard Smith



Probabilistic Forecasts: IPCC Sixty-Forty Rule

MuLti-MopeL Averaces AND AssesSED RaNGES For Surrace WARMING The Conditional forecaStS
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Figure SPM.5. Solid lines are mulfi-model global averages of surface warming (relative to 1980-1999) for the scenarios A2, A1B and B1, H . H
shown as continuations of the 20th century simulations. Shading denotes the +1 standard deviation range of individual model annual n Ot S h Ift I n th e |Ocat| O n .
averages. The orange line is for the experiment where concentrations were held constant at year 2000 values. The grey bars at right

indicate the best estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios. The assessment of D O We h ave th at CO nfl d e n Ce

the best estimate and likely ranges in the grey bars includes the AOGCMs in the left part of the figure, as well as resuits from a hierarchy

of independent models and observational constraints. {Figures 10.4 and 10.29} G I O b al Iy? R e g I O n al Iy?

The IPCC rejects the claim that diversity of ensembles
directly reflects our uncertainty in GMT.
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How important are different sources of
uncertaintY? The value of qualitative insight is at risk of being

discarded in favour of quantitative mis-information...

= Varies, but typically no single source dominates.

Internal
variability

Carbon cycle

Structural
uncertain

Parameter
uncertainty

Downscaling

I precipitation changes for the 2080s relative to
ox in SE England

Source: Met Office



State-of-the-art GCMs share deficiencies due to technology
Science Is more than simulations Missing 2km tall walls of rock!

And long term

When does \ o Y e feedbacks (bio- 5000
“Sit and Think” trump ) .
“Simulate and Count”? \

Example: When we
know moist air must go
over or around in (and
only in) the real world!

1500

If our models cannot reproduce today’s
driving meteorological phenomena, can
we expect them to get second order
feedbacks “well enough”?

1000

= 500
At what lead times do inadequacies In

downstream flow (or precipitation)
result in feedbacks with beyond local
Impacts? alter extremes? &c?

Science can estimate Prob(Big Surprise)
as a function of lead time.

N

=500

Observed Height — HadCM3 Height




Model-based probability forecasts are incomplete without a

guantitative measure of the likelihood of model irrelevance.

Spatial , If precip over the Amazon (or Okeefenokee) is

Scales badly simulated, then biomass will soon be badly

MeeS  simulated; such missing/extra feedbacks may
lead to model irrelevance: First local, then global.

-
m Estimating the timescales for such things o
may be sound science! %

&

1)

1000km E
Target ©

Lead-time n
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years decades centuries !

weeks

Temporal
Average
Scale day
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& gemune expert can always foretell a thing that 15
oS00 years away easier than he can a thing that's only

500 seconds off What Is a “ Blg Surprise”?

- A Conneciicut Yankes in King Arthur's Court

Big Surprises arise when something our simulation models cannot
mimic turns out to have important implications for us.

Often we can identify cases where we are “leaking probability”
when a fraction of our model runs explore conditions which we
know they cannot simulate realistically. (Science can warn of
“*known unknowns” even when the corresponding futures remains
unknown)

Big Surprises invalidate (not update) model-based probability
forecasts changing the I in P(x|l). (Arguably “Bayes” does not
apply: this is not a question of probability theory.)
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& gemune expert can always foretell a thing that 15
oS00 years away easier than he can a thing that's only

500 seconds off Convergent Probabilities

- A Conneciicut Yankes in King Arthur's Court

In weather forecasts we can see the lead-time when our models
become misinformative, but in climate forecasting we are in the
dark.

If our models agreed (in distribution) why we would we have
more confidence?

Arguably only when the next U in the UQ queue can be argued
small in theory: that is when all significant RDUs have been well
guantified and we no longer expect our probabilities to be
evolving.
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And If the best available model is not adequate for purpose

Accept (for a moment) that Model Inadequacy may
make probability forecasting irrelevant in just the
same way that chaos made the RMS/least-squares
error of point forecasts irrelevant.

When the best model is not adequate for quantitative
prediction or a RDU has not been quantified:

What is the role of quantitative modelling & simulation
INn decision support? In explanation?

How can we better extract insight and information
from big models and ensemble forecasts without
taking them too seriously?

How do we do UQ In this case?

Might this lead to better decision making?
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Queuing the Right Uncertainty

" When in doubt, distrusting the indications, or inferences from
them (duly considered on purely scientific principles, and checked b
experience), the words * Uncertain,” or * Doubtful,” may be used,
without hesitation. Fitzroy, 1862

Best practice requires UQ communicate the RDU (the dominant uncertainty
relevant to the question at hand), not the easiest uncertainty to quantify!

Conditioning on “the evidence considered” (rather than all the available
evidence) will mislead decision makers and risk the credibility of science-
based policy when an RDU is known not to have been “considered”.

To be of value in application UQ must move well beyond “imprecision”.

Where models disagree (in distribution), one must communicate the
probability all available models are misinformative. Similarly when they agree!

What are the alternatives to using science to quantify the Prob(Big Surprise)?
Are there not dangers to the credibility of science when it is suppressed?
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LA Smith (2002) What Might We Learn from Climate Forecasts? Proc. National Acad. Sci. USA 4 (99): 2487-2492.
LA Smith & N Stern (2011) Uncertainty in science and its role in climate policy Phil. Trans. R. Soc. A (2011), 369
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Orrell, LA Smith, T Palmer & J Barkmeuer (2001) Model Error |n Weather Forecasting, Nonlinear Processes in
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Dec 5 2012 AGU: Q-ing the Wrong U Leonard Smith




Home | Helg | Search | AL site index | LSE fof You

Publications http://www?2.lse.ac.uk/CATS/publications/Publications Smith.aspx

LA Smith, (2002) What Might We Learn from Climate Forecasts? Proc. National Acad. Sci. USA 4 (99): 2487-2492.
Smith, LA and Stern, N (2011) Uncertainty in science and its role in climate policy Phil. Trans. R. Soc. A (2011), 369, 1-24

K Bevan, W Buytaert & L A Smith (2012) On virtual observatories and modelled realities Hydrol. Process., 26: 1905-1908
R Hagedorn and LA Smith (2009) Communicating the value of probabilistic forecasts with weather roulette. Meteorological Appl 16 (2): 143-155.
K Judd, CA Reynolds, LA Smith & TE Rosmond (2008) The Geometry of Model Error. Journal of Atmospheric Sciences 65 (6), 1749-1772.
J Brocker & LA Smith (2008) From Ensemble Forecasts to Predictive Distribution Functions Tellus A 60(4): 663. Abstract
DA Stainforth, MR Allen, ER Tredger & LA Smith (2007) Confidence, uncertainty and decision-support relevance in climate predictions, Phil. Trans.
R. Soc. A, 365, 2145-2161. Abstract
LA Smith (2006) Predictability past predictability present. MS Roulston, J Ellepola & LA Smith (2005) Forecasting Wave Height Probabilities with
Numerical Weather Prediction Models, Ocean Engineering 32 (14-15), 1841-1863. Abstract
DA Stainforth, T Aina, C Christensen, M Collins, DJ Frame, JA Kettleborough, S Knight, A Martin, J Murphy, C Piani, D Sexton, L Smith,
RA Spicer, AJ Thorpe, M.J Webb, MR Allen (2005) Uncertainty in the Predictions of the Climate Response to Rising Levels of
Greenhouse Gases Nature 433 (7024): 403-406.
A Weisheimer, LA Smith & K Judd (2005) A New View of Forecast Skill: Bounding Boxes from Seasonal Forecasts, Tellus 57 (3) 265-279 MAY.
K Judd & LA Smith (2004) Indistinguishable States II: The Imperfect Model Scenario. Physica D 196: 224-242.
MG Altalo & LA Smith (2004) Using ensemble weather forecasts to manage utilities risk, Environmental Finance October 2004, 20: 8-9.
MS Roulston & LA Smith (2004) The Boy Who Cried Wolf Revisited: The Impact of False Alarm Intolerance on Cost-Loss Scenarios, Weather and
Forecasting 19 (2): 391-397.
LA Smith (2003) Predictability Past Predictability Present. In 2002 ECMWF Seminar on Predictability. pg 219-242. ECMWF, Reading, UK.

also now: Chapter 9 of Predictability of Weather and Climate (eds T. Palmer and R Hagedorn). Cambridge, UK. Cambridge University Press.
MS Roulston, DT Kaplan, J Hardenberg & LA Smith (2003) Using Medium Range Weather Forecasts to Improve the Value of Wind Energy
Production, Renewable Energy 29 (4) April 585-602.
MS Roulston and LA Smith (2002) 'Weather and Seasonal Forecasting' in Climate Risk and the Weather Market pg 115-126. Risk Books, London.
MS Roulston & LA Smith (2002) Evaluating probabilistic forecasts using information theory, Monthly Weather Review 130 6: 1653-1660.
D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather Forecasting, Nonlinear Processes in Geophysics 8: 357-371.

Dec 5 2012 AGU: Q-ing the Wrong U Leonard Smith



The UK MetOffice Queuing the Right U.

_ - October October-December
Skill? 13 2.0
Value? o
Expectation?:2
8.0
Time to 11 7.5
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What is the aim of Cllmate Modelllng’7

It would be interesting to trace how
the idea that climate models could
provided quantitative insight came
about.

Weather models are simplified
climate models: you need not turn
on ocean currents in the first few
days, or ice in the first few weeks,
or forest in the first few years...

But climate models must run faster
than real-time, and so are
simplified in implementation:

do we have the technology to run
high fidelity climate models?

Why do we hide behind clouds
when we cannot realistically
simulate rock?

“ClI |Iﬂte !Dre*tum

“Computer power pays off

Brtalnty i*lﬂtlﬂﬂsﬁﬂ cllmatapﬂnse toris R

levels ofg enhouse gases

-
Letter to Nature, pp 403-406, Vol 433,
2T January 2005

e @
=T eenren il Supplementary
| ﬂi &

DA Stainforth, T Aina, C Christensen, M Collins, DJ Frame, JA Kettleborough, S Knight, A Martin, J
Murphy, C Piani, D Sexton, L Smith, RA Spicer, AJ Thorpe, M.J Webb, MR Allen (2005) Uncertainty in the
Predictions of the Climate Response to Rising Levels of Greenhouse Gases Nature 433 (7024): 403-406.
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?What year did climate prediction move beyond understanding to quantitative forecasting’

The basic insight here Is not new

" When in doubt, distrusting the indications, or inferences from
them (duly considered on purely scientific principles, and checked b
experience), the words  Uncertain,” or * Doubtful,”
Dr. Platzman without hesitation. Fltzroy, 1862

I may add to this another point mentioned by Dr. Charney, a somewhat philosophical
comment concerning madel experiments. [ think that [ agree with Dr. Charney's suggestion
that machines are suitable for replacing model experitments. Buat 1 think it is also necessary
to remember that there are in general two types of physical systems which onge can think
of modeling. In one tvpe of system one has a fairly good understanding of the dynamieal
workings of the system, involved. Under those conditions the machine modeling 1s not only
practical but probably is more economical in a long run. Twypical examples of this kind, I
think, are problems where vou are concerned. let’s say, with wave action in harkors,
m general a whole ¢lass of engineering problems of that kind. But there 1s another class of
problem where we are still far from a good understanding of the dynamical properties of
the system. In that case laboratory models, 1 think, are very effective and have a very
important place in the scheme of things.

Because of the various simplifications of the model

described above, it is not advisable to take too seriously

PROCEEDINGS the quantitative aspect of the results obtained in this

OF study. Nevertheless, it is hoped that this study not

THE INTERNATIONAL SYMPOSIUM only emphasizes some of the important mechanisms
ON NUMERICAL WEATHER which control the response of the climate to the change
PREDICTION IN TOKYO of carbon dioxide, but also identifies the various re-
NOVEMEER 7-18, 1960 quirements that have to be satisfied for the study of

climate sensitivity with a general circulation model,

The Effects of Doubling the CO; Concentration on the Climate
of a General Circulation Model'

SYURURO MANABE AND Ricaarp T. WETEERALD

Ceoplhysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, N.J, 08540
{Manuszcript received 6 June 1974, in revised form 8 August 1974)
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Ed Lorenz:
Weather and Chaos (and Error)

Lorenz realised that even
for the Apprentice, small
uncertainties could grow
exponentially fast,
leading to “chaos.”

He was also very Fods
concerned about the role 5

L 7

of model error, which is / | :
% ¥

" {'

much harder to solve

% Fh
i 0
than that of mere chaos. ,%l -
Tl -
LA Smith (1994) Local Optimal Prediction: Exploiting strangeness and the "r. .{?
variation of sensitivity to initial condition. Phil. Trans. Royal Soc. Lond. A, B4
348 (1688): 371-381. R .;.....;"7:'-:';‘-'“-"-:'
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Probability Forecasts: Chaos

The evolution of this probability distribution for
the chaotic Lorenz 1963 system tells us all we can
know of the future, given what we know now.

o~
||‘
I
1

|

| |I:|
|
'.llln

5.50

500

TR

It allows prudent quantitative risk management

450 (by brain-dead risk managers)

4.00 And sensible resource allocation.

We can manage uncertainty for chaotic syétems
(given a perfect model).

But how well do we manage uncertainty in the
real world? For GDP? Weather? Climate?
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Can we disentangle these “uncertainties”?

Demon’s Apprentice (2007)

1) Perfect Equations of Motion (PMS)
2) Perfeetnoise-free-observations:
3) Unlimited computational power

Apprentice’s Novice (2012)

1) -Perfeet-Egquations-of Metien-(PMS) -
2) ‘Perfeetnoise-free-observations:
3) Unlimited computational power

Enter the NAG Board
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