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ABSTRACT 

Lacunarity and •Chaos in Nature 

Leonard Allen Smith 

The general solution of self-similar scaling equations is seen to 

contain an oscillatory component. The lacunarity of a self-similar 

set is reflected in this oscillatory component of the set's scaling 

statistics. Strange attractors found in nonlinear dynamical systems 

often possess self-similar structure. After introducing some new 

results regarding a strange attractor of astrophysical interest and 

considering the effects of using digital computers to study chaos, we 

demonstrate that the standard method of characterizing the global 

structure of these sets is vulnerable to errors arising from a 

misinterpretation of the oscillatory component. A new method of 

describing strange attractors by a spectrum of local scaling 

exponents computed about unstable periodic orbits is proposed. In 

addition to being computationally tractable, this approach utilizes 

the lacunarity oscillation to compute an accurate estimate of the 

residual error. 

The lacunarity oscillation exists both for self-similar physical 

distributions and strange attractors. The role of this oscillation 

in the structure functions of fully developed fluid turbulence is 

exhibited through the {J model. The physical structure of the 

observable matter distribution in the universe is also considered. 

A new example of Hamiltonian chaos which is of geophysical 

interest is introduced. Specifically, a model is developed to 

simulate the motion of slowly settling tracers in a time-dependent 

flow. Here the time development of the length of a material line of 



tracer particles is shown to be quite complicated even when the 

background flow field is laminar. A class o.f two-dimensional maps 

that simulate this type of flow is developed. ·Finally, the concept 

of a strange accumulator is introduced to describe the strong 

inhomogeneities observed to form in the probability distribution of a 

single cha'otic trajectory. 
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Preface and Overview 

The study of nonlinear dynamical systems has provided a 

deterministic framework for the analysis of · physical systems which 

behave in an irregular, seemingly ·stochastic manner. 
' 

A major goal 

of this research is to discover, from an observational record, a 

system of equations governing the process, or failing this, a model 

of sufficient sophistication to be of use in understanding the 

character of the system and its behavior. The initial steps in this 

direction require a method of characterizing the complexity of a 

system's dynamics in its phase space. The recent development of a 

procedure for reconstructing this trajectory from an observed signal 

has inspired a great deal of interest interpreting the nature of 

these orbits. For ergodic systems, a trajectory may explore all 

energetically accessible regions of phase space, while in many 

interesting physical systems the trajectory appears to be restricted 

to a small subset of this region. The complexity of a system's 

dynamics are reflected in the properties of this trajectory which is 

taken to approximate the set of all accessible states. The focus of 

this thesis is on methods of characterizing the resulting set. This 

is done, for the most part, through the calculation of scaling 

' exponents (generalized dimensions). These exponents provide 

estimates of the number of excited degrees of freedom in the system 

and thus a lower bound on the complexity of a model. 

This thesis is divided into five chapters. Chapter 1 is titled 

"Concepts of Dimension and their relevance to Mechanics" and 

introduces the concepts of self similarity through a new analysis of 
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an old strange attractor (Moore and Spiegel ; 1966). The notion of 

the scaling exponents of a distribution is discussed and the 

existence of an oscillatory .component of tpe . scaling functions of 

self-similar sets is establisheq . It is the existence of this 

oscillatory function which provides, for the first time, a method of 

reliably evaluating the accuracy of numerically determined scaling 

exponents. In Chapter 2 the question of determining scaling 

exponents from data is considered. Two common methods are reviewed 

and their shortcomings are demonstrated. Specifically, we consider 

the methods of Broomhead and King (1986) and Grassberger and 

Procaccia (1983). It is shown by example that the former method 

fails to converge in test cases where the full structure of the 

system generating the data is known. Using the second method, the 

oscillatory component of the correlation integral in some simple 

fractal sets is examined. When the magnitude of this component is 

large, the method may converge (locally) yet provide a poor estimate 

of the correlation exponent. A fundamental issue for all methods of 

this type (which consider the large scale structure of a set) 

involves the quantity of data required for a reliable result. In the 

fourth section of Chapter 2 an absolute lower bound on the amount of 

optimally distributed data required as a function of the dimension of 

the set is established. Further restrictions implied by the use of a 

single time series are also discussed. 

The local scaling of fractal sets is investigated in Chapter 3. 

Using the periodicity of the oscillatory component of scaling 

functions, a new method of characterizing this scaling is developed 
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which provides an estimate of the accuracy of the results obtained. 

The oscillation in the scaling o'f physical systems is considered in 

Chapter 4. In fluid turbulence, where recent · experiments suggest 

the presence of an oscillatory term, a self similar model of the 

turbulent cascade is generalized to demonstrate the observable 

manifestations of this phenomena. The presence of an oscillatory 

component is inherent to the geometry of self-similar distributions, 

whether the distribution arises from the dynamics of a system in its 

phase space or a physical distribution in real space. One of the 

oldest systems to be considered self-similar is the distribution of 

matter in the Universe; this distribution is considered in the 

second part of Chapter 4. No oscillatory component is evident in the 

data set examined. 

In the final chapter, Chapter 5, a model for the motion of a 

particle in a two dimensional time dependent flow is developed. The 

chaos described there is of a different sort than that observed in 

dissipative systems. The development of self-similar structures in 

the flow indicates that flow visualization techniques should be 

interpreted cautiously when non-ideal tracers are used. 

Considering the model as a dynamical system, it is shown that the 

self-similar structure of the probability distribution of (fi,nite 

length) trajectories can also bias measurement of the scaling 

exponents. 

Overall, the research reported here is a study of an oscillatory 

component in what has often been considered a line. This phenomenon 

holds deep implications for existing methods of measurement of 

v 



scaling sets, and also suggests new approaches which circumvent the 

shortcomings of existing methods. 

vi 



·-

TABLE OF CONTENTS 

page 

Acknowledgments i 

Preface and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Chapter 1 : Concepts of dimension and 
Their Relevance to Dynamics .... . .......... . . . ... . . 

Section 1: Two Concepts of Dimension . .. .. ..... ... . .. . ... . . 
Section 2 : Deterministic Dynamical Systems ... ....... .. ... . 
Section 3: Probability Distributions on Fractals . .. . .. . .. . 
Section 4: The Oscillatory Component of Scaling . .. . .. . ... . 
Figures ............. .. ... . .. ... ... . . . ... .. . ... ... .... . . 
Appendix 1: Apparent Chaos in Digital Computers .. .. .. ..... . 

1 
5 

13 
25 
32 
35 
46 

Chapter 2 : Analysis of Dimension in Nature . . . . . . . . . . . . . . . . . . . 60 
Section 1: The Broomhead-King Procedure . . . . . . . . . . . . . . . . . . . . 65 
Section 2 : The Grassberger - Procaccia Algorithm . .. . . .. .... . . 70 
Section 3: Evaluating the Correlation Integral of 

Simple Fractal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
Section 4: Scaling Limits in Nonlacunar Sets . . . . . . . . . . . . . . . 77 
Section 5: Edge effects as Strict Limits to Dimensional 

Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
Appendix 2: Explicit construction of the 

oscillation in Cantor Sets.......... . ..... . .... 89 
Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

Chapter 3: The Oscillatory Component of Scaling .. ........ .. ... 115 
Section 1: The Local Correlation Integral . . . . . . . . . . . . . . . . . . 117 
Section 2: Intrinsic Oscillations in the Statistics 

Section 3: 

Section 4: 

Section 5: 
Figures 

on Fractal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
An Oscillatory Component of Scaling in 
Inhomogeneous Fractals .............. . ..... . .... . 
Observing the Oscillatory Component in the 
Scaling of a Strange Attractor .... . . . .. .. . .. .. . . 
Conclusions .......... .. .. . .... .. ..... .. . .. .. . .. . 

vii 

125 

129 
137 
138 



--

Chapter 4: Lacunarity in Nature: .............................. . 
Part I: Lacunarity in Fluid Turbulence ... .. ..... .. .. . . .... . 
Section 1: Characteristics of Turbulence .................. . 
Section 2: The f3 Model ................... . . : ... .... ..... . . . 
Section 3: f3 Model Oscillations .......... , , . : . .... . ....... . 
Part II: Cosmic Lacunae ...... ... ... . ...................... . 
Section 4 : The Fournier Universe ............ . ............. . 
Section 5: A Geometric Construction .......... : ............ . 
Section 6: Projection Effects .... .. . ........... . ... ... ... . . 
Section 7: Observations ................................... . 
Figures 

158 
160 
160 
166 
169 
173 
174 
178 
180 
181 
183 

Chapter 5: Particulate Dispersal in a Time-Dependent Flow . . . . . . 189 
Section 1 : Steady Background Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
Section 2 : Phase Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 
Section 3: Experimental Observations . . . . . . . . . . . . . . . . . . . . . . . . 199 
Section 4: Time Dependent Flows . ... ...... . ........ ... ....... 200 
Section 5: Conclusions .. .. . . . ...... ... . . ... . ... ............. 209 
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 
Appendix 3: A Class of Iterative Maps . . . . . . . . . . . . . . . . . . . . . . . 233 
Appendix 4: Strange Accumulators ............................ 242 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 

viii 



CHAPTER I Concepts of Dimension and Their Relevance to Dynamics 

Introduction 

The laws which govern many physical processes may be expressed 

through systems of nonlinear equations. In first attempts to solve 

such systems, the nonlinearity is often assumed to be small and is 

suppressed or ignored entirely. Study of the resulting linear 

equations has established many time-honored methods of analysis, the 

failure of which was once taken to imply pathological behavior such 

as random noise disturbing the system. This is no longer the case. 

Beginning with Lorenz's numerical experiments in 1963, it has been 

recognised that signals which appear noisy and intermittent may be 

generated by completely deterministic nonlinear processes. Instead 

of requiring an external stochastic source term, the nonlinearities 

of these systems rapidly (exponentially) amplify small differences in 

the initial conditions. Deterministic systems with sustained 

dynamics that show sensitive dependence on initial condition1 are 

called chaotic; their trajectories in phase space are said to display 

deterministic chaos in contrast to truly random or stochastic 

processes. Identifying a complicated physical system as chaotic 

provides insight into the processes that govern the system . Attempts 

to quantify these ideas have lead to a variety of scaling exponents 

(dimension(s), generalized dimensions, Lyaponov exponents, and so 

on), which are introduced in §§2 and 4 of this chapter. First we 

1 This phrase, coined by Ruelle (1980), describes the main 
feature of generic chaos. 
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give an idea of the range of physical phenomena to which these ideas 

are relevant. 

The lack of linearity normally implies the loss of superposition; 

nonlinearity couples modes which would act independently in the 

corresponding linear system and it promotes interaction between 

disturbances of all scales. As noted by Lorenz (1986), atmospheric 

motions (weather) and climate models provide examples of this 

coupling where small-scale effects play a crucial role in large-scale 

dynamics. Often a self- organization is imposed via this coupling, 

and the properties which characterize the system are invariant under 

certain magnifications (changes in scale). This scaling behavior is 

observed in physical distributions. Typical examples include 

diffusion limited aggregates (Witten and Sander, 1981, 1983) and the 

distribution of visible matter in the Universe (de Vaucouleurs, 1971, 

Mandelbrot, 1972), coastlines (Richardson,l961) and the fracture 

surfaces of metals (Mandelbrot et al , 1984). Mathematical structures 

which display scaling behavior include strange attractors (e.g. Henon 

1976; Ruelle, 1980; Spiegel, 1986), strange accumulators (e . g. 

Smith and Spiegel, 1987), the boundaries of the basins of attraction 

(Grebogi et al . 1984) and fat fractals (Umberger and Farmer, 1985, 

Grebogi et al., 1985). As a result of the reconstruction theorem due 

to Takens (1981), the phase space structure of a host of physical 

systems has been elucidated in terms of "simple" nonlinear systems . 

These systems include particular behaviors of Josephson junctions 

(Iansiti, et al., 1985), lasers (Albano , et al. 1985) and Rayleigh­

Bernard convection in a variety of fluids : mercury (Libchaber et al., 
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1982), liquid Helium (Libchaber et al., 1982) . and water (Giglio et 

al., 1984). Even some of the · behavior of a ·"leaky" faucet is found 

to be in quantitative agreement with a simple mapping (Martien et 
I 

al. , 1985). 

Since the particular subject of inquiry may be drawn from diverse 

catagories, the entity (set, surface, boundary, trajectory, ... ) to 

be investigated will be referred to simply as an object or set. This 

is natural since, in all computational realizations, the entity will 

be represented as a denumerable collection of distinct points 

specified with finite accuracy. Similar techniques may be used to 

analyze objects from each class, although the class of the object 

often provides information useful in analyzing its structure. For 

example, a static physical boundary may be embedded in three 

dimensional space. Similarly, the solution of a set of ordinary 

differential equations must lie in a space of dimension less than or 

equal to the degree of the system . 

Why should sets and their scaling parameters be of interest to the 

physicist? A precise knowledge of the geometric and probablistic 

structure of dynamical systems provides detailed limits on the 

predictability and dynamics of the system. Even a rough knowledge of 

the simplest geometrical quantities can provide insight into the 

nature of a system. Consider the power spectrum shown in Figure 1.1 

(page . 35). Traditionally, such "broadband noise" is interpreted as 

an indication that the system possesses many active degrees of 

freedom; if so, a complete description of the system would 

necessarily be complex. The power spectrum alone cannot 



differentiate non-deterministic noise from highly structured chaos, 

but scaling exponents distinguish between the two and quantify the 

latter . In many cases, the state. of the system may be completely 

described by only a few independent coordinates (in the case of 

Figure 1. 1, three; see §1. 3) . Equivalently, the system's dynamics 

are restricted to a subspace of all possible states and this subspace 

may be embedded in a Euclidian space of small dimension. This means 

that after transients, the dynamics may be described by a model with 

only a few degrees of freedom (relative to the dimension of the full 

phase space of the system). A standard example from chemistry is the 

Belousov-Zhabotinsky experiment which involves chemical reactions 

between 30 chemical species under a variety of interaction parameters 

(Zaiken and Zhabotinsky, 1970). Parameter regimes exist where, for a 

variety of initial conditions, this system exhibits deterministic 

chaos; the asymptotic motion in phase space lies in a low dimensional 

subspace and may be completely described by many fewer variables than 

the number required to specify an arbitrary initial condition in the 

original 30+ dimensional phase space. Two examples from fluid 

dynamics, where the phase space is infinite dimensional, are 

Rayleigh-Bernard convection and Taylor-Couette flow (Branstater et 

al., 1983). Again there exists a parameter range where the system 

trajectory is restricted through self-organization to motion within a 

subspace of small dimension. Swinney and coworkers have described 

the transition of Taylor-Couette flow from a (zero dimensional) fixed 

point behavior up through chaotic behavior. In these cases, a 

knowledge of the geometry of the system provides a quantitative 
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measure related to the fundamental complexity of the problem . 

The development of a formalism with which to describe nonlinear 

systems has a colorful, multiply connected history and is still 

incomplete. A survey might start with Poincare's work on the three 

body problem at the turn of the century. For the most part, these 

ideas were developed by mathematicians during the first half of this 

century. 

theorists, 

They were advanced further in the work of probability 

meteorologists, astrophysicists, psychologists and 

computer scientists interested in pattern recognition during the 

sixties and early seventies, to be re-embraced by physicists, 

employed by a diverse cross-section of scientists including 

chemists, ecologists, population biologists and neurologists, and 

applied to a still increasing variety of systems today. 

With no attempt to disentangle this development, the current 

formalism will be introduced in parallel with several ideas from the 

theory of dynamical systems which provide physical motivation. The 

discussion is presented with the bias found in the work of Farmer and 

Procaccia. It begins with a discussion of the meaning of dimension 

in §1.1 where two fundamental notions of dimension are developed and 

related to several of the "dimensions" commonly referenced in the 

literature. After the relevance of these ideas to physical models is 

presented in §1. 3, the generalized dimensions of a 

distribution are defined. 

probability 
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SECTION 1.1 Two Concepts of Dimension 

There are many different concep,tions of dimension. For the sets 

discussed by Euclid, the different definitions based on each of 

these concepts often coincide in the same, integer value; while for 

many physical boundaries and most of the objects of nonlinear 

systems, this is not true. Two ideas form the basis for the majority 

of definitions of dimension to be dealt with here. The first, 

formulated by Poincare, is related to the notion of the number of 

"distinct directions" on the set; the second, credited to Hausdorff, 

is derived by examining how the "volume" of an object changes as it 

is measured with increasing precision. 

First, consider what is now called the topological dimension, 

based in the ideas of Poincare and later supplied with a firm 

mathematical foundation by Brouwer, Menger and Urysuhn. Our 

discussion draws heavily from the complete development presented in 

Hurewicz and Wallman (1941). Poincare suggested that the intuitive 

notion of the dimension of a given set or space is formed from 

consideration of the properties (dimension) of the simplest space 

capable of isolating a region in the original space. If a point has 

zero dimension, the dimension of higher continua may be established 

inductively: 

I shall base the determination of the number of dimensions on 
the notion of cuts. Let us consider first of all a closed 
curve, that is, a continuum of QQQ dimension. If on this curve 
we take any two points through which we shall not permit 
ourselves to pass, the curve will be cut into two parts, and it 
will become impossible to go from one to the other, still 
remaining on the curve, but not passing through the excluded 
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points. Let us consider, on the other hand, a closed surface 
which forms a continuum of two dimensions. It will be possible 
to take on this surface one, two, or any number of excluded 
points whatever. The surface will not be divided into two 
parts because of this; it will be possible to go from one point 
to another on this surface without encountering any obstacle 
because it will always be possible to go around the excluded 
points ... 

We now know what a continuum of n dimensions is. A 
continuum has n dimensions when it is possible to divide it 
into many regions by means of one or more cuts which are 
themselves continua of n-1 dimensions. The continuum of n 
dimensions is thus defined by the continuum of n-1 dimensions. 
This is a definition by recurrence. 2 

In the formulation of Menger, this idea is capsulized in the 

definition of the topological dimension, Dr . Specifically, the 

topological dimension of the empty set is -1; for any nonempty set, 

Dr is equal to the least integer n such that every member of the set 

has arbitrarily small neighborhoods, the boundaries of which have 

dimension less than n. 

It follows that if every point in the set has arbitrarily small 

neighborhoods with empty boundaries, the set has Dr - 0. This is 

clearly the case for any finite set of points and it is straight-

forward to show that Dr is equal to zero for any countable set as 

well as the set of all rational (or irrational) numbers on the unit 

interval. Furthermore it may be proven (Hurewicz and Wallman, 

Chapter 4) that the Euclidian N space, EN, has Dr - N. 

The utility of the topological dimension is limited by the 

difficulty of its determination from experimental data (Farmer, 

1982). For the majority of systems found in texts on classical 

2 From Poincare (1963) [originally 1913] page 29; a similar 
discussion may be found in Poincare (1982) [originally 1913] page 256. 
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mechanics, however, this concept is sufficient and may be directly 

related to the number of degrees of freedom of the system . This is 

shown in the following section. Before doing so, we consider a 

second notion of dimension, the capacity. 

The general trend is to establish by analogy a definition which 

admits real values equal to the topological dimension for Euclidean 

oblects but is sensitive to the scaling behavior of more general 

sets. The mathematical framework here is found in the arguments of 

Hausdorff (1919) and Besicovitch (1953; and references therein). 

Consider a geometrical object embedded in such as a 

rectangular solid in a 3-dimensional space. Put M(r) equal to the 

minimum number of N-dimensional spheres (N-spheres) of radius r 

required to cover the entire set. When r is decreased by a factor of 

two' M(r) increases by a factor of zN (e.g. 8 for the rectangular 

solid). The capacity dimension de is then defined as: 

de = lim 
r-+0 

log M(r) 

log r 
(1.1) 

Here de is not restricted to integer values . There is, of course, no 

restriction to noninteger values; a set that has no topological 

resemblance to a line may have de equal to one, an example is the 

Fournier Universe discussed in Chapter 4. 

To demonstrate that the capacity and the topological dimension do 

not always coincide, consider the "middle thirds" Cantor set. This 

set is perhaps the simplest and is certainly the most common example 

for which these two notions of dimensions differ; its construction 

is shown schematically in Figure 1 . 2. Starting with the interval 
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0 .:5 x .:5 1, delete the middle third, 1 / 3 < x < 2
/ 3 . Now repeat the 

process on each of the two remaining subintervals. And so on. This 

simple destruction algorithm may be used to generate members of a 

special class of Cantor sets (see §2. 3). For the middle thirds 

Cantor set, a point is uniquely labeled by the record of which of the 

retained subinterval it was located in at each generation . At each 

iteration of the process the point in question will lie either on the 

right section (R) or the left section (L) of the subinterval. 

Recording these symbols in order identifies the point with a symbolic 

sequence; for example the point marked by the arrow in Figure 1.2 b 

is represented by the sequence LRRLLLLLL ... This symbolic 

representation will prove useful when we consider the correlation 

integral in Chapter 2. Through the correspondence R ~ 1, L ~ 0, a 

member of the set may be identified with each binary fraction between 

zero and one inclusive, therefore the set contains an uncountable 

infinity of points. 

In order to determine the topological dimension of this set, note 

that the location of any member of the set can be expressed as 

CIO 

X = I ~ ~ 0 or 2 . 

Thus there exist arbitrarily small neighborhoods about each point 

with empty boundaries and the set has DT ~ 0. As shown below, it 

has a nonzero capacity dimension . 

Every Cantor set may be decomposed into an integer number, p, of 

identical subsets Ai each of which reproduces the structure of the 

entire set when magnified by a factor 1/a . Any set with this 
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property is called strictly self-similar with similarity ratio a and 

structure ratio p. If only general properties of a distribution are 

reproduced, it is called statistically self-similar or simply, self-

similar. The middle thirds Cantor set is strictly self-similar with 

p ~ 2 and a- 1/3. 

The capacity dimension of a strictly self-similar set is nonzero. 

If m spheres of radius i are required to cover the set, mpN spheres 

of radius ia-N will be required. This is true for any integer N. 

Thus 

M(i/a) - p M(i) (1. 2) 

with 

M(i) - ;_de (1. 3) 

implies 
log p 

de = - (1. 4) 
log a 

For the Cantor set above with p 2 and a - 1/3 

de 
log(2) 

0.63093 ... 
log(3) 

Many of the statistics of self-similar sets obey an equation of 

the form 

C(i/a) = p C(i) (1. 5) 

the general solution of which is (Smith et al, 1986) 

(1. 6) 

with 
log p 

d (1. 7) 
log a 



·-

where x(i) is a log-periodic function3 of i. The importance of this 

oscillatory component of scaling is discussed in Chapters 2, 3, and 

4. The power law component is often expressed as 

(1. 8) 

where the symbol "-" is read "scales as". Any quantity d that 

satisfies an equation of the form 1.8 is called a scaling exponent. 

The capacity dimension is the first of several scaling exponents 

which will be discussed in this thesis. 

The fractal dimension, df, is a slight variation on the capacity. 

Instead of the minimal number of hyper spheres to cover the set, 

consider the coarse grained image of the set produced by a fixed, 

space-filling square mesh of grid size f. Denote the number of 

hyper-boxes containing at least one member of the set as M(f). The 

fractal dimension is then defined (Mandelbrot,l972) as 

lim 
f-+ 0 

log M(f) 

log f 
(1. 9) 

For most physical examples, the fractal dimension and capacity 

dimension are thought to coincide. Questions regarding the effect of 

covering a set with boxes as opposed to spheres have been addressed 

by Cawley et al. (1985 preprint). The formal basis for both of these 

concepts is the Hausdorff-Besicovitch dimension, ~B; the definition 

of which requires the introduction of several additional concepts in 

order to establish a more rigorous notion of covering a set. 

Let X be a set in an N dimensional Euclidean space with metric d . 

Define o(X), the diameter of X, as the maximum separation of any two 

3Alternatively, if xis considered a function of log(i), xis periodic. 
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members of the set. 

5(X) = sup d(x,y) ( 1. 10) 

where the supremum is taken over all pairs of the elements of X. 

Decompose the set X into a countable number of subsets Ai each of 

which has diameter less than f. For any real number p such that 

0 ~ p ~ ro, define 

inf L [ 5 (Ai ) ] P (1.11) 
i=l 

Here the infimum (minimum) is taken over all possible decompositions . 

This defines the minimal covering. 

The p-dimensional measure of X, denoted ~(X) is given by 

~ (X) ~ sup ~ f (X) . 
f>O 

( 1. 12) 

The Hausdorff-Besicovitch dimension of X is then defined as the 

supremum of all real numbers p such that ~ > 0. 

While special cases may be constructed where the capacity 

dimension, fractal dimension and Hausdorff-Besicovitch dimension 

differ, it is not clear whether this will occur in any system of 

physical interest . Once self-similar behavior is assumed, many 

techniques are available to quantify it. Since each method yields a 

somewhat different quantity, a large number of "dimensions" have been 

defined . In most cases they are related to the three above. 

The term fractal was originally introduced to describe sets whose 

Hausdorff dimensions exceed their topological dimensions (Mandelbrot, 

1972). In this thesis the term is used for any set which scales in 

a self-similar manner. Fractals are then classified into groups: the 
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middle-thirds Cantor set is called a homogeneous fractal. The 

meaning of this qualification is made clear in §1.4 . We find this 

preferable to the suggestion of Taylor (1987) to call only homogenous 

fractals "fractal." 

In this section the two most common notions of dimension have been 

described. Before generalizing these geometric quantities to include 

probability distributions, we will demonstrate the physical 

relevance of these notions of dimension. 

Section 1.2 Deterministic Dynamical Systems 

A dynamical system may be defined as a collection of rules which 

prescribes the manner in which any initial point in phase space 

evolves as a function of time. Here the phase space of a system is 

an Euclidean N- space, EN. where N corresponds to the number of 

independent real numbers required to completely specify an arbitrary 

initial condition (state) of the system. The phase space dimension 

of the system is equal to N and to every possible state of the system 

there corresponds anN-vector x in this space: 

As the system evolves in time, a trajectory is defined by the 

sequence of states through which it passes. The focus here will be 

on deterministic systems; a system is deterministic only if a 

complete knowledge of the future (and past) state of a given 

realization is encoded in its current state; given the rules 

governing the system, a single space-time point defines the entire 
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trajectory uniquely. This excludes any random or stochastic elements 

from the system. A chaotic system is completely deterministic in 

this sense . 

Note that almost all "random number generators" available on 

digital computers are deterministic dynamical systems. Whether the 

distinction between random and deterministic generators is important 

depends on the application; numbers from deterministic generators 

will be called pseudo-random or p-random. An early p-random number 

generator suggested by Ulam and von Neumann (1947) is a special case 

of what is now one of the most studied chaotic systems - the logistic 

map (see §3.3). Its utility asap-random number generator is still 

a subject of interest (Arneodo and Sornette, 1984). 

The rules governing dynamical systems of physical interest are 

often described by difference or differential equations, the choice 

determined by whether it is more natural/convenient to treat time as 

a continuous or discrete variable (cellular automata (Wolfram, 1985) 

may be considered as an additional example) . There has been some 

striking, progress in the modeling and interpretation of physical 

systems through the use of nonlinear dynamical systems in this way. 

Qualitative behavior such as period doubling and quantitative 

predictions such as the values of "universal" numbers have been made 

in systems ranging from dripping faucets (Crutchfield et al., 1986) 

to the behavior of convection in liquid helium (Libchaber and Maurer, 

1982). In addition to fixed points, limit cycles and chaos, 

seemingly chaotic behavior which slowly dies away has been observed 

in the work of some authors (e.g. Spiegel, 1986); this transitory 
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chaos has been called pandemonium. 

Hamiltonian systems form an important special case of dynamical 

systems. Introductions to the exploration of chaos in Hamiltonian 

systems are given by Henon (1983) and Berry (1978) and in the 

textbook of Lichtenberg and Lieberman (1983). This brief 

introduction demonstrates the fundamental role played by dimension in 

Hamiltonian dynamics and serves to preface the discussion of a system 

of this type given in chapter 5. 

Consider a deterministic dynamical system with an N 

dimensional phase space. The system is Hamiltonian if it is 

possible to write the N variables xi as n pairs of conjugate 

variables 

~{ N/2 for N even 

qi' pi i~l,2, ... ,n; n n 
(N+l)/2 for N odd 

in such a way that the dynamics of the system are described by a 

single function H(qi ,pi) through the relations 

aH 
aq 

aH 
ap (1.13) 

In two-dimensional fluid dynamics, a stream flow is one for which 

there exists a function ~(x,y,t) such that the velocity field 

determined by 

a~(x,y,t) 

ay y 
a~(x,y,t) 

ax ( 1. 14) 

All such systems have Hamiltonian structure. The motion of tracers 

in this type of flow has been considered by Smith and Spiegel (1985; 
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also Smith, 1984 and Chapter 5) . An experimental realization of 

Lagrangian turbulence has been analyzed and modeled by Chaiken et al . 

(1986, 1987). 

A similar Hamiltonian structure exists for dynamical systems 

composed of interacting point vortices in two-dimensional flows. 

Vortex dynamics may be observed in superfluid helium (see Roberts and 

Donnelly, 1974) . The appearance of chaotic motion in these systems 

has been studied by Aref (1983). 

The Hamiltonian structure of a system imposes constraints on the 

types of motion it may exhibit. Such systems are deterministic (one 

to one), and the Liouville theorem (eg . Lichtenberg and Lieberman, 

1983) guarantees that the N-volume of an ensemble of initial 

conditions will be preserved under the flow. By requiring the 

conservation of N-volume, Liouville's theorem excludes the existence 

of any attracting sets in the full phase space of a Hamiltonian 

system. 

A system is inte~rable if there exists a canonical transformation 

to new variables P1 ,Q1 such that 

Ho (Pi ) - 0 • Pi 

Hence, 

dHo 

t 

J wi(P1 , .. . ,Pn) dt 

to 

and the system has been reduced to quadratures. 

(1.16) 

In the majority of pedagogical examples , a trajectory does not 

wander throughout phase space but is confined to a lower dimensional 

----------------- - -
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surface by constants (integrals) of the motion, such as the total 

energy, the angular momentum and so on . If a sufficient number (N/2) 

of these integrals exist, the motion may be placed in the form of 

Equations 1.15 . In this case, the motion of each (P 1 , Q1 ) pair is 

independent; each pair represents one degree of freedom of the 

system. If the solution is bound to a restricted region of phase 

space, the Q1 must appear as arguments of cyclic functions and the 

system evolves on an n-dimensional torus (an n-torus). Both the 

topological dimension and the Hausdorff-Besicovitch dimension of an 

n-torus are equal to n (as are de, df, and so on). For a typical 

integrable system, the topological dimension of the complete 

trajectory is equal to the number of degrees of freedom (over­

integrable systems are an exception; see Henon, 1983). It is in this 

way that the topological dimension of an orbit is related to the 

properties of the system. While Liouville's theorem requires every 

ensemble to maintain an N-dimensional volume, the individual 

trajectories of an integrable system are each confined to a manifold 

whose topological dimension is less than (in general one half) the 

phase space dimension of the system . 

This idea is demonstrated by two uncoupled pendula. The phase 

space of this system is four dimensional (angular position and 

velocity of each pendulum); trajectories are restricted by the total 

energy to a three dimensional surface. As long as they remain 

uncoupled, the energy is each pendulum is conserved individually and 

the motion is on a two-torus. 

Due to the difficulty of visualizing objects which sit in spaces 
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of dimension greater than or equal to three, phase space trajectories 

are usually viewed by taking a surface of section. The method , 

credited to Poincare, entails following a trajectory in N dimensions 

and recording the locations at which it passes through a given N-1 

dimensional surface (in a given direction) . For a system constrained 

to a three dimensional surface, this would correspond to recording 

the points at which the trajectory pierces a chosen plane . Many of 

the properties of the full flow may be determined from such a surface 

of section, for example the capacity and topological dimension of the 

section of an orbit should be one unit less than the corresponding 

value of the flow. For example, a Poincare section of a 2-torus is a 

circle . Integrable Hamiltonian systems may be perturbed in two 

distinct ways. Consider first a perturbation, H' , which does not 

destroy the Hamiltonian structure of the original integrable system, 

H0 . That is one which may be written 

dH 

--clP 
dH 

-del (1.17) 

At present, there is no method to determine a priori whether or 

not a given system is integrable . The current search for a general 

method to answer this question is discussed in its historical contex t 

by Tabor (1984). A complementary approach to the analytic search for 

integrals of the motion is provided by numerical examination of 

individual trajectories. The system is assumed to be integrable over 

any range of initial conditions where the computed trajectories 

appear to lie on tori . Trajectories which appear not to lie on any 

torus and seem to display sensitive dependence on initial condition 

are called chaotic. Computer surveys by Henon and Heiles (1964) and 



Walker and Ford (1969) revealed a complex , self-similar interweaving 

of chaotic and integrable trajectories. While the intricacy of this 

structure was envisioned by Poincare; the question as to which type 

of motion prevailed in the limit of small but finite perturbation was 

not resolved until the 1960's (See Moser, 1973) . A simple perturbed 

Hamiltonian system is discussed in Chapter 5. 

Other physically motivated modifications of system 1.15 add terms 

which destroy the Hamiltonian structure. These systems are 

often referred to as dissipative regardless of whether or not they 

were derived from a Hamiltonian formulation. For such systems there 

is no Louiville theorem; the volume of an ensemble of initial 

conditions may contract as the ensemble evolves under the flow and 

the asymptotic motion of the system is generally governed by an 

attractor. Consider the system of two uncoupled pendula when both 

pendula are damped. For almost all initial conditions , the 

asymptotic state of the system is motionless with both pendula at the 

orientation of the downward plumb line. By almost all we mean that 

the set of all initial conditions which behave otherwise has Lebesgue 

measure zero (zero N-volume in a phase space of dimension N) . 

Equivalently, this set has dimension less than the set of all initial 

conditions which approach the attractor, and a randomly selected 

initial condition will belong to the basin of the attr actor with 

probability one . In this particular case , the attractor is a set of 

zero dimension (a point) and the basin of attraction consists of the 

entire four-dimensional phase space with the exception of the three­

dimensional manifolds on which the kinetic energy of either ( or both) 

19 



pendulum is such that the pendulum comes to rest at the unstable 

equilibrium point. Similarly, in the case of a simple limit cycle 

(damping of only one of the pendula) the attractor would be one-

dimensional. Again, knowledge of the dimension of the attractor 

yields insight into the dynamics of the system. 

In addition to limit cycles, attractors often are observed where 

the large time motion is neither periodic or quasiperiodic (motion on 

an n-torus), but which is irregular. A severe truncation of the 

equations describing convection , originally proposed by Lorenz (1963) 

to demonstrate that the difficulty of weather prediction might be 

intrinsic to the system, has produced the paradigm of strange 

attractors5 . The Lorenz equations have been subjected to intense 

study which is surveyed and extended by Sparrow (1970). Similar 

"irregular behavior" was observed by Moore and Spiegel (1966) in a 

study of stellar pulsations. Here we review the tools of nonlinear 

dynamics through an examination of the attractors of this system. 

We note in passing that the phase space trajectories of both of these 

systems are particular cases of the motion of a particle in a time-

dependent potential, where the potential is described by polynomial 

of the position (see Marzec and Spiegel, 1980). 

The original Moore-Spiegel model is a simple thermo-mechanical 

oscillator; a fluid parcel oscillating vertically in a temperature-

stratified background atmosphere. Physically, the restoring force 

for the oscillations may be, say, differential rotation; while the 

5This term was first coined by Ruelle and Takens; we maintain 
the original definition as applying to any attractor the 'time 
dependence on which is not periodic or quasiperiodic. 
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thermal interaction of the parcel with the surrounding fluid leads to 

the asymmetries in the energy flow which may amplify the 

oscillations. All displacements are assumed to be - small when 

compared to a scale height of the background atmosphere, implying a 

Boussinesq equation of state (the density variation of both the 

parcel and the ambient fluid is linearly proportional to the 

temperature deviation from some standard temperature). With the 

additional assumption that the thermal interaction is described by 

the Newton law of cooling (valid in the case of an optically thin 

parcel, see Spiegel, 1957), the system may be described by three time 

scales: the gravitational free fall time as modified by buoyancy, 

the cooling time due to thermal/radiative interactions, and the time 

constant of the restoring force. 

For a parcel in a linear temperature field, small oscillations 

either grow or decay depending whether or not the stratification is 

stable. A nonlinearity is introduced through the consideration of a 

locally unstable temperature profile which varies quadratically with 

the vertical displacement, z. Such a profile mimics an unstable 

layer sandwiched between two stable layers. Measuring the time in 

units of the cooling time and distance in units of the half height of 

the unstable layer leads to the equation of motion of the parcel 

(Moore and Spiegel, 1966) 

+ + (T - R + Rz 2 ) 

dz 

dt 

where T and R are positive real numbers. 

+ Tz - 0, (1.18) 

Physically, T represents 

the square of the quotient of the thermal relaxation time divided by 
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the free period of the oscillation while R is the square of the ratio 

of the relaxation time to the free fall time. For R >>TorR<< T, 

numerical simulations of system 1.18 display, after a transient, 

periodic behavior; alternatively, in a band of R, T values near 

R- T, aperiodic motion is observed in a restricted region of phase 

space. A limit cycle behavior of the system is revealed in Figure 

1 . 3a, where z(t) is plotted for the parameter values R = 100 and T = 

10 (hereafter Case I); the motion lies on a periodic attractor and 

small perturbations relax back to this attractor. Two examples of 

aperiodic motion are found forT- 26 and R- 100 (Case II), and for 

T = 36 and R ~ 100 (Case III). Figures 1.3 b,c are time series of z 

in these cases. Case II is the source of the power spectrum of 

Figure 1.1. More detailed spectra of Cases I and II are provided in 

Figure 1. 4. Periodic orbits exist for all three sets of parameter 

values (Baker, Moore and Spiegel, 1966, 1971). In Cases II and III 

there are several periodic orbits, all of which are unstable. In the 

Case II time series, the system trajectory is observed to wander 

between the neighborhoods of different periodic orbits in what 

appears to be an erratic manner . Understanding these unstable 

periodic orbits is central to describing the structure of strange 

attractors. 

A stereogram of the phase space trajectory of Case I is shown in 

Figure 1 . 5. The complications of the chaotic trajectories reduces 

the quality of their stereograms; perspective projections of these 

trajectories from several viewpoints are shown in Figures 1. 6 and 

1. 7 . 
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A Poincare section of a trajectory of Case I reveals a collection 

of points scattered about several specific locations (the number 

depends on the section taken) which are visited in a well defined 

order . The scatter is consistent wi th the numerical accuracy of the 

calculation. In contrast, a section from Case III reveals no simple 

geometry or ordered motion . Figure 1 . 8 is a section showing the 

velocity and acceleration at successive downward passes through the 

z-0 plane, while a blow up of this section is given in Figure 1 . 9 . 

The section shown in Figure 1.8 and 1.9 corresponds to structure in 

the lower left branch of the attractor as viewed in Figure 1. 7 a. 

Evidently, there is no simple description of the system in this 

parameter regime . 

Long integrations of the Lorenz or Moore-Spiegel equations, and 

observations of the systems they are designed to represent, indicate 

that this complex motion is not transitory . Numerically, these 

systems display · sensitive dependence on initial condition and they 

exhibit period doubling bifurcations as the parameters are varied 

(see Cvitanovit 1984, introduction). The evolution of nonlinear 

ODE's which make up these systems requires a time consuming 

integration of the system . In an effort to make the structure of the 

attractors of such systems more accessible , Henon (1976 , see also 

Henon and Pomeau , 1977) developed a two-dimensional iterative mapping 

to simulate the Poincare sections directly . Designed to represent 

dissipative systems in general and the Lorenz system in particular, 6 

6 A map designed to simulate Moore-Spiegel type systems has 
been developed by Arneodo et al. (1985). 
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Henon determined the most general quadratic map with constant 

Jacobian to be: 

1 - ax 2 
i + y 

(1.19) 

This map has been discussed extensively in the literature. A review 

is given by Henon (1980). When the absolute value of the Jacobian of 

a map (here equal to ibi) is less than one, the map is area 

contracting. In this case, the area of an ensemble of initial 

conditions will be reduced by a factor of lbl after each iteration of 

the mapping. By demonstrating a region of the plane which is mapped 

into its interior, Henon proved this mapping possessed a trapping 

region; such a region must contain an attractor. As the value of 

parameter a is increased, this mapping also follows a period doubling 

cascade to chaos (Derrida et al., 1978). For the canonical 

parameters (a = 1.4, b - 0.3) the mapping appears to have sensitive 

dependence on initial condition. 

Figure 1.10 shows 220 iterations of the map starting from a 64 bit 

approximation of the fixed point. It appears that this attractor is 

not periodic, an assumption given empirical support by the self-

similar structure observed when the circled region is magnified. It 

is generally believed (although not proven) that the asymptotic 

motion described by this system has this type of structure at all 

scales. This set is the Henon attractor. Numerical evidence 

indicates that for this set (Russel et al., 1980) 

de = 1 . 261 ± 0.003 

In addition to the lack of strict self-similarity, two additional 
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quantitative features distinguish this set and those of Figures 1.5 

and 1. 6 from the middle thirds Cantor set. The first is a richer 

mathematical structure due to the nonuniform distribution of points 

on any coarse grained representation of the attractors. The second 

is a physical limitation of scaling properties due to the nature of 

the underlying physical (or computational) system. Physical 

constraints and the relevant probability theory are discussed in the 

next section where a few more scaling exponents are introduced. 

Further discussion of these features is presented in §3.1 where the 

oscillatory component of the scaling is utilized to quantify these 

properties with precision. 

As an important aside we note that the orbit displayed in Figure 

1.10 must evolve onto a periodic orbit. All the calculations were 

done on a digital computer capable of representing only a finite 

number of distinct values. Thus every deterministic trajectory must 

eventually close upon itself. Furthermore, there cannot be true 

sensitive dependence on initial conditions; if the initial condition 

is specified to an accuracy beyond the resolution of the numerical 

grid the future trajectories are identical. The theorems of 

dynamical systems were developed for continuous systems which are not 

accurately represented by discrete computational grids. The effects 

of treating finite separations as infinitesimal in the determination 

of Lyaponov exponents from experimental data has been studied by Alan 

Wolf (personal communication). The ultimate periodicity of orbits 

and apparent chaos in digital computers are explored in Appendix 1. 
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SECTION 1.3 Probability Distributions on Fractals 

The mathematical definitions of dimension in the previous section 

were given in the limit of small scales . In physical realizations of 

scaling there exists an inner cutoff below which the scaling 

relations do not hold. The early 19th century wood print, The Great 

Wave off Kanagawa by Hokusai (see Mayor, 1985), often cited as 

representative of self-similar cascades in nature, also captures the 

fundamental limits to any realization of this self-similarity. The 

great wave is composed of lesser waves, each of which in turn has a 

finer structure similar in form to the first: hence, self-similarity. 

After several generations the cascade stops, there is a well-defined 

smallest wave size, as there is a largest; no wave exceeds Fuji. The 

concepts of an inner and outer cutoff of the scaling region are 

fundamental in all physical realizations of self- similarity. The 

terms self-similar and scaling are nonetheless used to describe 

physical and numerical distributions where the inner cut off 

prohibits complete reproduction under magnification. Implicit in 

doing so is the assumption that there exists a "large" range of 

scales over which scaling holds approximately. The question of 

quantifying these properties in empirical data is taken up in Chapter 

2. 

Even in the case of noise-free data, the inner cutoff may not be 

observable for at least two reasons. The limited accuracy of any 

measuring process imposes a partition upon the (assumed continuous) 

variables which are recorded. If this threshold is above the inner 

cutoff, the latter will not be observed . Even when the threshold is 
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sufficiently low as to make the cutoff observable in principle, the 

quantity of data required to detect it may exceed the capacity of the 

analysis. Since the amount of data required to determine a surface 

grows exponentially with the dimension of the set, the effect may 

pose a real, if technology dependent, constraint. 

Consider an experiment in which the finest partition available 

fails to resolve the inner cutoff. From a histogram of the data, 

often computed as the experiment proceeds, the relative probability 

of the ith partition, pi, may be computed. The Hausdorff dimension 

(equivalently de and df) is not sensitive to the magnitudes of the 

pi, but only to the number that are nonzero. Assuming this 

probability distribution converges (i.e. there exists an invariant 

measure underlying the system) one may compute d1 , the information 

dimension (Farmer 1982) 

where 

d -I 

I, ( €) 

I, ( €) 

log € 

where the sum is over all boxes with nonzero probability. 

(1. 20) 

(1. 21) 

I, ( €) 

represents the amount of information gained, on average, by an 

isolated measurement of the system using instruments of resolution €. 

The information dimension is just one of an infinite number of 

generalized dimensions originally defined in the context of 

information theory by Balatoni and Renyi (1956). General 

introductions to information theory are Shanon and Weaver (1964) and 

Renyi (1970, Appendix A); discussions in the context of dynamical 
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systems are available in Shaw (1981) and Farmer (1982, 1983, 1984). 

The mathematical foundations of the material presented in this 

section were laid by Renyi based on the ideas of Boltzmann, 

Kolmogorov and Shannon. Loosely speaking the amount of information 

in a signal (measurement) is related to the minimum number of bits 

required to identify that measurement from the set of all possible 

measurements. Following Renyi (1970), consider a random variable € 

which assumes denumerably many values xk each with probability pk. 

That is 

k ~ 1,2,3 , .. . (1.22) 

and define the information of order a in the value of € , 10 (€), 

as 

Cl) 

1 
log( I 

Q 
) # 1 

(1 - a) pk Q 

k=l 

Cl) 
(1.23) 

I log 
1 

Pk pk k- 1 

The € dependence of 10 is implicit in the determination of the pk. 

If the distribution of € were continuous, a single irrational value 

of € would contain an infinite amount of information. With the 

physically motivated argument that € is known only with finite 

precision and on the assumption that the observed values converge to 

the continuous values as the precision is increased, Renyi introduces 

the partitioned variable 



--

N 
( 1. 24) 

where [x] denotes the greatest integer less than or equal to x. For 

a continuously distributed €. the information tends to infinity as N 

~ ~ but the quantity 

d (0 
Q 

lim 
N~~ 

(1. 25) 
log N 

exists in many cases and is called the dimension of order a of the 

£. Renyi extends the definition to m-dimensional random vectors (m = 

1, 2, 3, ... ) , proving that for an absolutely continuous distribution 

the d0 are equal and correspond to the geometric notion of dimension 

(that is d0 - m) and suggesting the application of the ideas of 

Hausdorff. 

In the case a - 0 

where M( €) is the number of hypercubes of side € - 1/N which have 

nonzero probability. Thus 

log 1 0 (0 

log N 
lim 

log M(€) 

!log € I 

and d 0 is equivalent to the fractal dimension. Similarly d 1 is the 

information dimension 

lim N .. ., 
log N 
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This case has been studied extensively by Farmer in the context of 

dynamical systems . 

Since 

for a < a', 
(l. 26) 

for a < a' 

which implies 

for all a < a ' (1.27) 

Any set for which d0 > DT and da - d0 for all a will be referred 

to as a homogeneous fractal. The middle thirds Cantor set is of this 

type. Note that da may depend on the geometry of the set, the 

metric, and the probability distribution. As pointed out by Renyi 

and emphasized by Ott et al. (1984), the da are not invariant to 

smooth changes in coordinate. 

A similar formalism was described by Hentschel and Procaccia 

(1983) and applied to several problems of nonlinear dynamical systems 

theory . At this point we adopt their notation letting a ~ q and 

N ~ 1/€. Here q is considered a continuous real variable (-oo < q < oo) 

(see also Grassberger and Proccacia, 1984). 

Recently, Halsey et al. (1986) and Kadanoff (1987) have introduced 

a new formalism which relates the dq to a smooth function, f(a), by a 

Lengendre transformation. This function characterizes the strengths 

of the singularities of the set . Halsey et al. state the following 

relations (their equations 1.10 and 1.11) 



1 
dq - ----.1-q -

[qa(q) - f(a(q))] (1.28) 

d 
a(q) - -aq- [(q-1) dqJ (1.29) 

f(a) is related to the dimension of the set upon which singularities 

of strength a lie. Having calculated the dq with equation (1.25), 

one may compute a(q) with (1.29) 7 and then f(a) via (1.28). In cases 

where it can be determined, f(a) yields a new way to visualize the 

information in dq. A comparison with experiment is provided in 

Libchaber (1986). Note that for homogeneous fractals all the dq are 

equal and so 

(1. 30) 

Furthermore, 

f(a) - a(q) - constant. 

We shall consider the effects of sectioning and projecting on f(a) 

in Chapters 3 and 4, respectively. Calculation of dq for large 

negative q from experimental data is difficult because these scaling 

exponents emphasize the structure of the lowest probability 

singularities of the set. A method which provides a useful lower 

bound on d_ Q) is developed in Chapter 3. A dimension function has 

also been introduced by Badii and Politi (1985) who have directly 

extended the work of Renyi . A somewhat more complicated function 

representing the scaling structure of a set has been introduced by 

Feigenbaum (1978, 1979). 

7Note that in general this 
numerically derived quantity. 

requires differentiating a 
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Conclusions 

As evidenced by the dimension functions above, the structure of 

sets that scale is rich and a useful description requires the 

consideration of more than a single scaling exponent. The general 

solution to the scaling equations can be used to obtain additional 

information regarding a set beyond its dimension (Smith et al, 1986). 

When determining scaling exponents , we often write the general 

solution 

(1. 6) 

in the form 

log C(i) ~ d log i + log x(i) 

and let 

log x(i) 

Since f(a) characterizes the singularities of a set, the 1/J{i) 

functions describe additional structure to which f(a) is insensitive. 

Once we have presented a method for calculating the correlation 

integral , we will examine the structure of this 1/J(i) function for 

several fractals. 

The function x(i) (or 1/J(i)) characterizes a textural quality of 

the underlying distribution. Its precise interpretation depends on 

the statistical quantity in question, for the minimal cover (and 

also, though less strikingly, for the correlation integral) x(i) 

describes the property of the set called lacunari ty (Mandelbrot , 

1973). The qualitative character implied by this term is difficult 
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to capture in a single parameter. The examination of several 

functionals of x(i) indicates that it is preferable to retain the 

information intact in one period of x itself . Lacunarity describes 

the lulls in a distribution. The periodicity of the oscillation 

reveals information as to how different scales are coupled, and as 

such provides valuable insight into such problems as the spacial 

intermittency of fluid turbulence. This is the topic of Chapter 4 . 

First, we will discuss the problem of determining the scaling 

exponents of a distribution. We will see that the ~ functions plays 

a role here also. 
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1.9 

Figure Captions 

Caption 

Power spectrum of a chaotic time series. This figure 
shows the case of the Moore-Spiegel system (introduced in 
Section 2) with parameters T = 26.0 R = 100 . 0 

The first four steps in the construction of the middle 
thirds Cantor set by repeated application of the 
destruction algorithm . The arrow denotes the point 
LRRLLLL ... . 

Time series of z from the Moore-Spiegel system for 
parameter values R = 100 with a) T ~ 10 (Case I); b) T 
~ 26 (Case II); and c) T = 36 (Case III). Data were 
generated using a 6th order Runge-Kutta routine. The 
series is sampled with a time-step t.t=O . OS, individual 
data points are noted by '+' on the interval 0 ~ t ~ 64 . 

Details in the low frequency power spectra computed from 
the time series of z(t) for a) Case I and b) Case II. 

Stereograph of the attractor for Case I . 

A perspective view of the attractor for Case II 
from the point z = 27.0, z = 22 . 0, z "= 0 . 0 

Two perspective views of the attractor for Case III 
T- 36.0 from the point (a) (z 30.0 , z 5.0, z· = 0.0). 

(b) (z=27.0, z=22 . o,·z=O . O) . 

Poincare section of the Moore-Spiegel attractor at z - 0 
for T - 36 R - 100. This section corresponds to the 
lower left region of Figure 1 . 7a. 

A close-up revealing the many leveled structure of the 
section shown in Figure 8 

1.10 220 iterations of the Henon mapping (Equations 1 . 19). The 
region shown is -l . S<x<l.S , -l . S<y<l . S . 
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APPENDIX 1 Apparent Chaos in Digital Computers 

In this appendix the effect of digitization on chaos is exploredl . 

It is often remarked that recent advances in the study of nonlinear 

systems in general and chaotic dynamics in particular are due in 

large part to the use of modern digital computers. Paradoxically, 

these machines cannot display truly chaotic trajectories; real 

numbers are represented by a finite number of bits which implies that 

the dynamics occur on a finite grid. All bounded motion is 

eventually periodic . In this sense, the best one can hope for is 

pandemonium; truly chaotic trajectories are not realizable on a 

digital computer just as identical initial conditions are not 

available on an analog computer. 

The numerical grid imposes an inner cutoff to both geometrical 

scaling and sensitivity to initial conditions ; by determining the 

number of distinct states, the grid imposes an upper bound on the 

cycle time of any deterministic dynamical system. This cycle time 

may, of course, be very large : the Goddard General Circulation Model 

(see Hansen, 1983) has something like (2 32 )
215 potential states 

(though the vast majority of these are of no physical relevance). In 

studies of strange (fractal) attractors, where the quantities of 

interest are defined in the limit of small scales, the effects of 

digitization are more pronounced. As an example, consider a 

simulation of the Henon map (Equations 1 . 19) carried out in 32-bit 

precision (REAL*4 with an IBM 360 architecture ; for details , see 

1This problem was suggested to me by Colin Sparrow . 

-------
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Struble, 1975). A maximum of 232 distinct values restricts the two-

dimensional mapping to an orbit of at most 264 iterations before the 

orbit repeats (or diverges). When the mapping is dissipative, the 

observed cycle time is significantly less than this. 

There are several questions we can ask. How will this periodicity 

affect the representation of attractors? As the mesh becomes finer, 

will there by many periodic orbits or only a few? Perhaps even just 

one? If there are several, how do their structures compare? How are 

their basins of attraction divided? Does the relative probability of 

observing one attractor dominate? How machine- dependent are the 

answers to these questions? One approach to these questions is to 

examine the dynamics on grids that are sufficiently coarse that a 

complete catalog of behaviors can be computed, and then to observe 

how these behaviors change as the grid becomes finer. 

uniform grid with mesh E where 

1.0 
N 

Consider a 

and N is integer. To every real number X we associate an integer IX 

by 

IX ~ [ N • X] = [ ; J 

where [y] is equal to the greatest integer less than or equal to y. 

Here the origin is a grid point. On this grid, the Henon map 2 

becomes 

2a discussion of the Henon map is given in §3 . 3. 
details, see Henon (1976). 

For more 

47 



IX' [N + IY- ([(IA • IX)/NA]•IX)/N] 

IY' [(IB•IX)/NB] 

and the usual parameter choice (a=l.4, b~0.3) corresponds to 

IA 

IB 

14 

3 

10 

10 

(Al.l) 

Written in this way, the mapping may be iterated using only integer 

arithmetic. 

Once N is specified, all periodic orbits may be identified, in 

principle, by tracing the path of every initial condition within a 

region which completely contains its image. While every orbit will 

eventually close upon itself, the many-to-one nature of the system 

will produce transient points to which a given trajectory will never 

return. 

Consider the case N- 100. At this resolution it is practical to 

consider the entire self-mapping region and identify all the 

attracting orbits of the system. There are two: one of period 25, 

which attracts 99.56% of the initial conditions within the basin; the 

other a period 1 orbit corresponding to an unstable fixed point of 

the exact map (the orbits and their basins of attraction are shown in 

Figure Al.l) . This result is not characteristic; for most values of 

N examined there exist about 6 orbits, two of which usually attract 

the majority of the initial conditions . An example of the manner in 

which the basins are interwoven is shown in Figure Al . 2 using the 
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case N = 110. As N increases, the number of initial conditions in 

the bound region becomes too great for a complete search with our 

current resources. The difficulty is compounded by an increase in 

the length of transient with increasing N. The results given in 

Table Al.l were computed by evaluating small regions of contiguous 

initial conditions. For the larger values _of N, several such areas 

were evaluated. In general, different regions produces similar 

statistics for the high probability orbits, although some low­

probability orbits were absent from some sample regions. 

The use of the 32-bit integers in system [Al.l] places an upper 

limit on N near 10,000 (due to overflow in evaluating the quadratic 

term). It is interesting to note that, even at this value, the 

number of orbits is holding at around 6 or 7, with one or two of the 

orbits usually attracting 90% of the initial conditions. Throughout 

the range of grid spacings examined, the number of digitally periodic 

orbits remains small (say, of order 10), with the majority of points 

being drawn to one or two of these. The length of the most probable 

orbits generally increases with N; however, the longest orbit is 

often not the most probable. Finally, we note that the self-similar 

structures of Figure 3 . 8 are already apparent with N=lO,OOO. 

The Henon attractor shown in Figure 1 . 10 was calculated using 64-

bit real numbers. The structure of the periodic orbits of these 

evolutions is more complicated, partly due to the nonuniformity of 

the REAL grid; since real numbers are represented in exponent­

mantissa form, the mesh varies over the plane , being finer near the 

coordinates on axes. To get an idea of the effect of this variable 
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grid and test the machine dependence of the results, a search for 

periodic orbits using REAL*4 variables was performed. As the number 

of initial conditions precluded a complete search, p-random initial 

conditions in the neighborhood of the unstable fixed point were 

determined . The results for several machines are shown in Table A2. 

It is notable that still only a few orbits are found, with one of 

intermediate length dominating. Note also that the comparison across 

machines yields similar results. 

One source of these orbits is clear -- unstable periodic orbits 

(stabilized by the grid) coincide with some of the observed low 

period, low probability orbits. Examining the basins of attraction 

of the remaining orbits suggests that the orbits fall into two 

categories: those orbits which move along a stable manifold until 

the grid pinches it off, and those which fall onto the image of the 

attractor. It is the digitally periodic orbits of the last class 

onto which the majority of initial conditions evolve. 

To test this conjecture we examined a region that was relatively 

free of portions of the stable manifold of the interior fixed point. 

From the figure on page 764 of Franceschini and Russi (1981) [this 

figure is mislabeled as Figure 3], it seems that the region 

x -0 . 4 ± 0.001, y = -0.8 ± 0.001 would be a good choice. For 

N 10,000, all but 14 of the initial conditions were drawn to orbit 

A or orbit B (see Table Al.l) . The initial conditions that did 

evolve to orbit D were all clustered near the edge of the test 

region. The results are shown in Figure Al. 4. (In the REAL*4 

calculations on the Amdahl, the probability of observing the Amdahl 
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orbit A increased by 10% when the initial conditions were drawn from 

the region given above . ) These observations are consistent with the 

idea that the long, low probability orbits capture initial conditions 

on a stable manifold ; the trajectories from these initial conditions , 

moving along the stable manifold, are eventually mapped into a 

gridbox that has been visited previously . The majority of initial 

conditions appear to evolve onto one or two orbits which resemble the 

Henon attractor. 

Given the required periodicity of digital orbits, why do such 

simulations appear chaotic? There are several reasons, not the least 

of which is the length of the cycle time. For two just-

distinguishable initial conditions, both of which approach the same 

numerical attractor, the rate of separation is still, on the average, 

exponential; two such orbits may reach the attractor with 

uncorrelated phases after transients of very different lengths. 

In summary, the digitally periodic orbits of the Henon mapping 

have been determined for several numerical grids . The length and 

number of these orbits is surprisingly small considering the 

relatively high resolution of the grids . The use of this approach to 

characterize strange attractors at the smallest available scales may 

provide the ultimate box counting method for probing their structure. 
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Figure 

Al.l 

Al. 2 

Al. 3 

Al.4 

FIGURE CAPTIONS 

Caption 

The basins of attraction for the two digitally periodic 
orbits of the Henon mapping with a- 1.4 and b - .30 
when evolved on a grid with N = 100. The statistics of 
each orbit are tabulated in Table 1 . The basins shown 
correspond to (a) Orbit A and (b) Orbit B. 

Basins of attraction as described in Figure Al.l for the 
case N = 110, (a) Orbit A (b) Orbit B. 

The digitally periodic orbits of the N- 10,000 grid. 
Statistics of the orbits are provided in Table 1 where 
(a) Orbit A, (b) Orbit B, (c) Orbit C, (d) Orbit D, (e) 
Orbit F . Orbit E, an unstable fixed point, is not 
shown. 

The basins corresponding to the orbits shown in Figure 
Al.3. In each case the initial conditions which evolve 
to an orbit in figure 3 are shown in the corresponding 
panel here. Initial conditions are from the . region 
-0.81 <X< -0.79 , -0.81 < y < -.79 . 

Al.S The basins of (a) Orbit A, (b) Orbit B, and (c) Orbit D 
on the N - 10,000 grid. The region was chosen to avoid 
the stable manifold as described in the text. No 
initial conditions observed in this region evolved onto 
the other orbits. 

Table Al.l Statistics for the orbits observed on uniform numerical 
grids for a variety of grid resolutions. 

Table Al.2 Statistics of the digitally periodic orbits observed on 
REAL*4 grids for a variety of computer architectures. 
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TABLE Al . l 

Number of Number of Relative 
Initial Conditions Orbits Orbit Length Probability 

10 508 3 A 7 . 95 
B 2 .04 
c 1 .01 ·-

50 1352 2 A 15 > . 99 9 
B 1* < . 001 

100 55863 2 A 25 .996 
B lt .004 

101 52831 3 A 9 .998 
B 2 .002 
c lt <.001 

110 59176 4 A 7 . 663 
B 4 .320 
c 13 .016 
D lt < . 001 

1,000 19468 7 A 190 . 483 
B 202 . 412 
c 102 . 092 
D 7 . 006 
E 2 .004 
F 10 . 003 
G 7 <.001 

5,000 85096 7 A 253 . 717 
B 341 . 129 
c 320 . 125 
D 21 . 011 
E 13 . 006 
F 61 . 006 
G 9 . 005 

10 , 000 10185 6 A 504 . 584 
B 1376 .397 
c 14 .013 

. D 58 .005 
E lt . 001 
F 20 < . 001 

.,. 
fixed po i nt wi th x < 0 

t fixed point with x > 0 
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TABLE Al.2 

Represen- Number of Number of Relative 
Machine tat ions Initial Conditions Orbits Orbit Length Probability 

AMDAHL V6 8 32 bit 20,000 7 A 4472 0.5490 
B 5690 0 . 2133 
c 224 0 . 1595 
D 1432 0.0401 
E 4735 0.0261 
F 816 0. 0119 
G 25 0.0001 

LSI ll/23b 32 bit 40,000 10 A 8557 0 . 4421 
B 1073 0 . 4005 
c 5827 0.1215 
D 3987 0 . 0343 
E 21 0.0008 
F 770 0 . 0004 
G 72 0.0001 
H 34 0.0003 
I 1 1 caset 
J 156 1 caset 

IBM PC/XTc 32 bidt 1680 4 A 19229 0 . 8861 
B 2469 0 . 0761 
c 2239 0.0338 
D 488 0.0042 

t an integer in this column indicates the number of initial conditions tested 
which evolved onto the orbit . 

tt 

a 

b 

c 

the 8087 chip computes 60-bit results with rounding, whereas the Amdahl 
truncates; this finer resolution may account for the lengthier orbit. 

See Struble (1975) for details . 

See DEC (1982) for details. 

See IBM (1984) for details. 



Chapter II Analysis of Dimensionality 

Introduction 

Over the past 30 years, many methods have been developed to 

estimate the number of active degrees of freedom present in an 

empirical data set and, thereby, its topological dimension. Early 

algorithms were advanced by psychologists in order to quantify 

relationships between psychological observables (see Shepard 1962 

a,b). These methods, similar to principal component analysis, suffer 

from the assumption that there is only linear structure in the data . 

Shepard and Carrol (1966) introduced a generalization assuming only 

local linearity (see also Fukunage and Olsen, 1971). From these 

beginnings various procedures were developed and applied to problems 

in signal processing and pattern recognition. Operationally, these 

methods may be separated into two groups. Members of the first class 

examine eigenvalues of some characteristic matrix such as the 

covariance matrix, constructed from the entire data set. An example 

of this type is singular systems analysis (see Bertero and Pike, 

1982). Methods of the second class examine the scaling properties of 

a point set (vectors); an example of this type is the nearest 

neighbor method of Pettis et al. (1979), who also provide a 

comparison between the two methods. In general, those interested in 

dynamical systems theory have tended toward methods of the second 

type. Approaches include the direct application of box-counting 

ideas discussed in Chapter 1 (Mandelbrot, 1977; Russel et al. 1980), 

examination of the number of near neighbors as a function of distance 
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(Termonia and Alexandrowicz, 1983), and measurement of the 

correlation integral (Grassberger and Procaccia, 1983; see also 

§2 . 2). Multilinear regression techniques have been applied to 

determine the local structure of reconstructed attractors by 

Freehling et al. (1981). An additional approach for chaotic systems 

is to relate the dimension of the trajectory to the Lyaponov 

exponents of the flow via the Kaplan-Yorke conjecture (Kaplan and 

Yorke, 1979, see e.g. Lichtenberg and Lieberman, 1983, 394). 

Recently, Broomhead and King (1986) proposed a procedure to 

determine the "qualitative information" contained in experimental 

data. Based on the theory of singular systems theory (see Pike, 

1984), the Broomhead-King procedure estimates several parameters (the 

embedding dimension, noise level, eigenvectors) of a dynamical system 

from a time series. The Broomhead-King method is presented in §2.1 

and applied to the Moore-Spiegel system. Anomalous results for the 

embedding dimension imply the method is not reliable in its present 

form. Through straightforward examples, these results are shown to 

be consistent with the conjecture that the estimate provided by the 

Broomhead-King method is related to the dimension of the space that 

the trajectory explores, not the dimension of the minimum embedding 

space. 

Box-counting procedures that determine the fractal dimension of a 

data set are difficult to implement (Greenside et al., 1982). An 

alternative to box-counting which provides a lower bound on the 

capacity (see §1.1) is the determination of the correlation exponent, 

v. The favored method for this calculation is the Grassberger-
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Procaccia algorithm (GPA, see Grassberger and Procaccia, 1983a,b) . 

Our version of the GPA is introduced in §2.2 and used to demonstrate 

the lacunarity oscillation of Cantor sets in §2.3. We note that the 

presence of this oscillation may result in an incorrect 

interpretation of the correlation integral's properties. 

The Grassberger-Procaccia algorithm has made it possible to 

calculate scaling exponents for many interesting systems. 

Implementation of the procedure is straightforward and there is 

strong enticement to treat it as a black box and process every 

available time series. In the final sections of this chapter, we 

demonstrate a lower bound on the amount of data required to 

unambiguously identify a correlation exponent of a given magnitude 

and we present supporting analytical arguments. It has been shown 

previously (Greenside et al., 1982) that this amount increases 

exponentially with the dimension of the data set; here this growth is 

quantified and an additional, more restrictive bound is determined. 

In Figure 2.15 we present a disqualification table, which can assist 

in determining the significance of a particular result . 

The phase space structure of an attractor is the true object of 

interest in many cases. The coordinates of the phase space 

trajectory of a numerical solution of a system of ODE's is known; 

experimentally neither these coordinates nor even the dimension of 

the phase space is known a priori . Packard et al. (1980) suggested 

that the phase space structure of an attractor could be determined 

from the time series of a single observable by calculating the 

derivatives of the measured variable and analyzing the trajectory in 
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this state space. A second approach, less sensitive to operational 

noise, was discussed by Takens (1981). In Takens' approach, the 

elements of the reconstruction vectors are consecutive values of the 

observable separated by a given delay time . Given a time series of 

measurements equally spaced by some sampling time r
5 

the n-dimensional reconstruction consists of vectors 

X(t) ~ {x(t), x(t+rd), ... , x(t+nrd)} 

where the delay time r d is an integral multiple of r s. Simply put, 

Taken's theorem states that a complete knowledge of the phase space 

variables is not required to reconstruct the attractor, that the 

reconstruction may be done in delay coordinates of a single 

observable, and that for ideal data, the result is not dependent on 

the delay time chosen. 

For real data, the lack of complete precision places a lower bound 

on the delay time, measurements separated by less than this bound 

reflect only the operational noise in the analysis. In general, 

short delay times tend to project the data onto the diagonal which 

may then bias dimension calculating algorithms toward low values . 

When long delays are used, the decay of correlations may result in an 

overestimate of the scaling exponents . Determining the optimal delay 

for a given data set is a subject of current research; two methods to 

automate this choice involve either the first zero of the 

autocorrelation of the signal or the first minimum of its mutual 
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information (Fraser and Swinney, 1986). Signals of interest often 

have oscillating structure in their autocorrelation function and 

determination of the mutual information is a CPU intensive 

calculation. For low-dimensional reconstructions, when a signal is 

reconstructed in three-dimensional space (or four if a section is 

taken), it is useful to plot the data for several delay times and 

visually evaluate the constructions obtained. 

Several delay reconstructions of the time series of z from the 

Moore-Spiegel system are shown in Figures 2.1 and 2 . 2. Each 

reconstruction is a collection of single points on the plane. The 

periodic nature of the T-10.0 trajectory is evident in Figure 2 . la. 

The trajectory is one-dimensional; it is self-intersecting in this 

two-dimensional reconstruction due to projection effects at this 

choice of delay time. The true phase space trajectory is a one-

dimensional limit cycle in a three-dimensional space; a typical 

reconstruction in three-dimensional space would consist of a one-

dimensional curve which did not self-intersect. Figure 2 . lb is a 

similar reconstruction from a chaotic time series obtained with 

T ~ 36.0. Here, no simple structure is visible; as additional points 

are included, some sheetlike structures are implied as the figure 

generally blackens implying that the trajectory has a dimension of at 

least two. In Figure 2 . 2, several reconstructions of the T - 26.0 

case are provided for different choices of delay time. 

Once a delay time and an embedding dimension are chosen, the time 

series becomes a static object which may be treated by the methods of 

chapter 1, or the Grassberger-Procaccia algorithm. Before applying 
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these methods, we investigate a recent proposal to estimate the 

embedding dimension and optimal delay time. 

SECTION 2.1 The Broomhead-King Procedure 

In this section we review the Broomhead-King procedure and apply 

the method to the Moore-Spiegel system in several parameter regimes. 

These examples demonstrate that the method fails to accurately 

estimate the embedding dimension of the system. The similarity of 

the eigenvectors generated by a diverse set of examples is noted. 

These examples include both periodic and strange attractors, and the 

similarity of the eigenvectors indicates that they do not provide a 

customized set of coordinates for the reconstruction of attactors. 

For band limited data, Broornhead and King examine the structure of 

the trajectory over time scales less than some window, rw, given by 

rw - r" - Z1rjw" (2.1) 

where w" is the highest frequency which contains "significant power" 

in the Fourier spectrum of the time series. In many cases this 

definition of w" is sufficiently ambiguous to hamper the application 

of the method. 

For a given rw, the structure of the trajectory within this window 

is reflected by the eigenvalue spectrum of the n x n covariance 

matrix of the trajectory, B(n), given by 
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E(n) 

where 
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(2.2) 

(2.3) 

The idea here is that the structure of the trajectory at a given 

scale r w is examined in greater detail with increasing n . Once n 

exceeds the embedding dimension of the trajectory, the eigenvectors 

of E divide into two sets: those which describe the trajectory and 

are characterized by "large" eigenvalues, and those which result from 

uncertainty (either in the observations or the analysis) whose 

eigenvalues correspond to numerical zero's. If this were the case, 

the algorithm would provide three useful parameters: an upper bound 

on the dimension of the system , the noise level, and an optimized set 

of coordinates (the eigenvectors of E) with which to reconstruct the 
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attractor. Note that since r s varies with n, a different series 

is used for each value of n. Broomhead and King consider 

n- 3,4,5,7,9,13,and 25. Construction of the covariance matrix is 

simplified somewhat by the choice n = 2j with j - 1,2,3, and so on. 

With these choices for n, each x series may be chosen from the same 

data set and the full resolution of the time series is used. 

The spectrum of Moore-Spiegel Case III, T~36 . 0, is relatively flat 

for w > 0.128. Adopting this value as w* provides our first example. 

The normalized eigenvalue spectrum of a 40,000 point time series (r
5 

- 0.002) is shown in Figure 2.3. Then eigenvalues, u 1 , are first 

placed in descending order and then plotted against 
i 
- for n -
n 

4,8,16,32 and 64. The eigenvalues for each n are joined by a solid 

curve to ease identification. In Figure 2.3a, the first four 

eigenvalues appear to be above the "noise floor." Although the phase 

space of the Moore-Spiegel system is three-dimensional, this seems a 

reasonable estimate of the embedding dimension. Figure 2. 3b shows 

the eigenvectors corresponding to the first 12 eigenvalues from a 

Broomhead-King analysis. When the analysis is repeated using only 

30,000 points, the eigenvalue spectrum and first 6 eigenvalues change 

only slightly. As rw is decreased, fewer of the eigenvalues retain 

significant power; this is to be expected since for rw sufficiently 

small, the change in x will be small when compared to any noise in 

the system or the analysis; the power will be concentrated in a 

single eigenvalue corresponding to a constant x eigenvector. It is 

important to make the "correct" choice of w*. As noted by Broomhead 

and King for the Lorenz case, the eigenvectors resemble orthogonal 
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polynomials. We have observed eigenvectors with this same structure 

and ordering for many of the systems we have analyzed. This 

distinctive structure may assist in identifying the significant 

eigenvalues; qualitatively, the numerically zero eigenvalues 

correspond to less ordered looking eigenvectors . 

Similar results for the T-10. 0 series are shown in Figure 2. 4. 

Here however, the trajectory lies on a one-dimensional limit cycle, 

the periodicity of which is evident from an examination of the 

Fourier series or the time series itself . The procedure fails to 

distinguish between this periodic orbit and the chaotic one . The 

T- 10 . 0 time series is not band limited; its periodicity is evident at 

all scales in the Fourier spectrum. The analysis used a time window 

determined from the highest frequency containing power in excess of 

the equivalent white noise spectrum. 

To simplify matters, consider the system 

x(t)- A sin(w1 t) + B sin(w2 t) + C sin(w3 t) + f Pr(t) 

where the function Pr(t) represents a p-random "noise" term . Pr(t) 

is evenly distributed between zero and one, the constant f is used to 

adjust the strength of the noise . Consider the choice 

A= 1.0 B 2 . 0 c - l. 5 

with 

4 
3 wz 



For f = 0, and rw less than 2~ divided by the highest frequency above 

the white noise limit, six large eigenvalues are observed. For 

nonzero f the signal becomes bandlimited. With f - 10- 2 and r = s 

0.04, the whitened spectrum at high frequencies indicates r* z 0.128 . 

The singular spectrum and eigenvectors of this case are given in 

Figure 2. 5. We conclude that, as formulated, the method does not 

provide a reasonable estimate of the embedding dimension; while the 

rank of M does provide an upper bound on M, it may vastly 

overestimate M. 

Another algorithm advanced to study the intrinsic dimensionality 

of a data set examines how the number of nearest neighbors scales as 

a function of separation (Pettis et al., 1979). This method has been 

applied to dynamical systems by Termonia (1983, see also 

Gluckenhammer, 1984). We shall not discuss this method other that to 

note that it is sensitive to noise in the distribution. For low-

dimensional objects, an estimate of the noise level is available from 

a calculation of the correlation integral (Grassberger and Procaccia, 

1983 b, also §2.2). As is shown in §2.4, this estimate is no longer 

available for high dimensional embeddings. Analysis of the 

covariance matrix, however, may be of use in estimating the noise 

level and hence the meaningful separation scales to be considered in 

a nearest neighbor computation. 
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SECTION 2.2 The Grassberger-Procaccia Algorithm 

Box counting algorithms suffer from a host of maladies. One of 

the most serious is the prohibitively large quantities of computer 

memory required to partition embedding dimensions greater than three 

(Greenside et al., 1982). While virtual computer storage has 

increased the range of these methods (Giorgilli, 1986), following 

chaotic trajectories on a grid stored in virtual memory has been 

implicated as a cause of thrashing1 (N. Habra, personal 

communication). Secondly, since d0 depends only on the geometry of 

the set, determining the fractal dimension requires a knowledge of 

the low probability features of the set requiring 'long' runs. At 

some level, the structure of low probability features is of less 

importance to the physics of the problem than the general structure 

of the probability distribution. While the information dimension is 

sensitive to the probability distribution, it also suffers the 

problems of box-counting; indeed the same difficulty is encountered 

in the calculation of f(a) as presented by Hasley et al. (1986). (An 

alternative method has recently been advanced by Pawelzik and 

Schuster, 1987). 

To circumvent these difficulties, Grassberger and Procaccia 

(1983a) introduced the correlation integral 

1 Thrashing is said to occur in computers with virtual storage 
when the resources expended on overhead far exceed those used for 
calculations, caused, in this case, by a great deal of disk access. 
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N 

I (2 . 5) 
i=l j=l 

where N is the number of points in the set, xij is the vector 

separating the ith and jth points, and 8 is the Heavyside function. 

For fractal sets Grassberger and Procaccia (1983a,b) show 

(2.6) 

where v is called the correlation exponent. As it turns out, v is 

equal to the generalized dimension d2 (Hentschel and Procaccia, 1983, 

see also §1.3), and therefore provides a lower bound for the fractal 

dimension. Since the correlation exponent is sensitive to the 

probability distribution on the object; high probability regions are 

more heavily weighted than those of low probability and a good 

estimate of v may be obtained without knowledge of the fine structure 

of the latter. 

The direct evaluation of equation (1.8) for a many point 

approximation of the set in question provides an accurate method for 

determining v. This is demonstrated in Figure 2. 6 for the middle 

thirds Cantor set. An alternative method restricting the sum over j 

to a smaller number of "randomly" chosen base points, increases the 

accessible N for given computer resources thereby extending the range 

of length scales over which C2 (i) may be calculated, but losing its 

fine structure. 

A brief comment on the optimal implementation of the above methods 

is in order. As noted in Appendix A of Grassberger and Procaccia 
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(1983), execution time is significantly reduced when the logarithm is 

approximated by reading the exponent directly from memory. Computers 

generally represent real numbers in a hexadecimal format with 

exponent and mantissa juxtaposed within one or more words (for 

details of IBM machine architecture see Struble , 1975). The trick is 

to approximate the base-16 logarithm by the exponent alone, ignoring 

the contribution of the mantissa. While this does save time, its 

cost in resolution is great . We introduce an alternative method , 

binning the separation data in a (very large) integer array. The 

latter method yields very high resolution at the largest scales, 

revealing details of the fine structure of the oscillatory component 

(see §1. 2) to be discussed in the following section. We have also 

investigated a method which reads the exponent and the first few bits 

of the mantissa and then estimates the logarithm using a look-up 

table for the contribution of the mantissa. The execution time 

required here was approximately a factor of three less than that 

required to evaluate the logarithm. The fastest method we have found 

is to use integer binning in conjunction with the Euclidian sup norm 

(the maximum component of the separation vector) . The optimization 

problem is important in that the algorithm is presently limited by 

the amount of data that can usefully be considered. 

Procedures that evaluate v via Equations 2 . 5 and 2 . 6 are 

generically referred to as the Grassberger Procaccia Algorithm (GPA) . 

The principle difficulty of the GPA is that it is an N2 algorithm; 

the number of calculations required to determine C2 (i) increases as 

the square of the number of data points . Coupled with the 
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exponential increase in the amount of data required to describe a 

surface for increasing dimension, reliable estimates of dimension via 

GPA are restricted to sets of small v ( v <= 5). This limitation is 

quantified in §2 . 5. In Chapter 3 we suggest an algorithm whose 

computational time consumption scales as the number of points in the 

set and apply it to several examples. 

Scaling representative of an attractor may also be biased in the 

reconstruction if the orbit is sampled too frequently; doing so 

results in a large contribution to C2 (l) from dynamically correlated 

points (exaggerating the one-dimensional nature of small segments of 

the trajectory). The effect has been investigated by Theiler (1986) . 

Several things are done in the next 3 sections : we illustrate the 

GPA on Cantor sets where the embedding dimension is known a priori. 

The oscillatory component of scaling in these sets arises in a 

natural way . Next, additional effects which arise when analyzing 

real data are discussed for a simple model and the Moore-Spiegel 

system. Finally, arguments are presented which quantify the amount 

of data required to use the method. 

SECTION 2.3: Evaluating Correlation Exponents of Simple Fractal Sets 

In this section the GPA is applied to fractal distributions where 

the embedding dimension is known. This is the case for a physical 

distribution (a coastline or the large scale distribution of visible 

matter in the Universe) or the solution to a system of ODE's. Our 

first examples will be strictly self-similar Cantor sets such as the 
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middle thirds set discussed in Chapter 1 . Cantor sets are the 

simplest self-similar sets with noninteger dimension. A strictly 

self-similar Cantor set may be approximated to arbitrarily high 

resolution in the following manner: 

1) divide the unit interval in R1 into s equal subintervals 

2) delete all but r of the subintervals 

3) record the endpoints of each subinterval as the members of 
this approximation to the set (without double counting) 

4) iterate this procedure on each of the rema1n1ng subintervals 
until the desired accuracy is achieved . 

After N iterations of this procedure, the approximation consists of 

2rN points 2 • A set constructed in this way may be designated by an 

s-digit binary number with r ones and s-r zeros, the zeros being 

located at the positions where segments were deleted. The middle 

thirds set is then designated as 101. 

In these cases a great deal of information is available from the 

outset. The set may be embedded in l dimension; for the Nth order 

approximation, the ratio of the outer cutoff to the inner cutoff is 

rN and any operational uncertainty may be kept below this threshold. 

The specific cases described here are the sets 101, 101010001 and 

101001001, which will be called sets I, II , and III respectively. 

All three sets are homogeneous fractals of dimension 

2The total number of points 
segments are contiguous ; we have 
final segments are retained . 

log 2 
log 3 

will be less than 2rN if any two 
also assumed that the first and 
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for all q. 

A graph of log C2 (j) versus log j for set I is shown in Figure 

2.7. The oscillatory component of C2 (i) for each of the three sets 

is evident. To examine it more closely we approximate ~(i) as 

(2.7) 

The results for each of the three sets are shown in Figures 2.8 and 

2. 9. Computed estimates of the correlation exponent and period of 

~(i) for each set are provided in the figure. They are determined by 

a least square fit to a range of data that is a multiple of log a. 

The oscillations reflect the manner in which the structure of the set 

changes over a range of log a. For set I, r-3 and the change is 

regular. Sets II and III are indistinguishable from set I by their 

dq, but are easily distinguished from set I and each other by the 

structure of ~(i); note especially that the asymmetry of set II is 

reflected in Figure 2.9 b. 

The origin of the oscillation in strictly self-similar sets may be 

easily understood. Using set I as an example, for every structure 

(e.g. point pair of separation) observed at scale i, exactly two such 

structures will be observed at scale i/3, hence the details of the 

scaling structure which form the oscillations are strictly periodic. 

Appendix 2 demonstrates that these oscillations are strictly log­

periodic and provides a handy construction mechanism for the study of 

the residual. The oscillation itself has structure on all scales and 

appears self-similar. More correctly, it is self-affine in that 

there is an arbitrary (unit dependent) factor that relates ~(l) to i. 

The fine structure of x(i) depends on the statistical quantity 
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measured. In these cases , where it is determined from C2 (l) for sets 

embedded in one dimension, x reveals the lacunarity of the underlying 

set; a large range of x with slope -d2 indicates the absence of pairs 

of points which are separated by a distance in this range, or 

equivalently, the presence of lacuna of scale l in the underlying 

set. For inhomogeneous fractals, the lacunarity interpretation of 

the C2 (.£) oscillation is less useful at large scales. An alternative 

is discussed in Chapter 5. 

Guckenheimer (1984) noted the departure from linear scaling caused 

by the oscillations and questioned whether this "logarithmic 

correction" might limit the accuracy with which dimensions may be 

calculated . In Chapter 3, we take advantage of the regularity of 

the oscillation to increase the accuracy of such calculations. 

Consider the Poincare sections of the T=36.0 Moore-Spiegel system 

(Figures 1 . 8); each section contains approximately 104 points. The 

correlation integral of these data are shown in Figure 2.10 with ~(l) 

below. While there is an indication bf an oscillation, the data are 

insufficient to identify it unambiguously . In these cases, as in the 

dissipative Henon map (Equation 1 . 19) the oscillations are damped at 

large scales due to the interplay of many regions. The important 

point here is that deviation from linear scaling is expected; the 

residual of a linear least squares fit of log C2 (l) to log l is a 

poor measure of the quality of the scaling . 

The best fit values in this case are 

1.08 

1.10 

(10-1. 5 < .£ < 1) 

(10- 2 · 5 < l < 1) 

76 



where the subscript denotes the section taken : x • position and 

v E velocity Since these sections come from the same attractor, 

their correlation exponents should be equal. 

We have looked for the ~(i) function for several scaling 

distributions found in nature, generally without success. These are 

described in Chapter 4. An exception is found in the statistics of 

fluid turbulence. Here the oscillatory component of the scaling can 

be established in the cascade models (Novikov, 1964; Smith et al. 

1986); it has been suggested (Smith et al., 1986) that this 

oscillation is compatible with recent observations of the velocity 

structure functions of turbulence (Anselmet et al., 1983). 

Similarly, velocity reconstructions of some turbulence data show the 

oscillations (Van de Water, 1987). The remainder of this chapter 

focuses on the difficulties of applying the GPA to more realistic 

data sets. 

Section 2.4: Scaling limits in a Nonlacunar Set 

In this section we address the question: given an ideal data set 

of unknown geometry, what is the minimum amount of data required to 

determine the correlation exponent of the set to within a desired 

degree of accuracy using the Grassberger Procaccia algorithm. The 

discussion centers upon the GPA determination of v in sets for which 

no oscillation is visible. As mentioned above, this currently 

includes most attractors reconstructed from experimental time series . 

The "size" of a data set will be a central issue throughout this 
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section and is defined by the length of the time series and the 

optimal delay time, not the sampling rate. Thus the size will 

reflect the amount of information contained in the set. 

Truly nonlacunar attractors do exist; a simple example is an 

attracting two torus. If the torus is covered densely and uniformly 

the 1/J(i.) function of the correlation integral will tend to zero 

everywhere. It is this special case which is sometimes referred to 

as pure scaling ; we will call this behavior linear scaling. In such 

a case, the prefactor A is a constant; and for ~ « ~o 

d log C2 (~) 

d log ~ 

d (v log ~ + log A)/d log ~ 

v 

(2.8) 

where the subscript s emphasizes that we are not dealing with the 

limiting behavior. When working with digitized data, the derivative 

must be evaluated carefully. 

Consider the general case of a time series embedded in an N-

dimensional space. The dimension of the record is approximated by 

calculating the correlation exponent of the embedding. If the orbit 

of this system in its (unknown) phase space lies on an M-dimensional 

manifold and M is greater than N, the projection into EN will be 

locally space filling. When this procedure is repeated for 

increasing N, the conventional expectation is that for small N (that 

is N < M), v
5 

z N while once N exceeds M, v
5 

approaches a constant 

value assumed to be the correlation exponent of the underlying set . 

This approach works well in many instances and its use has been 

suggested in the case of small data sets (Abrahamson et al., 1985). 
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Our first example, perhaps the simplest dynamical system3 , is 

x~c (2.9) 

where c is a real constant. The system corresponds to a particle in 

steady motion along a linear path. When the motion is restricted to 

a finite interval (by, say, periodic boundary conditions), the 

trajectory consists of a line segment. The width of the well is 

taken as the unit of length and the sampling rate is chosen to cover 

the interval uniformly. Noise is introduced to system 2.9 by adding 

p-random numbers evenly distributed between 0 and € to each data 

point. 

The resulting time series is embedded in E2 and C2 (i) is 

calculated via the GPA; a graph of logC2 (1) vs log i is shown in 

Figure 2. 11. The expected N < M behavior of 1.1
5 

(1) is shown in 

Figure 2.12 where four distinct regions are visible. For separations 

less than the nearest neighbor distance (logi < -11), the set scales 

as a collection of individual points and 1.1
5 

(1) is equal to zero. 

Similarly for i greater than the diameter of the set (logi > 1. 0), 

the entire distribution will have been included, C2 (i) ~ 1, and v
5

(i) 

is again zero. For sufficiently long, sufficiently clean data 

records reconstructed with good delay times, two additional regions 

are found between these limiting behaviors. The first (log i ~ -7), 

whose existence is due to noise or uncertainty in the measurements, 

will range from the nearest neighbor distance up to the magnitude of 

3The alternative choice of simple harmonic motion 
similar result, but the scaling structure is complicated 
projection effects (N=l)or modifications due to large scale 
(N=2) . 

yields a 
either by 
structure 
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the noise. (For white noise the upper limit of the noise range is 

this magnitude mult i plied by the square root of the embedding 

dimension, corresponding to the diameter of a hypercube.) By 

definition, random fluctuations must not lie on a finite dimensional 

surface (if this was the case, they would not be independent) and are 

therefore expected to appear space filling in any embedding 

dimension . As a result, one expects v
5

(i) to be equal toM in this 

region. The region of greatest interest lies above the noise region . 

Here (logi z -3) the value of the correlation integral is governed by 

the object and, for nonlacunar objects, v
5

(i) z v. We reiterate that 

for lacunar objects, ~(i) is not zero and v
5
(i) need not equal v . 

v
5
(i) is estimated by determining the slope of the least squares 

fit over a window of width r centered on log i , thus r represents the 

logarithm of the ratio of the largest i scale to the smallest. The 

choice of r depends on the uniformity of the data set; for completely 

nonlacunar data such as the cat map (see below), we have found r = 2 

to yield good results. Within each power of r, v
5

(i) is evaluated a 

number of times . These running averages are displayed in Figure 2 . 13 

as "+" marks. 

The minimum window size, rm i n' corresponds to the finest scale at 

which the value of C2 (i) is determined . The disconnected points in 

Figure 2 . 13 represent v
5

(i) as calculated by this separation . 

Generally, these points fall about the curve computed with r - 2 . The 

major deviations which occur at small scales result from the finite 

amount of data and the numerical resolution. For values of i 

comparable with the nearest neighbor separation, the quantization 
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inherent in the correlation integral is observable . In this region, 

a small increment of i introduces only a few additional separations 

into the sum; this results in discrete values in the change of 

log C2 (i) for each increment in logi. Specifically 

t:.. log Cz (i) log i - log j 

t:.. log i Nz 

where 

i j, j+l, j+2. 
and 

j 1, 2. 3, ... 

For each value of j, lines of oij are observable in Figure 2.13. As 

i increases j increases, and thus oij decreases for a given value of 

i. For i values in the scaling region, 6 i j is small and the 

pointwise value of v
5

(i) is in close agreement with the r-2 value . 

Rarely is the scaling region so distinct as it appears in Figure 

2.12. Even when the system is ergodic and two-dimensional, the 

deviation of log C2 (i) from linearity may be large (an example is the 

standard map, see Appendix SB). If v s (i) is to provide a good 

estimate of v, r must be enlarged or this method should be abandoned. 

On the other hand, though increasing the window reduces the fine 

structure in v
6
(i), it may also obscure the distinction between the 

noise region and the scaling region. Unless the noise level can be 

reduced significantly, the collection of additional data will not 

alleviate this problem, and this method will not yield a good 

estimate of v. 

When v
5
(i) has fine structure and the window size is large, the 

transition between the noise region and the scaling region becomes 



--

indistinct. In the case of small data sets, it is crucial to 

determine which behavior is due to the data and which is due to the 

parameters of the data set (eg. the number of points) . The large i 

transition is investigated in the nex t section . Here we concentrate 

on distinguishing the scaling region from the noise . The point is 

that a truncated white noise signal will often appear to be scaling 

with an exponent less than E . Look again at the noise plateau of 

Figure 2 . 12. The mean value of vs(i) on the plateau is 

v- 1.72 
{ 

T "" 2 . 0 
log i - -6.8 

The data is embedded in a two-dimensional space, yet the noise 

plateau is significantly less than two. Either the noise is not 

space filling or the v
5 

(i) calculation is faulty . The dilemma is 

resolved by increasing the magnitude of the noise term until it 

dominates . The plateau value of v
8

(i) is then computed as a function 

of the size of the data set for several low dimensional embedding 

spaces . As a result we are able to quantify when a data set is 

"small" as a function of the embedding space dimension . 

These results are summarized in Figure 2 . 14, which shows the r=2 

plateau of vs(i) for several data set sizes . The data consists of p-

random numbers generated by the additive congruent method4 (see 

Carnahan et al . 1969) evenly distributed on the interval [0,1]. The 

series is then embedded in three-dimensional space. In the figure, 

4A delay of at least 2 was used for all embeddings with this 
generator as fine structure in v

5 
(i) was found when consecutive 

values were taken . 
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v
5 

(,e) is plotted against log i; the number of points in the set 

increases by a factor of two between each realization. For small N 

the plateau is poorly defined and estimated by the greatest r - 2 

value of v
5

(i) - a procedure which overestimates the value of v
5
(i). 

For a given embedding dimension E, we define a small data set as one 

in which the value of v
5

(A) for p-random data is less than 0.90 E. 5 

Thus any data set with N ~ 212 is small when embedded in 3 

dimensions. It is not our claim that a data set of this size is 

sufficient, only that with a smaller set one cannot distinguish the 

dynamical system in question from white noise. For example, the 

departure of the mean slope of the correlation integral computed from 

a 1000 point data set from E - 3 by 15% is not evidence of an 

underlying low-dimensional structure. 

A more common approach with experimental results is to embed a 

series of a given length into successively higher dimensions and to 

interpret the deviation of 1.1
5 

from E as a sign of fractal structure. 

The observations above apply even more strongly for large E values 

and sets reconstructed from a time series; the relevant comparison 

is not to E but to 1.1
5 

for a random data set of the same length. To 

ease this comparison, we have amalgamated the results of a variety of 

p-random computations to produce Table 2.1 Here the value of 

maximum v 
5 

(,e) is calculated as a function of N and E. For large 

enough E (for any N), the plateau narrows; the r - 2 and r = 10 

maximum 1.1
5 
(i) values are given. Note this comparison with white 

5Note that with the 10% limit it is not possible to distinguish 
the geometry of a smooth limit cycle from that of a fractal attractor 
for dimension exceeding ten . 
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noise is most reasonable when there is no correlation between 

successive point in the reconstruction; comparison with an 

appropriate red noise signal would yield a stricter, more useful 

bound. 

Section 2.5: Edge effects as Strict Limits to Dimension Calculation 

Given that there seem to be serious difficulties implementing the 

GPA with small data sets, we present an analytic argument to support 

this numerical result. First consider a slight modification of an 

argument due to Alan Wolf (personal communication, 1986; see also 

Wolf, 1984). In order to determine a scaling exponent one requires a 

certain range over which the data approximate some power law. 

Denoting the upper and lower limits of this region by fhi and flow, 

the requirement is then 

~ R (2.11) 

flow 

where R (the range of scales) remains to be chosen. The largest 

conceivable choice for fhi is the diameter of the set. Considering 

an M-dimensional unit cube, 

(2.12) 

With e 10w determined through Equation 2.11, a lower limit on the 

number of points may be determined by assuming a uniform density at 

this separation. Then 

~ = N -l/M (2 13) "low . . 



Solving for N 

N- M 
flow 

When present, the oscillations place a lower bound on R; R must 

be an integer multiple of the period of the oscillation. In practice 

Wolf found a Q of 30 to be required; it was with the hope of lowering 

this data limit that Wolf examined the Lyaponov exponents of 

dynamical systems. At present, it appears a similar limit may be 

required in the calculation of these exponents as well. 

We now demonstrate a stronger bound on fhi, resulting in an 

increase of N(M), due to the equal weighing of points near the 

surface of the object. Such an effect was predicted by Guckenheimer 

(1984). Consider a one-dimensional unit cube made up of points 

uniformly distributed on the unit interval6 as in the system given by 

Equation 2.9. The correlation integral is 

0 :::5 .£ :::5 1 (2.15) 

Due to the complete uniformity of this example, the set is 

nonlacunar; thus no oscillatory corrections are present and one may 

approximate v by vs(.£). Substituting Equation 2.15 into Equation 2.8 

we have 

for .£ < 1. (2.16) 

As .£ approaches one, v
5 

becomes a poor estimator of v. This is 

intuitive, as .£ approaches one, more and more of the points lie 

6 This argument followed from a discussion with J. Theiler 
during the Los Alamos Summer School in Nonlinear Science, 1986 
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within i. of both endpoints) and scale as isolated points; for i. 

greater than one, C2 (i.) is a constant. 

within 10% requires i. ~ 0.1 

For vs to be accurate to 

For an M-dimensional hypercube 

(2.17) 

and 

(2.18) 

The argument may be made exact by using the Euclidean sup (i.co) 

norm. For a uniformly filled hypercube, C2 (i.) is equal to the 

probability that two randomly chosen elements will be separated by a 

distance less than i.. In the one dimensional case (the unit 

interval), this probability is equal to the fraction of the area of 

the unit square which is bounded by the lines 

y - x = i.. That is 

x - y - i. and 

P( lx-yl<i.) i. (2 - i.) for 0 ~ i. ~ 1. 

This is equivalent to Equation 2.15. For an M dimensional cube, the 

probability that two points are separated by a distance less than i. 

is equal to the probability that each of the elements of the 

separation vector is less than i.. 

points chosen at random 

C2(i.)- (i. (2 - i.))M 

and 

Since these are independent for 

(2.19) 

v
5 

(i.) - M[ 1 - i./(2 - i.)]. (2. 20) 

Note that v
5

(i.) always underestimates v and define a quality factor, 

Q, such that v
5

(i.) > Q v. Using Equation 2.20 to define fhi for a 
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given value of Q and the minimum number of uniformly distributed 

points requires as a function of R and Q is given by 

N-
[ 

R (2 - Q) l 
2 (1 - Q) 

M 
(2.21) 

In particular , assuming R - 4 is sufficient to determine a value of 

v
5 

within 5% of v yields 

Even with this conservative value of R, the number of points 

required increases so rapidly as to make application of the 

Grassberger-Procaccia algorithm impractical objects with dimensions 

greater than approximately 5. 

The large scale transition is examined using Arnold's cat map 

[Arnold and Al vez , 1968] . The cat map is a two-dimensional, area 

preserving iterative map of the unit square onto itself. Given by 

I ~+l I I 
Yn+l 

1 1 I I: I mod 1 
1 2 

it is both ergodic and mixing . Consider the embedding of the series 

with delay 1 in two-dimensions 7 • In the range 

7embedding this series in higher dimensional spaces results in a 
sheet like structure which obscures the boundary effects to be 
demonstrated here ; the question as to whether similar effects might 
occur in experimental data is open . 
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(.01 < i < 1) v
5
(i) as calculated by Equation 2 . 18 agrees well with 

the r=2 value of v determined from a 214 point data set. 

We emphasize again that we have used simple objects - cubes of 

uniform density. Indeed, hyperspheres are the least sensitive 

objects to this edge effect. With complicated objects the effect 

should be more pronounced. There exist certain density distributions 

which minimize this effect. Objects of this category have been 

constructed and studied by Theiler (1986); however, to assume their 

existence in any given experimental setting is unwarranted. 

Finnally note that the minimum number of points given by Equation 

2 . 21 assumes a uniform covering of the entire set . For data from a 

time series , this quantity is related to the ratio of the length of 

the series to the reconstruction time, not the sampling rate. At 

some point , increasing the sampling rate does not effect the size of 

the data set . 
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Appendix 2: Explicit construction of the Cantor Oscillation 

The simple structure of Cantor sets permits a straightforward 

recursive construction of C2 (.£), and thereby x(.£), to arbitrarily 

high accuracy. For concreteness we will examine the 101 set. The 

argument is easily extended. Consider the most developed oscillation 

at every finite approximation to the set, that is C2 (.£) over the 

interval 1/a ~ i ~ 1. 

is completely specified by the location of its 

discontinuities, xi, and their strengths, w1 . The function is 

generated in a manner which parallels the method for constructing 

Cantor sets (see §1. 2). The following notation allows us to deal 

with two sets of integers, simplifying and speeding numerical 

implementation of the method. The Nth approximation of the set will 

consist of n - 2N+l points and there will be a discontinuous increase 

in C2 (i) at the 3N values of i given by 

3N 

and the magnitude of the ith discontinuity will be 

for i 0, 1, 2, ... , 3N . 

The problem is now reduced to finding the two sets of integers oi and 

pi . The correlation integral may then be evaluated by calculating 
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1 

where L' is a sum over all i such that 

or, equivalently 

For N - 1, the four point approximation to the set yields 

lQ 
0 0 

lQ . 
l. 

i 
i ~ 1,2,3 

lb 
0 4 

lb . 2(4 - i) . 
l. 

At each generation , there exists at least one pair of points 

separated at every integer multiple of the smallest separation . Thus 

i. i - 0,1, ... , 3N 

The N~i are slightly more complicated . The destruction operator may 

be thought of as introducing fine scale structures in the N+Pt 

generation with twice the weight of the corresponding structure of 

the Nth generation on (0 ~ .£ ~ 1) . If the Nth generation is 

cons ide red as a 3N digit binary integer with 1' s corresponding to 

points, the Nt h generation structure in the range 1/3 ~ .£ ~ 1, is 



equal to the number of 1 bits remaining after a left shift of ai bits 

and logical AND operation on the binary representation of the set; 

this results in a simple growth and decay process of the N + 1st 

generation {3's in this range. 

contribute. In symbols 

At the point i~ 1/3, both processes 

2 N {3i i O,l, ... ,k-1 

2 N {3i + 2 i k 

N+l{3i N {32k- i i k+l,k+2, ... ,2k-l 

2 N f3o i 2k 

Nf3i-2k i 2k+l,2k+2, ... ,3N 

where k- 3N-l. 
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Figure 

2.1 

2 . 2 

2.3 

2.4 

FIGURE CAPTIONS 

Caption 

Delay reconstruction of z(t) from the Moore-Spiegel 
system with the parameter values R-100 . 0 and (a) 
T- lO.O,(b) T=36.0. In both cases Td- 0.20 

The effect of varying the delay time is shown in 
reconstructions of a single time series of z from the 
Moore-Spiegel system in the case R=lOO.O and T=26 . 0. 
The delay time increases with each panel, specifically 
(a) Td~0.20,(b) Td-0.40,(c) Td-0.80,(d) Td=l.60 . 

The (a) normalized eigenvalues and (b) corresponding 
eigenvectors generated by the Broomhead-King procedure 
applied to a time series from the Moore-Spiegel system 
in the case R=lOO.O and T-36.0 . In (b) the eigenvalue 
corresponding to each eigenvector is printed above each 
panel. 

As in Figure 2.3 for the case T-10.0 
attractor is periodic . 

Here the 

2.5 As in Figure 2.3 for the system of three period harmonic 
oscillations with noise described in the text. 

2.6 A linear plot of the correlation integral as a function 
of 1 for the set 101. 

2.7 The graph of log C2 (i) as a function of log(A) for set 
101. 

2 . 8 ~(i) for the set 101. 

2.9 ~(i) for the sets (a) 101010001 and (b) 10100101. 

2.10 The (a) correlation integral and (b) ~(i) for a surface 
of section of the Moore-Spiegel system. 

2.11 The correlation integral for a one-dimensional object . 

2.12 vs(i) for the set of Figure 2.11. 

2 . 13 11
5

(1) as in Figure 2 . 12 . Here the Oij structure is 
shown. 

2.14 vs(i) plateaus for an increasing numbers of points. The 
individual curves are labeled by the number of points in 
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Table 2.1 

the source data set. 
maximum value. 

Note the slow increase in the 

Disqualification table showing the results of embedding 
white p-random noise . 
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Table 2 . 1 

E 

M 6 4.27 4.58 4 . 85 4. 95 5.06 5.16 

B 3.03 3 . 36 3.68 3 . 89 4.11 4 . 28 

E 

D 5 3 . 72 3.92 4 . 10 4 . 16 4.28 4 . 46 

D 2 . 87 3.17 3 . 43 3.64 3.80 3.98 

I 

N 4 3 . 12 3.26 3 . 40 3.45 3.55 3.61 

G 2.63 2.84 3.05 3.18 3.30 3 . 41 

D 3 2 . 45 2.54 2 . 64 2.69 2.73 2.79 2.83 

I 2.24 2 . 36 2 . 50 2.58 2 . 65 2. 72 2 . 75 

M 

E 2 1. 75 1. 79 1. 85 1. 87 1. 90 1. 92 

N 1. 67 1. 75 1. 81 1. 84 1. 87 1. 90 

s 
I 1 0 . 957 0.973 0 . 971 0.987 0.987 0.988 

0 0.937 0 . 955 0 . 965 0 . 972 0.980 0.985 

N 

28 29 210 211 212 213 214 

Number of Data Points 



CHAPTER III The Oscillatory Component of Scaling 

Introduction 

The calculation of scaling exponents is becoming a common tool 

with which to analyze systems which display complex behavior. 

Several difficulties remain in processes for the determination of the 

scaling exponents of inhomogeneous fractal sets. 1 Included are (1) 

the lack of reliable error estimates, (2) the intrinsic N2 nature of 

the much-used Grassberger-Procaccia algorithm (GPA), and (3) the box-

counting limitations of current f(a) schemes. In addition, there are 

no reliable schemes for calculating dq for large negative q; global 

methods have difficulty determining the properties of the least dense 

singularities. In this chapter we present a new method which 

alleviates the first two of these difficulties and may assist in 

solving the third. In Section 3. 2 we demonstrate that the log-

periodic ~ functions discussed in Chapters 1 and 2 originate from an 

oscillatory component in the general solution to the scaling 

equation. The main result of this chapter is a new characterization 

of the local scaling structure of fractal sets, focused, in the case 

of strange attractors, on the unstable periodic orbits. Using the 

periodicity (in log i) of the ~ function, one may compute a reliable 

estimate of a local scaling exponent; this is illustrated in Section 

3.3. This procedure is the first to supply meaningful error 

statistics on the exponent. Since only the local structure is 

considered, bounds on d_ 00 are available. Computationally, the time 

loefinitions of the quantities discussed here are to be found in 
Chapter 1. 

--------
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required by the algorithm goes as the number of points. The 

procedure may be interrupted to examine intermediate results and then 

restarted easily . 

It is generally believed that the singular structure of strange 

attractors is closely related to the set comprised of all (unstable) 

periodic orbits. For the flows in a three-dimensional phase space 

such as the Lorenz and Moore-Spiegel systems, these (closed) 

trajectories have been investigated by Baker et al. (1971). In a 

time series generated by a weakly chaotic system, a trajectory is 

often observed to alternate (irregularly) among several cycles; these 

cycles resemble the periodic orbits. A comprehensive discussion of 

the importance of periodic orbits to the dynamics of the Lorenz 

system is given by Sparrow (1982) . This behavior can be seen in the 

Moore-Spiegel attractor (Figure 1.3b), where the trajectory exhibits 

characteristics of one of several distinct motions between each 

crossing of the z=O plane. In a two-dimensional mapping (or surface 

of section) the periodic orbits are isolated points. A method for 

determining both the periodic and near periodic points for 2-D 

mappings has been introduced by Cvitanovic and Gunaratue (in 

preparation). If the singular structure is completely determined by 

the periodic points, it should be possible to determine the scaling 

structures of a set using the methods introduced in this chapter. A 

discussion of how this might be done is given in Section 3.5. 

This chapter is structured as follows: in Section 3.1 we define 

the local correlation integral or Cantor function . Section 3.2 then 

demonstrates its application to familiar fractal sets; oscillatory 
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components of the Cantor function of those sets are observed and 

shown to arise from the general solution to the scaling equation. 

This departure from linear scaling is then utilized in Section 3 . 3 to 

determine the scaling exponents of the Feigenbaum set, where some of 

the scaling exponents may be computed analytically. The method is 

applied to a strange attractor from the Henon system in Section 3.4. 

In § 3.5 we outline a procedure to relate these new scaling exponents 

to global quantities and discuss implications for f(a). The 

importance of the oscillations in physical systems is discussed in 

Chapter 4, where their implications for fractal models of turbulence 

and experimental observations are shown. 

Section 3.1 The Local Correlation Integral 

In this section we introduce the local correlation integral and 

relate it to the full correlation integral. Consider a distribution 

of points, perhaps fractal, in En, the Euclidean space of dimension 

n_ Define the local correlation integral or Cantor function, 

C1 (x,!), of the set of X as 

1 

N 

N 

I 
i=l 

( 3 . 1) 

where xis a vector in En, N is the number of points in the set, xi 

is the position vector of the ith point, and 9 is the Heavyside 
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function. In order to get a feel for the scaling properties of 

C1 (x,i), we examine its behavior in several familiar geometries. In 

each case we assume that N is sufficiently large that there exists a 

range of scales between the inner and outer cutoff; it is in this 

range that the scaling behavior is observed. The discrete nature of 

the sets may be made explicit by including a density factor in the 

equations below; this is omitted in the interest of clarity. All 

lengths have been normalized by the outer cutoff. 

cases the set is considered to lie in E3 • 

If X consists of an isolated point located at x, 

C1 (x,i) - 1 

Alternatively in the case X is a line 

when X is a plane 

and when X is the full 3-dimensional space 

4 
C1 (x,i) - 3 1ri3 

In each case 

In the following 

X € X; 

X € X; 

X € X. 

(3.2) 

where J.L is equal to the topological dimension of the object. In 

these nonlacunar, Euclidean examples, the various definitions of 

dimension given in Chapter 1 correspond to the same numerical value 

and A is a constant. Note that, in general, J.L is not equal to d1 . 

Now consider C1 (x,i) for sets of fractional Hausdorff dimension. 
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First, the 101 Cantor set: Figure 3.la shows C1 (x,i) for a 210 point 

approximation of the 101 set about x- 0. This is a classic devil's 

staircase (a curve of zero derivative everywhere except at points 

corresponding to members of the Cantor set itself). As i approaches 

zero, C1 (0, ..e) id where d - log2/log3 is equal to the Hausdorff 

dimension of the underlying set. Figure 3.2 shows log-log plots of 

the local correlation integral for (a) the 101 Cantor set about 

x- 0, (b) the log(4)/log(3) Koch curve (see Mandelbrot, 1977, 

Chapter 2) about x ~ (sin(~/3)/3,0), and (c) for the Henon attractor 

about its unstable fixed point xus. The topological dimension of the 

Cantor set is zero, while that of the Koch curve is one; the 

topological dimension of the Henon attractor appears to be one, but 

no proof of this is available (Farmer, 1982). In each case~ exceeds 

the topological dimension of the set, implying that the sets are 

fractal over the range of scales considered . 

In Figure 3.3 the local correlation integral of the 101 Cantor set 

is plotted for several values of x. The vertical offset of each base 

point is proportional to its distance from the origin. For these 

choices (see below), the scaling of C1 (x,i) at small i is independent 

of x . Observation at macroscopic scales and the presence of the 

finite inner cutoff will introduce a dependence on the particular 

choice of x. Both the strength and weakness of the local correlation 

integral lies in this x dependence; when evaluated at a "dynamically" 

interesting point, C1 (x,i) yields important information unavailable 

in the correlation integral c2 (i) (defined below). The lack of 

dependence of ~ on x for approximations to the 101 set is due to the 
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uniformity of this set; for certain elements of a homogeneous fractal 

there exists an effective outer cutoff inside which ~ - d 0 . For the 

101 set this cutoff, when it exists, is the largest power of 1/3 

which evenly divides txt . If the set is approximated using the 

decimation procedure of §2 . 3, a point which is first recorded in the 

Nth generation scales with ~=d0 for all (i < (l/3)N> . For members of 

the set whose symbolic representation does not terminate in a 

repeated symbol , no such bound exists. Simply put , if a point is an 

end point of a reduced image of the full set , it will scale like x=O 

for sufficiently small i. 

To relate the Cantor function, C1 (x,i), to the correlation 

integral, C2 (i), recall the definition of the correlation integral 

(Equation 2.5) for a set of N points embedded in EN . 

N N 

9 ( i - xi j) (3.3) 

where 

is the separation of the ith and jth points . c2 (i) is simply the 

integral of C1 (x,i) taken over all members of the set. That is, 

1 
N sn (x - xi) dx (3 . 4) 

where the xi are the elements of the set and sn is the n dimensional 

Dirac delta funct i on . A summation of the repeated index is implied . 

For sets whose topological dimension is zero, the integral of 

equation 3 . 4 reduces to a sum over the elements of the set. 

-- ----------------------
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As noted in Chapter 2, the double sum in Equation 3. 3 makes 

computation of the correlation integral difficult for large N. This 

difficulty is alleviated in the computation of the Cantor function. 

Evaluating C1 (x,..e) differs fundamentally from restricting the 

summation over i in C2 (..e) to a small number of randomly selected 

points in that C1 (x,..e) is evaluated at specific, dynamically 

significant points. 

Section 3.2: Intrinsic Oscillations in Statistics on Fractal Sets 

The self-similar nature of fractals implies the presence of log 

periodic oscillations about the mean scaling behavior of the local 

correlation integral. These oscillations may be observed in Figures 

3. 2. Computing the linear least squares fit of log C1 (x, i) as a 

function of log ..e for the 101 Cantor set data of Figure 3.2a yields a 

slope: 

0.630931 for 
1 
2 

A regular oscillation, periodic in log ..e, 

< ..e < 
1 
2 

is apparent in the graph 

of the deviation from the linear trend in each of the examples in 

Figure 3.2. The oscillation in the scaling of log C1 (xus ,..e) for the 

Henon attractor is considered in Section 3 . 4 . 

Such oscillatory corrections have been anticipated and observed by 

other authors. The earliest reference of which we are aware was by 

De Bruijn (1948), who discusses log-periodic oscillations in the 

context of a number theoretic partition problem . An oscillatory 
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factor of this type was noted by E.A. Novikov (in a footnote of 

Novikov, 1966) in his model of turbulence. It was this model that 

laid the foundation for future self-similar mathematical models of 

turbulence, in which the implication of an oscillatory term was lost. 

In the late 1960's, de Vaucouleurs (1970, 1971) postulated an 

oscillatory correction to the "clumpyness" of the mass distribution 

in the universe. These two topics are treated more fully in Chapter 

4 . Badii and Politi (1985) found the oscillations in their analysis 

of the Zaslavski attractor using a method based on mean nearest 

neighbor distances. They surmised the oscillations were intrinsic to 

fractal sets. 

An oscillatory term is to be expected from the general solution to 

the scaling equation (Smith , Fournier, and Spiegel, 1986). It may be 

used to advantage when determining scaling parameters and ignored 

only at the peril of the investigator . 

Consider a statistical moment C(l) on the set X where C depends on 

a separation scale l. As our notation indicates, both C1 and C2 are 

examples . A self-similar fractal set may be expected to satisfy the 

scaling law 

C(l) 
1 
p 

C(al) 

for some p and a. The usual power law 

where 

d -
log p 

log a 

(3.4) 

(3.5) 

(3 . 6) 

and A is a constant is only a particular solution of Equation 3 . 4 . 

122 



The general solution is 

C(.£) - X ( 
log ..e 
log a ] (3.7) 

where x is a periodic function of period one. The general solution 

shows the possibility of oscillations observed in the scaling of 

strictly self-similar sets and in many numerical experiments. 

Identifying 1/a with the similarity ratio, we find agreement of the 

periodicity with the textbook examples. 

In strictly self-similar fractals the presence of oscillations is 

assured. In more general fractals, scaling is expected only in an 

asymptotic sense. The observ~d oscillations are first corrections to 

the d0 log ..e term in the series for C(..e) ; that is, as ..e approaches 

zero, we have 

logC(.£) - d 0 log ..e +~(log .£/log a) + ... (3.8) 

wh~re ~ is a periodic function of period one. In inhomogeneous 

fractals the double average in the correlation integral may tend to 

wash out the oscillations at large scales if the lacunarity is not 

uniform over the set. For instance, at ..e z 1 (standard units) in the 

He non attractor, C2 (.£) is not dominated by the frequently shown 

Cantorial sections, but by the more heavily weighted gossamer 

(linear) portions; the amplitude of ~ is small. A deviation from a 

smooth power law relationship between the number of grid boxes that 

contain a portion of the attractor and the box size at small scales 
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has been observed by Cawley and York (1986, preprint), who point to 

the need for good error determination. Following their suggestion, 

we will indicate the range of i. considered when an exponent is 

determined by a linear least square fit of logC(i.) on log.£. 

In the limit of small .R., C2 (.R.) should be governed by the 

oscillation of the most frequently visited region of the attractor . 

One advantage of examining C1 (x , .R.) is that the fine structure of a 

region is immediately available without the interference of other 

portions of the attractor. For strictly self-similar, homogeneous 

fractals such as the Cantor sets above, the phase of the oscillation 

is locked in place by the stringent requirements of homogeneity . In 

those instances, the oscillation is easily accessible in both C2 (i.) 

and C1 (x,.R.) . 

In addition to providing a new handle on the physics of a problem, 

the presence of an oscillation holds practical consequences in 

calculating scaling exponents. These are most strongly expressed 

when the amplitude of the oscillation is large and its period is long 

compared to the available data. At such times the oscillation 

introduces a strong bias into the measurement; a good example is 

found in the Zaslavsky attractor (Zaslavsky, 1978; see also Badii and 

Politi , 1985 and Grassberger and Procaccia, 1983b). It is not 

possible to determine the exponent of a data set via standard 

techniques unless the range of available data is greater than the 

period of the oscillation. When the range is less than a period, the 

exponent may appear to be "scale dependent"; such an insufficiently 

resolved fractal set may be confused with a multi-fractal set (see 
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Section 4.4). 

Section 3.3: Oscillatory Component of Scaling in 

Inhomogeneous Fractals 

In the next two sections we determine JJ for two inhomogeneous 

fractal sets. While we shall use the Feigenbaum set and the Henon 

attractor as examples, the method should be useful in the analysis of 

many fractal sets and attractors in general, and in the analysis of 

some experimental results. In the latter, its usefulness will vary 

with the quality of the reconstruction. At present, most attractors 

which are reconstructed from experimental time series are formed 

using a delay time related to the first zero of the autocorrelation 

function. When this method is used to determine the delay time, the 

reconstruction process tends to squash the folded portions of the 

attractor . As Fraser and Swinney (1986) have pointed out, the 

autocorrelation reflects the linear dependence of the data, while the 

mutual information measures the general dependence. (See Fraser and 

Swinney, 1986 for definitions and an application to experimental 

data.) Their alternative method of choosing a delay time by 

minimizing the mutual information yields a reconstruction with a much 

more self-similar appearance. We conjecture that an improved 

reconstruction will expose the presence of the oscillation in many 

physical systems. Judging from Figure 1 of Fraser and Swinney 

(1986), the oscillation may already be visible in the data from the 

Belousov-Zhabotinskii reaction. 
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Our first example is generated by the logistic map 

(3.9) 

There are many introductions to this mapping, due to its widespread 

application. See, for instance , May (1986), Feigenbaum (1980), and 

Cvitanovit (1983). A general treatment of maps on the unit interval 

is given by Collet and Eckmann (1980). The familiar bifurcation tree 

for this map is shown in Figure 3. 4. This plot is constructed by 

iterating the map 210 times starting from x 0 - ~ for each of 800 

values of A on the interval 0.625 ~ A ~ 1.0. Treating the first 28 

values of x as transient, we plot the remaining points. The map 

shows "attracting" orbits of varying period with A. The values at 

which the orbital period doubles from 2n to 2n+l are related 

geometrically by 

lim 
n-+oo 

4.6692016 (3 . 10) 

while ratio of successive branch splittings (see Figure 3.4) at An 

and An+l scale as 

2.502907875 (3.11) 

The infinite period orbit at A ~ Am z 0 . 837005134 which contains 

the point x - ~ is known as the Feigenbaum set. Interest in this 

set comes, in part, from the many observations of period doubling in 

nature; Cvitanovit (1983, Table 9 . 1) tabulates the values of aF and 
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oF obtained from experimental observations of ten systems . Libchaber 

et al. (1986) have measured f(a) for the equivalent set reconstructed 

from a convection experiment and found close agreement with that of 

the logistic map. 

The Hausdorff dimension of the Feigenbaum set has been calculated 

by Grassberger (1982) as 

dsa - 0.5381 ± 0.0006 

Hentschel and Procaccia (1983) calculate the generalized dimensions 

d0 - 0 . 537 dl - 0.518 d2 - 0. 501 

while Grassberger and Procaccia (1983) report 

v - d2 - 0.500 ± 0.005 

Our calculation of C2 (l) for a 213 point approximation of the 

Feigenbaum set yields a linear least squares fit of log C2 (l) to 

log(l) with slope 

v 0 . 496 

Structure in the departure from linear scaling is shown in Figure 

3.5a where we plot (log C2 (l) - v log l) as a function of log l. The 

first 8 iterations are shown in Figure 3. 5b . Since the pattern of 

future iterates is known, Halsey et al. (1986) compute 
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log 2 
d+<X> ~ ::::: 0 . 37775 

log Q2 
F 

and (3 . 12) 

log 2 
d_<Xl - ::::: 0.75551 

log aF 

In obtaining the results below, we analyzed a 219 point approximation 

of the set. C 1 (~,i) is shown in Figure 3.6a. Here we see regular 

oscillation with a period approximately equal to aF . Removing the 

mean slope over scales (0 . 1/a~) to 0 . 1 yields the oscillation shown 

in Figure 3.6b , and a value 

0.754. ((.1/a~) < i < . 1) 

Since x 0 - ~ is located in the least dense region of the set, we 

expect ~(x0 ) - d_"'. Next, we consider the densest region of the set 

which is located near the first iterate of x 0 under the map, x-x1 : 

C1 (x1 ,i) is shown in Figure 3 . 7; the oscillation here has period a 2 . 

This is a result of the flipping of the set between adjacent factors 

of aF; for an identical orientation of the set, two generations are 

required (see Feigenbaum, 1980). 

The oscillatory component of C1 (x1 , i) is shown in Figure 3 . 7b, 

where the linear component removed had slope 

0.370 (( . 1/a~) < i < .1) 

Similarly 

0.380 . 
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Here we note ~(x1 ) = d+m• a reasonable correspondence in that x 1 is 

in the densest region of the set. Now consider xi for i > 2, at 

scales 

(3.13) 

where 

a-[~ log(i) + 1]. 

Since xi is located at an end point of the local image of the set, 

it will scale as either x 1 or x 2 , both of which have~= d+m· By 

understanding the manner in which these regions are coupled, and the 

crossover between the two, one should be able to calculate d2 

directly from d±m· 

Section 3.4: Observing the Oscillatory Component in a 

Strange Attractor 

In this section we examine the local scaling structure of the 

Henon attractor. Following a brief review of the mapping, the local 

correlation integral is evaluated about an unstable periodic point of 

the mapping. The periodicity of the 1/J function is then used to 

determine a ~ at this point. 

The Henon mapping represents the most general one-to-one quadratic 

mapping with constant Jacobian. The map is given by 

Yn+l b~ (3.14) 
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and its Jacobian is: 

~ -b. 

This system has been most thoroughly studied for the parameter 

values a-1. 4 and b=O. 3. For this parameter choice I J I < 1; thus, 

areas contract under the action of the map. There are no attracting 

fixed points, yet many initial conditions remain near the origin 

indefinitely; it is generally believed that the long-time evolution 

of these initial conditions is governed by a strange attractor. 220 

iterations of such an initial condition are shown in Figure 3. Sa . 

The region centered on the unstable fixed point discussed below is 

shown in increasing detail in 3 . 8b-e. The large scale structure of 

the attractor is shown in Figure 1.10. 

Once a mapping is chosen and the parameter values are set, it 

remains to pick a value of x about which to evaluate C1 (x, .e). A 

natural choice is a fixed point of the mapping. Fixed points satisfy 

x* 1 - ax* 2 + y*, 

y* bx* 

or 



* X 

* y 

-(1-b) ± J (l-b) 2 + 4a 

2a 

bx* . 

Let x+ denote the fixed point whose location is given by the positive 

root and x_ the point corresponding to the negative. For our choice 

of parameters, both fixed points are real. The stability of a fixed 

point is determined by linearizing the map about that point and 

determining whether small displacements grow. For the Henon map 

-2ax* 1 [ b 0 

where ox0 and oy0 represent the initial deviation from (x* ,y*) and a 

superscript 1 indicates the value of the variable after one 

iteration. Solving for the eigenvalues, we find 

* >.. 2 - - ax 

Consider x+ where 

x* 0.63135448 ... 

y* 0.18940634 ... 

We obtain 

.. . [ i. l 
[ i. l 
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).1 0.15594632 .. . 

>.2 -1.92373886 . . . 

and 

where we have used the fact that 

Since >.2 < -1, x+ is unstable and a point will alternately move from 

one side of x+ to the other, relative to ez. Almost all initial 

conditions near x+ will move away along e2 increasing their distance 

from x+ by a factor of I.A 2 1 per iteration. At x+, the unstable 

manifold lies along e2 . Since I.A 1 1 is less than one, there exists a 

stable manifold which lies along e1 . Points which fall exactly on 

the stable manifold approach x+ asymptotically. A similar analysis 

shows x is also unstable. 

In Figure 3.9 we present the results of a calculation of C1 (x,i) 

using a 224 iteration run. The mean scaling behavior and oscillation 

are evident. The flattening of the curve at small i indicates that 

there is insufficient data to describe the attractor at separations i 

less than 10- 4 . A least squares fit to the data over the range (10- 4 

< i < 0.06) provides an initial estimate ~ ~ 1.319. Removing this 

trend yields the first approximation of 1/J(i), which is shown in 

Figure 3. 10. Inspecting the residual we suspect that ~ has been 



underestimated due to a bias from the small i points. The error in~ 

is minimized by fitting an integer number of oscillations. In 

general, a function of the delayed difference, f(~(i) - ~(i-x)), may 

be used to obtain an estimate of the period; in this case, the period 

corresponds to the eigenvalue of the stable manifold of the fixed 

point. Once the linear features of the attractor are .established by 

the dynamics (Figure 2.8a), one iteration of the map acting on this 

pattern will produce a similar pattern reduced by a factor of A1 and 

stretched longitudinally by a factor of A2 . 

Cawley and Yorke (1986 preprint) have pointed out that meaningful 

error estimates for dimension/exponent estimates are difficult to 

obtain. They show that the residual of the least squares fit is a 

poor indicator of the goodness of the estimate. We now see why this 

is true: the residual is a combined measure of the mean scaling and 

the magnitude of ~(1). Since the residual does not discriminate 

between the two, a set with a ~(1) function of large amplitude--

such as the Zaslavsky attractor or the 100010101 Cantor set2 -- will 

produce a "poor fit" when exact values of the scaling exponents are 

used. Worse still, if a small portion of the oscillation is 

2 In this Cantor set there are large bands of log i in which no 
point pairs are separated by i; these correspond to the "000" 
segments. In such a band the set scales as if it had dimension zero. 
Alternating regularly with these regions (in log i) are 
"overpopulated" bands, so that the scaling over factors of the 
similarity ratio has exponent equal to the Hausdorff dimension . 
Similarly, the Zaslavski attractor resembles a collection of linear 
bars of finite width; it scales with exponents near 1 at the outer 
scales, near 2 when at scales comparable to the width of the bars, 
and then near 1 again when the structure of individual bars is 
observed . In this case, the structure at smaller scales has not yet 
been confirmed. 
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analyzed, this residual may be (arbitrarily) small, while the 

estimate of the scaling exponent is incorrect by a great deal. This 

is a fundamental difficulty in the determination of scaling 

exponents; for a reliable estimate to be made an indication of the of 

the structure of smaller scales is needed. Although not conclusive, 

an oscillatory component provides such evidence. The oscillations 

are robust, and their appearance is an indicator that the scaling 

region has been reached. 

To obtain a qualified estimate of ~. we examine the fine structure 

Instead of evaluating Equation 3.1 directly, we 

record the number of points whose separation from xus is between l 1 

and l 1 + ~l (similar to the method applied to the correlation 

integral in Chapter 2). A typical calculation uses 100,000 bins to 

record these separations. The Cantor function C1 (x,ij) is calculated 

as the normalized sum over bins 0 to j. 

We estimate~ from the statistics of ~(i), 

log C1 (x,slj) -log C1 (x,lj) 

log s 
(3.15) 

where s is the period of the oscillation. In practice, the value of 

lj is chosen aligned with the bins and the value of C1 (x, slj) is 

interpolated (on a logarithmic scale, the bin density is much greater 

at this separation). The calculation is repeated for a number of 

different ij 's (typically several thousand) spanning one period of 

the oscillation. The error in ~ is determined from the scatter of 

these estimates; ';L(l) for the Henon case is shown in Figure 3.11, 

-----------
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along with the oscillation. Each tick mark on the vertical ~ scale 

corresponds to one standard deviation of the distribution. 

Henon attractor about xus we find 

~- 1 . 347 ± 0.003 

For the 

where the uncertainty corresponds to one standard deviation of ~. It 

is evident from Figure 3.11 that the scatter is biased in sign and 

concentrated in the fine structure regions of the oscillation -- this 

is a direct result of the inner cutoff . ~(.R.) shows a self-similar 

structure which may be taken into account. The bias of ~(i) is even 

more pronounced in the Feigenbaum set (see Figure 3,11'). 

have 

~(x0 ) - 0.75511 ± 0.002 

Here we 

If in place of the mean we consider the distribution of the first 10% 

of the data (in the flat region of~), we have 

~(x0 )- 0 . 75551 ± 0.00001 

Returning to the Henon case and interpreting Equation 3.6 with d ~ 

~ and o 4 A yields an effective filling factor p of 

p 2 IJ log >. 1 = 0.082 . 

This means we expect each blowup in Figure 3 . 8 to contain a twelve­

fold increase in the number of points (corresponding to 1 /p) . The 

observed ratios are rab - 12.40; rbc = 12.89; and red - 12.22 where 

the subscripts denote the two frames considered . 

The Cantor function evaluated about an unstable period 2 point is 

shown in Figure 3 . 12. The periodic structure is evident. Similar 

structure has been observed about higher order periodic points. 

How is ~ related to the more popular scaling exponents? First, ~ 
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provides a bound on d-m· Specifically 

(3.16) 

This inequality follows from the sensitivity of dq to the 

distribution on the object. d_m reflects the scaling structure of 

the least dense singularities of the set; each value of ~ reflects 

the properties of one (or more) members of the set, thus relation 

3.16 follows. 

If the singular spectrum is dependent on the periodic orbits, then 

the details of f(a) may vary when evaluated on different Poincare 

sections. The number of intersections that a given unstable periodic 

orbit makes with a surface of section varies with the surface taken 

and since f(a) is sensitive to the distribution of singularities , 

details of f(a) for a given attractor may vary from section to 

section. It is shown in Chapter 4 that f(a) of a self-similar set 

may be altered by projection. This is true even in the case that the 

topological dimensions of the two Euclidean spaces (the original 

embedding space and the space into which the projection is made) are 

greater than the Hausdorff dimension of the set . If f(a) is to 

provide a useful characterization of a system it may be important 

that the full embedding space be used , or the section chosen with 

care . 
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Section 3.5: Conclusions 

To conclude we recall the relation of C1 (x,.£) to C2 (.2) . For a 

given set X, consisting of N points, 

1 N 

Cz (i) I C1 (xi ,i) 
N i - 1 

(3.17) 

this implies 
N 

A(i) i 11 ex: I Qi (i) i" i (3.18) 
i•l 

The point is that, since the sum of power laws is not, in general, a 

power law, the ai contain information about the scaling. If the 

global scaling at small i is dominated by the set of unstable 

periodic points, the number of terms in the sum is reduced. 

The relative strengths of the Qi cannot be fixed, otherwise 

11 - max (p. i ) :::::; d_c:o for i sufficiently small. This requires that the 

dynamics renormalize the ai as additional points are considered so 

that Equation 3 . 18 holds. We are currently studying the manner in 

which this balance is maintained . 



FIGURE CAPTIONS 

Figure Caption 

3.1 The Cantor function of the 101 set about x=O. Note the 

linear coordinate axes. 

3.2 The Cantor functions on a log-log scale for the 

3.3 

3.4 

3.5 

3.6 

3.7 

3 . 8 

3.9 

3.10 

(a) 101 set at x=O, 

~ 
log 3 

(b) Koch curve, and 

(c) Henon attractor about the unstable fixed point 

xus· 

C1 (x,i) for the 101 set evaluated at several x values. 

Bifurcation tree for logistic map. 

An approximation of the Feigenbaum set generated by 
recording the first 213 iterations of the point x ~ ~ 
under the logistic map with A - A00 • 

(a) C1 (~,.£) for the approximation to the Feigenbaum set 
(see Figure 3.5) and (b) ~ (x0 ,.£) for this set. 

(a) C1 (x1 ,.£) for the approximation to the Feigenbaum set 
(see Figure 3.5) and(b) ~ (x1 ,i) for this set. 

The structure of the Henon attractor near xus. Each 
panel is a close up of the preceding panel. Each panel 
is centered on the unstable fixed point and the scale of 
each panel is a factor of A larger than the preceding. 

The local correlation integral, C1 (xus ,.£), evaluated 
for a 224 point approximation of the Henon attractor. 

The first approximation of ~(xus ,.£) determined by 
removing the linear trend computed from C1 (xus ,.£) first 
approximation. 

3.11 (a) One cycle of ~(xus ,.£) for the Henon mapping. 
(b) The matching value of ~(.£), the i axis 

is displaced from (a) by one cycle. 

-- ------- ------
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3.11' (a) One cycle of ~(x0 ~) for the Feigenbaum set 
(b) The matching valu~ of ~(~). the~ axis 

is displaced from (a) by one cycle. 

3.12 C1 (xperiod 2 ,~) for the Henon mapping 
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CHAPTER IV Lacunarity in Nature 

The concept of self-similarity has received widespread use in a 

variety of disciplines . Inherently self-similar models have been 

constructed for the investigation of cosmology (e . g. Fournier, 1907), 

diffusion limited aggregation models of dielectric breakdown (Sander, 

1987), and cascade theories of fluid turbulence (Novikov , 1966; 

Mandelbrot, 1974) . The intrinsic oscillations in the scaling of 

fractal structures which appear in many of these models will be 

useful in making the comparison of theory with experiment. In this 

chapter we will investigate the lacunarity oscillations in the first 

and third of the examples mentioned above . 

Turbulence has been called "the unsolved problem of classical 

physics" (Cvitanovit, 1984). Here we are concerned with a subclass 

of this problem: the description of three-dimensional, fully 

developed fluid turbulence . The meaning of these adjectives is made 

clear below. In the first part of this chapter we demonstrate the 

role of the oscillation in the f3 model of fully developed fluid 

turbulence due to Frisch, Sulem, and Nelkin (1978). We show, via the 

f3 model, that oscillations in the scaling statistics are expected as 

a consequence of the fractal nature of turbulence; predict how the ~ 

functions of different moments of the velocity distribution are 

related; and interpret a new scaling parameter for turbulence. 

Several reasons motivate our choice of the f3 model . The derivation 

of the f3 model is straightforward and the origin of the oscillatory ~ 

function fits neatly into its development (Smith et al . , 1986). 

Secondly, recent observations by Anselmet et al. (1984) are 
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compatible with and even suggest the existence of an oscillation of 

reasonably large amplitude in the velocity structure functions of 

turbulent flows . Finally, other investigators have interpreted the 

change of slope of the statistical moment versus the logarithm of 

length scale as an indication of multi-fractal behavior. We do not 

believe this is always a correct interpretation and demonstrate a 

characteristic which may distinguish multi-fractal scaling from 

scaling with an oscillation. 

The first part of this chapter is organized into four sections . 

Section 4.1 contains a brief review of the terminology and 

phenomenology of the study of turbulence. In Section 4.2 the 

standard derivation of the ~ model is presented. Section 4. 3 

provides a generalized derivation in which the oscillation is seen to 

arise naturally, notes the favorable comparison with experimental 

results, and contrasts the behavior of statistics on a multi-fractal 

and a fractal. 

The second portion of this chapter contains an investigation of 

scaling arguments in cosmology. The distribution of visible matter 

is non-uniform at scales up to at least 50 megaparsecs (Lapparent, 

1986). Evidence for the nested behavior of this distribution (at 

least at small scales) is stronger than in the case of turbulence. 

In Section 4.5, the Fournier universe is used to show the 

implications of viewing a nested scaling structure in projection . 

Dynamical considerations are noted through the Kida equation and a 

new generator of such distributions is discussed in Section 4 . 5 . 

After noting the effects of projection in Section 4.6, an analysis 
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of current observations is presented in Section 4.7. 

Part I Lacunarity in Fluid Turbulence 

Section 4.1: Characteristics of Turbulence 

Richardson (1922) was the first to propose that a turbulent flow 

field could be envisioned as a collection of eddies of all sizes. 

Richardson's observation was that an active region of size .£ is 

spatially composed of several smaller more intensely active regions. 

The distribution of the largest structures is neither spatially nor 

temporally uniform. Hot wire anemometer measurements of turbulent 

velocity fields by Batchelor and Townsend (1947) quantified this 

behavior which they termed "intermittency." A typical velocity trace 

recorded at a fixed position in a turbulent flow reveals long periods 

of quiescence interrupted by irregularly spaced bursts of activity; 

this behavior is the distinguishing characteristic of intermittency 

in turbulence. Intermittency is a property of small scales; active 

bursts are not space-filling. The behavior of a temporal trace is 

related to spatial intermittency through to the mean advection of 

this flow: it is assumed that the active regions that are carried 

past the fixed detector provide a good representation of the flow's 

characteristics. Landau (1944) suggested that the transition to 

turbulence could be understood as the activation of more and more 

Fourier modes; while this model of the transition to turbulence is 

not universally excepted, the swirls visualization has become the 

textbook model of fully developed turbulence (Landau and Liftshitz, 

1979 §31). 
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Consider a fluid in turbulent motion : if the flow is to maintain 

itself, the constant dissipation of energy by viscosity at the 

smallest active scales, must be balanced by an inflow of energy. It 

is often the case that this source introduces energy into the system 

at large scales. In a turbulent energy spectrum (see e . g. Tenekes 

and Lumley, 1972) a range of wave numbers over which the energy 

scales as the 5/3 power of the wave number is often observed. This 

was predicted by Kolmogorov (1941) on the basis of dimensional 

arguments. This inertial range corresponds to length scales 2. such 

that 

(4 . 1) 

where 2.
0 

is the scale at which energy is introduced into the system ; 

i.d is the scale at which viscous damping becomes important. As 

emphasized by Frisch and Morf (1981), the scales below i.d do not 

constitute a strictly damping region; both damping and inertial 

effects play a part at these scales. 

The goal is to follow the path of the energy introduced into the 

system as it cascades to smaller length scales (larger wave numbers) 

and is eventually dissipated by viscosity. We will frame our picture 

in wave number space (k-space) and consider the energy contained in 

"eddies of size 2.", or equivalently, the energy in a thin spherical 

shell of k space with radius k ~ 2~/2. . Kolmogorov assumed the energy 

cascade was local in this space, passing from one shell to the next 

until the dissipative range was reached at large k . This assumption 

is often considered equivalent to saying that energy is transferred 

only between eddies of similar sizes. Note that in this picture an 
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eddy is something other than a blob of swirling fluid with a 

characteristic size i. There are special cases in which the swirling 

blob picture may be shown to have its energy concentrated in a fairly 

narrow band of k values near r 1 (see, e.g. Beran (1968), 344); 

Townsend (1956) relates the spatial structure to the k spectrum for 

several simple distributions . Nonetheless, the energy in eddies of 

size i is the energy in a region of k space defined by an integral 

over the entire spatial domain. 

Turbulence is considered fully developed once a dynamic 

equilibrium is established and the energy dissipated by viscous 

forces, E, in some characteristic time of the system, t, is equal to 

the rate at which it is introduced into the system. 

quantity by f, we have 

f E 
E 
t 

Denoting this 

(4.2) 

where ( .. . ) denotes ensemble average and v is the viscosity of the 

fluid. 

Scaling behavior in fluid motion is not unexpected. It is easily 

seen (eg. Benzi et al., 1984 or Frisch, 1983) that the Navier-Stokes 

equations for the velocity fields v(x) of a viscous fluid (with to no 

external force) 

atv(x) + (v(x) · V) v(x) = -Vp/p + vV2 v(x) (4.3) 

are formally invariant under the scale transformations 

r ~ ar, v ~ ah v, t ~ al-h t, v ~ ah+l v; a> 0. (4.4) 

For arbitrary values of h. In the above p is the density and p the 

pressure . 
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Under this transformation, the energy dissipation scales as is 

3h-l 
f. -+ (1 f. 

With the assumption that the relevant nonlinear interactions are 

local ink space, the invariance of the energy dissipation 

3h-l 
(1 f. - f. 

In this case, 

lim 
ll.x-+0 

and, 

ll.v 

therefore, 

lim 
ll.x-+0 

v(x) - v(x+t.x) 
1 

the velocity gradient is singular. 

(4.5) 

(4.6) 

Kolmogorov 

(1941) originally assumed that the set of singular points was space 

filling. In an attempt to understand the spatial intermittency of 

turbulence, Landau (1944) pointed out that if the set of singular 

points had a dimension less than three, the energy dissipation would 

be a fluctuating quantity in space. Novikov and Stewart (1964) 

provided the first self-similar mathematical model of the energy 

cascade. These ideas were extended by Kraichnan and culminated in 

the fi model of Frisch, Sulem and Nelkin (1978). 

The difference between turbulent and laminar flow is often 

visually apparent. The complexity of a turbulent field suggests a 

statistical description, such as the energy spectrum. Some 

experiments seek to provide a detailed history of individual fluid 

elements. One approach is to follow the path of a "passive tracer" 

suspended in the fluid and reconstruct the fluid motion from that of 

the tracer. The composition of the tracer may vary considerably; 

Richardson and Stommel (1948) used parsnips to follow eddy motion on 

the surface of a river, while a line or sheet of hydrogen bubbles is 

1'63 



often used to trace motions within a fluid system. In turbulent 

flows, fluid lines are expected to grow exponentially (Corrsin, 1950; 

see also Cocke, 1969). Sreenivassen et al. (1986) follow a line of 

hydrogen bubbles in a turbulent shear flow, measuring its length as 

it is advected downstream. The line is stretched and folded by the 

flow, and fractal structures are observed to develop. The task is 

then to relate the fractal distributions of the tracer to the motion 

of the host fluid. In Chapter 5, it is shown that while exponential 

growth of a material line of a tracer is a necessary condition for 

turbulence, such observations are not sufficient to infer turbulent 

flow. It is demonstrated that such tracer distributions may develop 

very complex, self-similar structure in very simple, non-turbulent 

flows; exponential growth of a material line does not imply 

turbulence. The development of this self-similar structure has been 

recently observed in a surface flow by Chaiken et al.(l986,1987) . 

When describing the velocity field , the moments of the velocity 

distribution (called the velocity structure functions) provide a 

common vehicle for the presentation of experimental results and their 

comparison with theory . In a homogeneous, isotropic flow, the pth 

order velocity structure function is defined as 

(( ov(£) )P) - ((v(r + £) - v(r))P) (4.7) 

where r represents a point in the flow and £ defines a separation 

vector. For isotropic turbulence, all orientations of r and £ are 

considered and the average is taken over physical space. For a jet 
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flow (e . g. Anselmet et al . , 1984) only the component of the velocity 

parallel to the mean flow is considered and the displacement is 

likewise taken only in this direction. High order structure 

functions are often normalized by the second order moment, forming 

the nondimensionalized structure functions, 

p/2 
(4.8) 

In the inertial range, the structure functions are observed to 

scale as a power of i.. Differences in the relationship between 

exponents of different moments provide a method to distinguish 

between models experimentally. In Kolmogorov' s 1941 theory, the 

structure functions are independent of p in the inertial range. As 

shown below, the ~ model implies a linear dependence on p while the 

lognormal model (Kolmogorov, 1962) has a quadratic dependence. 

Anselmet et al.'s experiments fall between the last two , but in the 

high order moments , the dependence appears to depart from linearity . 

The ~ model has spawned a host of more realistic progeny including 

the a model (Lovejoy, private communication) and the random ~ model 

(eg. Benzi et al. ,1984) . The results of our own generalization may 

be straightforwardly (if not easily) applied to the more modern 

versions . The main point of this chapter is that in addition to the 

mean scaling , the fractal nature of turbulence implies an oscillatory 

behavior in the sp (ln(i.)). 

(1964). 

This result was foreseen by Novikov 
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Section 4 . 2 The f3 Model 

The f3 model considers the energy cascade of a three dimensional 

flow . Consider starting with an active region at the outer length 

scale, 2. 0 . The region is divided into A3 smaller subregions 

representing eddies "nearby" in k- space . The original active eddy 

feeds its energy into N active eddies of size 2. 1 = 2.
0

/A. Figure 4 .1 

attempts to show this schematically . After n generations, there are 

Nn active 'n-eddies' of scale i.n where 

(4.9) 

Frisch et al. (1978) take A equal to 2, our departure from their 

notation stems from a desire to track the role of this parameter . 

Kolmogorov' s space - filling model corresponds to the case where all 

A3 n n-eddies are active. In the f3 model, N is less than A3 - not all 

of the subregions are active - and the cascade continues only within 

a fraction of the space. In this model, the small scale activity is 

forced to be nested within larger active regions. 

Denoting the active fraction at each step of the cascade as {3 , we 

find 

(4 . 10) 

In order to compute the structure functions for the f3 model, it is 

necessary to determine the typical velocity difference across a 

region of size 2.. After n generations , the fraction of the original 

volume occupied by active eddies is 
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f3n (.X) 

.x-<3-Dln. 

These n-eddies will contain an energy per unit mass 

v 2 
n 

(4.11) 

(4.12) 

where vn is the typical velocity difference at scale in. Taking an 

energy transfer time, tn, to be on the order of the eddy turnover 

time, in/vn, we obtain the energy transfer rate 

as 

(4.13) 

Imposing equilibrium in the energy transfer rate (En - f for all n) 

then yields 

v n = € 1 I 3 in 1 I 3 f3n ().) - 1 1 3 

In Frisch et al (1983), .X- 2 and f3n takes the form 

Assuming 

they find 

= €113 i 113 
n 

f3 

(4.14) 

(4 . 15) 

(4.16) 

where D is the Hausdorff dimension of the set of singularities of the 

velocity field and is related to the number of offspring through 
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(4.17) 

A value of D less than three implies the set of singularities is not 

space filling and hence spatial intermittency. 

Now consider the velocity structure function of f3 model flows. 

The evaluation Equation 4.7 requires the average velocity difference 

as a function of space. In the f3 model, the velocity difference 

across an active region of scale ..en is simply vn (..en). Only a 

fraction /3n (>.) of the total volume is active; the remainder is 

inactive and therefore does not contribute to the average. The pth 

order structure function is 

z /3n().) ( 6vn(ln)P) 
active 

(4.18) 

where ( ... )active means the average is taken only over active 

regions. Substituting from Equations 4.15, 4.16 and 4. 17, the 

structure functions are 

f P I 3 ..en P I 3 ( t J r P 

where 

+ (3-D)(3-p). (4.19) 

Similarly, the dimensionless structure functions are 

where 

~P - (3-D)(2-p)/2. (4 . 20) 

The slope of the f3 model structure functions varies linearly with 
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the order of the moment. This is the result of Frisch et al. 

Section 4.3: ~ Model Oscillations 

We return now to the velocity equation (4.14) and repeat the 

analysis retaining A explicitly. In doing so, we will observe that 

while the scaling remains independent of A a generalized similarity 

ratio is introduced. At this point ~n(A) is defined only at i ~in. 

We want to transform~ into a function for arbitrary i. First recall 

that for an arbitrary magnification a, the general solution to a 

scaling for a set of dimension d and similarity ratio a implies 

C(ai) -ad C(i) exp{~(log(ai)/log(a)) - ~(log(i)/log(a))} 

where ~(log(i)) is a periodic function of period one {for a - ma and 

integer m we recover C(ai)- ad C(i)}. 

Generalizing Equation 4.11 we have 

~n(A) ~ ~(A,n)- A-n< 3 -D) exp { f ( -n log(A) J _ f (log(i/ in) J } 
log(L) log(L) 

(4.21) 

where f(logi) is a ~ function with period log L. 

Solving Equation 4.9 for n, we find 

n - -
log(i/ i

0
) 

log(A) 
(4.22) 

where we have dropped the subscript on i along with the restriction 
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to integer n . Substitution of this expression into Equation 4. 21 

yields the desired expression for f3 as a continuous function of i. 

Specifically 

f3 ( n ) - ( !:._ ) - 3 + D { f (1 0 g (i /;_a ) ) 
~ ;_o exp log(L) -f(o)} (4.23) 

where A has cancelled and a new length ratio L characteristic of the 

flow has entered. With this form for {3, the velocity becomes 

v(i.) _ €1/3 ;_1/3 

(4.24) 

and the oscillatory correction is present in the structure function 

as 

(4.25) 
and 

(4.26) 

If the intermittent nature of turbulence is due to a self-similar 

structure, we expect there to exist oscillations about the mean 

scaling of the velocity structure functions. We reiterate here that 

these oscillations are a result of the fractal nature of the system , 

not a particular result of the f3 particular model used. Observing 

the oscillation may prove quite difficult; yet such an observation 

would be very valuable in that it would provide additional parameters 

in the description of turbulent flows. Since the energy cascade is 
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not strictly local in k space, one might interpret L as an indicator % 

of the range over which eddies interact; specifically, the logarithm 

of the ratio of the outer radius to the inner radius of the k shells 

which are coupled to the wave number in question. 

While Equation 4.25 does not determine the amplitude or period of 

the oscillation, it does predict a relationship between the 

oscillations observed in structure functions of various orders; 

specifically that their periods are equal and their amplitudes 

determined by the extreme values of ~. The p model ~ function yields 

(4.27) 

In the p model, the magnitude of ~ increases linearly with p. A 

central assumption here is that the singularities of the set are 

governed by a single self-similar set, which may be described by a 

single dimension and one basic ~ function. The comparison with 

multi-fractals is given below. 

Oscillations have been observed in the structure functions of 

shear jet turbulence in a recent experiment by Anselmet et al. 

(1983). They note "oscillations, which are only weakly manifested 

for n 10 and 12, are rapidly amplified at larger n," where n is the 

order of the moment. From their Figure 13, we judge the period of 

oscillation appears to take on the same value for each moment . 

Independently of Anselmet, van der Water et al. (1987) have observed 

what they believe to be a robust oscillation in the reconstructed 

attractor from the velocity measurements in a turbulent (air) 

boundary layer. 

The source of these observed oscillations has not been 



established. They may result from factors other than those discussed 

here. Nonetheless, oscillatory corrections are expected if the 

fractal on .which the set of dissipation lives is lacunar, and will 

assist in determining the characteristics of that set. It has been 

suggested that the oscillation provides an insight much more deeply 

coupled to the underlying physics than the mean scaling. Indeed, 

Novikov (1986) has remarked that linearly scaling models should be 

classified as "pre-models": such models are wrong. The physics is to 

be found in understanding the deviations from pure scaling. 

The term "multi-fractal" was coined by Frisch and Parisi (1983) to 

describe a set constructed from a combination of fractal sets each of 

differing Hausdorff dimension. The relevance of multi-fractals to 

turbulence arises in the limit of zero viscosity. In this limit, the 

Navier-Stokes equations (4.3) are invariant under transformations 4.4 

for any value of h. Assuming that singularities of different orders 

do exist, different moments of the velocity structure functions will 

be sensitive to the distribution of different sets of singularities 

(see Frisch and Parisi for more details). This would result in a 

deviation of the slope of SP vs 1 with increasing p. Such a decrease 

is observed by Anselmet, although it is small compared to the error 

estimates. 

If the scaling of different moments are governed by independent 

fractal distributions, each may have its own t. In the f3 model 

above, only one set is considered and a single dimension and 1/J 

function are predicted. Experimental discrimination of multi-fractal 

scaling may prove very difficult; individual sets should dominate 
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only at small separations. If such sets have different dimensions, 

the arguments above establishing a unique period for all moments 

should fail; conversely the observation of a single period would then 

cast doubt on a multi-fractal interpretation . 

Can a homogeneous fractal masquerade as a multi-fractal? Yes. If 

the range of observation covers only a portion of an oscillation of a 

homogeneous fractal, the variation in '1/J may be misinterpreted as a 

change in the mean slope . The two cases may be distinguished by 

increasing the range of observations, a difficult task at best. 

The change in slope of a given moment may increase at small scales 

either as a results of seeing a set with a higher dimension in 

projection or following the oscillation of a homogeneous fractal. 

Once the domain of the higher dimensional set is entered, it is hard 

to leave (without invoking a conveniently located inner cutoff) . If 

the slope is observed to decrease toward smaller scales, it seems 

more plausible to attribute the change to a homogeneous oscillation . 

Part II: Cosmic Lacunae 

Self-similar structures have a long history in astronomy; the large 

scale distribution of matter in the Universe inspired one of the 

first self-similar models of nature. At the turn of this century , 

Fournier (1907) proposed a strictly self-similar mass distribution as 

a solution to Olber' s paradox. The model describes a hierarchial 

universe, ordered at all scales though homogeneous at none. The 

dynamics and evolution of such a distribution have also been 
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discussed by Hoyle (1953). Our interest in the distribution 

originated in the hope of observing the oscillatory component of the 

scaling by examining the angular position of galaxies on the sky . 

The existence of such an oscillation was proposed by de Vaucouleurs 

(1970, 1971), who conjectured that the structure of the cosmos 

results in a clustering hierarchy of visible matter such that the 

number of clusters or aggregates of a given mass follows a scaling 

law, complete with a superimposed oscillation periodic in the 

logarithm of the length scale . While more modern distributions have 

been advanced (see Mandelbrot, 1977), the two primary features are 

demonstrated nicely in Fournier's example. With this simple model, 

the observational consequences of fractal distributions are explored 

and the effects of projection on the dq spectrum are noted. Next, 

the arguments of Kida are applied to model the dynamics of the cosmic 

cascade. Such processes typically give rise to distributions with 

self-similar geometry. A method for constructing such distributions 

is introduced to show that a complex array of filaments and voids 

appear in these simple cascade models. The chapter is concluded with 

a report of the correlation integral of nearby galaxies as a function 

of angular separation. No oscillation is found. 

Section 4 . 4: The Fournier Universe 

The Fournier universe consists of a structured hierarchy, each 

generation of which consists of seven "stellar aggregates" loc~ted at 

the vertices and center of a regular octahedron (see Figure 4. 2) . 
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The model, a Cantor set embedded in three dimensions, is a homogenous 

fractal of topological dimension zero; with a similarity ratio equal 

to 1/7 and a filling factor of 7, its capacity dimension is equal to 

one. 

Consider an nth generation aggregate (n-aggregate) of scale in. 

If N(in) represents the number of n-aggregates observed, then 

N(i) 

1/7 N(in) 

d 
x(logi) i o with d

0 
- 1 

and we have the gist of de Vaucouleurs' intuition with this simple 

model. 

The dynamics of these hierarchial models is described as a 

fragmentation cascade from an initially uniform density distribution. 

In the present case we consider a co-moving domain of the Hubble 

flow, specifically a box, B, whose sides define an outer scale i 0 . 

We shall assume i 0 sufficiently small that a Newtonian theory is 

applicable. During the first step of cascade, the initially uniform 

density of B clumps into aggregates of size i 1 ; the cascade 

continues, the nth generation consisting of Nn n-aggregates of size 

in. For in+ 1 sufficiently less than in, the impression of each 

generation remains observable. The population dynamics of such a 

process are described by the Kida equation 

~ 
dt r (4.28) 

where there are Nn n-aggregates with a lifetime Tn and each n-

aggregate produces r (n+l)-aggregates. 

We make the following assumptions: 
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(1) The ratio of the characteristic lengths scale of n-aggregates 

to that of (n+l)-aggregates is a constant, ~. independent of 

n; for contraction ~ > 1 . That is 

For all n. 

(2) The characteristic time for each n-aggregate is much less 

than the Hubble time, and scales as a power of the relevant 

characteristic length. Assuming some outer time scale T we 

have 

"n - T i~ • 

The additional assumption that the cascade has "run its course" 

before the current epoch implies 

dNn 

- 0 
dt 

so that 

- [ in-1 l 
.c-17 

Nn Nn-1 (4.29) 
in 

with solution 

X [ 

login l Nn I. - d 
n 

log ~ 

where 

and x is periodic with period one. Suggested values of d range from 

one to three; while ~ has been argued on various "physical" grounds 



to be equal to 5 by Hoyle (1953), equal to 7 by Fournier (1909), and 

equal to 10 by de Vaucouleurs (1971). 

While we expect only the n-aggregates to be visible, one may 

include the exchange of mass with an invisible background. The 

assumption that this interaction is also scaling gives 

(4.30) 

where ~ is the totality of mass in n-aggregates and the interaction 

term ~ is 

(4.31) 

In the absence of interactions with the background ~ is zero ; 

currently we cannot determine even the sign of ~-

If there is an interaction with a background mass, one would 

expect to detect it in the mass distribution among n-aggregates. 

Since 

the density between different generations is related through 

i 3-d 
Pn n 

i 3-d 
Pn- 1 n- 1 

where the rescaling of lengths by a factor of f3 eliminates any 

contribution from X· 

Substituting we find 
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l 
3-d+ JJ. 

Pn-1 

or 

p - (£) -(3-d+JJ.) 

With the additional assumption that the background mass is 

distributed uniformly, we have 

(4 . 32) 

The participation of the hidden mass is revealed in the mass 

distribution of the n-aggregates provided the hidden mass interacts 

more or less as above . 

Section 4.5: A Geometric Construction 

The Kida equation describes the dynamics of the cascade process; 

it suggests the structure will be fractal. We now introduce a 

generator for the construction of particular geometries. The 

procedure is straightforward and includes several distributions 

considered by other investigators as special cases . Despite the 

simplicity of the construction, the results have rich probability 

distributions. The output of this process could serve as the basis 

for Universe simulations similar to those of Soneira and Peebles 

(1978) who used nested, random distributions. 

In the present case , begin by choosing a set of N 3-vectors &i and 

a 3 x 3 generating matrix Gij(a , O , ~) of the form 



G - a 
[ 

cos(8) 
si~(O) 

-sin( B) 
cos(O)cos(cp) 

sin(cp) 

0 
-sin(cp) 

cos(cp) 
) . 

The zeroth generation consists of the 2N points 0 sj, located by 

j 2i 
i- 1, 2, ... , N 

j 2i + 1 

Defining the vectors &I - G g 1 , we get the first generation 

± g 1 ± g~ all combinations of ± 

(4.33) 

(4.34) 

(4.35) 

Repeat the procedure with g~ - G gi to form 2 s. And so on. A set s 

is formed with retention if, at each generation, the set includes the 

union of all previous generations. Usually this will not be the 

case; only the new members of the nth generation will be used in 

future iterations of the cascade as indicated in Equation 4.35 above . 

Five iterations with the particular choice a- 1/7, 8 - 0, cp- 0 

with N - 3 and 

produces the distribution shown in stereograph 1. Formed with 

retention, this is the Fournier Universe. By adjusting a, the 

capacity dimension of the set may be altered to yield any value 

between zero and three. When the measure is distributed uniformly in 

each generation, all the Dq are equal and f(a) is constant. 
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Section 4.6: Projection Effects 

A complete three-dimensional view of the local matter distribution 

in the Universe is currently unavailable to the observer. More 

accessible data consists of the angular position of galaxies as 

points on the celestial sphere. To simulate this in the Fournier 

case, position an observer at a 5th generation point 0. The observer 

at 0 records the distribution shown in equal area projection in 

Figure 4 . 3 . A set mundane and intrinsically uniform as the Fournier 

universe yields many apparent structures in projection. Considering 

the correlation integral as a function of the angular separation e. 
the observed scaling has a large oscillatory component. 

The effects of projection are more easily visualized by 

considering the members of the set which fall within the horizontal 

mid-plane of an octahedron (Figure 4.4). This set, called the 

equatorial section by Fournier, is also a homogeneous fractal; the 

filling factor is changed to five; thus 

d - d -0 q 
log 5 
log 7 

Since the similarity ratio is invariant under this procedure, the 

period of a l/J function of the set will not change. The two-

dimensional equivalent to projection onto the sky is projection onto 

a circle, of consideration of only the angular position, e. Locally, 

in angle, the set will appear as if projected onto a line. Assuming 

the coordinate system shown in Figure 4.4, projection onto the x (or 

y) axis gives p = 3, a - 5 while projection onto the line x - -y 

yields p' - 3, a' - j2 a; a homogeneous fractal when viewed in this 
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projection, may have a non-trivial dq spectrum. 

For non-zero values of 8 and ~. these structures are apparent in 

the unprojected distribution. In the case ~- 0, N- 1 with 

g- [ n 
the set lies in the z=O plane. With the identification 

s - a ei 9 

this set corresponds to the objects studied by Barns ley. 

notation the set consists of all points 

± 1 ± s ± s 2 ± 

In his 

Several probability distributions for this situation are shown in 

Plate 1; specifically, the cases 8 - 23 degrees, a - 0. 90, 0. 93, 

0. 96, and 1. 00 times the )2/2. The point illustrated here is that 

very complex conglomerations of filaments and voids are expected in 

fractal distributions. 

Section 4.7 Observations 

Recent observations reinforce the view that the visible matter in 

the Universe is distributed in a very nonuniform manner. In the 

slices in which unprojected three dimensional data are available (see 

Lapparent, 1986), large voids are observed. These are presumably 

cross-sections of huge, relatively empty bubbles . While spherical 

projection of a distribution in 3-d may disturb the dq spectrum, the 

simple examples above suggest that an oscillatory component may 

remain observable. The presence of an oscillation in the cosmic 
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distribution of visible matter would provide yet another new 

universal number - the period of the oscillation. In order to search 

for such an oscillation, we have examined the Zwicky and Shane 

Wirtanen catalogs. Analysis of the Zwicky catalog consisted of the 

direct evaluation of the correlation to a statistical sample of 3333 

galaxies supplied by Groth. We determine 

II - 1.8 in the range 0.05 < E < 1.0 . 

No significant oscillatory component was found. 

We also considered determining the dq from the Shane Wirtanen 

survey (see Peebles, 1973). Here we have not yet successfully dealt 

with the problem of variations from one plate to the next (this 

structure is apparent in color projections of the relative density) 

and the difficulty of taking into account the overlap of the plates. 
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Figure 

4.1 

4.2 

Captions 

The f3 model picture. 
regions of activity. 
composed of three 
regions. 

This figure illustrates nested 
Each active region of size .£ is 

smaller, more intensely active 

A three 
Fournier 
strictly 

generation (7 3 point> approximation of the 
universe. In this model, matter is nested in a 
self-similar hierarchy. 

4. 3 An equal area projection of the data in Figure 4. 2 as 
viewed from the point (a+ a 4 , a - a 4 , j2 (-1 -a2 - a 5 )) 

looking in the direction of increasing z (upwards). 

4.4 The "equatorial section" of the Fournier Universe, this 
section corresponds to the z-0 plane. 
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Chapter 5 PARTICULATE DISPERSAL IN A TIME-DEPENDENT FLOW 

Introduction 

In this final chapter we develop a model for the motion of tracer 

particles suspended in a time dependent flow. The model demonstrates 

the stability of the suspension of negatively buoyant particles to 

time dependent perturbations and the exponential growth in the length 

of a tracer line in a nonturbulent flow field. Treated as a 

dynamical system, the model equations differ from those discussed in 

chapters 2 and 3 due to their area conserving property. Examination 

of sedimentation in this model reveals highly structured probability 

distribution which we believe are a generic feature of area 

preserving maps and flows. A discussion of the accumulation of 

probability density with several area preserving maps is given in 

Appendix 4 while a mapping for the model discussed in this chapter is 

developed in Appendix 3. 

The behavior of particles suspended in a moving fluid is of 

interest in many areas of geophysics; in some problems, a better 

understanding of this behavior is a prerequisite for further 

progress . Three examples in which this phenomena is relevant are: 

(1) precipitation formation and the lifetime of volcanic aerosols in 

the atmosphere (Rogers, 1976), (2) suspension of plankton in the sea 

(Stommel, 1949), and (3) the evolution of growing crystals in a 

convecting magma chamber (Huppert (1984), Maxey and Corrsin (1986)). 

In each of these realizations, negatively buoyant particles may 

remain in suspension for a time far exceeding naive dimensional 

calculations and it is this aspect of the problem which we intend to 
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study here. 

As an initial step toward understanding such phenomena, we examine 

the motion of particles in a simple laminar flow which is periodic in 

time. Stommel (1949) developed the theory for the case of steady 

rolls while experimental investigations of a similar steady flow 

field have been performed by Tooby et al. (1977). Recently, 

experiments by Gollub (1987) have probed particle behavior in a time­

dependent convective flow similar to the flow considered here. The 

correspondence between a time-dependent surface flow and an area 

preserving mapping has been developed by Chaiken et al. (1986, 1987). 

In Chaiken et al. 's experiments, the correspondence between the 

laboratory flow and the mapping is sufficiently accurate that the 

mapping may be used to predict features of the flow . 

The motions of fluid particles in time-dependent flows have been 

studied by Aref (1984), who has modeled the stirring of a tank of 

fluid by alternately flashing, point vortices. The novelty of our 

approach is to allow a simple two-dimensional incompressible flow to 

become periodic in a smooth manner (Smith, 1984). Since the velocity 

field is completely determined as a function of position and time, 

the phase space is effectively three-dimensional, the lowest 

dimension permitting chaotic behavior . Such behavior is in fact 

observed . In addition to regions of retention and simple fallout , 

regions of chaotic particle motion are observed. The presence of 

chaotic motion holds deep implications for the sedimentation 

properties of the system . In the physical surface flow studied by 

Chaiken et al. (1986,1987), chaotic motion is observable through the 
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rapid evolution of tracer distributions. These effects are relevant 

in many fluid systems. 

Section 5.1 Steady Background Flow 

Consider small bodies immersed in a fluid whose motion is described 

by a stream function 11r(x, y , t) . The particle motion is governed by 

Newton's second law which takes the form 

(5.1) 
my- -6~a~(y + 11rx) m'g 

where a is the particle radius, ~ the viscosity of the fluid, g the 

acceleration of gravity, m the mass of the particle and the effective 

mass, m' adjusted for buoyancy effects, is given by 

m' 4 
-3- ~ a3 (p - Pf) ' 

where p is the particle density and pf the density of the fluid. The 

coordinate system is defined with the y axis vertical. 

If particle inertia is negligible , the particle trajectories also 

follow a stream function. That is , the trajectories are solutions of 

X 
(5 . 2) 

where the particle stream function is 

~(x,y , t) = v
5

x + 11r( x ,y,t) (5.3) 

and v
5

, the Stokes velocity, is given by 
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m' g (5.4) 
61rap. 

The Stokes velocity is the terminal velocity obtained by a particle 

in free fall through a quiescent viscous fluid . 

The reduced equations 5. 2 define a Hamiltonian dynamical system 

with one degree of freedom. The particle stream function ~ is the 

Hamiltonian; its x and y location form a conjugate coordinate momenta 

pair. When~ is independent of time, topological constraints prevent 

trajectories in such a system from displaying chaos. A time-

dependent stream function corresponds to a nonautonomous Hamiltonian 

system; this case resembles a system with a three-dimensional phase 

space. Such a system admits qualitatively different (particle) 

trajectories. 

The effect of steady convective rolls on the motion of a small, 

slowly sinking body was first investigated by Stommel (1949), who was 

intrigued by the observation that the yield of plankton tows taken 

along the direction of the wind was much more variable than that of 

tows taken perpendicular to the wind. Long cellular rolls generated 

by wind stresses (Langmuir, 1938) are often observed in oceans and 

lakes where they are made visible by floating debris trapped above 

subduction zones . Treating the plankton as negatively buoyant point 

masses, Stommel considered a vertical cross-section taken parallel to 

the direction of the wind. In this cross-section, the flow is 

approximately two-dimensional; treating it as such, Stommel chose the 

stream function 

W(x,y) - A sin X sin y (5.5) 
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Streamlines of this flow are shown in Figure 5 .1 . A similar flow 

field is associated with the first unstable mode of Rayleigh-Bernard 

convection (Chandrasekar, 1961). Substitution of Equation (5 . 5) into 

(5.3) yields Stommel's result: a stream function for the particle 

motion of 

~(x,y) - A sin x sin y + v
5 

x (5 . 6) 

In order to examine how the system behaves for a variety of parameter 

values, we normalize the Stokes velocity by the maximum fluid 

velocity and obtain 

v 
'"Y - _li...._ 

A 
(5 . 7) 

Particles for which -y ~ 0 are neutrally buoyant and they follow the 

streamlines of the fluid. All particles for which -y > 1 fall through 

the cells with horizontal displacement (in the x direction) as shown 

in Figure 5 . 2. The sinking particles have minimum vertical velocity 

in regions of maximum upward fluid velocity , this increases their 

residence time in the area, and hence their horizontal displacement 

due to the horizontal component of the velocity of the background 

flow. A similar type of behavior occurs for particles with -y < -1, 

which rise through the cells. For an intermediate value, -1 ~ -y ~ 1, 

there exists a re&ion of retention in which particles will execute 

closed orbits, remaining suspended in the cell. The boundary of 

this region is delineated by the largest closed orbit within the 

cell; here, the particle stream function has the same value it takes 

along the cell border. In the steady case, this orbit is 



infinitesimally close to the upward flow at the cell boundary. 

Motion along the cell boundary corresponds to separatrix motion in a 

pendulum. 

Stornrnel concluded that this simple picture explained why the 

plankton tows in the direction of wind were less variable than those 

taken across the wind . The large variations in yield observed in 

tows taken parallel to the rolls distinguish those that sample a 

region of retention from those that are taken in relatively 

plankton-free regions between them . Tows perpendicular to the rolls 

sample both the plankton-dense and plankton-free regions and hence 

are more uniform. 

Without loss of generality, we consider only negatively buoyant 

particles which are initially within the cell with a fluid stagnation 

point at x - 311/2 , y - 311/2 (the upper right quadrant of Figure 

5.1). Denote the stagnation point of the particle motion by x
5

• At 

this point the fluid velocity is upward in direction and equal in 

magnitude to the settling velocity of the particle. Therefore 

(5.8) 

For a given value of ~. the orbit of a retained particle is uniquely 

identified by the location of its right most crossing of the line on 

which the horizontal (x) component of the fluid velocity vanishes 

(that is, the line y = 311/2). The value of x at this point is 

denoted xr. In steady flows, paths of particles with different 

initial positions do not cross unless they follow the same streamline 

(the phase space is two-dimensional). 

Trajectories are determined by integrating equations (5.6) 
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numerically with a sixth order Runge-Kutta scheme using subroutine 

DVERK from the International Mathematics and Statistics Library 

( IMS L, 19 7 8) . Integration of trajectories in the steady flow is 

straightforward. The time steps used were typically on the order of 

t.t - 0. 01. Trajectories of integrable orbits were not sensitive to 

the precise value of t.t near this choice. 

First consider particles located within a region of retention . 

Figure 5.3 shows the period of the particle orbit as a function of xr 

for several values of ~- Near the fluid stagnation point (x - 3~/2, 

y - 37!/2). fluid parcels (and ~ - 0 particles) are in solid body 

rotation with period P 271". The orbital period increases with 

increasing xr, becoming infinite for a particle following the orbit 

along the ascending cell boundary. For a given value of 1. particles 

near the particle stagnation point have the minimum xr and lowest 

period orbits. As 1 increases, the period of these tightest orbits 

(xr z x
5

) also increases. All particles with xr > x
5 

are retained. 

The increase of the minimum period with ~ may be understood as 

follows. On translation of the origin to the fluid stagnation point, 

the particle stream function becomes 

~(x,y) - COS X COS y + ~ X (5.9) 

Expanding the velocity in a Taylor series about the particle 

stagnation point x
5 

, we have, to leading order, 

x(x,y) 
dx 
dy 
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or 

where 

and 

X It y 

y - It X 

Y ., Y - Ys 

dy 
dy 

(5.10) 

(5.11) 

Particles near the particle stagnation point are in solid body 

rotation with period 

p -
21r 

(5.12) 

This is the line in Figure 5 . 3. The cross marks along this line 

represent the locations of the stagnation points for numerical 

calculations with the parameter values specified in the caption . 

In discussing sedimentation, it is useful to distinguish the 

particles which remain in the original cell from those which do not. 

A particle which passes through the bottom cell boundary is said to 

"fall out" of the cell, as opposed to a "retained" particle which 

does not cross a horizontal cell boundary. The horizontal motion of 

the particles is strictly that of the fluid; contours of zero 

horizontal fluid velocity (the lines y= n1r, n = 0,1, 2, . .. , ) are 

barriers which the particles cannot cross. 

The symmetry of the flow field requires that the net effect of the 

fluid flow on the settling velocities, averaged over all space, is 
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zero . It is more interesting to examine the effect in the region of 

retention or the region of fallout separately. The area of the 

region of retention may be calculated as follows. Consider the 

region 0 ~ x ~ ~. ~ ~ y ~ 2~ (see Figure 5.2 a). Compute the area of 

the region of retention by integrating the contribution at each value 

of y from the point at which the streamline of value zero leaves the 

y axis until it returns. By symmetry this area is divided evenly by 

the line y = 3~/2. Thus 

2 
7 

where ~ax is defined by 

or 
'Y ~ax - -sin(~ax) sin(y). 

(5.13) 

(5.14) 

The fraction of the cell occupied by the region of retention is shown 

as a function of -y is shown in Figure 5.4. As expected, the fraction 

of area in which the particles are retained decreases from one for 

neutrally buoyant particles to zero for particles whose Stokes 

velocity is equal to the maximum fluid velocity . The region contains 

half the cell area for 

-y ::::: . 35 . 

Section 5 . 2: Phase Wrapping 

Before considering a time-dependent streamfunction, we examine 

the behavior of a cluster of particles introduced into the steady 
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flow of the type examined above. As a line of particles initially on 

. the upper cell boundary (completely outside the region of retention) · 

falls though a series of cells its length increases linearly with 

time. A line which is initially located entirely within the region 

is rolled up by the flow as shown in Figure 5. 5. The density of 

particles, when projected onto a horizontal plane, will evolve as in 

the upper panels of Figure 5.6. Visible particles distributed in a 

fluid roll, when viewed from above, may take on the appearance of 

the lower panels of this figure. The well defined structures in the 

projected density mimic the familiar phenomenon of vortex roll-up in 

suitably dyed fluids. 

A similar behavior has been discussed by Quin (1984) in a study of 

stellar dynamics. Quin follows the motion of stars from a light 

spiral disk as they interact with the gravitational potential of a 

massive elliptical galaxy. While shells are apparent in his 

simulations when the data are plotted in physical space (and in the 

observations), they are more striking when the data is viewed in a 

velocity-position space. 

phase wrapping. 

For this reason Quin calls the phenomena 

Stommel motivated his original study with a discussion of patterns 

formed in the sea. As shown by the studies of Quin, the problem has 

implications over a large range of scales; it may bear on such 

questions as dune formation in shallow water beaches, though the 

inertial effects may be significant in such a case. 
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Section 5.3: Experimental Observations 

The motion of small negatively buoyant spheres in an axisymmetric 

flow is easily observed in the laboratory. 1 An apparatus consisting 

of a cylindrical tank filled with a high viscosity fluid and mounted 

with its axis horizontal is sufficient. As the cylinder is rotated 

about its axis, the fluid quickly attains solid body rotation. Small 

spheres placed in the ascending flow are observed to follow nearly 

circular orbits about the particle stagnation point. If small air 

bubbles (which are positively buoyant) are present, they are observed 

to execute similar motion in the descending fluid on the opposite 

side of the tank. A detailed investigation of this type of system 

has been performed by Tooby, Wick, and Isaacs (1977), using a variety 

of test particles and rotation speeds. On time scales long relative 

to the fluid motions, the orbits evolve, the density and diameter 

of the test particle determining the specific manner in which its 

orbit evolves. The instability of closed orbits is due to inertial 

effects and the influence of the walls on finite diameter test 

particles. Particle-particle interactions are also observed to 

produce large perturbations in particle motions (J. Whitehead, 

private communication). In the cases of precipitation formation and 

magma crystal growth, the properties of a single particle change with 

time influencing the particle's motion, which in turn feeds back upon 

the particle's growth and the surrounding fluid. None of these 

1 The following observations were made with J. Whitehead and B. 
Frazel at the Woods Hole Oceanographic Institute (see Smith, 1984). 



complicating effects were considered in section 5.2 nor will be in 

what follows . 

Experimental techniques of flow visualization (e.g. Corrsin, 1950) 

rely on tracers assumed to be passive . The rate of growth of 

material lines in a turbulent flow is expected to be exponential and 

lead to the development of fractal structures (Sreenivasan and 

Meneveau, 1986) . For nonideal tracers, these behaviors occur in an 

unsteady laminar flow (Smith and Spiegel, 1986), leading to the 

formation of self-similar distributions. 

Section 5.4: Time Dependent Flows 

To consider flows smoothly varying in time, we let 

A(t) - 1 + f sin(wt) (5.15) 

With this choice, the phase space of system 5. 5 becomes three­

dimensional and the possibility for chaotic behavior arises. One 

could consider more spatially complicated flows by superimposing 

additional periodic structure periodic with half the wavelength of 

this flow . Repeating the process with additional , smaller-length 

scales would yield a flow similar to the ~ model. As shown below, 

the particle patterns produced by the single length scale are already 

quite intricate. 

The presence of chaotic motion is immediately felt in attempts at 

analytic solution through perturbative methods where the problem of 

small denominators destroys the convergence of the solution for many 

initial conditions (see Lichtenberg and Lieberman (1983)). Here , we 
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continue to study the system via numerical simulation. 

In most instances, the trajectories in three dimensions are either 

projected onto a plane or a two-dimensional surface of a section is 

taken (see Chapter 1). The situation is simplified in our case 

because the flow is strictly periodic in time; stroboscopy at the 

frequency of the fluid motion is equivalent to taking a surface of 

section. Runge-Kutta integration schemes are ideally suited for this 

method. Even so, numerical integration is a resource consuming 

process. A two dimensional area preserving map able to simulate long 

evolutions efficiently was constructed for this system. This mapping 

is described in Appendix 3. 

We consider the effect of small E on the motion of a particle well 

within the region of retention for the corresponding E ~ 0 flow. For 

E equal to zero, the particle moves on a roughly circular path. For 

small E, the particle will, initially, oscillate about its steady 

flow orbit with frequency w (see Figure 5. Sa). The asymptotic 

stability of this motion for non-zero E was not established until 

1963 (see Moser, 1968); the nonlinearities involved make the question 

of the stability of this system similar to that of the three body 

problem. 

For small E, particles well within the region of retention display 

three distinct classes of motion. The first corresponds to 

oscillations about the steady flow path. When a trajectory of the 

type (e.g.: Figure 5.7a) is viewed in section, the orbit again fills 

out a closed curve as shown in Figure 5.7b. By strobing at different 

phases it is seen that the particle winds about on a torus in phase 
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space. A single point in phase space defines the future evolution of 

the system; thus when a torus is covered densely, all initial 

conditions within a torus remain within it. In section, the tori 

appear as closed curves; initial conditions within closed curves on a 

Poincare section are trapped there. This intuitive result holds for 

two-dimensional tori in three-dimensional space and therefore our 

system. Note, however, that by the definition of topological 

dimension (see Poincare's quote in §1.1) this argument fails in 

spaces of dimension greater than three, giving rise to a slow 

spreading of trajectories known as Arnold diffusion (Lichtenberg and 

Lieberman, 1983). 

Viewed stroboscopically, the orbits of nonzero ~ particles near 

their particle stagnation point will move through an angle nei 

between the (i-l)th and ith recording and will, for n9 sufficiently 

irrational, fill out a closed curve2. Initial conditions for which 

n9 is a rational angle resonate with the strobing frequency so that a 

finite number of points are observed in a repeating sequence. For 

nonzero e, not too large, the majority of particles of the first type 

continue to move on trajectories that are tori. Two different types 

of motion are observed for particles whose unperturbed period is near 

resonance with that of the fluid: one corresponds to motion on 

islands, the other to chaos. For the former, in each revolution 

about X
5

, the particle follows one of several distinct pathways. 

Which path is executed depends on the phase of the flow as the 

2If ne is not sufficiently irrational, the trajectory may 
describe a Cantor set. 
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particle crosses the x axis from below (x > x
5
). This type of motion 

is shown in projection in Figure 5.8a. The clear regions shown remain 

clear, with the trajectory being restricted to, and slowly filling, 

the outlined region. · In this example two revolutions about the 

stagnation point, one along each branch, occur in three cycles of the 

background fluid flow; the particle executes three revolutions about 

x
5 

until its crossing of the x axis occurs at approximately the same 

position and phase with respect to the fluid flow period. When such 

a trajectory is strobed at the fluid flow frequency, islands are 

observed (Figure 5.8b). Particle motion on these islands is stable. 

The particle visits every island in turn, slowly delineating each. 

Poincare sections taken at different phases are shown in Figure 5.10. 

The islands slowly deform and rotate in the direction of particle 

motion until, one full fluid period later, particles initially on 

island 1 (2,3) have taken positions on island 3 (1,2) . Recalling 

that these figures are cross-sections of a three-dimensional phase 

space, it is seen that this motion takes place on a torus which is 

stretched and twisted, closing on itself in three fluid periods. 

Particle paths wind around on this torus. Plotting t as z results in 

the three-dimensional reconstruction of Figure 5.9a, while the 

periodic boundary conditions are more naturally reflected in Figure 

5.9b where the trajectory is shown in polar coordinates (r,S,z) 

related to (x,y,t) by the transformation 

e wt (5.16) 

z - y 
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where the constant displacement r
0 

is chosen relative to the point at 

which the trajectory crosses the line y = J1r / 2 at zero phase of the 

fluid . Initial conditions sufficiently inside or outside the island 

ring (relative to the particle stagnation point) wind about a single 

torus. Particles initially located between the islands at the same 

distance from the stagnation point are observed to display chaotic 

motion For sufficiently small £ , 

vicinity of the island ring. 

these trajectories remain in the 

The general structure of this pattern is understood (see 

Lichtenberg and Lieberman, 1983). The particle stagnation point 

corresponds to a stable elliptic point . For nonzero perturbations, 

trajectories about the stagnation point which resonate from a series 

of elliptic and hyperbolic points . The (stable) elliptic points 

correspond to the centers of islands , the (unstable) hyperbolic 

points to chaotic regions. Surrounding each of these equilibrium 

points is another generation of elliptic and hyperbolic points. The 

cascade continues to all scales . For the simplest integrable orbit , 

each passage through the plane corresponds to a rotation about the 

particle stagnation point , 8 grows in a regular manner, filling the 

interval -~ < 8 s ~ densely and variations in radius are small; as a 

function of e, the radius is single-valued. In the island case , 

there are bands of values at which 8 is never observed, r is a 

double-valued function of 8. In a chaotic trajectory on which the 

particle falls out of the cell . This results in values of r greater 

than J2~ and biases 8 toward large angles and ~8 toward small values . 

For all chaotic trajectories, r is multi-valued function of 8 . 
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The appearance of this structure corresponds to a qualitative 

change in the region of retention when the flow becomes temporally 

periodic. In the case of steady flow, particles arbitrarily near an 

up-flowing branch are retained, completing closed orbits. In a 

periodic flow, the region of retention detaches from the cell 

boundary. Particles initially in the band of separation will often 

remain in the cell for many revolutions, but (most) eventually fall 

out. For small f, a particle oscillates about its equilibrium path. 

As long as these excursions are completely within the region of 

retention, the particle will remain in the cell. A particle which 

oscillates to a point outside the retention region may remain in the 

cell for a time, depending on where in the cell it is when it crosses 

the boundary. If the frequencies of these two oscillations are 

incommensurate, these particles will eventually cross the boundary 

near the bottom of their trajectories and fall out of the cell. For 

some initial positions, a resonance between the fluid oscillations 

and the particle motions occurs which tends to stabilize the 

particle, producing stable islands in the chaotic sea. Gaps 

corresponding to the location of this type of island chain are 

visible in several of the figures (eg. Figure 15). Figure 5.11 is a 

histogram of the frequency of various residence times, it is clear 

that particles take much longer to fall through a series of rolls 

than would be predicted from the steady case. 

The strobed paths for a variety of initial positions are shown in 

Figure 5 . 12. Counting from the left, the first particle (1.1~, 1 . 5~) 

falls through the cell, oscillating about the strobed path shown. 
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This line presents a barrier which other particles do not cross; 

hence the open region in the lower left-hand side of the figure. 

(The motion of initial conditions in this open area is symmetrical 

with that of the trajectories shown.) As the initial position of the 

particle is moved to the right along y ~ 3~/2, the trajectory breaks 

up into islands, which in turn become part of the chaotic sea shown 

in the figure. Particles initially in this area are often trapped in 

a cell for many revolutions and then fall (drifting) through the next 

cell (and often several more) before becoming re-entrained. Embedded 

in this chaotic sea are regions avoided by the falling particle. The 

largest of such areas is the region of retention containing the 

particle stagnation point. Islands are observed in this and several 

other of the barren regions where the particle motion is such that 

they are stabilized against sedimentation as discussed above. 

It is this stabilization which complicates the calculation of an 

average fallout velocity. In the vicinity of every island structure 

there exists a higher-order island chain, each member of which is 

surrounded by yet another chain. A particle in the chaotic sea which 

moves into the region will remain outside these islands but may 

remain in this "reef" for an extended period of time. When the 

probability distribution of a Poincare section is viewed, the reef 

areas that have been visited stand out as regions of high 

probability. The long runs required to get reasonable statistics are 

more easily obtained with conservative maps. The structure of these 

strange accumulators is described in Smith and Spiegel (1987), which 

is reproduced here as Appendix 4. 
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The effect of increasing f with fixed v
5 

is shown in Figures 5 . 13. 

Here, the area of the chaotic region is observed to grow with f. 

Individual islands are observed to break up, allowing particles to­

pass within, but also forming the intricate reef regions of the 

accumulator. The evolution of the upper island of Figure 5 .13b is 

shown in detail as f increases in Figure 5.14. 

For moderate values of o, the chaotic region B occupies a large 

area of the section. The chaotic sea has holes on all scales 

corresponding to island chains. Sets like the shown in Figure 5.15 

have been called fat fractals by Umberger and Farmer (1985), who 

proposed a scaling relation which can be used to estimate the total 

area visited by a chaotic trajectory. 

Before considering the motion of swarms of particles, we note that 

particle motion at large f is qualitatively different from that of 

small f. Quasi-stable regions in a flow with large f (::::::10.0) have 

been found where the particle revolution period is slightly less than 

half the fluid period. Such a particle, initially near the top of 

its orbit will be swept around by the strong flow, again to near the 

top of the cell, as the flow weakens it will sink down toward the 

cell center and then be swept around in the opposite direction sense 

by the second half cycle of the fluid flow. Often the radius of the 

particle from the stagnation point will increase until the particle 

falls out, however some initial conditions particles have been 

observed to be carried up above their initial points and then dropped 

back near their original position (and phase). In this manner, the 

particle is retained in the cell for the entire observation (= 300 
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fluid periods). 

Figure 5.16 shows, at several different times, the locations of 

513 -y - 0. 25 particles that were initially spread along the line 

y=2.0 in the x interval (1 . 85, 1.90) as they evolved in a flow with 

P - 4.5 and f - 0.50. Particles from this interval are outside any 

region of retention; they spread in vertical extent, but stay within 

the original cell width. In the final frame, the particles are 

spread over 9 cells. In this case, the abscissa is the value of y 

(not mod 2). We wish to see whether a fractal structure develops . 

However, there are not enough points in Figure 5.16 to do this. In 

Figure 5.17, we show the results of a calculation designed to suggest 

the detail in the loops of Figure 5. 16 . In this calculation, the 

periodic boundary conditions in y are applied, showing only the upper 

half of a cell. There are long intertwined filaments extending into 

the lower half of the cell where the segment was stretched 

exponentially. This poses a resolution problem. 

The complexity of this distribution is quantified by examining the 

vertical final separation of particles which were initially nearest 

neighbors. In Figure 5 . 18, we show the (scaled) y - coordinate of each 

particle as a function of x 0 , the initial x-coordinate, for a 

sequence of times. Portions of these curves with very large slopes 

correspond to initial line segments of particles that have been 

stretched over many cell heights. The stretching and folding in x-y 

space of the original line of particles produces the self-similar 

structure seen in Figure 5.15. Braking the x 0 coordinate into steps 

of size t:.x0 and determining the length, L, of each curve as a 
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function of ~x0 , we fit L to the formula 

As a function of time, a increases rapidly to a plateau. The precise 

form of this evolution depends on how we perform the calculations; 

the plateau at a-0.76 is characteristic and appears to be independent 

of the initial particle density. This plateau does not survive 

indefinitely at fixed resolution. As expected, it persists longer if 

the initial density is higher. We estimate the value a=0.76. We do 

not have a good way to determine the precision of this result but, on 

the basis of many such calculations, we would estimate that the 

internal errors are less than 10%. a is not very sensitive to f and~ 

for E in the range 0.1 to 0.8. For E less than about 0.1, the effect 

of time dependence is so weak that the particle spreading is very 

slow, while for large E the integration time steps required become 

prohibitively small. As the scaling structure of Figure 5.19 

develops, the length of the particle line increases rapidly. A plot 

of this length with time shows exponential growth (see Figure 5.20), 

though the fluid flow is not turbulent; exponential stretching of a 

material line of tracer is not a sufficient condition for turbulent 

motion in the host fluid. 

Section 5.5: Conclusions 

We have constructed a model for the behavior of particles 
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suspended in a time-dependent flow. It is observed that negatively 

buoyant particles may remain suspended in the flow for a time 

exceeding the estimate based on a sedimentation at the Stokes 

velocity . More relevant from a dynamical systems point of view is 

the observed self-similar inhomogeneities which develope and persist 

in the probability distribution of a single trajectory. The self-

similar structure of these inhomogeneities pose another source of 

difficulty in determining the correlation integral from an 

experimental time series . Specifically, the application of the 

Grassberger-Procaccia algorithm to a finite sample of an trajectory 

which is (asymptotically) space filling in two dimensions may 

indicate a value of the correlation exponent which is significantly 

less than two. 

Finally, it is demonstrated that a material line of tracers may 

develope a complex, self-similar distribution in a smooth flow field. 

The development of this pattern requires the rapid stretching and 

wrapping of the tracer line. The exponential growth of a tracer 

material line is not a sufficient condition for turbulent flow. 
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FIGURE CAPTIONS 

Figure Caption 

1 

2 

3 

Fluid streamlines of the steady flow corresponding 
to Equations 5 . 5. A streamline corresponds to a 
contour of streamfunction; each streamline shown 
is labeled with this value . 

Particle streamlines in the steady flow case for 
several Stokes velocities as shown . Each 
streamline is labeled with the local value of the 
particle streamfunction. 

The period 
function of 
velocities . 

of retained particle orbits 
initial position for several 

as a 
Stokes 

4 Area of the region of retention as a function of ~· 

5 Phase wrapping on a line of particles within the 
region of retention for the flow parameters v 
0 . 2 . The distributions correspond to times (a) t -
0 , (b) t -18, (c) t- 36 , (d) t - 54. 

6 The particle densities integrated vertically for 
the four states in the previous figure. The upper 
panels show the particle number explicitly while 
the lower panels are 'dust plots' simulating the 
appearance of suspended particles viewed from 
above . 

7 A trajectory corresponding to motion on a torus (a) 
projected and (b) strobed. 

8 A trajectory corresponding to motion on a period 
three island chain (a) projected and (b) strobed. 

9 A three-dimensional reconstruction of the 
trajectory projected in Figure Sa. The 
reconstruction on the left shows the winding of the 
islands over one period of the background flow. On 
the right, time has been taken as an angular 
variable as described in the text. In this way the 
continuous nature of the trajectory is apparent . 

10 Poincare sections of the 
taken at several phases. 

trajectory of Figure 8 
These section correspond 
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11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

to planes of constant z in Figure 10 and show the 
islands at different phases. 

A histogram of the residence times per cell for a 
particle in the chaotic fallout region. This 
trajectory was taken with P ~ 4.5, v- .25. 

Strobed motions of six ~-0.25 particles in the time 
dependent Stomel flow, f = 0.5, P ~ 4.5 

Poincare section of the ~=0.25 paths with P-4.5 and 
increasing f, (a) f=O, (b) €=0.25, (c) f=7.5. 

The effect of increasing f as shown in the "ear" 
region, ~ - 0.25, P - 4.5. 

An extended integration (3000 P) for seven initial 
conditions in the chaotic region; ~=0 . 25, P- 4.5. 

Evolution of a line of particles initially on the 
upper boundary of a cell. In their initial 
configuration, the particles are labeled with 
letters alphabetically with increasing x 
coordinate. The position of the line is shown after 
(a) 2, (b) 5, (c) 6 (d) 7, and (3) 21 periods of 
the background flow. 

A surface of section for the line of particles 
described in Figure 5.17. Only the upper half of 
the cell is shown. 

Time development of a fractal showing the vertical 
displacement as a function of initial horizontal 
position at several times. 

Final time sequence of Figure 19 at T-24 fluid 
periods. 

Length of line segment as a function of time. 
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Appendix 3: An Class of Iterative Maps 

In this appendix, we present a class of two-dimensional area 

preserving maps which simulate a surface of section for flows of the 

type discussed in Chapter 5. While it is not possible to predict a 

single chaotic trajectory, the general topological features of the 

phase space associated with a set of parameter values may be 

determined by integrating the equations of motion for a variety of 

initial conditions and studying the nature of the resulting 

trajectories. It was in this way that the surfaces of section 

presented in Chapter 5 were generated. Large amounts of computer 

resources are required to generate these sections; the motivation 

behind deducing a map is that such a map provides a method capable of 

quickly surveying the phase space for a variety of parameter values. 

For the time-dependent flow described by Equations 5.5 and 5.15, 

a map accurate near the fluid stagnation point may be constructed as 

the composition of 4 simple maps; a twist, a vertical displacement, 

a ~esser twist, and a second vertical displacement equal in magnitude 

to the first. The product of these maps is area preserving since 

each of the maps are area preserving individually. The amplitude of 

the flow is reflected by the strength of the twists while of 

oscillatory nature of the flow is shown in the difference between the 

two twists; the average magnitude of the modulation is added in the 

first twist and subtracted in the second. The vertical displacements 

reflect the magnitude of the Stokes velocity, v
5 

and the period of 

the flow, P. For clarity, we specify the twist maps (T 1 and T3 ) in 
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polar coordinates , and the vertical displacements (T2 and T4) in 

cartesian coordinates . 

Tl (r,8) : 

Tz (x,y) : 

T3 (r,8): 

T4 (x ,y) : 

where 

p 
T+ 2 

p 
T 

2 

oy ~ 
A 

and 

- 2 
e e 

11" 

The map is then 

T(x,y) 

r' 
8' 

x" 
y" 

r", 
8", 

x"" 
y"" 

r 
8 + T+ F(r)/r ' 

x' 
y' - oy 

r'' 
8" + r F(r")/r" 

x", 
y", - oy 

(1 + "f) 

(1 - "f) 

p 

2 

E 
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A more compact form is obtained by considering the map as acting 

on the complex variable z where 

Z -X+ i y . 

In this case, this map composed of two complex maps 

as 

T ( z) = T+ • T- . 

A particular map of this class is determined by specifying the 

velocity function, F(r). We examined several functions, the 

simulations shown in the figures were obtained with 

F(r) - { 

sin r 
11' 

2 
0 r > 11' 

2 

where we have made the identification r - lzl. In each of the cases 

shown, the initial conditions are along a line of constant y, equally 

spaced in x. In Figure A3.1, the Stokes velocity is zero and the map 

reproduces the fluid streamlines of the equivalent flow. The 

correspondence between the mapping and the full flow is best where 

the streamlines agree, the poorest correspondence occurring at large 

r. As oy is increased, behaviors in qualitative agreement with the 

those of the full system are observed. 

The major difficulty we found in matching the map to the flow of 

Chapter 5 was following the particles which passed through the 

boundaries in the mapping. In the illustrations periodic top and 

bottom conditions were imposed . Specifically, if at any time 

--------------------- --



y < -
2 

then 

y-+y+Tr 

x -+ -x 

These top and bottom conditions correspond to the stacked cells 

described in Chapter 5 where two vertically adjacent cells have been 

folded onto each other with a refection. Hence only a single square 

cell is shown. If a particle is displaced horizontally from the 

original "cell", that is if 

lxl - Tr/2, 

then the calculation is halted. With F9r) as above, the side 

boundaries are not crossed. 

The mapping reflects the flow most accurately when the 

displacements due to the rotations are small relative to the cell 

height yet large relative to oy. This implies small values of P and 

v
5

• Even in this case, particles which are far from their stagnation 

point sample regions of the mapping which do not accurately reflect 

the flow; this is especially true for particles which pass outside 

the circle r - Tr/2 . 

Qualitatively, the behaviors present in the flow are reflected in 

the mapping . For V
5 

equal to zero, the mapping yields circular 

trajectories as shown in Figure A3.1. For nonzero v
5

, there exists a 

region of retention the area of which decreases as v
5 

increases. 

Some of the particles in the chaotic fallout region behave 
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differently than any particle in the full flow due to the reasons 

mentioned above. Figure A3 . 2 shows typical behavior for a moderate 

value of v
5

; the chaotic fallout region contains integrable island 

chains , as in the full flow. Motion resembling that on a twisted 

torus is shown in Figure A3. 3. In this case, bounded chaos is 

present as in the full flow . Finally, in Figure A3.4, a case with 

relatively large values of v
5 

and f is shown. The large void region 

is the region of retention . The smaller lacuna represent regions of 

integrable fallout. Density variations in the chaotic sea are also 

apparent in the figure. This is evidence of strange accumulator 

behavior discussed in Appendix 4. 
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In utronom:y, we 1ee ID&DJ irrepla.r .VUdura manifested in the form of lltrong in-

homogeneities of physical ftriables like density, temperature, or magnetic field. The a~ 

pearance of atrong concentratioDI of these ftriables, ID the presence of what &equently 

must be highly turbulent conditioDI, poees &n interestin& question whoee answer probably 

lies in the nature of turbulence itaelf. Indeed, G~ Taylor, leftDty Je&rl aco, wrote that 

turbulence ia the atrong concentration of TOI'ticity. Bow does thia work? 

Fluid dyn&micists often refer to a mechanism that they call Batchelor-Prandtl expul-

aion to explain iDho11101eneitiesi the nature of this proceu hu recently been clarified by 

Rhines &nd YOUDI1• Solar physiciata bow of the proc:ea u it applies to the development 

of magnetic inhomogeneities on the aolar aurface2• However, no 1Ulanimity aeems to exist 

among aolar physicists on the explanation of the fine-ecale .tructurea on the aun'. There 

even seems to be cliaapeement about the proper description or the topology of field lines. 
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Dynamicalsyate~ theory ahowa us a aimple way to look at field linea that may kach 

us about their atrudurea. Though the approach does not explain how auch fields a.riae in 

hydromagnetica (MBD), it may nevertheleaa be valuable in thinkin& about the poeaibilities 

that confront us when we look at a complicated 1ituation like thai of the aolar 1urface. 

Consider a vector field B(z,f) whose 1trudure we want to look at. This may be a 
magnetic or vorticity field whose field 1tructure may be too complicated to pull out of 

numerical solutions of the MHD equations (for example). Thus, this is an example of how 

the theoretical developments of chaos theory may help in astrophysics by addina to the 

ways we have of thinkina about problema, even when the data may not be aood enough 

to confirm or deny the presence of chaos. 

Let X be a function of an independent variable • BUch that 

(1) 

for fixed f. If B should happen to be a velocity field, we would identify • and f and integrate 

equation 1 to aet the particle paths, as hu been done for 8uid 8owa in two dimenaiona'·6·• 

However, if B ia some other field, we can look at a mapehot of it by regardin& f u a 

parameter that we hold fixed during a run in which we 1tudy equation 1 as a dynamical 

system with • as the "time.• The trajectory in X-space willaive us a picture of the field. 

We can even ao further and cut the X-.pace with a plane and simply plot the points where 

the tr~ectory pierces it. By atudyina typical maps of the plane into itself, we can get an 

idea of the possibilities that lie in store with real fields, B. 



Perhaps the most typical, typical map is the 1t.andard map •: 

{2) 

This is an area-preserving map that leeiDII a qualitativley appropriate choice when (the 

solenoidal) B does not vary much in the direction normal to the llllface ~eetion. For given 

- k (not too large) and for IUitable initial coordinates, this map gives rise to regular behavior 

in the form of periodic orbits lying on tori. The cross ~eetiona of these tori in the surface 

of section form island chains that are like the cat··~es m the fluid dynamicist. Between 

the islands are saddle points, in the neighborhood of which there are amaller islands. And 

ao on. 

A trajectory that gets in amongst the una11 islands will go for many twists before 

reemerging into the chaotic 1ea. This sojourn is responsible for long-ranae correlations of 

the successive points on the orbits of equation 27•1• Meiss and Ott0 have modeled the 

tendency of an orbit to linger in the reefs, while McKay, Meiss, and Percival10, among 

others, have studied the mechanism of escape from them. 

Our own naive point of view about the long times spent by particles in the reefs of the 

map is to liken these feliona to the attracton of dissipative theory. One of the simplest 

examples of a dynamicaliJBlem with an attractor is the Landau equation for A(t): 

{3) 

This I)'Btem has attrafton at A = ±1 and a repeller at A = 0. If we differentiate this 

BJStem once and substitute, we get 

(4) 
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where 

(5) 

The original system (equation 3) is contained in equations 4 and 5 if we impose euitable 

initial conditiona. 

Where the original Landau equation had either attractons or repellere, the new system 

(which is Hamiltonian) haa eaddle points. In the neighborhood of these points, the motion 

is very elow. We call eets of these points accumulatore because a representative point 

moving in this system will tend to epend more time in the neighborhood of these points. 

Hence, the points in an orbit will tend to accumulate there. In systems with etochuticity 

and island chains, we can have quite a complex of such points; together, these make an 

accumulator with very fine texture. The presence of such complicated accumulatore, we 

euggest, cives rise to stro111 inhomoceneities in field etructurea. 

In the left panels of the accompanyiq ficure (FIGURE 1), we ehow the result of a 

lo111 numerical intecration based on the map of equation 2. The calculation was done on 

a finite (220 x 220) mesh that preaervee the 1-1 character of the map of equation 2, as in 

the work of Ra.nnou11 (see Miller and Prendercast12 for use of lizloiae-free• methods in 

dynamical astrono:r:DJ). The result of this method (with a larce, but finite number of grid 

points) is that every orbit calcualated ie periodic. Indeed, any deterministic eimulation on 

a dicital computer tends, in finite time, to a perodic orbit. If we are using the result to 

visualize field lines, this meana that we are computing only cloeed field linea. In this cue 

with an explicit crld, phase volumes are exactly conserved. 
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Figure 1 ahOWI coane-grained histograms of the number of Yisits to each end square 

obtained in two different aimulations. The panels on the left ahow histocrams from a 

periodic 2, 764,949-iteration orbit for the numerically one-to-one atandard map with k = 

1.25, the lower panel bein& a blow-up on a finer crid. The panels on the right similarly 

illustrate a double-precision calculation for the Hinon area-preaervin&, quadratic map (the 

field ia ehOiell after figure 14 of Hinon13). In the Hinon cue we have followed the mapping 

for 227 iterations. The calculations for the Binon cue, unlike those for the standard map, 

are not one-to-one numerically, hence the .tructure ahown in the ri&ht panels may be 

tranaient. The range in density shown is a factor u aeveral hundred. Already, from these 

first results, we can see why the discussants at the .alar phyaiea meeting were in some 

doubt about what to call a flux tube in the solar surface. The notion of flux tube will 

often be useful only locally, but then the tube may splay out into the surrounding stoehaatie 

regions. 
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The defficiency in this type of study is that it is a little too generic. We want to 

be able to derive actual maps for real situations. This can be done when the vector 

field bein& studied is a real velocity field. Indeed, Chaikin d al. 6 have tet up real flowa 

corresponding closely to their maps aild have found excellent acreeement for the motion . 

of advected particlea. The flow in that cue involved time-dependent open stremlines. 

We may also get open streamlinea by studying the motion of particlea d.riftin& through 

a convectin& fluidu•16• These studiea suggest formation of .trong inhomogeneities in the 

particle denaitiea, but the results are, as yet, still limited. 

In .ummation, we can aay that this note is a conference publication par uedlenee. We 
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are suggesting a way for modeling proceues that teem too complex for detailed aimulation . 
without yet offering any quantitative predictions for astrophysics. Nevertheless, our quali-

tative results from the numerical experiments on loq-period orbits teem to have surprised 

many of those who have aeen them. Thus, it seems worth pointing out our conclusion that 

complicated accumulators are at the origin of atroqly inhomogeneous concentrations of 

advected fields in Bows. These fields need not be puaive. Thoqh the fields are dynamic 

and feed back on the Bow, we may still expect the structures to be given by mapa, even if we 

do not know them explicitly. This is ultimately a u.seful way to think about inhomogeneous 

fields. 
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CAPTION 

The panels on the left ahow the visitation histogram for the numerically on~to-c.ne 

standard map (k = 1.25). The lower panel is a blow-up. On the right, simulations with 

the Hmon13 conservative map (coea = 0.240) are shown. The number of visitations, as 

indicated by each color, nriea slightly from panel to panel for photographic reMOns. In. 

the upper left panel, black me&l1l no visitation, brown is 1 to 4, blue is 5 to 9, red is 10 to 

19, creen is 20 to 29, yellow is 30 to 50. White partitions were visited between 51 and 316 

times. All histograms are calculated on a 2° by 2° grid. 
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