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Overview

Identifying the aims of Data Assimilation (before designing the system!)

Imperfections in the Forecast system

Drift due to model error
Inappropriateness of mathematical assumptions (linearity)

Initiallization of ensembles off the model manifold
Illustrating these effects in Operational Models

Gradient Descent Assimilation

Advantages of a 20 day assimilation window (T21L3 QG model)

Model Error as an output of the DA scheme
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What is the aim of DA....

.... when the model is imperfect ?

.... and how would you tell?
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Of course when the model is perfect

Target is same for nowcasting and for
forecasting at all lead times.

Nonlinearities stop us from describing the
PDF analytically, but we can still strive for an
accountable ensemble system, that is one that
suffers only from the finite size effects of its
ensemble.
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ISIS/GD provides a coherent scheme for
forming ensembles, given a perfect model.

CAOS Bangalore

This graph shows the evolution of an
accountable PDF under a perfect model.

It is accountable in the sense that it suffers
only from being a finite sample.

In “Bayesian” terms, the prior is the
invariant measure of the system;

we often have unconstructive proofs that
establish that this measure is geometrically
interesting (and thus extremely expensive
to sample).

The indistinguishable states (ISIS/GD)
approach provides a more computationally
tractable means of generating a sample.

But what is the point of DA when the
model is imperfect? ....

We must let go of this hope!

15 July 2011
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When the model is imperfect

The best data assimilation scheme for nowcasting is unlikely to
be the same as the best scheme for forecasting. Indeed the best
scheme for forecasting may be a function of the lead time
targeted!

How imperfect are our models?

Small differences in the flow may still admit shadowing trajectories on the
lead times of interest.

Large differences in the model manifold are expected even if the flow is very
very similar locally.

Large differences in the flow cannot realistically be fixed by DA.
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Fig. 1. Panel showing the relationship between model error, shadow
trajectories, and ensemble behaviour for a real model/system pair.
The upper panels show ensemble errors with respect to the model.
lower panels with respect to the target system. Model i1s Lorenz
1963 with » = 28.1, target 1s Lorenz 1963 with » = 28.0 (see Ap-
pendix for equations). Ensemble consists of 500 mitial conditions
randomly perturbed on a ball of radius 0.01. The points have been
projected onto the plane perpendicular to the tangent of the target
orbit. In the imperfect model scenario (lower panels). the ball has
distorted mto an ellipse by r = 0.04, but the model still shadows
the target. By r = 0.08, however. the model has ceased to shadow
within the specified radius.

Grantham Research Institute on
Climate Change and
the Environment

Model Imperfections | : Drift

When the model is imperfect
all initial conditions near the
best nowcast tend to drift
away from future nowcasts.

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001)
Model Error in Weather Forecasting,

Nonlinear Processes in Geophysics 8: 357-371.
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all initial conditions near the
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Fig. 1. Panel showing the relationship between model error, shadow
trajectories, and ensemble behaviour for a real model/system pair.
The upper panels show ensemble errors with respect to the model.
lower panels with respect to the target system. Model i1s Lorenz
1963 with » = 28.1, target 1s Lorenz 1963 with » = 28.0 (see Ap-
pendix for equations). Ensemble consists of 500 mitial conditions
randomly perturbed on a ball of radius 0.01. The points have been
projected onto the plane perpendicular to the tangent of the target
orbit. In the imperfect model scenario (lower panels). the ball has
distorted mto an ellipse by r = 0.04, but the model still shadows
the target. By r = 0.08, however. the model has ceased to shadow
within the specified radius.
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Model Imperfections | : Drift

When the model is imperfect
all initial conditions near the
best nowcast tend to drift
away from future nowcasts.

Data Assimilation can only
“fix” this “optimally” for one
lead time, at best!

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001)
Model Error in Weather Forecasting,

Nonlinear Processes in Geophysics 8: 357-371.
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Nonlinear Processes in Geophysics 8: 357-371.
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Model Imperfections |
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(even if we knew the covariance matrix!)

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001)
Model Error in Weather Forecasting, Nonlinear
Processes in Geophysics 8: 357-371.
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Drift is apparent even at global scales.
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Back off on “Laws of Physics” justification if post processing is required.
Transparent forecast evaluation in empirical units of interest.
Careful (true) cross-validation. (And some arguably true out-of-sample)
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In practice, this is not a small problem: systematic errors in seasonal forecasting

(“drift”) are about one degree, while the seasonal range of Nifio3 is ~3 degrees!
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FiG. 2. Defining O: equal and opposite perturbations at 7 = 0,
__________________ 0+(0), evolve so as to be no longer symmetric at time 7. The error

T /"1 in assuming linear dynamics, ||6* () + 0~ (7)|], is scaled by the average
) / maonitnde of the evolved perturbations to give the relative nonlin-

B} The ECMWF operational
5 ensemble is nontrivially
® g nonlinear in less than a day.
Always test the time scales on
0 . 24 48 72 96 120 —Eo 24 48 72 96 120 which KF’s and SVD’s are
Time (hours) Time {hours) .
FiG. 5. Linearity results for ECMWF operational twin SV perturbations (7, = 48 h), calculated approprlate'

using 500-hPa geopotential height data over the Northern Hemisphere excluding the Tropics and
taken over 25 days. The panels show the mean (solid line) and extent (dot—dashed lines) of the
relative nonlinearity as measured by (left) ® and the (right) (anti) correlation between twin pairs.

_ _ l. Gilmour, LAS & R Buizza (2001) Linear Regime Duration: Is 24 Hours a Long
Climate Changeand. Time in Synoptic Weather Forecasting? J. Atmos. Sci. 58 (22): 3525-3539.

the Environment
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Model Imperfections I11: Off Manifold

The Geometry of Model Error

Starting the ensemble off
the manifold is likely a
waste of cpu time.

One initial condition off the
manifold may make sense,
but sampling the full m-
dimensional state space
when when the sample
quickly falls onto a lower
dimensional manifold does
not.
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The Geometry of Model Error
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Quick collapse to manifold suggests ensemble on manifold

The Geometry of Model Error
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For perfect models we want
ensembles members near the :
attractor (because that is where

“Truth” is), weighted by the obs. :

For imperfect models, we may
still aim for ensemble members
near the model manifold (for
better sampling in the forecast)
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Methodology

Reference trajectory

Obs

\/.

t=0

How to find a reference trajectory (or pseudo-orbit)?
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U, : model state attimet  R™

Finding reference trajectory via GD  'U I point in sequence space R™"
'u : uat GD algorithmic-time i

ou={S,, ..., So}
u itself is a pseudo-orbit

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

‘ap(u) = E?=_ﬂ_|.1 | F(ug) —ugyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.

O @)
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U, : model state attimet  R™

Finding reference trajectory 'u 1 point in sequence space R™"
'u : u at GD algorithmic-time i

ou={S,, ..., So}

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which

containgG@ny)series of » model states.

Define the mismatch error cost function:

ep(W) =X90_ 1y [ F(up) —upyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.
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Finding reference trajectory

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

‘ap(u) = E?=_ﬂ_|.1 | F(ug) —ugyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.
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Finding reference trajectory

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:
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Finding reference trajectory

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

‘ap(u) = E?=_ﬂ_|.1 | F(ug) —ugyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.
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Of course, if the model is imperfect we may prefer a p-orbit to a trajectory!

Grantham Research Institute on
Climate Change and

the Environment CAOS Bangalore 15 July 2011

© Leonard Smith



An illustration with Lorenz 63
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An illustration with Lorenz 63

Here is a trajectory
segment of Lorenz 63




An illustration with Lorenz 63

Making
observations
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An illustration with Lorenz 63

Five
observations




An illustration with Lorenz 63

All we have are
observations
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An illustration with Lorenz 63

Forecasts from
observations




An illustration with Lorenz 63

Apply shadowing
filter




An illustration with Lorenz 63

The aim is to minimize the
" mismatches simultaneously.

This is simply gradient
decent, in a N*M (=15)
dimensional space, towards
unique global minima
which form the trajectory
manifold.

After using them to define
the starting point, we ignore
the observations during the
(initial) decent.




An illustration with Lorenz 63

Iterate 1




An illustration with Lorenz 63

Iterate 2




An illustration with Lorenz 63

Iterate 3




An illustration with Lorenz 63

Iterate 4




An illustration with Lorenz 63

Iterate 5




An illustration with Lorenz 63

Iterate 6




An illustration with Lorenz 63

Iterate 7




An illustration with Lorenz 63

Iterate 8




An illustration with Lorenz 63

Convergence toward a
trajectory.

Once very close, the
trajectory passing through
any point on the psuedo-
orbit can be used/contraste
with other trajectories.




An illustration with Lorenz 63

Near Truth, but not
Truth
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An illustration with Lorenz 63

The trajectory is near the
natural manifold; the obs
are not!

(Near defined rather poorly
using the noise model!)

The trajectory is also near
to (but different from) the
segment of truth that
generated the obs.




An illustration with Lorenz 63

This is achieved by paying
more attention to the
dynamics over the window.
Statistical properties of the
trajectory from the
observations are secondary.

This proves remarkably
robust either:

- when the model is perfect
- in high-dimensional space




An illustration with Lorenz 63

Suppose the observation
at t=3 had been
significantly in error.

The shadowing filter can
recover using
observations from t=4 and
beyond, in a manner that
sequential filters cannot.

In the shadowing filter, the
mismatch at t=3 and t=4
Is decreased by bringing
the estimated state at t=3
back toward the model
manifold
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An illustration with Lorenz 63

Suppose the observation
at t=3 had been
significantly in error.

The shadowing filter can
recover using
observations from t=4 and
beyond, in a manner that
sequential filters cannot.

In the shadowing filter, the
mismatch at t=3 and t=4
Is decreased by bringing
the estimated state at t=3
back toward the model
manifold

Sequential filters do not
have access to this

multi-step information.



An illustration with Lorenz 63

Given that we can find
one such trajectory near
the obs, we can create an
ensemble form the set of
indistinguishable states
of that (and similar)

c! trajectories, and then
draw from that set
conditioned on how well
each member compares
ol with the observations.
(Judd & Smith, Physica D

Indistinguishable States |, 2001
Indistinguishable States I, 2004)

The aim of data
assimilation in this case
IS an accountable

probability forecast:



GD i1s NOT 4DVAR

1 Difference in cost function
Cop(u) =9_ 11| F(up) —uggq |2

Capvar(U_,41) = 219:_,”4_1(”1*. — h(s))TT1(up — h(sy))
1 Noise model assumption

) Assimilation window

(no need to invent covariance matrices)

4DVAR dilemma:
difficulties of locating the global minima with long assimilation window

losing information of model dynamics and observations without long window

Grantham Research Institute on
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Distance of original and best and trajectories from truth

T21L3 QG model (in PMS); suggesting a 20-ish day window.
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T21L3 QG model (in PMS); suggesting a 20-ish day window.

Distance of original and best and trajectories from truth
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Imperfect Model Scenario

No model trajectories are able to be consistent with the infi-
nite observations.

There are pseudo-orbits, with non-zero mismatch error, that
are consistent with the observations. We define

pseudo-orbit z;,t = 0,—-1, -2, ...
“i41 = f(z;) +w;, w; i

Confounding of observational noise and model error
prevents one identifying either of them.

Data assimilation can explore the model dynamics by
employing pseudo-orbits.

Grantham Research Institute on
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U, : model state attimet  R™
nsight of Gradient Descent 'u : point in sequence space R™"
'u : uat GD algorithmic-time i
Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of » model states.
Define the mismatch error cost function:

Cap(u) = ZE:—;-1+1 | f(ug) —upypq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.

Define the implied noise to be o; = S; — U;

and the imperfectionerrortobe  “i — Ui- f(u,,)
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nsight of Gradient Descent

F(S)
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nsight of Gradient Descent

Knowing the model is imperfect, we interpret the mismatch

and the implied noise differently.
And we no longer run GD all the way to a trajectory.

The question is when to stop?

42u

W

n

Stop before a trajectory is reached!
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Statistics of the pseudo-orbit as a function of the number of Gradient Descent iterations
for both higher dimension Lorenz96 system-model pair experiment (left) and low

dimension lkeda system-model pair experiment (right).
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Deployed: m=2, m=18, T20/T21, NOGAPS

K Judd, CA Reynolds, TE Rosmond & LA Smith (2008) The Geometry of Model Error .
Journal of Atmospheric Sciences 65 (6), 1749-1772.

[74] J Brocker & LA Smith (2008) From Ensemble Forecasts to Predictive Distribution
Functions Tellus A 60(4): 663.

Chemical Engineering Research and Design, 82(A), 1-10 SCI 4. Abstract

[66] K Judd & LA Smith (2004) Indistinguishable States I1: The Imperfect Model Scenario.
Physica D 196: 224-242.

PE McSharry and LA Smith (2004) Consistent Nonlinear Dynamics: identifying model
inadequacy, Physica D 192: 1-22.

K Judd, LA Smith & A Weisheimer (2004) Gradient Free Descent: shadowing and state
estimation using limited derivative information, Physica D 190 (3-4): 153-166.

LA Smith (2003) Predictability Past Predictability Present. In 2002 ECMWF Seminar on
Predictability. pg 219-242. ECMWF, Reading, UK.

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather Forecasting,
Nonlinear Processes in Geophysics 8: 357-371.

K Judd & LA Smith (2001) Indistinguishable States I: The Perfect Model Scenario, Physica D
151: 125-141.

L.A. Smith, M.C. Cuéllar, H. Du, K. Judd (2010) Exploiting dynamical coherence: A geometric
approach to parameter estimation in nonlinear models, Physics Letters A, 374, 2618-2623

Grantham Research Institute on
Climate Change and
the Environment CAOS Bangalore 15 July 2011 © Leonard Smith



http://www2.lse.ac.uk/CATS/publications/papersPDFs/77_Judd_GeomOfModelError_JAS.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf
http://www2.lse.ac.uk/CATS/publications/abstracts_Papers/67_ComparisonMechanisticModel_2004_Golobic-etal.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/66_Indistinguishable States II_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/63_ConsistentNonlinDynamics_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/63_ConsistentNonlinDynamics_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/60_GradientFreeDescent_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/60_GradientFreeDescent_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/56_PredictPastPredictPresent_2002.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/45_ModelError_2001.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/42_IndistinguishableStatesI_2001.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/79_ExplotingDynamicalCoherence_2010.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/79_ExplotingDynamicalCoherence_2010.pdf

Mismatch Directions Reveal Model Error

(a)

Mismatch of Sp. Humidity (10°6)
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Figure 10: Direction error for T47L.24 and T79L30 models. Contour lines show
mean error and shading shows standard deviation. Details as in figure9

Note that this information on (State dependent) model
error comes out of the algorithm!

_ K Judd, CA Reynolds, LA Smith & TE Rosmond (2008) The Geometry of Model Error .
Q Climate Changeand. Journal of Atmospheric Sciences 65 (6), 1749-1772
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This Is not a stochastic fix:

After a flight, the series of control

perturbations required to keep a by-

design-unstable aircraft in the air look with the Eurofighter Tephoon, in i
are a random time series and arguably subsonic flight the pressure point

i liez in front of the centre of
are StOChaStIC. gravity, therefore rnaking the
aircraft aerodynarmically

unstable, and iz why Eurcofighter

But you cannot fly very far by specifying T#hoen hes such = comelex

Flight Contral Systern -

the perturbations randomly! computars react quicker than 3
pilot,
H when Eurafighter Typhoaon
Thlnk Of WC4dvar/ ISIS-/GD . crosses intc\gsuperszpnic flight, the pressure point rmoves behind the centre of
perturbations as what is required to aravity, giving 3 stable aivcraft.
keep the mOdel flylng near the The advantages of an intentionally unstable design over that of a stable

ObservathnS we can Iearn from them, :rrangerzent inu:lu-:llnla .greater afgilli.::: - par‘ticularll,l.at subsonic speeds - reduced
rag, and an overall increase in lift (also enhancing STOL performance],

but no “stochastic model” could

usefully provide them.

Which is NOT to say stochastic models are not a good idea:
Physically it makes more sense to include a realization of a process rather than it mean!
But a better model class will not resolve the issue of model inadequacy!

It will not yield decision-relevant PDFs!

Grantham Research Institute on
Climate Change and
the Environment

CAOS Bangalore 15 July 2011 © Leonard Smith



Thanks to Kevin Judd
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The aim of DA is ensemble formation.

If the model evolves on a natural manifold, there are huge
resource and dynamical advantages to initialization on that
manifold. (Balance was just a co-dimension 10° first step.)

Inside PMS, ISIS will be pretty hard to beat if the model is
chaotic.

Qutside PMS all bets are off.

GD has the advantage that it tells you about state dependency of

model error
While XX-DVARS requires a statistical description of model

error as in input!
Geometrical insight may save some statistical gnashing of teeth.

Grantham Research Institute on

the Environment CAOS Bangalore 15 July 2011 © Leonard Smith
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Imperfect Model Scenario

e In the IPMS, model state and system state are living in the
different state space.

e Let x; be a projection of system trajectory into model state
space RY

e The chaotic model has dynamics y; 4.1 = f(yt), yt € R
e Let f(.) be the best model we have.
e Observations: s; = =y + ¢, Where eis I1D.

e Define the model error, w; = ¢ — f(a1—1),w; € RA
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WC4DVAR

WC4DV AR cost function:

1 _ 1< _
ch4dvar — E(XO - Xct)))T BOl(XO o Xg) +§Z(Xt _St)TF 1(Xt _St)
t=0

EPICELICMICHERTIEM

We have good reason to believe that model error is not IID
(and empirical evidence for ECMWEF, see Orrell et al 2001)

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather
Forecasting, Nonlinear Processes in Geophysics 8: 357-371

Grantham Research Institute on
Climate Change and
the Environment CAOS Bangalore 15 July 2011 © Leonard Smith



http://www2.lse.ac.uk/CATS/publications/papersPDFs/45_ModelError_2001.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/45_ModelError_2001.pdf

