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Introduction

• Model variables are different from real weather variables.

• Predictions of real weather variables are enhanced by some
form of interpretation. Eg, bias correction, MOS, dressing,. . .

• EPS raises another issue: The process generating the
ensemble variation is not the same as the process underlying
forecast uncertainty.

• Our predictions may also benefit from a more sophisticated
interpretation of the ensemble.

• We introduce the idea of “ensemble MOS” — a method of
interpreting ensembles that conditions the forecast on the
joint information present in the whole ensemble, rather than
interpreting each ensemble member individually as a
“scenario”.



Introduction

• Model variables are different from real weather variables.
• Predictions of real weather variables are enhanced by some

form of interpretation. Eg, bias correction, MOS, dressing,. . .

• EPS raises another issue: The process generating the
ensemble variation is not the same as the process underlying
forecast uncertainty.

• Our predictions may also benefit from a more sophisticated
interpretation of the ensemble.

• We introduce the idea of “ensemble MOS” — a method of
interpreting ensembles that conditions the forecast on the
joint information present in the whole ensemble, rather than
interpreting each ensemble member individually as a
“scenario”.



Introduction

• Model variables are different from real weather variables.
• Predictions of real weather variables are enhanced by some

form of interpretation. Eg, bias correction, MOS, dressing,. . .

• EPS raises another issue: The process generating the
ensemble variation is not the same as the process underlying
forecast uncertainty.

• Our predictions may also benefit from a more sophisticated
interpretation of the ensemble.

• We introduce the idea of “ensemble MOS” — a method of
interpreting ensembles that conditions the forecast on the
joint information present in the whole ensemble, rather than
interpreting each ensemble member individually as a
“scenario”.



Introduction

• Model variables are different from real weather variables.
• Predictions of real weather variables are enhanced by some

form of interpretation. Eg, bias correction, MOS, dressing,. . .

• EPS raises another issue: The process generating the
ensemble variation is not the same as the process underlying
forecast uncertainty.

• Our predictions may also benefit from a more sophisticated
interpretation of the ensemble.

• We introduce the idea of “ensemble MOS” — a method of
interpreting ensembles that conditions the forecast on the
joint information present in the whole ensemble, rather than
interpreting each ensemble member individually as a
“scenario”.



Introduction

• Model variables are different from real weather variables.
• Predictions of real weather variables are enhanced by some

form of interpretation. Eg, bias correction, MOS, dressing,. . .

• EPS raises another issue: The process generating the
ensemble variation is not the same as the process underlying
forecast uncertainty.

• Our predictions may also benefit from a more sophisticated
interpretation of the ensemble.

• We introduce the idea of “ensemble MOS” — a method of
interpreting ensembles that conditions the forecast on the
joint information present in the whole ensemble, rather than
interpreting each ensemble member individually as a
“scenario”.



Simplified Forecasting Example

Given: only the model-wet/dry event
(whether model-precip is more or less than 0mm)

Forecast: probability of precip > 0mm in an actual rain gauge.
(We use the one at WMO10015.)

• This precise problem may not be all that interesting to you —
later we will predict other thresholds of precipitation, making
use of more model-information.

• We will investigate three different methods of producing the
forecast from the ensemble of model-wet/dry events:

1. Direct interpretation
2. Scenario MOS
3. Ensemble MOS (eMOS)
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3. Ensemble MOS (eMOS)



Simplified Forecasting Example

Given: only the model-wet/dry event
(whether model-precip is more or less than 0mm)

Forecast: probability of precip > 0mm in an actual rain gauge.
(We use the one at WMO10015.)

• This precise problem may not be all that interesting to you —
later we will predict other thresholds of precipitation, making
use of more model-information.

• We will investigate three different methods of producing the
forecast from the ensemble of model-wet/dry events:

1. Direct interpretation
2. Scenario MOS
3. Ensemble MOS (eMOS); the forecast is a function of the joint

distribution of the whole ensemble.



Simplified Example: Direct Interpretation

Direct vs. Climatology (ECMWF ensemble, WMO10015, 98/99)
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• Ignorance is − log f (x), where f (x) is the forecast probability
of the outcome x . Smaller ignorance relative to climatology or
another forecast is better.

• The confidence intervals are ±1 bootstrap std. dev.



Simplified Example: Scenario MOS

Ensemble members are interpreted as equally plausible scenarios:

1. For each ensemble member (model-wet/dry) a probability
forecast scenario is created. For example:

• model-wet could correspond to a 50% chance of precip (and,
of course, 50% chance of no precip), while

• model-dry corresponds to a 5% chance of precip (and 95%
chance of no precip).

These actual percentages chosen are the parameters of our
scenario MOS.

2. The forecast is the average of all the scenarios.

3. The parameters are tuned to minimise the forecast’s ignorance
on a historical data-set.
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Simplified Example: Scenario MOS

Scenario vs. Climatology (ECMWF ensemble, WMO10015, 98/99)
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• In contrast to the direct interpretation, performance is now
better than climatology.

• Skill generally improves with shorter lead times.



Idea: ensemble MOS

Any forecast method is a function from the ensemble to the
forecast probability:

Scenario MOS:

Ensemble MOS−−−−→ Scenarios Combine−−−−−→ Forecast

eMOS:

Ensemble eMOS−−−−→ Forecast

• Going through the intermediate stage of a scenario forecast
corresponding to each ensemble member can be a strong
constraint on the types of forecast functions possible.
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Simplified Example: eMOS

• The information present in the ensemble is just the number,
#wet, of “wet” members.

• Any forecast method is just a function from #wet to the
probability of precip:
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Direct interpretation is, essentially, the identity.
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Scenario MOS chooses the best linear predictor.



Simplified Example: eMOS

• The information present in the ensemble is just the number,
#wet, of “wet” members.

• Any forecast method is just a function from #wet to the
probability of precip:
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An eMOS method can choose a non-linear predictor.



Simplified Example: eMOS

• The method of analogues can be used to fit the eMOS
function:
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Predicted probability of precip is the proportion of historical cases
with precip at nearby #wet values.



Simplified Example: eMOS

Analogues vs. Climatology (ECMWF ensemble, WMO10015, 98/99)
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• Interpreting the ensemble as a whole leads to significant
improvements in skill over scenarios in the 1–7 day range.

• This is clearly seen by comparing the two models directly
rather than to climatology.



Simplified Example: eMOS

Analogues vs. Scenarios (ECMWF ensemble, WMO10015, 98/99)
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• Interpreting the ensemble as a whole leads to significant
improvements in skill over scenarios in the 1–7 day range.

• This is clearly seen by comparing the two models directly
rather than to climatology.



Generalising to more complete information

• There is more information in each ensemble member than just
whether it was “wet” or “dry”.
Could use the amount of precip present in each ensemble
member.

• But now the ensemble cannot be described by a single
quantity like #wet. (But it may contain more information.)
Instead, we now have a distribution of model-precip.

• Can summarise the distribution by (say) its 10%, 50%, and
90% quantiles (p10, p50, and p90).

And fit a function from this information into the probability of
real precipitation:

(p10, p50, p90) 7→ probability of real precip
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Generalising to more complete information

quantile eMOS vs. Climatology
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• Using the extra information results in large improvement at
shorter lead-times.



Generalising to more complete information

quantile eMOS vs. Analogues
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• Using the extra information results in large improvement at
shorter lead-times.



Example: Predicting other thresholds

quantile eMOS vs. Climatology (0mm)
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• As the threshold increases, skill over climatology decreases.

• This might be due to the small number of examples of > 10
mm precip in the training period — only about 6 occur.



Example: Predicting other thresholds

quantile eMOS vs. Climatology (0.5mm)
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• As the threshold increases, skill over climatology decreases.

• This might be due to the small number of examples of > 10
mm precip in the training period — only about 6 occur.



Example: Predicting other thresholds

quantile eMOS vs. Climatology (1mm)
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• As the threshold increases, skill over climatology decreases.

• This might be due to the small number of examples of > 10
mm precip in the training period — only about 6 occur.



Example: Predicting other thresholds

quantile eMOS vs. Climatology (2mm)
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• As the threshold increases, skill over climatology decreases.

• This might be due to the small number of examples of > 10
mm precip in the training period — only about 6 occur.



Example: Predicting other thresholds

quantile eMOS vs. Climatology (3mm)
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• As the threshold increases, skill over climatology decreases.

• This might be due to the small number of examples of > 10
mm precip in the training period — only about 6 occur.



Example: Predicting other thresholds

quantile eMOS vs. Climatology (5mm)
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• As the threshold increases, skill over climatology decreases.

• This might be due to the small number of examples of > 10
mm precip in the training period — only about 6 occur.



Example: Predicting other thresholds

quantile eMOS vs. Climatology (10mm)
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• As the threshold increases, skill over climatology decreases.

• This might be due to the small number of examples of > 10
mm precip in the training period — only about 6 occur.



Summary and Future Directions

• There is information in ensembles that can be extracted by
considering their joint information rather than as just
scenarios.

• eMOS looks for general relationships between forecast
information and verification.

• Model-variables are not weather-variables.
• Ensemble-spread is not forecast-uncertainty.

• Forecast-verification archives of sufficient size are essential.

• eMOS makes no strong assumptions about the “meaning” of
the information it uses — it can be easily extended to
combine information from different sources.
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