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Guidance Information or Probability Forecast: Where do Ensembles Aim?

It is widely held that ensembles of simulations can provide a probability distribution of quantities of interest useful in decision support.
This claim is challenged. It is suggested that while an ensemble of simulations provides information regarding the future, it is neither
designed to nor best interpreted as providing a probability distributions reflecting future weather per se.

The seductive image of the output of an ensemble prediction system as a probability forecast, used to update a prior probability
distribution (either from climatology or from yesterdays probability forecast) is inconsistent with actual practice, and arguably with the
highest scoring probability forecasts.

In practice, alternative procedures are applied, procedures believed to yield both more skill and more value to the probabilistic
forecast eventually produced. The ability of ensemble interpretations schemes to capture the information in the ensemble of
simulations (contrasting Bayesian Model Averaging with kernel dressing) is explored, and sensible ways to use the ensemble
forecast (probability updating vs blending) are contrasted. Each point holds implications for ensemble formation and resource
allocation between observations, data assimilation and model complexity. The role of "sharpness” when we do not have "calibration”
is clarified, and the question of whether or not post-processing ensemble prediction systems can ever yield sustainable odds
(probabilities which could rationally be used as probabilities) is shown to impact the interpretation of ensemble systems.

Although focused on weather-like scenarios, where one has a large forecast-outcome archive and the model-lifetime is long
compared to the forecast lead-time, these ideas also cast some light on the controversies regarding climate-like scenarios which do
not have these properties. In particular, shortcoming in some of the criticisms of climate forecasts made by statisticians become
clear when the aim and information content of ensembles is clarified. The recognition that the best available initial condition was less
useful than an ensemble of good initial conditions changed the nature of weather forecasting from point forecasting to

probability forecasting. How might the nature of forecasting shift if model-based probability forecasts are recognised as a target we
do not possess and arguably can never obtain.
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Overview

What is a Probability Forecast?
(Machines cannot possess subjective beliefs, yet)

Forecast Scenarios and Ensemble Methods in Geophysics
Ensembles Methods Outside Geophysics

From Ensembles to Probabilistic Forecasts

Extreme Events in Lorenz 63 (Ensemble details matter)

Questions
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Guidance, Official Forecast, and Insight ?

“Before Sandy, the weather channel spit out hurricane tracks from all the models,
a veritable ensemble of guidance? Not a word they use much.”

Guidance: Output of NWP model + MOS; created by central
office and distributed to arguably autonomous local offices.
“Computers make guidance, Forecasters make forecasts

Official Forecast: Statement of the future as expected by local
office where jurisdiction applies.

Probability Forecast: A statement of the probability that given
event will occur.

Insight: Information that assists in decision making without
making the decision maker irrelevant.

Thanks to Huug Van den Dool and others unnamed.
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Probability Forecasts
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Outlined areas denote current position of systems discussed in the Tropical Weather

Outlook. Color indicates probability of tropical cyclone formation within 48 hours. # Observations 19812010 # 1581-2010Average ¥ Obsenvations 2002-201)

[ JLow <30% e Medium 30-50% I High =50%
2002 outlook:  + Oct  + OctDec
http://www.nhc.noaa.gov/gtwo _atl.shtml http://www.metoffice.gov.uk/publicsector/contingency-planners/user-quidance
Background

Long-range outlooks are unlike weather forecasts for the next few days. The nature of our atmosphere is such
that it i= not possible to predict months ahead the precise weather for a particular day and place. At this longer
range we have to acknowledge that many cutcomes remain possible, even though only one can eventually
occur. However, over the course of a whole =eason (or over a whole year or decade), factors in the global
climate system (the atmosphere and oceans) may act to make some outcomes more likely than others. It is
becausze of this that we can make long-range predictions, and the spread of possible outcomes provided in this
outlook can be used to assess the likelihood and rnisk of particular events.
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The forecast when | checked in Sunday Nov 11

th

_l@"- Graphical Tropical Weather Outlook 4§
- National Hurricane Center  Miami, Florida -
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Tropical Cyclone Activity is Not Exﬁééted
_During the Next 48 Hours

100 PM EST SUNNOV 112012~ Satellite Image: 1152 AM EST
Outlined areas denote current position of systems discussed in the Tropical Weather
Outlook. Color indicates probability of tropical cyclone formation within 48 hours.

1 Llow<30% I Medium 30-50% I High =50%
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This is a forecast from Oct 11 th 2012 (08:00)

3 Graphical Tropical Weather Outlook 9
- MNational Hurricna Center Miami, Florida -
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800 AM EDT THU OCT 112012 Satellite Image: 0652 AM EDT
Outlined areas denote current position of systems discussed in the Tropical Weather
Outlook. Color indicates probability of tropical cyclone formation within 48 hours.

1 Llow<30% I Medium 30-50% I High =50%

These are signed probability forecasts.
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This is a forecast from Oct 11 ™ 2012 (14:00)

3 Graphical Tropical Weather Outlook @

Mational Hurricane Center  Miami, Florida

200 PM EDT THU OCT 112012 ) Satellite Image: 0122 PM EDT
Outlined areas denote current position of systems discussed in the Tropical Weather
Outlook. Color indicates probability of tropical cyclone formation within 48 hours.

1 Llow<30% I Medium 30-50% I High =50%
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This is a forecast from Oct 10 ™ 2012 (02:00)

.I s P A4 ',,q- Rt
200 AM EDT WED OCT 102012 ' Satellite Image: 1252 AM EDT

Outlined areas denote current position of systems discussed in the Tropical Weather
Outlook. Color indicates probability of tropical cyclone formation within 48 hours.

1 Llow<30% I Medium 30-50% I High =50%
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This is a forecast from Oct 11 ™ 2012 (14:00)

3 Graphical Tropical Weather Outlook @

Mational Hurricane Center  Miami, Florida

200 PM EDT THU OCT 112012 ) Satellite Image: 0122 PM EDT
Outlined areas denote current position of systems discussed in the Tropical Weather
Outlook. Color indicates probability of tropical cyclone formation within 48 hours.

1 Llow<30% I Medium 30-50% I High =50%
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Probability Forecasting & Reliability Diagrams

Given the same event set (&
the vertical consistency bars)
we can compare schemes as
well as evaluate reliability.

In fact, each individual
forecasts carries the name of
the forecaster. These are
probability forecasts.

Alpha-testers for code wanted!

i

Rallatirty Diagram

e
: 1
3
g
By Alex Jarman
) PRELIMINARY

Forscail probatilos

J Brocker & LA Smith (2007) Increasing the Reliability of Reliability Diagrams. Weather and Forecasting, 22(3), 651

Figure 2:

hours lead time) with 5% -

Reliability diagram for NHC 2012 hurricane forecasts* {up to 48

95% consistency bars. The bin centres are taken as

[0.005,0,01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 1.0]. *Forecasts are sourced from
NHC ondine Tropical Weather Outlooks.
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Probability Forecast accompanied by guidance.
(A very nice presentation of information)
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Ensembles Members|n - Predictive Distributions Out

(1) Ensemble Membersto M odel Distributions
K is the kernel, with parameters 0,0 (at /east)

_ RN

r‘eps

Pi(x)= 21 K(X,5 )/ Neps

cI|m

=2 K(O)/Maim
Kernel & blend parameters are fit One would always dress (K) and blend
simultaneoudly to avoid adopting a wide (o) afinite ensemble, even with a
kernel to account for asmall ensemble. perfect model and perfect IC ensemble.

Forecast busts and lucky strikes remain a major problem when the archive is small.

J Brocker, LA Smith (2008) From Ensemble Forecasts to

] Predictive Distribution Functions Tellus A 60(4): 663.
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Ensembles Members|n - Predictive Distributions Out
For afixed ensemble size a decreaseswith time

And if a, = 0, can there be any
operational justification for

P, unni ng the prediction system.

M V _alP +(1 al) o

1 Even with a perfect model and

perfect ensemble, we expect 0 to
decrease with time for small ng

| Small :: Neps << N

Lead time

J Brocker, LA Smith (2008) From Ensemble Forecasts to

. Predictive Distribution Functions Tellus A 60(4): 663.
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Multi-M odel Ensembles|in - Predictive Distributions Out
(3) Model Distributionsto Multi-model PDFs

Is this Bayesian if | believe neither “PDF” reflects reality?
And might | then be allowed more flexibility w/o penalty?

TN
M N

M

But why not fit everything at once?

The answer for seasonal forecasting goes ?

back to the size of the forecast-outcome M=ow, P+ 0,P, +(1-0;-w,)
archive.
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Update or Blend?
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Distinguishing Value and Skill
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Laplace's Demon (1814)

1) Perfect Equations of Motion (PMS)
2) Perfect noise-free observations
3) Unlimited computational power

Demon’s Apprentice (2007)

1) Perfect Equations of Motion (PMS)
2) ‘Perfeetnoise-free-observations-
3) Unlimited computational power

Apprentice’s Novice (2012)

1) PerfeetEquations-of Metien-(PMS) -
2) -Perfeetnoise-free-observations-
3) Unlimited computational power

We are here: Even optimal methods given (1) are insecure in all
cases of interest.
Suggestion : routine, fair, level evaluation on standard test cases
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Focus on “Ensemble Methods” or “in Geophysics”?

Esaeewy  Toulouse France
4 12-16 November 2012

International Conference on Ensemble Methods in Geo  physical Sciences

Two Options (each has value):

Solve a well-posed simple problem; approximate later?
Consider the real constraints of target problem a priori?

An agreed common test evaluation (on simple, intermediate and complex
applications) might allow both.

Chris’s analytic example, chaotic ODEs, PP, Swallow water, QG, NOGAPS...
(same system-model pairs, same sampling-stats, realization & skill scores)

We might learn a lot from the differences in the results.

TEMIP1: Toulouse Ensemble Methods Intercomparison Pr  oject
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What are we aiming to realise with our ensemble?
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P(X | obs) using only the noise model

Given the
observation “+”
and the
observational
noise model, one
can say there is a
95% chance that
reality falls within
the ellipse...
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Natural Measure

Given only the
equations |

know the :
system will be fow
amongst the o

dots.

Given only the
observational
noise model
and the obs, |
know there is a
95% chance the
system will be
inside the
ellipse.
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Natural Measure
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Posterior Prob conditioned on obs at t=0

Leonard Smith
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A Disconnect from models of Geophysical Systems

Our models are not perfect.

Arguably, their natural measure is not relevant.
(even as non aphysical __states are on a manifold of model trajectories whic h is of measure zero)

Even in interesting simple perfect model systems wh ere the Bayesian
Way vyields the single correct answer, it is accessi ble only to the
Demon and his Apprentice. Approximating the Bayesia n solution
appears suboptimal for any finite computational pow er.

So: do we start with a well founded basis, knowing it does not apply in
practice, and adapt and apply it nevertheless?

Or: do we start with an ad hoc idea, realising it may never find a firm
(if irrelevant) basis?

OR: do we each do whatever appeals most, and then e  valuate the
outcomes against (a variety of) pre-agreed metrics in TEMIP1, perhaps
learning something useful (about the models, system s, and/or metrics).
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Unexpected Insight when Predicting Extremes

Consider the simple case of forecasting extremes in Z of
Lorenz 63.

Define an extreme as a value of Z below the p=0.0025
climatology level.

The original aim of this example was to illustrate dressing and
blending in an example of forecasting extremes.

Ensemble Methods in Geophysics Toulouse Nov 2012 Leonard Smith



Forecasts Of the +=0.04 log ratios INV= 8.2 PDA=0.31
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Forecasts of the

same Qutcome 4 _ _
at six lead times lead time 0.04 log ratios INV=0.3272 PDA=10.8816
. p ]
Short Lead Time
ﬂ | 1 1 1 1 1 1 1 1 1
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IGN and the Information Deficit

So how do these two ensembles compare?

2~
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=
-
-7+
- 1 1 1 1 1 1
0.04 0.08 0.16 0.32 0.64 128

L ead time
Given the same ensemble size, the more expensive DA (PDA)
outperforms the easier INV DA. What about given the same CPU?
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Skill of two different DA Schemes for Extreme Z

2

= == POA exireme

lgnorance relative to climatology
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-6 1 ' = == NV exireme
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0.04 0.03 0.16 0.32 0.64 1.28

Lead time

Predicting extremes in the short run can be more accurate than your
average short term prediction. (Think about hurricanes and high winds)
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Forecasts of the =0.04 log ratios INV= 4.5 PDA= 8.22
at six lead times. ~— . . i i i . i . . .
0 5 10 15 20 28 30 a5 40 45 50
4 -
Blue : Natural Measure +=0.02 log ratios INV=4.45 PDA= 5.00
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] a 10 15 20F Z0 30 35 4 45 a0
o4r
=0.64 log ratics INV= 1.27 PDA= 2.20
02t
0 l | | ] 1 — i S e — - L |
] 5 10 15 20 75 30 35 40 45 50
0z
=128 log ratios INV= 1.04 PDA= 1.17
ot
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5
For each of these forecasts we can i ool
compute IGN given the outcome. | ——DC ensemble |~

We can also compute the expected IGN
given the forecast distribution alone.

The difference between these two, on
average, reflects an Information Deficit in
the forecast.

This deficit indicates room for

improvement somewhere in the forecast
system: {model, DA, EPS, interpretation}.

information deficit
na
ST

1.7 1.75 1.8 1.85 1.9 1.95 2
parameter a

H Du & L A Smith (2012) ‘Parameter estimation using ignorance’
Physical Review E 86,
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But Iis there a bug in my kernel width scheme?

0.2~
t=0.32 log ratios INV=3.93 PDA=2.43
0.1k
0 L————T : . I il I " I- i il | l - l |
0 i 10 15 20 25 30 35 40 45 50
n1-

The green “pfds” look much too bumpy: but we are sele ctively considering
extreme values of Z, which are near large values of  dZ/dt, the ideal global
kernel/alpha pair at this lead-time may well be sys  tematically sub-optimal in the
very small Z regions of state space.

And this is in PMS. TEMIP1 to clarify this....
D4r
t=0.16 log ratios INV=6.03 PDA=6.51
02}
0 i 1 1 ] l ST 1 l l I
0 & 10 15 20 25 30 35 40 45 50

Ensemble Methods in Geophysics Toulouse Nov 2012 Leonard Smith




Would we learn a lot from TEMIP17?

Questions (mine)
Does model inadequacy do in probability just as nonlinearity did in distance (LS)?

What are “good” initial conditions/parameters in simulation-based forecasting?
Is weighting models a nonsense?
Is a prior on a model parameter a nonsense?

In weather-like problems, is it rational to treat predictive distributions as probability
density functions?

When might the Bayesian Way be the best available (in an ad hoc sorta way).
Can model-based probabilities provide sustainable odds?

Is the Bayesian Way treacherous?

Is there a viable in-principle approach for handlin g model-class inadequacy?
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Would we learn a lot from TEMIP17?

Questions (mine) | think so.
Does model inadequacy do in probability just as nonlinearity did in distance (LS)?

If our model class does not admit an empirically empirically-adequate model ...
What are “good” initial conditions/parameters in simulation-based forecasting?

The “truth” is out there -vs- there is no “Truth”.  (There is no true model-state)
Is weighting models a nonsense?

We can extract insight, but not numbers. (IPCC model democracy is a distraction)
Is a prior on a model parameter a nonsense?

If the model parameter is empirically vacuous or the model class inadequate...
In weather-like problems, is it rational to treat predictive distributions as probability
density functions?

No clear examples yet.
When might the Bayesian Way be the best available (in an ad hoc sorta way).

Do we have any true experiments where Bayesian odds could survive?
Can model-based probabilities provide sustainable odds?

And if not? Non-probabilistic odds?
Is the Bayesian Way treacherous?

Costing us valuable insight, risking the public credibility of science, and

iIntroducing a new “spurious accuracy”
Is there a viable in-principle approach for handling model class inadequacy?
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How important are different sources of
uncertainty?

» Varies, but typically no single source dominates.

Internal
~ variability

| Carbon cycle

Structural
uncertainty

arameter
uncertainty

Downscaling

precipitation changes for the 2080s relative to

pox in SE England
Source: Met Office



There Is no stochastic fix:

After a flight, the series of control
perturbations required to keep a by-
design-unstable aircraft in the air look
are a random time series and arguably
are Stochastic.

But you cannot fly very far by specifying
the perturbations randomly!

Think of WC4dVar/ ISIS/GD
perturbations as what is required to
keep the model flying near the
observations: we can learn from them,
but no “stochastic model” could
usefully provide them.

with the Eurcfighter Typhoon, in

subsonic flight the pressure paint

ligz in front of the centre of
gravity, therefore making the
aircraft asrodynarmically
unstable, and iz why Eurofightar
Typhoon has such a complex
Flight Control Systern -

computers react quicker than a =
pilot,
L S !

‘When Eurofighter Typhoon

crosses into supersonic flight, the pressure point moves behind the centre of

gravity, giving a stable aircraft.

The advantages of an intentionally unstable design ower that of a stable
arrangernent include greater agility — particularly at subsonic speeds - reduced

drag, and an overall increase in lift [also enhancing STOL performance],

Which is NOT to say stochastic models are not a good idea:
Physically it makes more sense to include a realization of a process rather than it mean!
But that will not resolve the issue of model inadequacy, even as it give us a better model class!

It will not yield decision-relevant PDFs!
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Insight or decision -relevant Probability?

(It would be interesting to trace how the idea that weather or climate
models could provide quantitative insight came about.)

Because of the various simplifications of the model
described above, it 1s hot advisable to take too seriously
the quantitative aspect of the results obtained in this
study. Nevertheless, it is hoped that this study not
only emphasizes some of the important mechanisms
which control the response of the climate to the change

of carbon dioxide,

The Effects of Doubling the CO, Concentration on the Climate
of a General Circulation Model'

SYURURO MaANABE AND Ricoarp T. WETHERALD

Geophysical Fluid Dynawics Laboratory/NOAA, Princeton University, Princeton, N.J. 08540
(Manuscript reccived 6 Junc 1974, in revised form 8 August 1974)

Mechanisms == Insight
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If fair odds are not sustainable is it
rational to interpret model-based
probabilities as probabilities for decision
support?

Accept (for a moment) that Model Inadequacy makes
probability forecasting irrelevant in just the same way
that chaos made the RMS/least-squares error of point
forecasts irrelevant.

If so: What is the role of quantitative modelling &
simulation in decision support? In explanation?

Where might the road ahead lead?
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Insight or decision -relevant Probability?

i

Centre
International
de Conférences

METEO FRANCE

Toupurs un lemps d' avanto

il
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Perhaps we might aim for Insight and
not numbers when the model is wrong?

Policy-making tracks actions by people to impacts o n people: our models
are but a small piece of that chain.

Communicating plausible outcomes and the limits of our understanding
are more valuable than model-based probabilities, w  hen the model is
wrong. And, of course: all models are wrong.

Scientific Speculation can be of great value to pol icy makers, given with
all the qualifications required to make the scienti st comfortable.

(How did we get comfortable NOT doing this with mod el-based
speculation?)
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Under today’s Model Class

Extreme Forecasting

Forecasting Beyond information in Initial Conditions

P(e| X,,M) >> P(e|u) aka climatology

Three targets for today:

Forecasting extremes need not be difficult.
Designing models that take into
account/acknowledge the Relevant Dominant

Uncertainty (in, say, climate prediction).

Are model-based probabilities best called
“probabilities” at all in terms of decision support?

Smith (2002) Chaos and Predictability in Encyc Atmos i
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Decision Relevant Probabilities

. The evolution of this probability distribution
for the chaotic Lorenz 1963 system, tellsusall
we can know of the future, given what we
know of the present.

It allows prudent quantitative risk
management (by brain-dead risk managers)
Given a decision, we can determine whether to
invest in a bigger ensemble or better obs.

We now know how to do thisfor chaotic
systems (given a perfect model).

“* " And in the real world? For weather ? Climate?
g
.o Dowehave asingle exampleof anontrivial
physical system where anyone has succeeded
(and willing to bet on their model-based PDFs?)
1.00
= : . BIVMBJARD 3 .,BOss
V0 ————= low

Smith (2002) Chaos and Predictability in Encyc Atmos i

;v |'-‘ ‘I'
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Leaking Probability

| am running a large ensemble under one model which can only be
adequate under certain general conditions.
(Likethelinear approximation to 6 T4, changesin sea ice)

As| extrapolateto 2100, 20% of my modelsfirst ventureinto some
known-to-be-unphysical regions, and then crash.

How do | account for this probability mass when speakingto a
policy maker?

Can modeél diversity be connected to uncertainty in the future?
How?
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rafio of probability between forecast and climatology
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If one must give numbers, perhaps include the
probability of model irrelevance with lead time.

Spatial If precip over the Amazon (or Okeefenokee) is
Scales badly simulated, the biomass will be badly
Metres  simulated, this missing/extra feedback may lead
to model irrelevance... First local, then global.
-
‘e Timescales for such things may be sound o
science! =
©
Q
7)
1000km !_:‘
Target o
Lead-time |-
0
—> 0
years decades centuries "’

weeks

Temporal
Average
Scale day

i 200,000

Nov 2012 Leonard Smith
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Insight ?

@ Farecast edit
- Farecast

edit
Farecast offers a unigue senice by providing its users with intelligent
Exit | edit airfare predictions. Founded in 2003, Farecast has since gained very
healthy funding from several venture funds totaling $20 6 million. Unlike
Acquired by Micrasoh other travel companies, Farecast predicts when a user should buy a ticket
Price T115M based upon 175 billion points of previous aifare data. lts engine can
Date 4108 currently predict whether airfare goes up or down up to a week into the
future with a claimed success rate of 70-75%. While Farecast has a lot of
competition, they claim it is the only company which can predict future
General Information edit prices.
Website bing.com/travel The site has recently expanded to providing the best deals on hotel room
Category  Search as well. Results from travel search sites like ReserveTravel, Orbitz, and
Employees 26 [ CheapTicket, are shown on a map with prices and other hotel information.
Founded 1/03 Farecase gives deal finders an idea if a specific hotel is overpriced or a
Description  Airfare Prediction good deal by marking overpriced hotels blue and attractively-priced hotels
Senice red.
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What Is a “Big Surprise”?

1 Big Surprises arise when something our models cannot mimic turns out
to have important implications for us.

1 Climate science can (sometimes) warn us of where those who use naive
(if complicated) model-based probabilities will suffer from a Big Surprise.

(Science can tell us of things the red ball can do, that golf balls cannot do)

(And warn of “known unknowns” even when the magnitude is not known)

1 Big Surprises invalidate (not update) the foundations of model-based
probability forecasts. (Arguably “Bayes” does not apply)

(Failing to highlight model inadequacy can lead to likely credibility loss)

How might we communicate the useful information in ensembles?

(Then a bit on how we might use climate science to foresee big surprises)
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Is it rational to use model-based probabilities as such?

In practice, reliability diagrams are always found to be either uninformative or
inconsistent.

What implications does this hold for decision making (betting) on our forecasts?

Consider a specific case of structural model error.

Model Logistic Map: () = 4z(1 — =)
Quartic Map: ¢(r) = l—f',r (1 — 222 + a?)
System: ['(xr) = (1 —€)l(x) 4+ eq(x) with e = 0.1

The distribution of initial states from which truth is selected is used in the
both system and model at t=0. (We have a perfect ensemble)

The model is clearly informative, but imperfect. This can lead to disaster
at longer lead times:
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Challenges to the sustainability of “Fair” Odds

“Fair Odds” on are commonly defined as those at which one would accept either
side of a bet. They correspond to probabilities (on and against) which sum to one.

“Sustainable Odds” are odds that can be offered (on and against) repeatedly, with
an acceptable, small (a priori known) chance of ruin. The implied probabilities
need not sum to one, but can not sum to less than one (Dutch Book).

If model-based probabilities are used to determine “Fair Odds”, are those Odds
sustainable?

Obviously not, if a player has access to a better predictions system than the house,

if for example they use the same model but the player uses a better data
assimilation scheme (GD/ISIS) than the house (EnKF).
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Challenges to the sustainability of “Fair” Odds

But can a player knowing nothing more than that the model is imperfect
systematically beat a house which attempts to setf  air odds?

Ensemble Methods in Geophysics Toulouse Nov 2012 Leonard Smith




Posterior P(X) conditioned on obs win +/- 1

Leonard Smith
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Challenges to the sustainability of “Fair” Odds

Suppose a player doe not know the o ]
true probabilities, but knows the "
house probabilities are imperfect. - o |
2 Bet Over
Create Portfolio of two accounts. 2 BetUnder| |
One (red) Kelly bets “over” the house g e
with pplayer = gplayer * Phouse -E
; | |
The other (green) Kelly bets “under” < ) )
the house with g 4l ~ _
Ppiayer = Phouse / Oplayer \ ~
'E' | T I - - o ]
These populations reflect | . l . .
_ 0 200 400 600 800 1000
gplayer =1.05 number of rounds

Oie = 1.10

Figure 1: Player's wealth as a function of number of rounds, 1024 players
are used to caleulate the percentiles{1th, 10th, 25th, 50th, 75th, 90th, 99th)
of the wealth changes, g = 11,950y = 1.05.

The player bets when a certain probability is forecast,
not on a particular kind of event.
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Ed Lorenz:

Weather and Chaos (and Error)

Lorenz realised that even
for the Apprentice, small
uncertainties could grow
exponentially fast,
leading to “chaos.”

He was also very
concerned about the role
of model error, which is

much harder to solve
than that of mere chaos.

LA Smith (1994) Local Optimal Prediction: Exploiting strangeness and the

348 (1688): 371-381.
Ensemble Methods in Geophysics

variation of sensitivity to initial condition. Phil. Trans. Royal Soc. Lond. A,
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Probability Forecasts: Chaos

The evolution of this probability distribution for
the chaotic Lorenz 1963 system tellsusall we can
know of the future, given what we know now.

It allows prudent quantitative risk management
(by brain-dead risk managers)

And sensible resour ce allocation.

We can manage uncertainty for chaotic w\stems
(given a perfect model).

But how well do we manage uncertainty in the
real world? For GDP? Weather? Climate?

20.0
4 Do we have a single example of a nontrivial
system wher e anyone has succeeded (and
*® willing to offer odds given their model-based
PDFs?)
1.4

0,50

= “o00
mMos <Ci

i s -
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