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Outline
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• Why are probabilistic forecasts important?

• What is a skill score?

• What is a proper skill score?

• The importance of being proper

• Examples



The Forecast Problem
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Problem: We want to forecast an observable Tn (e.g. temperature),
where n is the time.

• We issue probabilistic forecasts: pn(T ) = {Pobability of Tn =

T}

• Usually pn is built upon some related side information (past ob-
servations, weather model simulations)

• Does not mean pn(t) the probability of Tn given that side infor-
mation



Why Using Probabilistic Forecasts
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• End users don’t want to know Tn, they want to base decisions
on Tn (and none of them care about models’ 500mB height)

• To take reasonable action, the risk of taking that action must be
factored into that decision

• To do that, information about the uncertainty of Tn must be known



How Do We Evaluate Probabilistic Forecasts?
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We need a general skill score, that takes into account the probabilis-
tic character of the forecasts and that is relevant to many different
users (incl. model developers, meteorologists).



Skill Scores
5

• A skill score is a function S(p, t)

• The empirical skill is a sample mean:

S =
1

N

∑

n

S( pn
︸︷︷︸

Our forecast

, Tn︸︷︷︸

Reality
)

What should skill scores actually measure?



Properties A Probabilistic Forecast Should Have
6

A good probabilistic forecast should have:

• Reliability – Looking at those days where a probability pn = r of
rain is forecasted, a fraction r of them should have rain

• Sharpness – High probability is issued to events that acctually
happen to occur

Skill scores should take this into account, since we believe that a
probabilistic forecast having these properties is good for a multitude
of specific problems.



Reliability
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• Take a fixed number r

• Count the instances where the probability of an event is fore-
casted to be π, i.e. pn = r

• The event should actually occur at a fraction r of these instances.

Other equivalent formulations:

• P (Tn = T |pn) = pn(T )

• pn(T ) can be written as a conditional probability density



Sharpness
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tighter

Sharp−
But not necessarily

Tight−
But not reliable
anymore

Reliable−
But not sharp

This is an issue only when pn actually depends on n



Proper Scores
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Propriety is the key property for a skill score

• Assume pn is our “best knowledge” probabilistic forecast

• Then, to the best of our knowledge, our forecast pn has the skill

Sp =

∫

S(pn, t)pn(t)dt

• To the best of our knowledge, another forecast qn has the skill

Sq =

∫

S(qn, t)pn(t)dt

• Believing pn is right, we want pn to have a better skill than qn,
otherwise we would not issue pn



Proper Scores
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Propriety is a property of the Skill Score alone, what the actual truth
is doesn’t matter



Proper Scores and Sharpness/Reliability
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Two statements for proper scores:

If, given the available information, a reliable forecasts exists, it would
yield a maximum score

Of two equally reliable forecasts, the sharper one would score higher



Local Scores
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Local Skill Scores are concerned only with verifications, that means:

The forecast pn(T ) is scored only on what happened – the verifica-
tion. How the forecast looks like at other points does not matter.

In other words, S(pn, T ) = S(pn(T )).



An Example: Weather Roulette
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Bet on temperature at London Heathrow. Objective: Maximize the
expected return rate

• Strategy: Distribute your wealth

Temperature
W

e
a
lt

h

Distribution of wealth as a function α(t) of temperature

• Reasonable strategy (if odds are fair and you assume p(t) is
right): αp(t) = p(t)



An Example: Weather Roulette
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• Actual wealth grow rate: S = 1
N

∑

n log p(Tn)+ something that
depends on the odds only

Can this be used as a skill score?



The Ignorance
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• The Ignorance Skill Score is

I(p) = − log(pn(Tn))

• The Ignorance is proper, local and smooth

• The Ignorance is the only proper, local and smooth score for
continuous forecasts (Good 1952, Gneiting & Raftery 2004)



The Brier Skill Score
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• The Brier Score considers binary events

•

S = (Tn − pn(1))
2

• The Brier score is proper for binary events

• Taking any other function than p2 here is improper



About Other Scores
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• The Linear Score or p Score S(pn, t) = pn(t) is improper

• The RMS error depends only on some moments and therefore
is not strictly proper

• Many proper nonlocal Scores have been suggested and used
(see talk by Zoltan Toth about CRPS)



Take Home Points (And Questions)
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• End users need probabilistic forecasts to make better decisions

• We need skill scores that measure desirable properties of prob-
abilistic forecasts

• We need to use proper scores, since improper scores give mis-
leading answers – we would reject even the optimal forecast

• There are only a handful of essentially different proper skill scores
(see www.dime.lse.ac.uk)



Take Home Points (And Questions)
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Questions

• Are there good reasons to use nonlocal scores?

• What is the actual connection between general skill scores and
end users specific cost functions?

• Is weather really a stochastic process? If not, there will never be
fully reliable forecasts

• Do probabilistic forecasts need to be probability forecasts, and
if not, what are the neccessary amendments to the concept of
skill?


