This is the best available information, so it must be of value.

Everyone knows the limitations. Everyone understands the implications of these assumptions.

This is better than nothing.

No one has proven this is wrong.

There is no systematic error, on average. The systematic errors don't matter.

The systematic errors are accounted for in the post processing.

Normality is always a good first approximation. In the limit, it has to be normally distributed, at least approximately.
Everyone assumes it is normally distributed to start with.

Everyone makes approximations like that.

Everyone makes this approximation.

We have more advanced techniques to account for that.

The users demand this. The users will not listen to us unless we give them the level of detail they ask for.
We must keep the users on-board.

If we do not do this, the user will try and do it themselves.

There is a commercial need for this information, and it is better supplied by us than some cowboy.
Refusing to answer a question is answering the question.

Refusing to use a model is still using a model.

Even if you deny you have a subjective probability, you still have one. All probabilities are subjective.
The model just translates your uncertainty in the inputs to your rational uncertainty in the future.

Sure this model is not perfect, but it is not useless.

No model is perfect.

No model is useless if interpreted correctly. It is easy to criticise.

This model is based on fundamental physics.

The probabilities follow from the latest developments in Bayesian statistics.

Think of the damage a decision maker might do without these numbers.

Any rational user will agree.

Things will get better with time, we are making real progress.

You have to start somewhere.  What else can we do? It might work, can you deny that?

What damage will it do?



Internal (in)consistency... Model Inadequacy
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My view of DA:

We have to decide between nowcasting and forecasting,
And keep a clear distinction between model and system,
and between model state and observation.

We can provide “better” information using models than not, but we
cannot provide PDFs which one would be advised to use as such.

Then (and ot) we can accept that the obs are noisy, the linear regime
IS very short, the model is obviously inadequate and we still make
better decisions with the available computer power than without it!

P(x][1)
System quantities (as if they exist)
X
M Model quantities (in digital arithmetic)
o
S
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Context(s) for DA:

Estimating “the” current state of the system (atmos/ocean)
Estimating “the” future state of the system

Estimating a PDF for the current state. Nowcasting
Estimating a PDF for a future state. Event Forecast
Estimating a series of PDFs for future states. Forecasting

Data Assimilation Algorithms:

Must we assume that the obs are noise free?
Must we assume that the obs noise is small  (linear timescale >> 1)
Must we assume that the model variables are state variables?

Must we assume that the model is perfect?
Must we assume infinite computational power?

Can we please stop saying “optimal” in operational DA?

Grantham Research Institute on
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Which problem do you want to attack?

Maths  Physics Forecasting Decision
(Science) Support

Linearity

Perfect Model Class
Stochastic/Deterministic
Probability Theory
Epistemology

(Ethics)
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Things that interest me include:
Model Improvement (Imperfection errors, Pseudo orbits)

Model Evaluation (Shadowing)

Forecast Evaluation (Scores and Communication)

Forecast Improvement (Model, Ensemble, Interpretation, Obs)
Nonlinear Data Assimilation (imperfect model, incomplete obs)

Relevance of Linear Assumption (Ensemble Formation and Adaptive Obs)

Decision Support (Value vs Skill, “Best available” vs “Decision Relevant”)

Relevance of Bayesian Way/
Probability Theory in Nonlinear Systems

Grantham Research Institute on
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Things that interest me.:
Model Improvement (Imperfection errors, Pseudo orbits,Parameters)

K Judd, CA Reynolds, LAS & TE Rosmond (2008) The Geometry of Model Error.
Journal of Atmospheric Sciences 65 (6), 1749-1772.

LAS, M.C. Cuéllar, H. Du, K. Judd (2010) Exploiting dynamical coherence: A
geometric approach to parameter estimation in nonlinear models, Physics Letters

A, 374, 2618-2623

K Judd & LA Smith (2004) Indistinguishable States I1: The Imperfect Model
Scenario. Physica D 196: 224-242.
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Things that interest me.:
Model Evaluation (Shadowing)

L.A. Smith, M.C. Cuéllar, H. Du, K. Judd (2010) Exploiting dynamical coherence:
A geometric approach to parameter estimation in nonlinear models, Physics
Letters A, 374, 2618-2623

LA Smith (2000) 'Disentangling Uncertainty and Error: On the Predictability of
Nonlinear Systems’ in Nonlinear Dynamics and Statistics, ed. Alistair | Mees,
Boston: Birkhauser, 31-64.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/79_ExplotingDynamicalCoherence_2010.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/40_Disentangling_2000.pdf

Things that interest me:
Forecast Evaluation (Scores)

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: The Importance of
Being Proper Weather and Forecasting, 22 (2), 382-388.

J Brocker & LA Smith (2007) Increasing the Reliability of Reliability Diagrams.
Weather and Forecasting, 22(3), 651-661.

A Weisheimer, LA Smith & K Judd (2005) A New View of Forecast SKill: Bounding
Boxes from the DEMETER Ensemble Seasonal Forecasts, Tellus 57 (3) 265-279.
LA Smith & JA Hansen (2004) Extending the Limits of Forecast Verification with
the Minimum Spanning Tree, Mon. Weather Rev. 132 (6): 1522-1528.

MS Roulston & LA Smith (2002) Evaluating probabilistic forecasts using
information theory, Monthly Weather Review 130 6: 1653-1660.

D Orrell, LA Smith, T Palmer & J Barkmeijer (2001) Model Error in Weather
Forecasting, Nonlinear Processes in Geophysics 8: 357-371.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/DRAFT_Scoring_beingproper_2006.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/JB_IncreasingReliabilityDiagrams_2006.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/68_NewViewofForecastSkill_2005.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/62_ExtendingLimitsWithMST_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/47_EvalProbFCsUsingInfoTheory_2002.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/45_ModelError_2001.pdf

Things that interest me:
Forecast Evaluation (Communication)

R Hagedorn and LA Smith (2009) Communicating the value of probabilistic
forecasts with weather roulette. Meteorological Applications 16 (2): 143-155.

MS Roulston & LA Smith (2004) The Boy Who Cried Wolf Revisited: The Impact
of False Alarm Intolerance on Cost-Loss Scenarios, Weather and Forecasting 19
(2): 391-397.

N Oreskes, DA Stainforth, LA Smith (2010) Adaptation to Global Warming: Do
Climate Models Tell Us What We Need to Know? Philosophy of Science, 77 (5)
1012-1028

LA Smith and N Stern (2011, in review) Uncertainty in Science and its Role in
Climate Policy Phil Trans Royal Soc A
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/78_Weather_Roulette_t.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/61_BoyCried WolfRevisited_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/80_AdaptationtoGlobalWarming_2010.pdf

Things that interest me.:
Forecast Improvement

J Brocker & LA Smith (2008) From Ensemble Forecasts to Predictive
Distribution Functions Tellus A 60(4): 663.

M S Roulston & LA Smith (2003) Combining Dynamical and Statistical
Ensembles, Tellus 55 A, 16-30.

K Judd & LA Smith (2004) Indistinguishable States I1: The Imperfect Model
Scenario. Physica D 196: 224-242.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/66_Indistinguishable States II_2004.pdf

Things that interest me:
Nonlinear Data Assimilation (im/perfect model, incomplete obs)

H. Du (2009) PhD Thesis, LSE (online, papers in review)
Khare & Smith (2010) Monthly Weather Review in press

K Judd, CA Reynolds, LA Smith & TE Rosmond (2008) The Geometry of Model
Error . Journal of Atmospheric Sciences 65 (6), 1749-1772.

K Judd, LA Smith & A Weisheimer (2004) Gradient Free Descent: shadowing
and state estimation using limited derivative information, Physica D 190 (3-4):
153-166.

K Judd & LA Smith (2001) Indistinguishable States I: The Perfect Model
Scenario, Physica D 151: 125-141.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/77_Judd_GeomOfModelError_JAS.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/60_GradientFreeDescent_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/42_IndistinguishableStatesI_2001.pdf

Things that interest me.:
Relevance of Linear Assumption (Adaptive Obs)

| Gilmour, LA Smith & R Buizza (2001) Linear Regime Duration: Is 24 Hours a
Long Time in Synoptic Weather Forecasting? J. Atmos. Sci. 58 (22): 3525-3539.

JA Hansen & LA Smith (2000) The role of Operational Constraints in Selecting
Supplementary Observations, J. Atmos. Sci., 57 (17): 2859-2871.

PE McSharry and LA Smith (2004) Consistent Nonlinear Dynamics: identifying
model inadequacy, Physica D 192: 1-22.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/43_LinRegimeDuration_24hours_2001.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/39_RoleOpConstraints_2000.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/63_ConsistentNonlinDynamics_2004.pdf

Things that interest me:
Decision Support

Probabilities vs Odds (with Roman Frigg, in preparation)

MS Roulston, DT Kaplan, J Hardenberg & LA Smith (2003) Using Medium Range
Weather Forecasts to Improve the Value of Wind Energy Production, Renewable
Energy 29 (4)

MS Roulston, J Ellepola & LA Smith (2005) Forecasting Wave Height Probabilities
with Numerical Weather Prediction Models, Ocean Engineering 32 (14-15), 1841-
1863.

MG Altalo & LA Smith (2004) Using ensemble weather forecasts to manage utilities
risk, Environmental Finance October 2004, 20: 8-9.

MS Roulston & LA Smith (2004) The Boy Who Cried Wolf Revisited: The Impact of
False Alarm Intolerance on Cost-Loss Scenarios, Weather and Forecasting 19 (2):
391-397.

R Hagedorn and LA Smith (2009) Communicating the value of probabilistic
forecasts with weather roulette. Meteorological Applications 16 (2): 143-155.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/52_UsingMRweatherForecastsTo_2003.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/70_ForecastingWaveHeight_2005.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/65_EnsWFsAndUtilitiesRisk_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/61_BoyCried WolfRevisited_2004.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/78_Weather_Roulette_t.pdf

Things that interest me:

Relevance of Bayesian Way/
Probability Theory to Real Nonlinear Systems

LA Smith, (2002) What Might We Learn from Climate Forecasts? Proc. National
Acad. Sci. USA 4 (99): 2487-2492.

LA Smith (2000) 'Disentangling Uncertainty and Error: On the Predictability of
Nonlinear Systems’ (PDF) in Nonlinear Dynamics and Statistics, ed. Alistair |
Mees, Boston: Birkhauser, 31-64.

DA Stainforth, MR Allen, ER Tredger & LA Smith (2007) Confidence, uncertainty
and decision-support relevance in climate predictions, Phil. Trans. R. Soc. A, 365,
2145-2161.

DA Stainforth, T Aina, C Christensen, M Collins, DJ Frame, JA Kettleborough, S
Knight, A Martin, J Murphy, C Piani, D Sexton, L Smith, RA Spicer, AJ Thorpe,
M.J Webb, MR Allen (2005) Uncertainty in the Predictions of the Climate
Response to Rising Levels of Greenhouse Gases Nature 433 (7024): 403-406.

PE McSharry and LA Smith (2004) Consistent Nonlinear Dynamics: identifying
model inadequacy, Physica D 192: 1-22.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/46_WhatMightWeLearn_PNAS_2002.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/40_Disentangling_2000.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/75_Stainforth_ConfidenceUncertaintyRelevance_2007.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/69_EvaluatingUncertainty_Nature_2005.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/63_ConsistentNonlinDynamics_2004.pdf

Definitions

Weather-like: decisions made very often, we can learn from mistakes.
large forecast-outcome library
“interpolation” in state space
nontrivial out-of-sample library
(some) user memory of pain

Climate-like: new information arrives very slowly
model lifetime << forecast lead time
extrapolation into the unobserved
strong contrarian pressures (well intended)

(sometimes) anti-science lobby
Ensembles:

Monte Carlo sampling of initial conditions and parameters in 2%
Grand Ensembles: opportunistic constrained weird sampling
of deployable model manifold in ??7?

Grantham Research Institute on
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Lyapunov Exponents Do Not
Indicate Predictability!

Even with a perfect deterministic model, the
future is, at best, a probability density function.

The limit of predictability reflects the leadtime
our forecast PDF is “worse” than climatology.

And RMS forecast error is at best irrelevant.
McSharry & Smith, PRL, (1999) Better
nonlinear models from noisy data: Attractors
with maximum likelihood,

What skill scores should we be using?

J Brocker, LA Smith (2007) Scoring
Probabilistic Forecasts: The Importance of
Being Proper Weather & Forecasting, 22 (2),
382-388.

lgnorance: Good, 1952; MS Roulston & LA
Smith (2002) Evaluating probabilistic forecasts
using information theory, Monthly Weather

Review 130 6: 1653-1660.)
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Ensembles Members In - Predictive Distributions Out

(1) Ensemble Members to Model Distributions
K is the kernel, with parameters 0,0 (at /east)

_ RN

eps

P1(X)= 2 KX, )/ Neps

Njim
=2 K(O)/Maim
Kernel & blend parameters are fit One would always dress (K) and blend
simultaneously to avoid adopting a wide (o) a finite ensemble, even with a
kernel to account for a small ensemble. perfect model and perfect IC ensemble.

Forecast busts and lucky strikes remain a major problem when the archive is small.

Ellrr:;u ::hfm }E_Idlrlldl J Brocker, LA Smith (2008) From Ensemble Forecasts to
the Enwonmgm Predictive Distribution Functions Tellus A 60(4): 663.
' ' Bangalore 11 July 2011 © Leonard Smith


http://www.lse.ac.uk/collections/cats/papersPDFs/74_Broecker_PDFs_tellus_2007.pdf

Ensembles Members In - Predictive Distributions Qut
For a fixed ensemble size o decreases with time

And if o, = 0, can there be any
operational justification for

Py unning the prediction system.

M Ml ! Pl ' (1_a1)PC“m

1 Even with a perfect model and

perfect ensemble, we expect 0. to
decrease with time for small ng,

l Small i ngps << Ny

Lead time
Q Grantham fesearch nstitute on J Brécker, LA Smith (2008) From Ensemble Forecasts to

Chimatte Change and Predictive Distribution Functions Tellus A 60(4): 663.
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Demonstrations of local skill against climatology
on EQUIP timescales (months).
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So what does this have to do with DA?

Your choice of DA algorithm will depend on your aims, as well as quality of your
model and the accuracy of your obs.

Outside the perfect model scenario, there is no “optimal”.

(But there are better and worse)

One more example, ensemble forecasting of a “simple” system...

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011 © Leonard Smith



Betting on the future voltage in this circuit.

Ensemble predictions up to lead time 256.

BIvViIBDARD 3 by BOSS

Model 1

L I
150 200

100
Lead time, tp
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Betting on the future voltage in this circuit.

Ensemble predictions up to lead time 256.

L L .
0 50 100 150 200
Lead time, lp

Ensemble predictions up to lead time 256.

100
Lead time, tp

Figure 7: Ensemble predictions using (a) model 1 and (b) model 2. The

Grantham Research Institute on
Climate Change and

he Environmen
the onment Bangalore

BIVIBJARD 3

11 July 2011

by BQ’SS

© Leonard Smith



Moore-Spiegel Circuit (by Reason Machette)
One Initial State — Another Initial State

Ensemble predictions up to lead time 256. Ensemble predictions up to lead time 256.
T T T T 2.5 T T T T T

. 1 | 1
2 I 1 60 1 _;,0 200 0 50 100 150 200
Lead time, t Lead time, tp

p

Ensemble predictions up to lead time 2586. - Ensemble predictions up to lead time 256.
T T T T & M T T T T

aenalRE. |

-25 L L 160
Lead time, tp

_25 1 | 1 1
0 50 100 180 200 g 50
Lead time, tp

1
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Figure 7: Ensemble predictions using (a) model 1 and (b) model 2. The 2: Ensemble predictions using (a) model 1 and (b) model 2. T



Forecasts busts in a Chaotic Circuit

Grantham Research Institute on
Climate Change and
the Environment

11 July 2011

Bangalore

512 member ensembles
Best known 1-step model
512 step free running forecasts

So wait until we know the
future, then look for model
trajectories that “shadow” the
obs to within the noise.

We do not wish to blame our
DA algorithm for model error
in the forecast: test DA in
nowcasts only?

(And what is noise, really?)

© Leonard Smith



Definitions

Useful(1): log(p) scores much better than unconditioned distribution, L
Useful(2): yields insight of use in making better policy decisions
Useful(3): enhances scientific understanding of the system

Wrong(1): empirically adequate (effectively perfect, wrong on a technicality)
Wrong(2): shadowing time long (useful forecasts: chaos per se not deadly’
Wrong(3): qualitatively dissimilar (useful for scientific understanding)

BIVIBIARD 3 ey BOSS

' ~ \ e ;
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Simple Geometric Approaches...
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Suppose we wish to distinguish two sets of simulations (say, storm/no
storm); in terms of indistinguishable states, the AO question is simply
“Which observations are most likely to separate these sets?”

Grantharm Research Institute o
Climate Change and
the Environment
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To do this, merely color the trajectories in each set, and determine the
observation in space and time (post ‘now’) that is likely to yield the most
relevant information.

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011 © Leonard Smith



A measurement along this line provides less information
— for distinguishing blue from brown.

No linearization,
No implicit perfect model assumption,
And the ability to update the AO in light of scheduled obs without

the Environment

Bangalore 11 July 2011 © Leonard Smith



Model Inadequacy and Data Assimilation

Inside the perfect model scenario, I know what I am looking for:

The model and the system are effectively identical.
There is a state ("Truth”) that is defines the future of the system.

In chaotic systems “Truth” is not identifiable given noisy observations.

The most likely state, given with observations (and the noise model) will
fall in the set H(x), the indistinguishable states of x, which are in turn a
subset of the unstable manifold of x.

K Judd & LA Smith (2001) Indistinguishable states I: the perfect model
scenario Physica D 151: 125-141

Even if you do not believe in the mathematical niceties of
Indistinguishable States, if you are aiming to make decisions PDFs from
ensembles, you must be targeting something similar! (No?)

Grantham Research Institute on
Climate Change and
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What is a manifold?
“Utter and Senseless Destruction of Dynamical Information?”

M=11
(X,y,Z,u,w,v...)

Observation
Obs-Covar Matrix

Unknown Manifold
(existence proof only)

Lets make an ensemble!

Grantham Research Institute on
Climate Change and
the Environment & Ture 2005 (Con)Fusing Geophysical Models with Data © L.A. Siuth




Now evolve the ensemble
under the (perfect) model:

Lets make an ensemble!

Grantk
Climsz
the E 6 Tume 2005 (Con)Fusing Geophysical Models with Data © L.A. Smith




Now evolve the ensemble under the (perfect) model:

And get a new observation...

Do I really want to make a KF update?
_Or_

Can | use the fact that the model dynamics

(stochastic or deterministic) trace out the manifold t=1

Q . | know exists but cannot sample directly?!?

Climz
theE 6 Tume 2005 (Con)Fusing Geophysical Models with Data © ILA. Snuth




How does this compare with En KF :Shree (student of JA))
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FIG. 7. Results for the Ikeda model. The upper lett panel consists of a snapshot of K = 1000
member IS and EN ensembles. The target is located at the intersection of the two lines,
where as the observation is depicted by the circle. The EN ensemble is depicted by the 1000
magenta crosses. The EN ensemble members are equally likely and are therefore given the

same color. The colored dots depict the weighted ensemble obtained via the IS method. The

Grantham Ressarch Insti coloring indicates their relative likelihood given observations from fggs to #190;. The upper Khare & LAS, in press MWR
Climate Change ar
the Environment right, lower left and lower right panels depict ensembles for the next 3 observation times.
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The g-ball method EnKF
i Obs
Consider a series of spheres ISIS

of radius € (Y€ —balls”)
centred on “Truth.”

Count how many times each
method “wins” by putting
more probability mass within

€ of the "Truth” (as a function
of €) 3
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_ . 3
_04 - y ‘e : 4

12.5

‘e
. e k I
-0.5¢ 1
° 3 12

-0.2 -0.1 0 0.1 0.2 03



— ENKF==ISIS
— | S1SE==ENKF

0.4

proportion of wins
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_0:5 '\{ 28 Figure 3.6: Compare the EnKF and [SIS results via e-ball, the blue line denotes
gy N 2 the proportion of EnKF method wins and the red line denotes the proportion of
07 § 1 ISIS method wins a) Ikeda experiment, Noise level 0.05 { Details of the experiment
s \ ' are listed in Appendix B Table B.3); b) Lorenz%6 experiment, Noise level 0.5
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The g-ball score is not “Proper”

IGN = -log(p(X)) Good(1952)
S(p(x), X) =lp(z)2 dz -2 p(X) 2?27 first

Ignorance and the proper linear score are proper scores, but
require first dressing and blending the ensemble.

The g-ball score is not proper, but when one method wins
decisively, it has the advantage of evaluating the ensemble

directly.

What other alternatives might you suggest?

J Brocker, LA Smith (2007) Scoring Probabilistic Forecasts: On the Importance
of Being Proper Weather and Forecasting 22 (2), 382-388

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011 © Leonard Smith


http://www.lse.ac.uk/collections/cats/papersPDFs/JB&LAS_ImportanceBeingProper_2006.pdf

How does this compare with En KF (Du after Anderson)

x 10 x 10
35 ' ' ' ' ' '
06t 1 35
02t 5
0.5F 1 3
0t 1
3 Qar 1 25
ol i
2 0af 1 5
~ i} et ] :
m] 15 0.2t ] 15
-02t 1 /: -
; ot : 1
03} 1 1
ol |
05 0.5
—04f
-0}
08 1 11 12 13 14 -0.2 0.1 0 0.1 02 0.3
X x
® 10 ® 10
07t 1 | | s
| ISIS ensemble from
06+ g 2 . . . .
: ] the indistinguishable

\] states of an estimate

y
| i\, | of X.
: .}-\' 13 0.7y ﬁv\ 15

. 1 -0.8r
0.1
05 -09¢+ 1 0.5

I L I L L L L L L L I L
11 1.2 1.3 14 15 16 -02 -0.1 1] 0.1 0.2 03

Figure 3.5: Ensemble results from both EnKF and ISIS for the Ikeda Map (Ex-
periment C). The true state of the system is centred in the picture located by the
cross; the square is the corresponding observation; the background dots indicate
samples from the Ikeda Map attractor. The EnKF ensemble is depicted by 512
purple dots. Since the EnKF ensemble members are equally weighted, the same
colour is given. The ISIS ensemble is depicted by 512 coloured dots. The colour-
ing indicates their relative likelihood weights. Each panel is an example of one Du (2009)

nowcast.
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With En KF in an M=12 Lorenz 96 system (
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FIG. 10. Results for the 12-variable Lorenz 1996 model. The upper left panel consists of a
snapshot of & = 1000 member IS and EN ensembles at assimilation time ¢y05. The target is
located at the intersection of the two lines, where as the observation is depicted by the circle.
The EN ensemble is depicted by the 1000 magenta crosses. The EN ensemble members are
equally likely and are therefore given the same color. The colored dots depict the weighted

Grantham Research Institute on ensemble obtained via the IS method. The coloring indicates their relative likelihood given
i
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the Environment
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Khare & LAS, in press

© Leonard Smith



)

aluate ensemble via Ignorance

The Ignorance Score is defined by:

where Y is the verification.

S(p(y).Y) = =log(p(Y))
P
Systems /fgnorancex\ Lower Upper Kernel width
EnKF | GD EnKF | GD EnKF | GD EnKF GD
Ikeda\ -3.21 | -4.67 | .28 | -4.75 | -3.13 | -4.60 | 0.0290 | 0.0011
Lorem%\\-B.T2 -4.44//—3.?’8 -4.49 | -3.66 | -4.38 | 0.28 0.07
Ikeda MapM96 System, the noise model is N(0, 0.4) and

N(0, 0.05) respectively. Lower and Upper are the 90 percent

bootstrap resampling bounds of Ignorance score

Grantham Research Institute on
Climate Change and
the Environment
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But the point here is that all the
grey dots, the target for PDF
forecasting, go away when the
model is imperfect!

Given an imperfect model, we can test
against additional observations in “now
cast” mode, but the aim of a relevant (PDF)
ensemble has vanished.

(and would be a function of lead-time if
resurrected!)

(See Du’s thesis for much discussion and

- examples)
s ‘\{ 2 Figure 3.6: Compare the EnKF and ISIS results via e-ball, the blue line denotes
06 N\ 2 the proportion of EnKF method wins and the red line denotes the proportion of
07 § 15 ISIS method wins a) Ikeda experiment, Noise level 0.05 {Details of the experiment
08 \ i are listed in Appendix B Table B.3); b) Lorenz%6 experiment, Noise level 0.5
-0 S 05 (Details of the experiment are listed in Appendix B Table B.4)
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So how does this work?

Grantham Research Institute on
Climate Change and
the Environment
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Here is a trajectory
segment of Lorenz 63
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Five
observations
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All we have are
observations
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Forecasts from
observations
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Apply shadowing
filter
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The aim is to minimize the

" mismatches simultaneously.

This is simply gradient
decent, in a N*M (=15)
dimensional space, towards
unique global minima
which form the trajectory
manifold.

After using them to define
the starting point, we ignore
the observations during the
(initial) decent.
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[terate 1
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[terate 2
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[terate 3
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Iterate 4
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[terate 5
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[terate 6
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[terate 7
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[terate 8
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Convergence toward a
trajectory.

Once very close, the
trajectory passing through
any point on the psuedo-
orbit can be used/contrastet
with other trajectories.
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Near Truth, but not
Truth
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The trajectory is near the
natural manifold; the obs
are not!

(Near defined rather poorly
using the noise model!)

The trajectory is also near
to (but different from) the
segment of truth that
generated the obs.
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This is achieved by paying
more attention to the
dynamics over the window.
Statistical properties of the
trajectory from the
observations are secondary.

This proves remarkably
robust either:

- when the model is perfect
- In high-dimensional space
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Suppose the observation
at t=3 had been
significantly in error.

The shadowing filter can
recover using
observations from t=4 and
beyond, in a manner that
sequential filters cannot.

In the shadowing filter, the
mismatch at t=3 and t=4
Is decreased by bringing
the estimated state at t=3
back toward the model
manifold
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Suppose the observation
at t=3 had been
significantly in error.

The shadowing filter can
recover using
observations from t=4 and
beyond, in a manner that
sequential filters cannot.

In the shadowing filter, the
mismatch at t=3 and t=4
Is decreased by bringing
the estimated state at t=3
back toward the model
manifold

Sequential filters do not
have access to this

multi-step information.
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Suppose the observation
at t=3 had been
significantly in error.

The shadowing filter can
recover using
observations from t=4 and
beyond, in a manner that
sequential filters cannot.
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mismatch at t=3 and t=4
Is decreased by bringing
the estimated state at t=3
back toward the model
manifold

Sequential filters do not
have access to this

multi-step information.
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Given that we can find
one such trajectory near
the obs, we can create an
ensemble form the set of
indistinguishable states
of that (and similar)
trajectories, and then
draw from that set
conditioned on how well
each member compares
with the observations.
(Judd & Smith, Physica D

Indistinguishable States |, 2001
Indistinguishable States I, 2004)

The aim of data
assimilation in this case
IS an accountable
probability forecast:



cthodology

Reference trajectory

Obs

*\/.

t=0

How to find a reference trajectory?
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Finding reference trajectory via GD

u={S,, ..., So}

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

‘ap(u) = E?=_ﬂ_|.1 | F(ug) —ugyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011
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Finding reference trajectory

u={S,, ..., So}

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

‘ap(u) = E?=_ﬂ_|.1 | F(ug) —ugyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.

f(S5)
—9 A
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Finding reference trajectory

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

‘ap(u) = E?=_ﬂ_|.1 | F(ug) —ugyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.
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Finding reference trajectory

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

‘ap(u) = E?=_ﬂ_|.1 | F(ug) —ugyq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.
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Finding reference trajectory

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

Cap(W) =9_ 44 [ F(up) —upgq |2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011
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ISNOT 4DVAR

1 Difference in cost function
Cap(u) =39 1 | F(up) —upyq |2
Capvar(U_,41) = 219:_,”4_1(”1*. — h(s))TT1(up — h(sy))

1 Noise model assumption
1 Assimilation window
4DVAR dilemma:

difficulties of locating the global minima with long assimilation window

losing information of model dynamics and observations without long window

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011 © Leonard Smith



m ensemble

Reference trajectory

Obs

-~

7 I\

0
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-rm ensemble

==y A\ //;
/' Nf o

Candidate trajectories
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-rm ensemble

7 —F—— L
/' N o

Ensemble trajectory

Draw ensemble members
according to likelihood

Grantham Research Institute on
Climate Change and
the Environment
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-rm ensemble

Ensemble trajectory
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Valuate ensemble via Ignorance

The Ignorance Score is defined by:

where Y is the verification.

S(p(y).Y) = =log(p(Y))
P
Systems /fgnorancex\ Lower Upper Kernel width
EnKF | GD EnKF | GD EnKF | GD EnKF GD
Ikeda\ -3.21 | -4.67 | .28 | -4.75 | -3.13 | -4.60 | 0.0290 | 0.0011
Lorem%\\-B.T2 -4.44//—3.?’8 -4.49 | -3.66 | -4.38 | 0.28 0.07
Ikeda MapM96 System, the noise model is N(0, 0.4) and

N(0, 0.05) respectively. Lower and Upper are the 90 percent

bootstrap resampling bounds of Ignorance score

Grantham Research Institute on
Climate Change and
the Environment
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Thx to Emma
Suckling
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tial observation case

Missing k components s = sq, ..., S, g S, jgq1s -+

Initialize GD using u® = s1, ..., S;1 ks S kd-1-

u . I .
After [ iterations uU* = 21, ..., 2, 1\ 2y fg-10 -

1L

wgw . . D L
Initialize GD using U™ = sy, ....5,,, ks 2 k-1
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Thx to Emma
Suckling
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Imperfect Model Scenario

e In the IPMS, model state and system state are living in the
different state space.

e Let ; be a projection of system trajectory into model state
space RY

e The chaotic model has dynamics y; 4.1 = f(y1), wt € R
e Let f(.) be the best model we have.
e Observations: s; = z+ + ¢, Where eis I1D.

e Define the model error, w; = x; — f(x4_1),w; € R?

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011 © Leonard Smith



)

Imperfect Model Scenario

Grantl

No model trajectories are able to be consistent with the infi-
nite observations.

There are pseudo-orbits, with non-zero mismatch error, that
are consistent with the observations. We define

pseudo-orbit z;,t =0, -1, -2, ...
zip1 = f(z) +wy, wy i

Confounding of observational noise and model error
prevents one identifying either of them.

Data assimilation can explore the model dynamics by
employing pseudo-orbits.

Climate Change and

the Environment

Bangalore 11 July 2011 © Leonard Smith



Toy model-system pairs

Ikeda system:
Tpi1 = ¥+ u(x, cosf — y, sinb)

Ynse1 = u(x, sméb + 1y, cosh).

where § = 3 — a/(1 + Ii + yﬁ)

Imperfect model is obtained by using the truncated polynomial, i.e.

cosf = cos(w +7) — —w + w’ /6 — w” /120

sinf = sin(w 4+ ) — —1 + w?/2 —w?/24

Grantham Research Institute on

Climate Change and

he Environmen

the Environment Bangalore 11 July 2011
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Toy model-system pairs

Lorenz96 system:

dzx; hc—
o = TiaTit + Tt - 3+ F o == ?_1 Vi j
dy; i hyc
df — bej+1,i(yj—1,z' — yj+2.,,z’) — CYj;i T ——g I;

Imperfect model:

dI’f
dt

Grantham Research Institute on

Climate Change and

he Environmen

the Environment Bangalore 11 July 2011
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nsight of Gradient Descent

Given a sequence of n observations of m dimension system, we
define a sequence space a m x n dimensional space, which
contains any series of n model states.
Define the mismatch error cost function:

Cap(u) = EE=_?1_|_1 | f(ug) — Uiy q 2
Applying a Gradient Descent algorithm, starting at the observations
and evolving so as to minimise the cost function.

Define the implied noise to be o; = 8; — U;

and the imperfection errortobe  «j = Uj — Uj_1q

Grantham Research Institute on

Climate Change and
the Environment Bangalore 11 July 2011
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nsight of Gradient Descent

T(S5)
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nsight of Gradient Descent
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nsight of Gradient Descent

w=0
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D with stopping criteria

- GD minimization with “intermediate” runs produces more consistent pseudo-0rbits

1 Certain criteria need to be defined in advance to decide when to stop or how to
tune the number of iterations.

1 The stopping criteria can be built by testing the consistency between implied noise
and the noise model

1 or by minimizing other relevant utility function

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011 © Leonard Smith



Imperfection error vs model error
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Imperfection error vs model error

Obs Noise level: 0.002
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WC4DVAR cost function:

1 _ 1< _
ch4dvar = E(XO o Xg)T BOl(XO B X(t))) +EZ(Xt _St)Tr 1(Xt _St)
t=0

1 ;
#5206~ FOTQ 06~ F(x.0)
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0rming ensemble

1 Apply the GD method on perturbed observations.
1 Apply the GD method on perturbed pseudo-orbit.

1 Apply the GD method on the results of other data assimilation methods.

Particle filter?

Grantham Research Institute on
Climate Change and
the Environment Bangalore 11 July 2011 © Leonard Smith



valuate ensemble via Ignorance

The Ignorance Score is defined by:

where Y is the verification.

S(p(y),Y) = —log(p(Y))

Systems Ignorance Lower Upper
EnKF GD EnKF GD EnKF GD

e —

Ikeda /zzﬁ - \62\ 2.77 3.70 2.5 -3.55
Lorenz96 -3.52 -4.13 -3.60 -4.18 -3.39 -4.08

Ikeda system-model pair and Lorenz96 system-model pair, the noise

model is N(0, 0.5) and N(0, 0.05) respectively. Lower and Upper are
Q «wenitN@ 90:percent bootstrap resampling bounds of Ignorance score

Climate Change and
the Environment
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How does this compare with En KF :Shree (student of JA))
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FIG. 7. Results for the Ikeda model. The upper lett panel consists of a snapshot of K = 1000
member IS and EN ensembles. The target is located at the intersection of the two lines,
where as the observation is depicted by the circle. The EN ensemble is depicted by the 1000
magenta crosses. The EN ensemble members are equally likely and are therefore given the

same color. The colored dots depict the weighted ensemble obtained via the IS method. The

Grantham Ressarch Insti coloring indicates their relative likelihood given observations from fggs to #190;. The upper Khare & LAS, in press MWR
Climate Change ar
the Environment right, lower left and lower right panels depict ensembles for the next 3 observation times.
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Deployed: m=2, m=18, T20/T21, NOGAPS
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Mismatch Directions Reveal Model Error

(a)

Mismatch of Sp. Humidity (106)

Figure 10: Direction error for T471L.24 and T79L30 models. Contour lines show
mean error and shading shows standard deviation. Details as in figure9
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Internal (in)consistency... Model Inadequacy

Eric the ViKing

A weather modification team with different goals and differing beliefs.
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When a model looks too good to be true...

,"

You are not here!

... It probably isn’t.
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Run Time Ratio

How would you design a “climate” model?

What are you constrained by?

For decision support, the model has to run faster than real time.
The larger the lead time, the fewer ensemble members you can run to examine sensitivity.

Complex Models

A
We will quantify complexity in terms of a model’s run-time-ratio.
1000 A model with run-time-ratio of 10 will run 10x slower than the system
100 being modelled.
10
Forecast
1 —>
Lead time
0.1
001 (That is, it will take ten years to simulate one model-year.
Sometimes fine for science, never good from policy makers.)
0.001
This impacts ensemble size, maximum lead time considered, and
0.0001 which phenomena to “include”.
\ 4
Simple Models
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Run Time Ratio

How would you design a climate model?

What are you constrained by?

Complex models may not fit in current hardware, even if you know what you would build.
And the more complex your model, the fewer “simulation hours” you will have.

Complex Models

1000
100
10
Forecast
1 i >
Lead time
0.1
0.01 Inaccessibl
0001 Accessible
0.0001 Technological Constraints
\/
Simple Models
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Run Time Ratio

How would you design a climate model?

What are you constrained by?

Requirements for model fidelity sets a lower bound on the complexity with lead time.
Almost always, the model is required to grow more complex at larger lead times.

Complex Models

1000

100

10

0.1 .
0.01 K

([ ]
[
0.001 § »
([ ]
[ ]
[ ]

0.0001

Simple Models

Relevant,« ¥
.** Irrelevant

Forecast
>

Lead time

Inaccessibl
Accessible

Technological Constraints
Fidelity Constraints
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Run Time Ratio

How would you design a climate model?

What are you constrained by? be expected to

Limits of current scientific/mathematical knowledge mean the model may prove inadequate.
Following the financial sector, we will tolerate this as long as the Prob(Big Surprise) < 0.05

Complex Models

I Relevant. - ¥
' .,-°°Irrelevant
1000 I.-'°
...1
100 IR _ _ _
.o° | Prob(Big Surprise) > 1in 200
10 *
I Forecast
1 ->
| Lead time
0.1 I
oot . : Inaccessibl
0ooo1 I o : Accessible
0.0002¢ I Technological Constraints
Fidelity Constraints
Simple Models Knowledge Constraints
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Run Time Ratio

How would you design a climate model?

The decision you take will depend on how these three curves lie.

Complex Models

I Relevant. - ¥
' .,-"Irrelevant
1000 I.-'°
...1
100 .o° 1 _ _ _
.o° | Prob(Big Surprise) > 1in 200
10 o*
I Forecast
1 -
| Lead time
0.1 I
0oL . I Inaccessibl
0.001 | « | Accessible
00001 I Technological Constraints
Fidelity Constraints
Simple Models Knowledge Constraints
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Run Time Ratio

How would you design a climate model?

The decision you take will depend on how these three curves lie.

Complex Models

1000

100

10

Relevagt ® v
e Irrelevant

Prott.(Big Surprise) > 1in 200
Forecast
>

0.1
0.01

0.001 o®

0.0001)°

Simple Models

Lead time

Inaccessibl
Accessible

_____'__

Technological Constraints
Fidelity Constraints
Knowledge Constraints
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Run Time Ratio

How would you design a climate model?

What are the challenges we face with interpreting model simulations
In different regions of this schematic?

Complex Models

1000

100

10

Intractability

Implied Uncertainty

Relevagt * W
< Irrelevant Ambiguity

(Knightian Uncertainty)

Prott.(Big Surprise) > 1in 200
Forecast
>

0.1
0.01

0.001 o®

0.0001)°

Simple Models

(Knightian Risk)

Lead time

Inaccessibl
Accessible

Technological Constraints
Fidelity Constraints
Knowledge Constraints
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Run Time Ratio

How would you design a climate model?

We need to be above the green line, below the red, and to the left of the blue.
So we could make a relevant 100 year simulation and have it a year from now.

Complex Models

1000

100

10

Relevagt ® v
e Irrelevant

Prott.(Big Surprise) > 1in 200
Forecast
>

0.1
0.01

0.001 o®

0.0001)°

Simple Models

Lead time

Inaccessibl
Accessible

_____'__

Technological Constraints
Fidelity Constraints
Knowledge Constraints
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Run Time Ratio

How would you design a climate model?

But in this case, this “100 year” model is out of our reach.
Of course we can build it anyway, call it “best available” knowing it is both
best and irrelevant; and pass it on (saying clearly that Prob(B.S.)~1)

Complex Models

1000

100

(BN
o

Relevaps ® v
: Irrelevant

Prob(‘.Big Surprise) > 1in 200
~ Forecast
>

-

0.1 .o
0.01 ..".
0.001 .‘.
0.0001}

Simple Models

Lead time

Inaccessibl
Accessible

P

Technological Constraints
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Run Time Ratio

)

Decision Support Model Model (Design to deliver)

Complex Models

1000

100

10
1

0.1 .o

0.01 .°°.

0.001 ..'.

0.0001)*
Simple Models

Grantham Research Institute on
Climate Change and
the Environment

Relevant, « ¥
oot *Irrelevant

Prob(Big Surprise)

There is some danger
In first picking the lead

time “required.”
Then finding an

accessible level of
complexity

>11in 200
FOI’GC&SE

|
|
' X
|
|
|

Technological Constraints
Fidelity Constraints
Knowledge Constraints
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Lead time

Inaccessible
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And using ensembles to
estimate “uncertainty”
within an irrelevant
model.
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1000

100

Run Time Ratio

)

Is designing the “art of the solvable” so different?

Complex Models

=
o

[

0.1 .
0.01 K

0.001

0.0001

Simple Models

Grantham Research Institute on
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Technological Constraints

I Relevant.®  Fidelity Constraints
: (oo " Irrelevant - Knowledge Constraints
...1.
B
I Prob(Big Surprise) > 1 in 200
1 Forecast
- >
| Lead time
|
| .
Inaccessible

Accessible

Other than the fact that identifying a
big surprise in this case means tenure!

Bangalore 11 July 2011 © Leonard Smith



Run Time Ratio

Where have we designed operational models?

A subjective view of operational weather (< 10 days), seasonal (< 18 months),
GCM (<100 years) and hi-res Climate (< 80 years) models each fall.

Complex Models

1000

100

Technological Constraints
Fidelity Constraints
Knowledge Constraints

Relevapt**®
: Irrelevant

Prob(Big Surprise) > 1in 200
10 °
. o Forecast
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0001 ] & o Accessible
° | ~
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?What year did climate prediction move beyond understanding to quantitative forecasting?

The basic insight here is not new

" When in doubt, distrusting the indications, or inferences from
them (duly considered on purely scientific principles, and checked b
experience), the words  Uncertain,” or ¢ Doub{ﬂd may be
Dr. Platzman mthout hesitation, ZI‘OY, 1862

I may add to this another point mentioned by Dr. Charney, a somewhat philosophical
comment concerning model experiments. [ think that I agree with Dr. Charney’s suggestion
that machines are suitable for replacing model experiments. But I think it 1s also necessary
to remember that there are in general two types of physical systems which one can think
of modeling. In one tvpe of svstem one has a fairly good understanding of the dynamical
workings of the system, involved. Under those conditions the machine modeling is not only
practical but probably 15 more economical in a long run. Typical examples of this kind, I

think, are problems where vou are ¢oncerned, let’s say, with wave action in harkors,
in general a whole class of engineering probhlems of that kind. But there is another class of

problem where we are still far from a good understanding of the dvnamical properties of
the svstem. In that case laboratory models, 1 think, are very effective and have a very
important place in the scheme of things.

Because of the various simplifications of the model
described above, it is not advisable to take too seriously

PROCEEDINGS the quantitative aspect of the results obtained in this

~. OF s study. Nevertheless, it is hoped that this study not

THE INTERNATIONAL SYMPOSIUM only emphasizes some of the important mechanisms
ON NUMERICAL WEATHER which control the response of the climate to the change
PREDICTION IN TOKYO of carbon dioxide, but also identifies the various re-
NOVEMBER 7-13, 1960 ,/ quirements that have to be satisfied for the study of

climate sensitivity with a general circulation model.

The Effects of Doubling the CO; Concentration on the Climate
of a General Circulation Model

SYURURO MaNABE AND Ricmarp T. WETHERALD
Grantham Research Institute on Geophysieal Fiuid Dy”f it Lf@bov;;a;m,’ NTA?:’ P”wm; :’rm;“f ' ng;‘f’ N.J. 65540
Climalechangeand (Manuscript recel June 1974, in revised form ugust 1974)
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Objection has been taken to such forecasts, because they cannot be
always exactly correct,—for all places in one district. It is, however,

i = . . nprehensive expressions, in
UK: severe weather warnings ;. judgments from the

Rainfall ” Pressure || Cloud " Warnings " their immediate '\"i’ﬂiﬂity,

Weather " Wind " Temperature || uv ‘ Early wa be T'El'y uﬂeflll, as w'ﬂll as’

Latest/recent El’WiSB uninfurm Bd
Forecast Sun12 Auw: t 'be thpemm-
[ sun [ Mon [ Tue [ Wed [ Thu bable cannot be otherwise
ALL WARNINGS: Sun 12 to Thu 16 ay bound to act in accord-
, y o | ent.
| merely cautionary

~ here over these islands,—
an reaion80Ty, or interfering arbi-

1
ns may be incorrect—our

Th :
fwarnin: the signs afforded to man,
1 is the real deficiency.

s Fitzroy, 1862
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Lyapunov Exponents Do Not Indicate
Predictability!
C Ziehmann, LA Smith & J Kurths (2000),

Localized Lyapunov Exponents and the Prediction
of Predictability, Phys. Lett. A, 271 (4): 237-251.

LA Smith (2000) 'Disentangling Uncertainty and Error: On the Predictability of
Nonlinear Systems' in Nonlinear Dynamics and Statistics, ed. Alistair | Mees,
Boston: Birkhauser, 31-64.

LA Smith, C Ziehmann & K Fraedrich (1999) Uncertainty Dynamics and
Predictability in Chaotic Systems, Quart. J. Royal Meteorol. Soc. 125: 2855-2886.

LA Smith (1997) The Maintenance of Uncertainty. Proc International School of
Physics ""Enrico Fermi'', Course CXXXIII, 177-246, Societ'a Italiana di Fisica,
Bologna, Italy.

LA Smith (1994) Local Optimal Prediction. Phil. Trans. Royal Soc. Lond. A, 348
(1688): 371-381.
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http://www2.lse.ac.uk/CATS/publications/papersPDFs/37_LocalizedLyapunovExpo_2000.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/37_LocalizedLyapunovExpo_2000.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/40_Disentangling_2000.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/35_UncertDynAndPred_1999.pdf
http://www2.lse.ac.uk/CATS/publications/papersPDFs/31_MaintOfUncert_Fermi_1997.pdf

Fallacy of Misplaced Concreteness

“The advantage of confining attention to a definite group of abstractions, is that
you confine your thoughts to clear-cut definite things, with clear-cut definite
relations. ...

The disadvantage of exclusive attention to a group of abstractions, however well-
founded, is that, by the nature of the case, you have abstracted from the
remainder of things. ... it is of the utmost importance to be vigilant in critically
revising your modes of abstraction.

Sometimes it happens that the service rendered by philosophy is entirely obscured
by the astonishing success of a scheme of abstractions in expressing the dominant
interested of an epoch.”

A N Whitehead. Science and the Modern World. Pg 58/9

Probability forecasts based on model simulations provide excellent realisations of
this fallacy, drawing comfortable pictures in our mind which correspond to
nothing at all, and which will mislead us if we carry them into decision theory.

And today that is dangerous!
You don’t have to believe everything you compute!

O groeemo e Solar Physics: Data Assimilation or Model Intercomparison?
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There 1s no stochastic fix:

After a flight, the series of control

perturbations required to keep a by-

design-unstable aircraft in the air look With the Eursfightar Tuphoan, I i
are a random time series and arguably = cubeeniefiafht the prassure poine

i liez in frant of the centra of
are StOChaStIC. gravity, therefore making the
aircraft aerodynarmically

unsztable, and iz why Eurofighter

But you cannot fly very far by specifying Tewhoon hes suh = someles

Flight Control Systerm -

the perturbations randomly! computers react quicker than a
pilot,
H When Eurafighter Typhoaon
Thlnk Of WC4dvar/ ISIS/GD . Ccrosses intngsuperszpnic flight, the preszure point moves behind the centre of
perturbations as what is required to aravity, giving 3 stable sircraft
keep the mOdeI flylng near the The advantages of an intentionally unstable design cwer that of a stable

A . arrangernent include greater agility - particularly at subzonic zpeeds - reduced
Observatlons We Can Iearn from them’ drag,gand an overall iicrease ii Iif'l:'?I (a::"sn enhanting STOL per‘FErmance).
but no “stochastic model” could
usefully provide them.

Which is NOT to say stochastic models are not a good idea:
Physically it makes more sense to include a realization of a process rather than it mean!
But a better model class will not resolve the issue of model inadequacy!

It will not yield decision-relevant PDFs!
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