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Abstract

Probabilistic forecasting plays a pivotal role both in the application and in

the advancement of geophysical modelling. Operational techniques and mod-

elling methodologies are examined critically in this thesis and suggestions for im-

provement are made; potential improvements are illustrated in low-dimensional

chaotic systems of nonlinear equations.

Atlantic basin hurricane forecasting and forecast evaluation methodologies

on daily to multi-annual timescales provide the primary focus of application and

real world illustration. Atlantic basin hurricanes have attracted much attention

from the scientific and private sector communities as well as from the general

public due to their potential for devastation to life and property, and speculation

on increasing trends in hurricane activity. Current approaches to modelling,

prediction and forecast evaluation employed in operational hurricane forecasting

are critiqued, followed by recommendations for best-practice techniques. The

applicability of these insights extends far beyond the forecasting of hurricanes.

Hurricane data analysis and forecast output is based on small-number count

data sourced from a small-sample historical archive; analysis benefits from spe-

cialised statistical methods which are adapted to this particular problem. The

challenges and opportunities arising in hurricane statistical analysis and fore-

casting posed by small-number, small-sample, and, in particular, by serially

dependent data are clarified. This will allow analysts and forecasters alike ac-

cess to more appropriate statistical methodologies. Novel statistical forecasting

techniques are introduced for seasonal hurricane prediction. In addition, a range

of linear and non-linear techniques for analysis of hurricane count data are ap-

plied for the first time along with an innovative algorithmic approach for the

statistical inference of regression model coefficients.

A real-time outlook for the 2013 hurricane season is presented, along with a

methodology to support a running (re)analysis for National Hurricane Center

48 hour forecasts in 2013; the focus here is on if, and if so how, to improve



forecast effectiveness by “recalibrating” the raw forecasts in real time. In this

case, it is revealed that recalibration does not improve forecast performance,

and that, across years, it can be detrimental.

In short, a new statistical framework is proposed for evaluating and inter-

preting forecast reliability, forecast skill, and forecast value to provide a sound

basis for constructing and utilising operational event predictions. This novel

framework is then illustrated in the specific context of hurricane prediction. Pro-

posed methods of forecast recalibration in the context of both a low-dimensional

dynamical system and operational hurricane forecasting are employed to illus-

trate methods for improving resource allocation distinguishing, for example,

scenarios where forecast recalibration is effective from those where resources

would be better dedicated towards improving forecast techniques. A novel ap-

proach to robust statistical identification of the weakest links in the complex

chain leading to probabilistic prediction of nonlinear systems is presented, and

its application demonstrated in both numerical studies and operational systems.
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8.4 NHC 2013 TC forecast reliability: reliability diagram for
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Chapter 1

Introduction

Since the pioneering of modern-day weather forecasting by Robert Fitzroy in

1861 [138], the accuracy and efficiency of predictions of weather including ex-

treme events such as tropical storms have progressed significantly. Probabilis-

tic forecasting, in particular, has emerged as an essential tool in operational

weather forecasting since the U.S. Weather Bureau began issuing subjective

probabilistic forecasts of precipitation in 1965 [141]. Indeed, understanding and

quantifying uncertainties about the future evolution of a complex system such

as the Earth’s ocean-atmosphere system is best addressed using the probabilis-

tic approach. Probabilistic forecasts contrast with point forecasts which only

provide a single value prediction of an outcome, and hence do not commu-

nicate uncertainty. Furthermore, reliable probabilistic forecast information is

generally more informative for forecast users, allowing them to optimise their

decision-making [191].

The benefits of probabilistic forecasting have been recognised at least as long

ago as the 1940’s [19]; it is now operational at forecasting centres around the

world [150, 151]. Moreover, the practice of probabilistic forecasting has now

become widespread, and is now commonplace in fields such as economics [22],

health [130], and insurance [117, 116]. Application of probabilistic forecasting

to impactful geophysical events such as Atlantic basin hurricanes has significant
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potential value for insurance, policy-making, and civil planning [43, 117, 156].

Operating within a robust statistical framework for best-practice forecasting is

therefore important to maximise the benefit of predictive information.

This chapter is structured as follows: the fundamental topics of probabilistic

forecasting and Atlantic basin hurricanes are briefly introduced in Sections 1.1

and 1.2, followed by an overview of this thesis in Section 1.3.

Sections 1.4 to 1.9 provide background on many of the theoretical conven-

tions, terminology, and notation covered in this thesis, allowing later chapters

to focus on what is new. Other than the presentation itself, there is little new

material in this chapter.

The sections in this chapter are summarised as follows: a review of some ba-

sic concepts of forecasting, a fundamental topic of this thesis, is given in Section

1.4. The types of dynamical systems, and forecast models that are involved in a

forecasting situation are briefly described in the context of perfect and imperfect

model scenarios [89, 90], followed by the definition of a forecasting framework.

An explanation of probabilistic forecasting using dynamical and statistical mod-

els is given in Section 1.5. A method for producing forecasts from a dynamical

model called ensemble forecasting [150, 114] is discussed along with forecast

density construction [26, 81]. Statistical techniques for constructing forecasts

are also briefly described, along with the concept of a climatological reference

forecast which is used as a benchmark for forecast performance. Much of the

work in this thesis is focuses on forecast evaluation and forecast recalibration

which are discussed in Section 1.6 and Section 1.7. Measures of forecast quality

such as forecast skill [142, 133], and other key attributes of forecast performance

are described along with a brief introduction to recalibration techniques. Fi-

nally, a brief overview of the characteristics of Atlantic basin hurricanes, and

types of hurricane data is given in Section 1.9.
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1.1 Probabilistic forecast framework

Probabilistic forecasts are typically constructed from a collection, or ensem-

ble, of point forecasts produced from dynamical model output (e.g. numerical

weather models [114]), but can also be constructed using statistical models

based on past observational data [200], or even from a hybrid of the two [205].

Whichever method is employed, either a finite set of probabilities of discrete

outcomes or a probability density function for continuous outcomes is usually

the resulting output information. These probability distributions express the

uncertainty in the forecasts, reflecting the predictability of the future evolution

of a system.

There are difficulties which are unique to probabilistic forecasts, however, in

part because more sophisticated methods are necessary to produce probabilistic

information, and also because they are perceived to be more challenging to com-

municate than point forecasts. There are, in fact, a number of stages typically

involved in the process of operational forecasting, whether probabilistic or not.

These are listed in a typical chronological order as:

1. data retrieval and transformation;

2. current system state estimation;

3. ensemble construction;

4. ensemble post-processing;

5. forecast evaluation.

The focus of this thesis falls on the last two stages, specifically forecast re-

calibration, which is typically part of the post-processing stage, and forecast

evaluation. The work herein provides recommendations for best-practice fore-

cast recalibration and evaluation in the context of hurricane prediction.
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Forecast evaluation

Forecast evaluation plays a critical role not only in monitoring forecast qual-

ity, but also in increasing the effectiveness of predictive weather information

for decision-making support. The evaluation stage includes the collection of

forecast-outcome pairs; consisting of a single forecast of a given outcome in the

future and the actual outcome observed. The performance of single forecast

is assessed by assigning it a value according to a numerical performance mea-

sure which is a mathematical function of the forecasts and the outcomes. The

purpose of the performance measure is to determine the degree of “correspon-

dence” between the forecasts and outcomes. A common type of performance

measure is called a scoring rule [60, 87], which is defined for individual pairs of

forecasts and outcomes, and quantifies forecast accuracy, or “skill”. An example

of a scoring rule for point forecasts is Root Mean Square Error (RMSE) [136].

RMSE is a measure of the “distance” between a forecast and the correspond-

ing outcome. While this is an intuitively appealing measure of performance, it

is doubtful whether the true quality of a point forecast can be expressed with

RMSE. The problem is that the point forecast and RMSE only hold information

about the statistical expectations of the forecasts and forecast performance. An

important requirement of measuring the performance of a forecast is that the

information contained in the full joint distribution of forecasts and outcomes is

included in the measurement [142]. This is the basis for robust forecast evalua-

tion, and is a guiding principle behind the best-practice evaluation techniques

discussed in this thesis.

Another challenge for achieving robust forecast evaluation is posed by serial

dependence in outcome data. Scoring rules are typically evaluated for sequen-

tial pairs of forecasts and outcomes over some time period. For many physical

systems, sufficiently short intervals between outcomes results in them becoming

serially dependent. Given that performance measures quantify the degree of

correspondence between forecasts and outcomes, the serial dependence in the

4



CHAPTER 1. INTRODUCTION

data can be replicated in the forecasts, and hence, the performance measure

statistics. Consequently, the variances of the sampling distributions of the per-

formance measure can become “inflated”, resulting in erroneous estimates of

forecast skill.

Forecast recalibration

During the post-processing stage of the forecasting process, statistical meth-

ods are commonly employed to improve the quality of forecasts that contain

systematic (i.e. persistent) errors. Typically, a procedure called calibration is

performed where biases in the mean and variance of forecast probability distri-

butions are corrected by simply adding or multiplying by constants. A superior

approach which utilises the joint forecast-outcome distribution (i.e. measures

forecast skill) by, for example, using a linear regression to model past sets of

forecasts on their corresponding outcomes, is recalibration. Recalibration can

be used to improve a particular attribute of forecast performance called relia-

bility. Specifically, reliability is a measure of the statistical consistency between

the forecasts and the conditional expectations of the outcomes given a forecast

probability. In short, it measures the “closeness” between forecast probability

values and the observed relative frequency of an outcome. Forecast reliability

is generally improved using recalibration where models suffer from systematic

bias, making it a useful and relatively straightforward technique in the fore-

cast post-processing stage. A number of statistical techniques are employed in

this thesis to assess the effectiveness of recalibration when applied to forecast

models.

1.2 Hurricane forecasting

Extreme weather events such as Atlantic basin hurricanes are responsible for

some of the worlds greatest economic losses due to natural hazards. The exten-

sive and increasing impacts on life and property [158, 117] have focused efforts
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to understand the physical mechanisms of hurricanes and improve predictions

of hurricane activity on various timescales [64, 50, 28, 181]. Forecast informa-

tion can potentially be of significant value to policy-makers, the commercial

and insurance sectors, and for the general public [43]. Skilful predictions of

coastal hurricane strikes on annual to decadal timescales are of huge potential

value for applications such as land use planning, hazard mitigation, emergency

management, and (re)insurance pricing [149]. There is a large degree of uncer-

tainty in hurricane predictions on climatic timescales [164], however, and the

out-of-sample skill of seasonal (i.e. up to a year ahead) forecasts is still yet to be

proven [46, 156]. These limitations are due to the inadequacy of numerical mod-

els for simulating the climate system, and the relatively short length of a reliable

historical hurricane data archive [106]. In this thesis, a number of novel and

easily deployable statistical forecast systems are presented for constructing pre-

dictions of seasonal hurricane counts (i.e. annual numbers of hurricanes). While

these forecast systems are potentially skilful, the key purpose is to demonstrate

robust practice in statistical forecast construction and forecast evaluation.

Hurricanes are often analysed, modelled, and predicted as count data which

are typically small in value, for example, there are on average approximately

6 hurricanes forming in the Atlantic basin every year. A key forecast quantity

of interest to the (re)insurance and risk management sectors is the fractions of

hurricanes that make landfall over the coast of the U.S. each year, obviously

because they are responsible for the worst inflicted economic losses. Since U.S.

landfall hurricanes make up a subset of the total number of hurricanes forming

in the Atlantic basin, the counts are usually very small (around 1.5 hurricanes

a year on average). Detection of trends in these small-count count data is

prohibitively difficult, despite the efforts of research within the insurance sector

[34]. Robust statistical analysis and inference with small-number count data,

coupled with the limited size of the historical archive, require a number of

adapted techniques. These methods are demonstrated both for inference of U.S.

landfall fractions and in regression modelling of various categories of hurricane
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activity in this thesis.

1.3 Thesis overview

The structure of this thesis is outlined as follows:

The effectiveness of forecast recalibration is investigated under perfect and

imperfect model scenarios in Chapters 2 and 3 in the context of a well known dy-

namical system called Lorenz63 [118]. The performance of binary forecasts (i.e.

forecasts of an event with two possible outcomes) of the state of the Lorenz63

system is compared before and after recalibration. These forecasts have been

constructed with different forecast density construction methods which are also

defined. The results of the recalibration experiments using a number of re-

calibration algorithms sourced from the literature are presented. Information-

theoretical measures of forecast performance are defined, and are used to assess

any improvements in forecast skill, forecast reliability, and forecast resolution.

It is shown that recalibration is most effective where forecast performance is

already poor. The investigation of recalibration comprises a new contribution

in this thesis. The concept of “optimal skill” for binary forecasts, an upper

bound on forecast skill for a particular performance measure, is also introduced

for the first time.

Chapter 4 examines the complicating effects of serial dependence in outcome

data on forecast evaluation. These important effects, which are often neglected

in operational forecast evaluation, can result in inaccurate estimates of forecast

skill. This research builds on the results of Wilks [216] who has demonstrated

how the variances of the sampling distributions of a scoring rule become in-

flated where there is linear serial correlation in sequential forecasts, resulting in

overconfidence in forecast skill. Wilks [216] also derives a mathematical func-

tion to make sample size corrections necessary to obtain accurate estimates of

skill. These results are replicated here, but it is also shown for the first time

that serial dependence is neither a sufficient nor necessary condition for esti-
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mates of forecast skill to be inaccurate. A new empirical method for sample

size corrections is also proposed.

Chapters 6, 7, and 5 review and extend the current methodology for hur-

ricane modelling and prediction, and provide insights into best practice when

evaluating and utilising hurricane forecasts.

In Chapter 6, a case-study of forecast recalibration is applied to short-term

(i.e. 48-hour ahead) forecasts of tropical cyclone formation issued by the Na-

tional Hurricane Center based in the U.S.. Recalibration is performed both

out-of-sample and with leave-one-out cross-validation to assess whether the per-

formance of the tropical cyclone forecasts can be improved. While the latter

technique increased the reliability of the forecasts, the out-of-sample approach

generally led to a deterioration of reliability. This is explained by year-to-year

variability in patterns of hurricane formation. It is also shown that the as-

sessment of the reliability of these forecasts is complicated by variation in the

time between forecast issuance and the occurrence of tropical cyclone formation,

referred to as “Time Until Event”.

In Chapter 7, Poisson and logistic regressions are used to model annual

counts of various categories of hurricanes, and fractions of subset categories

of hurricanes using a variety of predictor variables. Various techniques are

employed to fit and select the models so that nonlinear dependencies between

the response variable (i.e. hurricane variable) and the predictors, as well as

collinearity between predictors, are accounted for. An innovative computational

“sliding linear” root-finding algorithm for constructing confidence intervals for

regression coefficients where sample sizes are small is presented for the first

time.

In Chapter 5, various challenges to robust hurricane forecast construction

and forecast evaluation presented by small-number count data and limited sam-

ple sizes are highlighted, and are followed by best-practice solutions to address

these challenges. Two new forecast systems, based on univariate and bivariate

statistical predictive techniques called “synoptic conditioning” and “conditional
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analogue” are introduced. These techniques have been designed to exploit the

data available in the relatively short hurricane data archive. The limitations

of statistical inference with small samples of small-number count data are also

discussed, followed by suggested methods which are specialised for these types

of data. In addition, the relationship between forecast skill and forecast value

is examined in a monetary betting scenario to demonstrate that a forecast user

need not wait to establish statistical confidence in the skill of a forecast system

before putting it to use. This concept is aptly titled “profit before proof”.

Finally, the forecast systems based on the techniques discussed in Chapters 7

and 5 are fitted to the historical hurricane dataset, and are deployed in Chapter

8 to construct a real-time outlook for the 2013 Atlantic basin hurricane season.

The skill of these forecasts is evaluated and compared to other operational

predictions.

The key new contributions and innovations in this thesis are summarised as

follows:

1. critique of existing recalibration algorithms for binary probabilistic fore-

cast recalibration. Kernel density estimation [23] and beta-transform lin-

ear pool [165] algorithms are shown to perform the best out of all the

algorithms.

2. examination of the relationship between forecast skill and forecast reliabil-

ity in the context of recalibration using the decomposition of the ignorance

score

3. surveyance of the conditions where recalibration is effective for increasing

forecast reliability and forecast skill

4. introduction, discussion and quantification of “optimal skill” of binary

forecasts

5. discussion of the limitations of forecast binning/categorisation for forecast
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recalibration, and review and critique of binning/categorisation methods

in the literature

6. identification of the conditions where recalibration has a detrimental effect

on forecast resolution

7. derivation of the analytical sampling variance of ignorance score estimates

for binary forecasts

8. demonstration of how misleading estimates of forecast skill can result from

the presence of serial correlation in evaluation data (with both a stochastic

and nonlinear dynamical system)

9. explanation of how the presence of serial correlation in evaluation data

is neither a necessary nor sufficient condition for misleading estimates of

forecast skill (with stochastic systems)

10. illustration of how misleading estimates of forecast skill can occur where

serial correlation is not present in evaluation data but is present in forecast

evaluation statistics (with a nonlinear dynamical system)

11. investigation of the time until convergence of score estimates to their

asymptotic “true” value

12. proposal and illustration of an empirical method for effective sample size

corrections where serial correlation is present in evaluation statistics

13. evaluation of NHC 2012 short term TC genesis forecasts using reliability

diagrams both with consistency bars and on probability paper to quantify

forecast reliability

14. recalibration of NHC 2012 short term TC genesis forecasts using simple

translation out-of-sample and with leave-one-out cross-validation

15. examination of the relationship between NHC short term TC genesis fore-

cast reliability and “Time Until Event”
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16. proposal of supplementary diagrams/tables to reliability diagrams which

provide additional information about the effect of time until event on

forecast reliability where relevant

17. presentation of an innovative “sliding linear” root-finding algorithm for

constructing confidence intervals for regression model coefficients where

sample sizes are small

18. tests for overdispersion of tropical cyclone count data for Poisson and

logistic regression models

19. introduction and demonstration of new “synoptic conditioning” and “con-

ditional analogue” hurricane forecast systems

20. investigation of the limitations on statistical inference of hurricane data

analysis where storm counts are small, and data are sparse

21. description of a new statistical empirical conditional analogue hurricane

forecast system using temporal single and series analogues

22. introduction of a novel “top-hat” kernel dressing method designed for

forecast PDF smoothing with count data

23. examination of the relationship between forecast skill and forecast value

in an evaluation/betting scenario

1.4 Forecasting

Decision-makers are constantly faced with uncertainty about the future, and

rely on predictions to quantify this uncertainty, and guide the planning process.

Efforts to predict many physical (e.g. the motion of a planet) or non-physical

(e.g. financial markets) dynamical systems evolves in time are hampered, how-

ever, due to their nonlinear, and sometimes chaotic, behaviour (as well as im-

perfect observational and computational capabilities). In reality, the best that
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one can hope to achieve is to construct a model which imperfectly describes the

underlying rules governing a dynamical system, and issue a predictive statement

about the probabilities of given states of the system occurring.

The principle concern of this thesis is the prediction, or forecasting [6], of

hurricanes which are extreme storm weather phenomena forming in the Atlantic

ocean basin. Strictly speaking, weather is defined as the state of the Earth’s

atmosphere, which is itself considered a highly complex nonlinear dynamical

system with a defined set of fixed rules, or physical laws [150]. Moreover, the

ocean-atmosphere system is chaotic [118], implying that it has sensitive de-

pendence on initial conditions. Sensitive dependence describes the scenario

where the distance between two nearby initial states can grow rapidly and

exponentially-on-average over time1 [184]. Two forecasts of the same future

state of the weather, or say, the formation or non-formation of a hurricane,

can also differ significantly. Producing a useful forecast of a complex, chaotic

system such as weather is a formidable task, yet, due to its direct impact on

many fields, including (re)insurance, agriculture, transport, etc., weather fore-

cast information has large potential value.

Forecasts come in two different forms: point forecasts and probabilistic fore-

casts. Point forecasts consist of a single “best guess” value while probabilistic

forecasts aim to quantify forecast uncertainty by providing probability state-

ments about the chances of occurrence of certain future events. Probabilistic

forecasting has the crucial advantage over point forecasting in that uncertainty

about the future evolution and state of a system is expressed. Unless a point

forecast is accompanied by some measure of its quality, no indication of forecast

uncertainty is provided.

Before an explanation of the process of forecasting, it is useful to describe

1coincidentally, this scenario is linked to hurricanes. It is sometimes referred to as the

“butterfly effect”, a phrase which has been credited to Edward Lorenz who used the metaphor

of a butterfly flapping its wings, resulting in the eventual formation of a hurricane several

weeks later [212]
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the types of dynamical systems (i.e. the target objects of which predictions are

produced) which are studied in this thesis.

1.4.1 Dynamical systems

A dynamical system describes the evolution of a physical or non-physical state

in time according to a fixed behavioural rule. Let the evolution of the state

x of a system over time in state space S be denoted by xt = Ψt(x0), where

Ψ represents the dynamics of the system, x ∈ S where S ⊂ Rn, and t ∈
(−∞,∞) is the time of the evolution. x0 denotes what is commonly referred

to as the initial conditions. Dynamical systems are mathematically classified

as either deterministic or stochastic. The evolution of deterministic systems is

determined by the system’s dynamics and the initial conditions (IC) without

any effects of randomness (i.e. their current state defines their future state

unambiguously). An example of a deterministic system is a simple pendulum

[188] where the fixed rule is expressed with respect to Newton’s second law as

d2x

dt2
+ b

dx

dt
+ sinx = AsinΩt, (1.1)

where x is the angular displacement, t is time, and AsinΩt is a driving force.

Stochastic systems, on the other hand, are governed by a rule that has a

random component, although it may also involve a fixed (non-random) com-

ponent. Instead of describing a unique evolution of a state variable, its future

state must be determined probabilistically. Cases of both nonlinear dynamical

systems and stochastic systems are considered in this thesis. A common ex-

ample of a stochastic system is a financial stock market modelled by Brownian

motion [127].

The evolution of a dynamical system in time can can either be continuous

or discrete. In the first case, a change in the state of the system x, is referred

to as flow, is usually represented by a set of first order differential equations of

the form
dx(t)

dt
= Ψ(x), (1.2)
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where the dynamics Ψ are defined for all real values of time t ∈ R, and {xt}Tt=0

forms an unbroken trajectory in state space. In the second case, a change in x,

referred to as map, occurs at regular intervals, and assumes the mathematical

form

xt+1 = Ψ(xt), (1.3)

where t ∈ Z.

Many of the studied dynamical systems in this thesis are nonlinear, meaning

that they have have nonlinear dynamics so that the response of the system is

not directly proportional to its input [184].

Precisely determining the current state, and accurately predicting the future

state, of a nonlinear dynamical system is challenging due to inherent uncertain-

ties in the current state of the system. To deal with the problem of forecasting a

system’s future state, a mathematical model is usually constructed in the form

of either a

(a) dynamical model: a mathematical description of the underlying rule(s)

(e.g. a set of differential equations) governing the system to simulate its

evolution, or a

(b) statistical model: formalising the relationships between the state vari-

able of a system, or predictand, and a set of predictor variables based on

the assumption that historically observed relationships are preserved.

A given system may be described by different models; where a physicist uses a

dynamical model which incorporates differential equations, a statistician may

opt for a statistical model based on regression analysis. Even under the for-

mer approach, however, there might be different sets of differential equations

describing the same system. The obvious reason for having more than a single

mathematical description of a system is that many physical laws are “useful ap-

proximations in restricted circumstances” [90]. In reality, no model of a physical

dynamical system is a perfect description of the system at hand, simply because
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forecasters do not possess a perfect knowledge of all the laws of nature. More-

over, models, like physical theories, are always unprovable, however, and can

only be falsified [188]. Both dynamical and statistical models are explained in

the next two sections.

1.4.2 Dynamical models

Dynamical models are constructed to describe deterministic and stochastic dy-

namical systems, and so the models themselves can also be categorised as deter-

ministic and stochastic. Physicists typically use deterministic models based on

a set of differential equations, whereas a stochastic model is more the domain

of statisticians. Both types of dynamical model are employed in this thesis to

demonstrate various properties of forecast construction, evaluation, and recal-

ibration. Several examples of deterministic nonlinear dynamical systems are

used in this thesis (e.g. Lorenz63 [118], logistic map). Constructing predictions

from dynamical models is generally a complex task which involves several stages

such as inputting observational data, estimating initial conditions, running the

model simulation, correcting systematic model error, and interpreting the model

output. These concepts are explained in more depth in Section 1.5.

1.4.3 Statistical models

The aim of statistical modelling of a system is to quantify the relationships

between the system predictand and a set of predictors. This set-up may include

univariate relationships (i.e. a describe of the relationship between the current

value of the predictand and values observed in the past). The usefulness of

a statistical model is reliant on both the preservation of these statistical rela-

tionships and a sufficiently large and high-quality (i.e. accurate) datasets of

independent observations [125]. A common approach is linear regression anal-

ysis where a single “best guess” prediction is constructed on the basis that a

given change in the value of a predictor results in a constant change in the
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expected value of the predictand regardless of the value of the predictor. Non-

linear relationships can also be modelled by modifying linear models or using

alternative statistical techniques. The validity of regression models is based on

a number of assumptions, however, which can only be justified through robust

testing of the model. Producing forecasts from statistical models is typically

more straightforward than dynamical models, and they are used throughout this

thesis. For example, both linear and nonlinear regression models are employed

in Chapter 7 to model and make predictions of long-term hurricane activity.

Combined statistical-dynamical are also possible, and are used more commonly

in the modern era of weather prediction (see, for example, Wilks [215], Vecchi

et al. [205]).

1.4.4 Perfect and imperfect model scenario

As explained in Section 1.4.1, there is no such thing as a perfect model in

“real-world” forecasting [90]. By considering the idealised situation of a perfect

model of a dynamical system referred to as Perfect Model Scenario, however, it

is possible to isolate and understand the effects of properties of a forecast model

on its ability to produce accurate forecasts. PMS is exploited in Chapter 2 to

investigate the effectiveness of forecast recalibration. Imperfect Model Scenario

is first explained to separate limitations in practice from limitations in principle.

Imperfect model scenario

In an imperfect model scenario (IMS), the model consists of an imperfect de-

scription of the dynamics of the system, since the assumption is that a forecaster

has incomplete knowledge of both the underlying rule of the system, and the

exact initial conditions x0. The ability of a model to accurately simulate the

evolution in time of a dynamical system and predict its future state is impaired

by both its structural imperfections and uncertainty in initial conditions [90].

Forecasts produced from imperfect models are by definition imperfect, mean-
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ing that they are subject to forecast error (i.e. they are inaccurate predictions

of the future state of a dynamical system). IMS applies to every forecasting

situation in the real world, for example, a weather forecaster can only hope to

construct a crude dynamical model which contains an incomplete set of differ-

ential equations describing the ocean-atmosphere system [150].

Perfect model scenario

In a perfect model scenario (PMS), a model provides an exact description of

the dynamics of the system, so forecast error is attributable solely to IC and

model parameter uncertainty, and other sources of error can be ignored when

evaluating the forecast model. In that sense, PMS is the opposite to IMS, but

should that imply that a forecaster can issue a probabilistic perfect forecast

using a perfect model? Unless the true state of the system is known, a perfect

probabilistic forecast is not obtainable. Even with a perfect model at hand and

access to infinite past observations of the state of the system, it is not possible

to identify the initial “true” state due to uncertainty in the observations [89].

It follows that a single “best guess” prediction is not an optimal approach to

accurate estimation of the initial state. Instead, an ensemble of initial conditions

provides a better account of the uncertainty in the observations. Ensemble

forecasts produced from a perfect model are assumed to have independent and

identically distributed (i.i.d.) errors, and the observed outcome at a given time

in the future can be considered a dynamically consistent member of the forecast

ensemble, distinct from the other members only by the sampling of the initial

conditions.

Given that all real world forecasting cases fall under IMS, do there exist

any examples of PMS? The answer is that PMS can only be “artificially” con-

structed. This can be achieved by simply letting the model act as both the

model and the system. For example, consider a perfect statistical model as-

suming the form of a standard normal distribution, N (0, 1), which produces

forecasts of a system which has state xt determined at time t by xt
iid∼ N (0, 1).
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Even though the forecast is imperfect, it is drawn from the same distribution

as the system states, and will be a useful, and valuable prediction. By study-

ing model-system configurations under PMS, we can glean important insights

about the properties of a forecast model, as is the case in Chapter 2.

1.4.5 Forecasting framework

A brief overview of the forecasting process is given in this section. There are

generally a number of stages involved in the process, although these may vary

depending on the application and scale of the operation. Figure 1.1 shows a

flowchart which describes the general framework for a forecasting process that

is typically implemented at, for example, an operational weather forecasting

centre.

The first three stages come under the process of data assimilation whereby

observational information is mapped onto the model’s state space (i.e. state

estimation). The role of data assimilation (DA) is essentially to provide the

best possible initial conditions, hence the collection and quality control of this

data is an important task. In nonlinear dynamical (chaotic) systems such as

weather and climate, small errors in a current state estimation lead to badly

degraded forecasts due to sensitive dependence [118].

The fourth stage of the forecasting framework, and perhaps one of the most

important is forecast generation. The model is initialised by integrating the ini-

tial conditions determined in the state estimation stage to produce a “raw” en-

semble of single-value point forecasts for a given lead time. There are often

differences between the model output and the observed state of the system,

which leads to substantial forecast errors. These particular type of errors are

referred to as model systematic bias. The purpose of the post-processing stage

is to remove these biases using relatively simple statistical techniques. One such

technique is called forecast recalibration which uses previous observed outcomes

and forecasts.
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Collection of observations

Data quality control

Current system

state estimation

Forecast generation

Forecast post-processing

Forecast density

construction

Forecast evaluation

Figure 1.1: Schematic of a typical operational forecasting framework

After the post-processing stage, an ensemble needs to be converted into a

usable probabilistic forecast so that probability densities are assigned to all pos-

sible future system states, this is the density construction stage. A probabilistic

forecast typically comes in the form of a forecast PDF. Following this, forecast

evaluation is an important stage for assessing the quality of the forecast PDF
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ex ante and ex post. Forecast evaluation and forecast recalibration are two im-

portant aspects of the work in this thesis, and are described in more detail in

Sections 1.6 and 1.7, respectively.

This very brief overview provides a simplified and perhaps incomplete sum-

mary of the forecasting framework; other processes may be involved depending

on the scale of the forecast operation. For example, “downscaling” procedures

are used in weather forecasting to translate the resolution of large-scale forecasts

to a smaller and more practically useful scale.

1.5 Probabilistic forecasting

The uncertainty inherent in the current and future states of a nonlinear dynam-

ical system should be reflected in a forecast of the future observable state of

that system. Forecast uncertainty is best quantified by issuing probability state-

ments about future observable outcomes based on model output and/or past

observed outcomes and forecasts (i.e. probabilistic forecasting). Probabilistic

forecasts can come in various forms: as a set of probabilities of discrete events or

counts of events; as quantiles of a continuous variable; or as full discrete or con-

tinuous probability density functions (PDF) or cumulative distribution functions

(CDF). There are three good reasons for producing probabilistic forecasts:

• forecast uncertainty is communicated by assigning probabilities to the

possible future states of the system

• probabilistic forecasts are more accountable than point forecasts, and are

more robustly evaluated in probabilistic terms

• probabilistic forecasts allow forecast-users to quantify risk, and improve

their decision-making

One of the simplest approaches to constructing a probabilistic forecast is to

estimate the uncertainty on a single best-guess point forecast by fitting a PDF to
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a sample of past forecast errors (i.e. the difference between pairs of forecasts and

observed outcomes from the past). Not only do probabilistic forecasts provide

information about the likelihoods of future possible states of the system, they

also allow a user of a forecast to plan their decision-making contingencies based

on these likelihoods [191].

1.5.1 Sources of forecast uncertainty and error

Classification of the different types of uncertainty endemic in the forecasting

of dynamical systems is useful here. Uncertainty originates broadly from two

different main sources: uncertainty in the initial conditions, and uncertain-

ties arising from the mis-specification of the forecast model, (i.e. model error)

[150, 88]. The combination of these two sources results in the degradation of

the quality of the forecast (i.e. forecast error). Forecast error is defined as the

discrepancy between a forecast and the “truth”. The truth, however, is strictly

speaking, indeterminable: it is, at best, unknown and arguably undefined [88].

To determine forecast error in practice, one must take an observation of the

system state as a proxy for the truth which is problematic because observa-

tions are themselves also subject to error. In real-world forecasting (i.e. under

IMS), it is not possible to distinguish between forecast error that arises from

IC uncertainty and model error [114]. Formal definitions of these two sources

of uncertainty are now given.

Initial condition uncertainty

Accurate estimation of the initial conditions is hindered by observation error

under IMS. Observation error occurs as a result of sampling error or systematic

error in measurements (e.g. biases in a measurement device). In the context

of nonlinear dynamical systems, sensitive dependence on the initial conditions

implies that an arbitrarily small error in the initial state can grow at an expo-

nential rate up until the time a forecast is required for, referred to as the forecast
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lead time. The error growth will eventually result in the forecast model reaching

its own limit of predictability [182], a lead time beyond which the forecast is no

longer “useful”. To account for IC uncertainty, data assimilation techniques are

usually employed. Data assimilation is the process of state estimation whereby

a series of observational data are “mapped” into model state space [88]. This

is a key part of the operational weather prediction framework (see Fig. 1.1).

Model error

Model error arises from a forecast model’s inaccurate and incomplete repre-

sentation of the dynamics of the system, referred to as model inadequacy [96].

Model inadequacy is characterised by two limitations of the formulation of the

model. These are:

1. Structural error: the model contains an incomplete or incorrect mathe-

matical description of the system dynamics (i.e. there is a missing variable

or a mathematical equation is incorrectly specified).

2. Ignored sub-space inadequacy: a component of the system’s dynamics is

not included in the model. This deficiency occurs where computational

devices are used to model complex physical dynamical systems requiring

a discretisation of model space, and imposing a limit on the resolution

this discretised space [90].

Model inadequacy inevitably leads to forecast error in which the projected

state of the model is different to the actual system state at a given lead time.

The error growth will eventually result in the forecast model reaching its own

predictability limit. Model inadequacy is discussed in more detail in Chapter

3.
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1.5.2 Ensemble forecasting

Section 1.5.1 explains how uncertainty in the estimation of the initial state of

a dynamical system accumulates over the integrations of a forecasting model,

and results in forecast error. Model error aside, a forecaster can attempt to at

least quantify the IC uncertainty. A common approach in weather and climate

forecasting is to sample the initial conditions using a Monte Carlo technique [91]

called ensemble forecasting [114]. The sample, or “ensemble”, of initial states

is evolved in time with the forecast model to provide a representative sample of

possible future states of a system. The spread among members of the ensemble

at some future time gives an estimate of the flow-dependent predictability of

the system. In weather and climate forecast models, a more sophisticated tech-

nique is used by perturbing the ensemble members to better account for model

uncertainty [150].

Consider a perfect ensemble (PE) under PMS where it is assumed that IC

uncertainty exists, but where the ensemble is drawn from the same distribution

of initial states as the “truth”. In this context, the reason for studying the

properties of a forecast model under PMS can be properly understood. The

assumption of knowing the true distribution allows for sampling initial state

“candidates”, so that an ensemble of “perfect initial conditions” can be con-

structed. Although it is not possible to produce a perfect forecast by sampling

a perfect ensemble under PMS, the forecast distribution is equivalent to the

distribution of the future system states. As described in Section 1.5.1, it is not

possible to disentangle forecast error as a result of IC uncertainty from forecast

error caused by model error under IMS. Disentangling the two sources of fore-

cast error is, of course, possible under PMS. With the enhanced configuration

of a perfect ensemble under PMS, any bias in a forecast (i.e. systematic forecast

error) is attributable to the evaluation method [12].

The construction of a raw ensemble forecast is now illustrated. Consider a

time series of observed states of a system s0, . . . , st, . . . , sN plus some additive
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observational noise, so that st is defined by

st = x̃t + ǫ, (1.4)

where x̃t is the true state of the system variable, and ǫ
iid∼ F (· ) is the observa-

tional noise term determined by some noise model F (· ).
Now consider a perfect model Ψ initialised at time t = 0 with an ensemble

of initial conditions x0 = x0,1, . . . , x0,Nens
which is used to produce forecasts of

the future state x̃t+τ at different lead times given by τ . These forecasts are

expressed as

x̂t+τ = Ψ(xt) (1.5)

= xtτ + ǫt+τ (xt, ǫ). (1.6)

The IC ensemble, which represents the degree of uncertainty about the true

state of the system at time t, is generated by perturbing the observed state st

using the inverse of the model of observational noise i.e.

xt,k = st + ǫ. (1.7)

At each initialisation time t, the raw ensemble forecast x̂t+τ is produced using

an iterative approach whereby the IC ensemble xt is iterated as far as the lead

time tτ using the model Ψ so that

x̂t+1 = Ψ(xt) (1.8)

x̂t+2 = Ψ(x̂t+1) (1.9)

...

x̂t+l = Ψ(x̂t+l−1) (1.10)

...

x̂tτ = Ψ(x̂tτ−1). (1.11)

where x̂tτ is the raw ensemble iterated τ timesteps forward to time t = tτ .
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1.5.3 Statistical forecasts

Construction of statistical forecasts is typically more straightforward than dy-

namical model forecasts. The process of initialising a dynamical model, post-

processing its output and then converting it into a forecast PDF is not re-

quired. Classical statistical forecasts (i.e. those constructed from purely sta-

tistical methods, e.g. linear regressions) are generally confined to forecast lead

times of less than a few hours, or beyond 10 days or so due to the steady im-

provement of dynamical models [217]. More often, classical statistical methods

are incorporated into the forecasting process to improve on aspects of dynam-

ical model forecasts at the post-processing stage (e.g. model-output statistics

[215], or kernel dressing [12]). Statistical forecasting has featured often in hur-

ricane forecasting [64, 50, 207], however, and a number of statistical forecasting

techniques are employed in this thesis to predict annual hurricane activity.

Climatology as a forecast distribution

A very simple classical statistical approach to forecasting is to use the uncondi-

tional climatological distribution, that is, the historical distribution of observed

outcomes of a system variable y. Usually, it is not possible to have a complete

record of historical observed outcomes so a sample climatology provides an es-

timate of the unconditional climatological distribution E[y]. A climatological

forecast pclim is constructed from the sample climatology, henceforth referred to

as simply climatology, with either parametric [81] or non-parametric methods

[16]. Given that the climatology is unconditional, pclim is issued irrespective of

both the time it is issued and the forecast lead time. Under the assumption

that a system’s dynamics do not suddenly change, and are, at least to some

extent, captured by the observational data, the climatological forecast can be

considered robust to unexpected outcomes. For that reason, as well as being

simple and quick to construct and deploy, it is often considered a benchmark,

or reference forecast, against which forecasts produced from alternative models
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can be compared and evaluated. In short, the climatological forecast provides

a measure of zero skill. If another forecast cannot outperform it (i.e. achieve a

higher degree of skill) then that forecast cannot be considered useful. Forecast

skill, and methods for evaluating it, are described in more detail in Section 1.6.

The unconditional climatology is employed as a reference forecast throughout

this thesis.

As a robust forecast, the climatological forecast can serve another useful

purpose. At shorter lead times, a forecast produced from a more complex sta-

tistical model or a dynamical model is expected to outperform a climatological

forecast (or some other reference forecast). The skill of these model forecasts

may deteriorate with lead time, however, as forecast errors tend to grow. At

some point the climatological forecast may demonstrate a higher degree of skill.

A simple procedure called blending [26] is utilised to reduce the deterioration of

the skill of the model forecast at longer lead times. For a given lead time, the

model forecast pmod(y) and climatological forecast pclim are blended to produce

a final density given by

p(y) = αpmod(y) + (1− α)pclim(y), (1.12)

where α ∈ [0, 1] is the blending parameter. By Eqn. (1.12), a parameter value of

α → 1 implies that the model forecast outperforms the climatological forecast,

and where α → 0 the opposite is true. The latter scenario tends to occur at

longer lead times. The blending procedure ensures that the final forecast density

p always outperforms or is comparable to the climatological forecast. Several

forecast models deployed in this thesis make use of the blending procedure.

1.6 Forecast evaluation

Forecast evaluation is an important process within the forecasting framework

(see Section 1.4.5). Background information on the role of forecast evaluation

and the various methods for assessing forecast performance in this thesis are
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described in this section.

1.6.1 The role of forecast evaluation

The purpose of forecast evaluation is to assess the quality of forecasts, and

forecast systems2. Forecast quality is usually evaluated with some numerical

performance measure such as a forecast scoring rule. Objective evaluations

of forecast quality serve a variety of administrative, scientific, and economic

purposes [21]. These are summarised as follows:

(a) to monitor and improve the quality of a forecast system. Rates in forecast

improvement can be assessed and compared for different locations and lead

times. Good forecast performance can also justify funding for research and

improvement of a forecast system.

(b) to compare the relative quality of different forecast systems. Forecast per-

formance can be compared so that forecast users can choose between com-

peting forecast systems.

(c) to provide forecast-users with effective decision-making support. The per-

formance a forecast system needs to be communicated in simple terms,

but also ideally in terms of the value to the forecast user.

Forecast evaluation also plays a part in the forecast density construction

stage. A performance measure can be used to calibrate (i.e. tune) and validate

(i.e. assess the ex ante quality) a forecast system before it is deployed for

operational use.

1.6.2 Measures of forecast quality

Forecast quality is really a term which encapsulates a variety of attributes of

forecast performance. Strictly speaking, it is the combination of the statisti-

2forecast system is a term which encompasses a forecast model together with the set of

techniques used to produce a forecast
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cal characteristics of the forecasts p, the outcomes y, and their relationship

represented by their joint distribution P (p, y). Many researchers of forecast

evaluation stress the importance of utilising the information contained in the

joint distribution of forecasts and outcomes3 [142, 87, 217]. There are a number

of performance measures available to evaluate forecast quality, but a particu-

lar type which is defined for individual pairs of forecasts and outcomes is the

scoring rule.

A scoring rule, or score, provides a summary measure of probabilistic forecast

quality, or forecast skill4, by assigning a numerical score S based on the forecast

density p(·) assigned to the outcome y. The score is usually expressed as the

average forecast performance over a set of N forecast-outcome pairs, given as

〈S〉 = 1

N

N
∑

i=1

S(pi(y), Yi), (1.13)

where pi(y) is the ith forecast density assigned to the ith outcome Yi. Forecasts

cannot be robustly and meaningfully evaluated on the basis of a single forecast-

outcome pair, however, so access to a large forecast sample of forecast-outcome

pairs is important [182, 25]. There are two key scoring rules which are employed

in this thesis; these are the Brier score and ignorance, and are defined below.

Brier score

The Brier Score [20] is the most commonly defined for binary event (i.e. Y = 0

or Y = 1), and is given by

S(p, Y ) = (p− Y )2, (1.14)

where p = P (Y = 1). The Brier Score is essentially the mean-squared error of

the forecasts over a set of N forecast-outcome pairs.

3outcomes are sometimes referred to as observations or verifications in the literature
4skill is sometimes referred to as a measure of relative performance of two forecast systems,

but it is consistently used here to define the absolute performance of a single forecast system
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Ignorance

Ignorance is an information-theoretical [172, 113] scoring rule which measures

the information deficit of a probabilistic forecast (i.e. the information that it

lacks according to an optimal encoding scheme) before it is evaluated with the

outcome. Ignorance is defined for binary, categorical, or continuous outcomes,

and is expressed as

S(p(y), Y ) = −log2(p(Y )). (1.15)

Both of the above scores are negatively oriented, meaning that a smaller value

of the score indicates a more skilful forecast. Ignorance and the Brier score

are frequently used in the literature and share an ideal property of scoring

rules called propriety [25]. In mathematical terms, a scoring rule is classified

as proper if for any two probability densities p and q, the following inequality

holds:
∫

S(p(y))q(y)dy ≥
∫

S(q(y))q(y)dy. (1.16)

The minimum (i.e. optimum) score, therefore, is obtained over all possible

values of p(y) if p(y) = q(y). Furthermore, a scoring rule is strictly proper if the

strict inequality > holds. An interpretation of Eqn. (1.16) is that a proper score

rewards a forecast density p that is as close as possible to the “true” density

q. In short, a proper score encourages a forecaster to issue a forecast that

reflects their attempt to achieve the most accurate forecast. For example, in

the unlikely event that a forecaster needs to choose between a perfect forecast

and an imperfect forecast, the former would be preferred by a proper scoring

rule, at least over a sufficient number of forecast-outcome pair evaluations. In

other words, if a perfect model is available, it should always be chosen over an

imperfect forecast model.

While propriety may appear to be a minimum requirement for a scoring

rule, there do exist scores which are improper (i.e. do not possess propriety).

Bröcker and Smith [25] demonstrate that the mean-square error (MSE) score,
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defined as

S(p(y), Y ) =

∫

(Y − y)2p(y)dy, (1.17)

is improper. Another example of an improper scoring rule is the Pearson linear

correlation coefficient for point forecasts which measures the linear association

(i.e. the overall strength of the relationship between forecasts and outcomes)

rather forecast accuracy as is done by the Brier and ignorance scores. The

Pearson linear correlation coefficient is expressed as

S(X, Y ) =

N
∑

i=1

(Xi − X̄)(Yi − Ȳ )

√

√

√

√

N
∑

i=1

(Xi − X̄)2

√

√

√

√

N
∑

i=1

(Yi − Ȳ )2

. (1.18)

whereX denotes a point forecast (which could be a mean or median probabilistic

forecast), and Y is the outcome. Evaluating forecasts with the Pearson linear

correlation coefficient thus may lead a forecaster to choose an imperfect model

over a perfect one. The impropriety of the Pearson linear correlation coefficient

is demonstrated in Chapter 5.

It is important to note that use of a proper score does not guarantee that

the best forecast model is preferred. For example, there may be cases where

perfect ensemble forecasts are produced from a perfect model but the density

construction method may be deficient, resulting in biased forecast densities. A

proper score will then penalise the model for forecast error, failing to identify

it as perfect.

Another property of the ignorance score is called locality [25], which implies

that the score is only dependent on the forecast probability assigned to the

actual outcome alone. An example of a non-local score is the MSE score. There

are a number of other desirable properties of scoring rules, depending on the

type of outcome variable (i.e. binary, categorical/discrete,continuous) [137], but

propriety is considered a minimum requirement for robust forecast evaluation

here.
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As previously discussed in Section 1.5.3, a reference forecast is used to define

zero skill. The arithmetic difference between the ignorance scores of a forecast

system and a reference forecast is defined to measure relative skill. A climato-

logical forecast is regularly used as the reference forecast throughout this thesis.

1.6.3 Imperfect forecast error

An example of how forecast error can arise from imperfect forecasts under either

PMS or IMS is now illustrated. Consider a simple statistical forecast model of

a “toy” system which has two states (i.e. the outcome Y ∈ {0, 1} is binary).

Suppose that a forecaster wishes to predict a series of system state outcomes

using the forecast model which is defined by a PDF denoted p. Let the true

PDF5 be denoted by q, which belongs to a different class of distribution to p.

Suppose also that q is a convex linear combination of p and a PDF g where

g 6= p, so that

q = αp+ (1− α)g, (1.19)

where 0 ≤ α < 1. Clearly, for all possible values of α, the forecast PDF is

imperfect, but as α → 1 and the forecast PDF converges to the true PDF (i.e.

p→ q), the forecast skill measured by some scoring rule would converge to the

perfect score (i.e. S(p(y))− S(q(y)) = 0).

Suppose that the forecaster issues probabilistic forecasts Pi of the binary

outcome Yi = 1 on i = 1, . . . , N occasions where the forecast is determined by

an independent and identically-distributed (i.i.d.) random draw from a uniform

distribution

Pi ∼ U(0, 1), (1.20)

and the true probability is

Qi = αPi + (1− α)ρ, (1.21)

5this PDF purely represents the distribution of the two true states of the system in this

case and is not subject to observational uncertainty - see Section 1.5.1
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where ρ ∼ U(0.5, 1). Hence, a forecast Pi is almost certainly different from the

true probability Qi, and hence imperfect, on every occasion i.

Figure 1.2 shows the results of evaluation of forecast performance using

the ignorance score. The top plot shows the expected relative ignorance score

E[IGN ] which measures the difference between the expected skill of p and q,

expressed as

E[IGN ] =

2
∑

j=1

qj log2

(

qj
pj

)

, (1.22)

where qj and pj denote the true and forecast probabilities assigned to the jth

outcome, respectively. The curve converges to the perfect score of 0 as α → 1.

A perfect forecast model would achieve a perfect expected score. The bottom

plot of empirical relative ignorance estimated over theN = 211 forecast-outcome

pairs (see Eqn. (1.15)), however, shows that zero forecast error is not achievable.

Even where α = 1, so that the forecast and true PDFs are identical, the forecast

model has an ignorance score value of 0.71±0.03 bits simply because it produces

incorrect probabilistic forecasts.

1.6.4 Forecast reliability

Forecast reliability is another key attribute of probabilistic forecast perfor-

mance. Reliability describes the statistical consistency between the forecasts

p and the conditional expectations of the outcomes given a forecast probabil-

ity E[y|p]. A forecast system is considered reliable if, for a given forecast, the

observed frequency of the predicted event is consistent with the forecast prob-

ability. In notational terms this is written as

P (Y = 1|p = r) = r, (1.23)

where p is the forecast probability, r is the realisation of p, and Y = 1 is the

occurrence of an event. The left-hand side of Eqn. (1.23) is often referred to as

the calibration function [217, 23], which is henceforth denoted as κ.
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Figure 1.2: Skill of imperfect forecasts: the relative expected ignorance of the proba-

bilistic binary forecasts drawn from the PDF p with respect to the true PDF q with increasing

convergence α between the two PDFs (top), and the empirical ignorance score of the prob-

abilistic forecast Pi with respect to the true probability Qi for a series of N = 211 binary

outcomes with 95% likelihood intervals (bottom). Forecast error results in larger values of

relative empirical ignorance compared to relative expected ignorance even where the forecast

PDF is perfect (i.e. α = 1)
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The calibration function κ is an important aspect of the examination of

forecast recalibration presented in Chapters 2 and 3. Clearly, a forecast system

would be perfectly reliable if all forecasts were issued as κ(p), rather than p.

Unfortunately, κ is generally unknown and must be estimated if forecasts are to

be recalibrated. As with any estimation problem, this leads to residual errors

(i.e. bias and variance) in the estimate of κ.

Reliability alone is a necessary but not sufficient condition for forecast qual-

ity. A forecast system would be reliable if the issued forecast probability was

always equal to the climatological frequency. Eqn. (1.23) above would be sat-

isfied in this case but there would be no predictive information provided about

more extreme observed frequencies. Reliability therefore does not imply whether

a forecast system is able to distinguish between system states that result in dif-

ferent observed events. This attribute is referred to as forecast resolution which

is described in Section 1.6.6.

Reliability Diagrams

Reliability diagrams are employed throughout this thesis to assess the reliability

of the binary probabilistic forecasts because they provide a quick and simple

graphical representation of the overall performance of a forecast system [140, 24].

The format used here is based on that of Bröcker and Smith [24], which includes

5% to 95% consistency bars and the transposition of the reliability diagram onto

probability paper with Bonferroni corrected6 levels . These additional aspects

quantitatively express the reliability of a set of forecasts by comparing them

with the expected variance of observed relative frequencies given a theoretically

reliable forecast system. The variance of observed relative frequencies given

such a forecast system is attributable to the sampling effects of small-number

counting statistics alone.

Reliability diagrams are constructed to assess the calibration or reliability of

a set of forecasts Xi ∈ [0, 1], i = 1, ..., N given a corresponding set of outcomes

6these account for multiple hypothesis tests - see Bonferroni [14]
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Yi ∈ {0, 1}. Strictly speaking, the forecasts are reliable for all i for which Xi falls

into a small interval B if the mean value of Xi over that interval is equal to the

relative frequency of the event Yi = 1. The forecasts are first grouped into bins

Bk, k = 1, ..., K, which are ideally of equal width, or at least equally populated

if the forecast values are non-uniform. The observed relative frequencies, fk,

are then given by

fk =

∑

i∈Ik

Yi

#Ik
, (1.24)

and averaged forecast values, rk, given by

rk =

∑

i∈Ik

Xi

#Ik
, (1.25)

where #Ik is the number of elements in a collection of indices Ik := {i;Xi ∈
Bk} for which Xi falls into bin Bk. The diagram provides a measure of the

correspondence between the forecasts and outcomes by showing the observed

relative frequencies of the events, fk, plotted against the averages of the binned

forecast probability values, rk for each bin, Bk. Collectively, these plotted points

represent the estimate of the calibration function 1.23 for the forecast system,

defined as

κ̂(p) = P (Y = 1|p = rk)

= fk, (1.26)

which is important in forecast recalibration [23, 217]. The true calibration func-

tion κ of a perfectly reliable forecast is equal to the diagonal on the diagram.

Even for such perfectly reliable forecasts, however, unbiased calibration func-

tion estimates κ̂(p) may exhibit deviations from the diagonal due to variance.

It is important to note that the variance depends on the distribution of the

forecast p. Hence, certain deviations of the observed relative frequencies from

the diagonal might be typically exhibited by one (reliable) forecast system, but

not by another.
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Figure 1.3: Forecast reliability: an example of a reliability diagram with 5% - 95%

(1% - 99% vertical dashed line) consistency bars. All but three forecast categories lie within

the consistency bars, indicating that the forecast system is mostly reliable. The forecast

probability bin boundaries (grey dotted lines) have been determined by taking the mid-points

between each probability category value.

Consistency Resampling

Several methods exist in the literature for presenting information about the

variations expected of the observed relative frequencies consistent with a theo-

retically reliable forecast system on the reliability diagram. A common approach

is to display the distributions of the forecast values Xi on additional inset plots
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in the form of refinement distributions Wilks [217], or histograms [7]. Otherwise,

bin populations can be communicated through the size of the plotted symbol

[66], or by printing the population value adjacent to it [140]. These graphical

methods help to convey the reliability expected of each forecast bin given the

bin population, #Ik although they do not provide a direct quantification of the

sampling error.

Bröcker and Smith [24] present a methodology for visualising the sampling

error on a reliability diagram called consistency resampling. The range of varia-

tion expected of the observed relative frequencies conditioned on a set of reliable

forecasts is computed through a bootstrapping method which accounts for un-

certainties in both the bin forecast averages rk and bin populations #Ik. A sim-

plified approach can be adopted if these two quantities are assumed to be fixed

in each bin. The observed relative frequencies observe a binomial distribution

with parameters rk and #Ik in such a case. Consistency bars are constructed

with the 5% to 95% quantiles of a set of outcomes Ŷi, i ∈ Ik resampled from the

binomial distribution i.e. Ŷi ∼ B (#Ik, rk). If the observed relative frequencies

fall within these consistency bars at each bin then the forecasts are calibrated

to within 5% to 95% consistency. This is more informative than just measuring

the distance between the point and the diagonal, which does not convey how

consistent any deviations in the forecasts are with sampling error. Under the

assumption of fixed parameters, consistency bars could be constructed with a

variety of confidence intervals often used in categorical data analysis such as

the Wald, or inverted score-test confidence intervals [2, 180].

The reliability diagram on probability paper serves to display the reliability

of the forecasts with respect to the consistency bars. The y-axis represents the

distance measured in probability from the 50% quantile of the consistency bar,

and not the diagonal itself (although the difference between the two is generally

minimal). For example, if, for a given bin, the observed relative frequency lies

on the upper limit of the consistency bar then the corresponding point will lie

on the 0.9 dashed line on probability paper since there is a 90% chance that
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Figure 1.4: Forecast reliability on probability paper: an example of a reliability

diagram on probability paper, corresponding to Fig. 1.3, showing that all but three forecast

categories are consistent with forecast reliability. The dash–dotted line denotes the exact

position of the diagonal. The right-hand axis indicates the equivalent Bonferroni corrected

levels i.e. for a reliable forecast, all of the points (11 categories) would be expected to fall

within the 0.99 probability distance band with an 88.6% chance. In addition, the dashed lines

indicate where the entire diagram would be expected to fall within with a 90% chance. The

forecast probability bin boundaries (grey dotted lines) have been determined by taking the

mid-points between each probability category value.
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any observed relative frequency would lie within the range of the consistency

bar if the forecast was reliable. Bröcker and Smith [24] include the Bonferroni

corrected probability distances on a secondary y-axis in the reliability diagram

on probability paper. This helps to convey the overall reliability of the forecast

system by denoting the chance of all of the forecast probability bins falling

within a certain range, under the assumption of reliability, rather than just a

single bin. For example, Fig. 1.4 shows that there is a 31.4% chance that all

of the 11 bins fall within the 0.9 band indicated by the left hand axis if the

forecast system is in fact reliable.

1.6.5 ROC curves

Relative Operating Characteristic (ROC) curves are, like reliability diagrams, a

visual representation of forecast performance. Unlike reliability diagrams, how-

ever, they do not include the full information contained in the joint distribution

of forecasts and outcomes. A ROC curve [124] consists of a plot of the Hit Rate,

HR (i.e. the relative frequency of occurrences of the binary event Y = 1 that

have been “successfully” forecast), against the False Alarm Rate, FAR (i.e. the

fraction of “erroneously” forecast occurrences of the binary event). The defini-

tions of “successful” and “erroneous” are justified in the probabilistic forecast

setting by defining that the occurrence of the event is forecast when p ≥ pk for

k = 1, . . . , K forecast bins. These bins are determined in the same way as for

reliability diagrams (see Section 1.6.4). Hence, HR and FAR are computed

with respect to each forecast probability bin Bk as

HR(pk) =
1

f

1
∫

pk

fk
#Ik
N

dp, (1.27)

and

FAR(pk) =
1

1− f

1
∫

pk

(1− fk)
#Ik
N

dp, (1.28)
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where f is the overall relative frequency that the event occurs over the entire

training set of forecast-outcomes of size N .

To fit the ROC curve, a bi-normal model is employed where a random binary

decision variable ξ is defined for each outcome, and whose variations reflect the

uncertainty of a binary event. There is supporting empirical evidence from a

number of studies that suggests the bi-normal model performs well for fitting

ROC curves [8]. A signal distribution gs(ξ) defines the a posteriori distribu-

tion of ξ given an event occurrence, while a noise distribution gn(ξ) defines

the a posteriori distribution of ξ given an event non-occurrence. Under the

assumption that gs and gn are both normal (i.e. bi-normal), HR and FAR can

be formulated as integrations of the standard normal distribution, g, above a

critical value of the decision variable ξc so that

HR(ξc) =

∞
∫

zs(ξc)

g(x)dx, (1.29)

and

FAR(ξc) =

∞
∫

zn(ξc)

g(x)dx, (1.30)

where zs(ξc) = zHR = (ξc − µs)/σs and zn(ξc) = zFAR = (ξc − µn)/σn are the

standardised normal deviates of HR and FAR respectively, and µs and σs (µn

and σn) are the mean and standard deviation of gs (gn)
7. ROC curves are the

basis for a forecast recalibration algorithm used in this thesis which is fully

explained in Chapter 2.

1.6.6 Forecast resolution

The final attribute of forecast quality which is analysed in this thesis is forecast

resolution [142, 217]. Resolution is, like forecast reliability, a key attribute of

7the notation for the bi-normal model is reproduced ad verbatim from Atger [8]
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forecast performance [196, 8]. It refers to the differences between the condi-

tional expectation of the outcomes given a forecast probability E[y|p] and the

marginal (unconditional) expectation of the event E(y) (i.e. the unconditional

climatology) [142]. Qualitatively, it can be described as the degree to which

a forecast system is able to discriminate between observed events that are dif-

ferent from each other. In the case where a forecast is completely lacking in

resolution, there is no difference between the conditional expectation of the out-

comes and unconditional expectation of the event (i.e. E[y|p] = E(y)). Hence,

larger differences indicate better forecast resolution. For example, if the out-

comes following from two successive average daily temperature forecasts over

London of, say, 10◦C and 20◦C are very different, the forecasts have resolved

the two outcomes and demonstrate high resolution. On the other hand if those

two outcomes were very similar, low forecast resolution would be indicated.

Another attribute which is sometimes referred to in this thesis and closely re-

lates to resolution is called sharpness. Sharpness is an attribute of the forecasts

alone, and is a measure of the concentration of the forecast PDF [59, 142].

1.6.7 Forecast value

Recall from Section 1.6.1 that the forecast evaluation plays a role in commu-

nicating the value of a forecast to a forecast user. Forecast value is considered

another aspect of forecast performance. Measuring the value, or utility, of a fore-

cast is inherently a multi-disciplinary task (e.g. economic, societal, or otherwise

[94]), and is thus not restricted directly to monetary worth. Nevertheless, most

studies of value have focused on economic value since it is relatively straight-

forward way to communicate forecast value [171, 67]. Forecast skill has been

considered to be intrinsically linked to forecast value [217], but the relationship

has been shown to be complex [171, 193], and even inversely related [139]. The

problem is normally addressed with a simple decision-analytic model called a

cost-loss problem [171, 169, 193]. Forecast value is examined with respect to
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monetary profit in a betting scenario [67] in Chapter 5, and its relationship with

forecast skill is also investigated.

1.7 Forecast recalibration

Since models produce predictions of the future state of model variables rather

than actual state of the real-world system, resulting in systematic model er-

ror, probability forecasts need to be calibrated as an integral part of the post-

processing stage (see Section 1.4.5) before the final forecast PDF is produced

[191]. A simple statistical approach for improving forecast skill is to recalibrate

forecasts.

Recalibration is the process of making statistical corrections to a probabilis-

tic forecast system using information about the joint distribution of forecasts

and outcomes. This information could be sourced from previous forecast PDFs

or from the observed climatological distribution for example. The reliability of

forecasts can be improved through recalibration, although generally resolution

cannot be improved. A method such as combining forecasts with other fore-

casts that have better resolution can lead to improved resolution however [191].

A common technique used in ensemble post-processing is called Model Output

Statistics (MOS) [215, 218] which employs statistical methods such as linear

regression.

For clarity, a more precise definition applicable to this thesis now follows:

Forecast recalibration is defined as the process of calibrating binary forecast prob-

abilities p ∈ [0, 1] using a sample of independent binary forecast p ∈ [0, 1] and

binary outcome Y ∈ {0, 1} pairs. Figure 1.5 shows a schematic of the typical

recalibration process followed in this thesis.
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Figure 1.5: Schematic flowchart of forecast recalibration procedure
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1.8 Forecast density construction methods

To convert a raw model ensemble forecast into a probabilistic forecast, some kind

of density construction method is required. Four different methods have been

employed in this thesis to construct forecast PDFs from raw model ensemble

forecasts for binary events. A binary event is an event with two outcomes, e.g.

yes/no, rain/no rain etc. From this point onwards, all outcomes, binary or

otherwise, are denoted by the variable y. An example of one of the methods is

described below.

Kernel Dressing and Blending (KDB) Method

Kernel dressing is a flexible, nonparametric method for translating an ensemble

of model integrations into a forecast PDF by replacing the ensemble members

with kernel functions. The approach is similar to kernel density estimation

(KDE) [179] where each ensemble member is “dressed” with its own statistical

error distribution belonging to some continuous class of distributions [179, 173,

26]. A density forecast is constructed by dressing the ensemble members with

Gaussian “bumps” called kernels to obtain a continuous PDF. A standard kernel

dressing approach is to transform the ensemble x = x1, . . . , xm into a PDF

(y|x, σ) by assigning a linear combination of kernels centred on each ensemble

member xj . The kernel dressed PDF is defined as

p̂σ(y|x, σ) =
1

Nensσ

Nens
∑

j=1

K

(

y − xj
σ

)

, (1.31)

where σ is the strictly positive bandwidth or smoothing parameter, and the

kernel K is represented by a standard Gaussian density

K(t) =
1√
2π
e−

1
2
t2 . (1.32)

Ideally, the optimal bandwidth is selected so that the divergence of the

estimate p̂ from the true PDF q, assuming it exists, is minimised, that is
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d(p̂, q) = ||p̂ − q|| where d(p̂, q) is some measure of the divergence. Obviously,

measuring the divergence is not possible since q is unknown. The best alterna-

tive is to deploy an automated selection method such as K-fold cross-validation

or “plug-in” selection [69]. K-fold cross-validation is useful method for fitting

and validating a model where datasets are limited in size [155, 73]. The data

is split into K roughly equal sized parts which are, in turn, used to validate

the model which has been fitted with the other K − 1 parts. Leave-one-out

cross-validation (i.e. K-fold cross-validation (CV) with K = N) is particularly

preferred where datasets are limited in size which is case with hurricane data

in Chapters 6 and 8. Where larger synthetic datasets are available, such as for

those used in Chapters 5, 2-fold cross-validation is performed.

−
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−
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Fan Chart

time

X
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Figure 1.6: Evolution of a forecast PDF: a schematic of a fan chart for a forecast

PDF evolved in time. The right-hand axis labels the percentiles of the PDF. Darker shades

represent more probable system states. The increase in spread is evident with time reflecting

the increase in uncertainty. This type of plot is used in several sections of thesis.

The optimised kernel width σ̂ of the forecast PDF is obtained by minimising

some cost function, ideally a proper probabilistic forecast scoring rule (formally
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defined in Section 1.6) according to

(σ̂) := argmin
σ

− 1

N

N
∑

t=1

S(p̂, Yi; σ), (1.33)

where the score is evaluated over a sufficiently large number N of outcomes Yi.

Binter [12] demonstrates numerically that kernel dressing is an unbiased and

robust evaluation method under PMS so that for a sufficient ensemble member

size Nens

lim
Nens→∞

p̂Nens
(y) = pNens

(y), (1.34)

where p̂Nens
is the forecast density estimate, and pNens

is the model’s forecast

distribution. Hence, the forecast PDF derived from a kernel dressed perfect

ensemble (PE) (see Section 1.5.2) is also expected to be unbiased.

A time series of continuous forecast PDFs can be graphically depicted us-

ing fan charts. Figure 1.6 shows a fan chart schematic where the percentiles

of a forecast PDF at each time step, shown as different coloured bands, are

connected, and appear as one continual plume from initialisation time t = 0

until lead time t = τ . The plume typically spreads out with time, reflecting an

increasing uncertainty of the true system state with time.

The dressed forecast PDF is blended with the climatological PDF, con-

structed by kernel dressing the sample climatological distribution to find σclim,

the optimal kernel width of the climatological PDF. The sample climatology

is the distribution of historical observations which is considered an estimate of

the invariant measure of the system [40]. The optimal blending parameter α ,

along with σ̂, can be determined by minimising the mean ignorance score over

a training set of forecast ensemble-outcome pairs. The forecast PDF is finally

produced by kernel dressing the ensembles in the outcome set and blending with

the dressed climatological distribution using the optimised parameters σ̂ and α.

Hence, the forecast is given by

p(y) = αpmod(y) + (1− α)pclim(y), (1.35)

where α ∈ [0, 1] is the blending parameter.

46



CHAPTER 1. INTRODUCTION

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

Ensemble size

R
el

at
iv

e 
ig

no
ra

nc
e

4 8 16 32 64 128 256 512 1024

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

Ensemble size

R
el

at
iv

e 
ig

no
ra

nc
e

4 8 16 32 64 128 256 512 1024

Figure 1.7: Skill of KDB forecasts: examples of empirical ignorance of perfect KDB

forecasts at lead times 3.2 seconds (top) and 9.2 seconds (bottom). Lines denote climatological

event probabilities as follows: θ = 0.5 (solid), θ = 0.9 (dashed), and θ = 0.99 (dotted). The

degree of forecast skill is dependent on forecast lead time and less so on ensemble size.

An example of the ignorance of forecasts produced with the KDB method

over a set of n outcomes is plotted against member sizes for lead times of 3.2

seconds and 9.2 seconds, and shown in Figs. 1.7.
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1.9 Atlantic basin hurricanes

Atlantic basin hurricanes have attracted much attention from the scientific and

commercial sectors as well as from the general public. They are a powerful and

awe-inspiring meteorological phenomenon, but also pose a serious threat to lives

and livelihood. Hurricanes are typically accompanied by high magnitude winds,

heavy precipitation, and storm surges to coastal areas which can inflict severe

damage. Tropical cyclone activity in the North Atlantic basin accounts for only

11% of worldwide tropical cyclone activity, yet hurricanes have caused some of

the largest losses of life and property caused by natural hazards, surpassed only

by major earthquakes [43, 168].

1.9.1 Hurricane characteristics and data

A hurricane begins its lifetime as a cyclonic weather system with a centre of

anomalously low surface level air pressure usually forming in the equatorial

North Atlantic Ocean. If a tropical cyclone develops into a larger and more pow-

erful storm, and attains 1-minute maximum sustained winds of at least 33ms−1

or 74mph, it is classified as a hurricane. A wind speed-based classification index

called the Saffir-Simpson scale categorises hurricanes by wind strength (CAT1-

5: ≥ 33ms−1 or 74mph) and major hurricanes (CAT3-5: ≥ 50ms−1 or 111mph).

Hurricanes range in diameter between 200km and 1300km, can have depths of

up to 18km in altitude, and have lifespans of between 1 and 30 days. The

annual Atlantic basin hurricane season runs from 1st June to 30th November

with the most active period occurring around September. This peak period is

concurrent with the annual extremes of two important ocean-atmospheric con-

ditions for hurricane generation; sea surface temperatures (SSTs) are at their

warmest and extend the furthest throughout the North Atlantic ocean, and

vertical windshear is typically at a minimum over the tropical Atlantic [43].

The historical record of North Atlantic tropical cyclones extends back to

over 500 years ago, with the first hurricane sighting in European history made
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by Christopher Columbus near Cuba in June, 1494. Established trade routes

between Europe, Africa and the Caribbean allowed observation of hurricanes

but it was only those that caused human casualties or damage to ships and

coastal communities that were documented [43]. Reported occurrences have

increased steadily since that time with the increase in shipping traffic and ob-

servational capacity. The 1966-2012 climatological average of annual count is 6.2

a year for CAT1-5 hurricanes, and 2.3 a year for CAT3-5 hurricanes [143]. De-

tailed information on Atlantic hurricanes is currently provided by the National

Oceanic and Atmospheric Administration (NOAA) through the National Hur-

ricane Center (NHC). The most commonly used historical hurricane database

(HURDAT)8 contains data for 6-hourly wind speeds and locations during every

tropical storm event since 1851.

There is scientific consensus that there has been a tropical cyclone under-

count bias up until the mid-20th century due to the limited observational

capabilities during a period of lower shipping lane density, lack of satellite

technology and smaller populations in the Caribbean islands and American

coastlines [80, 106, 123]. The Atlantic Hurricane Database Re-analysis Project

[109, 107, 108, 68] led to a revision of the original data to “correct” for the

undercount bias (and for other systematic biases and random errors) using a

new methodology and new data sources. Nevertheless, due to ambiguities in the

true counts due to these earlier observational limitations, this thesis considers

data post-1966 using HURDAT database [106].

8http://www.aoml.noaa.gov/hrd/data sub/re anal.html
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Chapter 2

Forecast Evaluation and

Recalibration under PMS

The evaluation and recalibration of binary forecasts of the state of a nonlinear

dynamical system under a Perfect Model Scenario (PMS) are investigated in this

chapter to assess whether forecast recalibration is effective under PMS, and to

identify the properties of a probabilistic forecast model which are key for forecast

improvement. A perfect model allows a complete and exact description of the

dynamics of a system, and producing perfectly accurate forecasts of future states

of the system is limited only by imperfect knowledge of the current system state

(i.e. initial condition uncertainty), and uncertainty in the model parameters.

Forecast evaluation and recalibration are integral components of the operational

forecasting framework (see 1.4.5) to monitor and improve the performance1 of

a forecast system.

The lessons learned in this chapter can aid in assessing whether it is more

effective for forecasters to recalibrate to improve the quality of their forecast

systems, or to concentrate efforts on advancing forecast techniques. Given its

relative simplicity, forecast recalibration may provide a quicker and cheaper

means to improve the performance of a forecast system than upgrading its

1Refers collectively to the attributes of forecast quality e.g. forecast skill, reliability, reso-

lution, etc as defined in Section 1.6
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various technical features (e.g. data assimilation scheme (DA), ensemble size,

observation scheme, ...).

This chapter draws upon the discussion of Bröcker and Smith [24], and

Bröcker [23] to inform the processes of forecast evaluation and recalibration

with reliability diagrams, and for references to relevant terminology and nota-

tion. There are several new contributions to research on forecast evaluation and

recalibration, however, which are included in the following chapter overview.

The perfect models used to construct binary forecasts of the state of a simple

dynamical Lorenz63 system under PMS are described along with the forecast

evaluation measures employed to assess their performance in Sections 2.1, 2.2,

and 2.3. Next, a novel review and critique of various methods for binary prob-

abilistic forecast recalibration is given in Section 2.4. Various challenges posed

when recalibrating forecasts in principle and in practice are also highlighted.

Information-theoretical measures are appropriate diagnostic tools to evalu-

ate the relative information content of forecasts before and after recalibration,

and assess the effectiveness of forecast recalibration. Two such measures, rela-

tive entropy and ignorance [113, 172], are defined in Section 2.5, and employed

to assess the performance of the various binary forecast construction methods

described in Section 2.2. Reliability diagrams allow a quick visual evaluation

of the effect of forecast recalibration. Comparison of forecast skill and fore-

cast reliability is made in the context of recalibration using the decomposition

of the ignorance score in Section 2.5. Decompositions of the ignorance score

(see [199] and [194]) are shown to provide a novel assessment of the efficacy of

recalibration; this is a new contribution.

Finally, a preliminary assessment of the efficacy of recalibration is made from

the perspective of forecast lead time under PMS in Section 2.6 to prepare ground

for a more complete investigation given in an Imperfect Model Scenario (IMS)

in chapter 3. The results of this initial assessment indicate that recalibration is

most effective where forecast skill is poorer (as at longer lead times), and where

the climatological probability of a binary event is closer to 0.5.
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2.1 Perfect model of the Lorenz63 system

The Lorenz63 system [118] is a 3-dimensional dynamical system of deterministic

nonlinear equations which is often employed as an illustrative system in weather

modelling studies; it provides a tractable basis for the numerical demonstration

of various aspects of forecast evaluation. For the parameter values specified in

this work, it is chaotic (see Appendix A.1).

Consider a time series of observed states of a Lorenz63 system variable

s0, . . . , st, . . . , sN determined by the Lorenz63 equations plus some additive ob-

servational noise. An observation st at time t is defined as

st = x̃t + ǫ, (2.1)

where x̃t is the true state of the system variable, and ǫ ∼ N (0, σ2) is the Gaus-

sian additive observational noise term. The perfect model Ψ is initialised at time

t = 0 with initial conditions x0 = x0,1, . . . , x0,Nens
which are generated by sam-

pling from the inverse of a stochastic observational noise model. The process by

which a core ensemble model is constructed is fully described in Section 1.5.2.

Forecast error is accounted for entirely by IC uncertainty under PMS so, given

a perfect data assimilation scheme, the effect of increasing model ensemble size

on forecast performance is solely attributable to the model’s ability to estimate

the initial conditions. Probabilistic forecasts of the true state of the Lorenz63

system are generated here using four density construction methods. The best

two methods are identified, and employed for the forecast evaluation and re-

calibration experiments performed under IMS which are discussed in chapter

3.

2.2 Binary forecasts

Probabilistic forecasts of binary events, or binary forecasts as they shall hence-

forth be referred to, represent the uncertainty in a prediction of a given binary
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event occurring. Let xθ denote a specified value of the observed climatologi-

cal distribution of state variable x defined by the quantile θ, and τ denote the

forecast lead time.

A binary forecast pt is defined here and in Chapter 3 as the predictive

probability that the true state x̃t at time t = tτ lies above a given threshold xθ

on the 1-dimensional state space of the variable x. Let Yt be the binary outcome

variable representing the occurrence (Yt = 1) or non-occurrence (Yt = 0) of the

event so that

Yt =











1, if st > xθ.

0, if st ≤ xθ.

(2.2)

A sample of independent binary forecast-outcome pairs (pt, Yt) of size N is used

to evaluate a given forecast system (see Section 1.6).

2.2.1 Binary forecast construction

Given a model ensemble of Nens members xt = {xt,1, . . . , xt,Nens
} which has

been initialised at time t = 0, a binary forecast pt = P (Yt = 1) is produced by

translating the ensemble at time t = tτ into a probability of the outcome lying

above xθ. The four forecast density construction methods employed here for

constructing forecast PDFs are summarised below.

Counting methods

Forming binary forecasts with the näıve (NC) and adjusted counting (AC) meth-

ods involves the simple step of determining the relative frequency of ensemble

members lying above xθ.

The näıve counting (NC) method consists of construction of a density fore-

cast by simply counting the number of ensemble members in each prescribed bin

or category. In the case of binary forecasts, there are just two bins defined by

the state variable threshold. A forecast constructed from raw ensemble relative

frequencies is subject to sampling error associated with counting statistics at
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smaller ensemble sizes [170]. 0% and 100% forecasts are unwise and prone to

forecast busts. Different sets of forecast probability values are likely to make

comparison and interpretation difficult [191].

The adjusted counting (AC) method is identical to the NC method except

that an extra ensemble member is divided between the bins according to the

climatological distribution about the threshold e.g. for 50% forecasts, if the

counted probability above the threshold is 27/Nens, it would be adjusted to

(27 + 0.5)/(Nens + 1).

Table 2.1: Configurations for PMS Lorenz63 binary forecast experiments

Experiment System State Observational PDF Forecast-parameters

No. Variable Noise Method θ Nens τ*

1 Lorenz63 x N (0, 0.372) KDB 0.5 256 6.4

2 Lorenz63 x N (0, 0.372) KDB 0.5 64 12.8

3 Lorenz63 x N (0, 0.372) KDB 0.99 256 6.4

4 Lorenz63 x N (0, 0.372) KDB 0.5 256 All

5 Lorenz63 x N (0, 0.372) KDB 0.9 256 All

6 Lorenz63 x N (0, 0.372) KDB 0.99 256 All

*in Lorenz63 seconds [118].

A Bayesian method

A sequential Bayesian updating approach to constructing binary forecasts can

be employed to utilise forecast information from previous time steps (i.e. longer

forecast lead times). The technique employed here is to update the latest fore-

cast with the previous forecast. For example, a forecast with lead time τi−1 is

taken to represent a forecaster’s prior belief of the outcome occurring at lead

time τi where the lead times are ordered from longest lead time to shortest (i.e.

τi−1 > τi). The Bayesian interpretation of the probability of the binary outcome

occurring at lead time τi is then obtained via

pBayes
i (y|pi) ∝ pi(y)× pi−1(y). (2.3)
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where pi(y) is the ith forecast. The prior distribution P (Yt = 1) is constructed

by using the information from the most recent forecast pi−1(y), and is updated

at every time step. When τi−1 exceeds the lead time of the forecast with the

longest lead time, the climatological probability pθclim is assigned to the prior

probability value pi−1(y).

Kernel dressing and blending method (see Section 1.8)

A forecast density construction scheme such as kernel dressing can be deployed

to construct a smoothed, continuous probability density function (PDF) and

reduce the forecasting error associated with counting methods [214]. Kernel

dressing has the added advantage over counting methods that the dressed en-

semble is optimised with a proper scoring rule before it is evaluated out-of-

sample. The kernel dressing and blending (KDB) method consists of dressing

the raw ensemble to form a PDF, and then producing a binary forecast by tak-

ing the linear weighted average of the PDF and the climatological probability

pθclim. This latter process of pooling weighted probabilities is called blending

[26].

The construction of binary forecasts from the perfect Lorenz63 model is now

illustrated using the NC and KDB methods with a specified configuration of

forecast-parameter values (i.e. {θ = 0.5, Nens = 256, τ = 6.4}). This param-

eter value configuration (along with all configurations used in this chapter) is

detailed in table 2.1, and labelled Expt. 1. The top plot in Fig. 2.1 shows

the distribution of Nens = 256 ensemble members x̂τ after iterating the initial

condition ensemble x0 forward in time to lead time τ = 6.4s. Under the näıve

counting method, a binary forecast of the x state variable is determined by the

number of ensemble members lying above the specified threshold θ. There are

33 ensemble members above the threshold x0.5 giving a binary forecast prob-

ability of pτ (Yτ = 1) = 33/256 = 0.13 under the NC method. To produce

a binary forecast using the KDB method, the raw ensemble shown in the top

plot is first kernel dressed, and then blended with the climatological PDF as
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described above. The kernel dressed PDF is shown at every time step of 0.2s in

the lower plot in Fig. 2.1. The true state of the variable x̃t is shown as the blue

line. So, a binary forecast with lead time τ = 6.4s constructed from the kernel

dressed ensemble in this case is evaluated with the outcome Y6.4 = 0 since the

target lies below the specified threshold denoted by the horizontal dashed line

(i.e. x̃tτ < xθ). Figure 2.2 shows the forecast PDF, and the true state of the

variable x̃tτ at lead time τ = 6.4s.

The investigation is carried out in this chapter for a range of ensemble sizes

and forecast lead times to identify values of these parameters for which forecasts

are skilful under PMS. The parameter values for which recalibration can yield

improvements in forecast performance are also investigated. The forecast eval-

uation and recalibration procedure using reliability diagrams is demonstrated

in Sections 2.3 and 2.4.1 with a selected few experimental configurations within

the PMS testbed.

2.3 Forecast evaluation

The performance of the binary forecasts generated in the experiments listed in

table 2.1 is assessed using reliability diagrams, and the ignorance score IGN

(see Section 1.6.2) in this chapter. Reliability diagrams (see Section 1.6.4) are

a graphical representation of the full joint distribution of a sample of N binary

forecast-outcome pairs in the form of the calibration function (see Eqn.(1.26)).

The reliability diagrams in Figs. 2.3 and 2.4 correspond to Expt. 1 at τ =

6.4. The forecast system which produced the forecasts in this case cannot be

considered reliable because only two out of five bins fall within the consistency

bars.
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Figure 2.1: Ensemble forecasting under PMS: raw perfect Lorenz63 model ensemble

generated in Expt. 1 (see table 2.1) (top), and fan chart showing the kernel dressed ensemble

(PDF) constructed from the raw ensemble shown in the upper plot at every time step from

t = 0 up to t = tτ = 6.4s (bottom). Each individual colour band represents a 5% probability

density percentile range of the PDF, from the 5th percentile to the 95th percentile (see Fig.

1.6 for the fan chart key). In each plot, the true state of the system variable is shown as a

blue trajectory, and the dashed horizontal lines denote the 50th, 90th, and 99th percentiles

of the climatological distribution representing the thresholds θ ∈ {0.5, 0.9, 0.99}. The kernel

dressed ensemble at time t = tτ = 6.4s would be blended with the climatological distribution

to produce the forecast PDF under the KDB method.
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Figure 2.2: Ensemble forecasting under PMS: kernel dressed ensemble (PDF) cor-

responding to the PDF in Fig. 2.1 at t = tτ = 6.4s. The true state of the system vari-

able is shown as a blue line at x̃tτ = −5.7, and the dashed horizontal lines denote the

50th, 90th, and 99th percentiles of the climatological distribution representing the thresholds

θ ∈ {0.5, 0.9, 0.99}. Given that x̃tτ < xθ, and that most of the probability density is below

xθ = 0.37, the forecast appears more skilful than a climatological forecast pθclim = 0.5.

2.4 Forecast recalibration

Improving the performance of a probabilistic forecast system is an important

step within the operational forecasting framework (see 1.5). A number of tech-

niques which may or may not improve forecast skill have been proposed. These

include technical upgrading of the forecast model (see Section 1.5), using a

Bayesian approach to combine the output from several models [163], and a re-

calibration approach where forecast probabilities issued from a single model are
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corrected based on historical performance. Most seasonal forecasting centres

use a calibration scheme based on correcting systematic biases (i.e. persistent

error trends) in the means and variances of past forecast statistics, which ex-

cludes the full information available from the joint distribution of past forecasts

and outcomes [191]. Potentially, recalibrating forecasts with a technique which

includes the joint distribution can prove superior. Forecast recalibration can
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Figure 2.3: Forecast reliability: reliability diagram for Lorenz63 Expt. 1 at τ = 6.4

(see table 2.1). Only two of the five observed frequencies at bins defined by [0.373, 0.715]

and [0.940, 1.0] fall within the 5% - 95% (1% - 99% vertical dashed line) consistency bars

indicating that the forecast system cannot be considered reliable.
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Figure 2.4: Forecast reliability on probability paper: reliability diagram on probability

paper corresponding to Fig. 2.3. The two reliable forecast bins defined by [0.373, 0.715]

and [0.940, 1.0] lie below the 0.9 probability distance dotted line. Circled symbols indicate

an observed frequency outside the range of the y axis. The right-hand axis indicates the

equivalent Bonferroni corrected levels for a reliable forecast so that the entire diagram (all

5 bins) would be expected to fall within the 0.99 probability distance band with an 95.1%

chance. The dashed lines indicate where the entire diagram would be expected to fall within

with a 90% chance if the forecast system was reliable.

be deployed to improve the reliability, and ideally the skill, of probability fore-

cast systems [132]. Stephenson [191] argues that recalibration often leads to

improved forecast performance because of the inadequacy of imperfect models.

A review and critique of the various recalibration methods proposed in the

literature is presented in Section 2.4.1 followed by a discussion in Section 2.4.2

which contrasts the challenges of forecast recalibration in principle and practice.

Both of these sections are, to the author’s knowledge, new contributions to the
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study of forecast recalibration. The effect of recalibration on forecast reliabil-

ity is demonstrated out of sample using the set of experimental configurations

defined in table 2.1.

2.4.1 Recalibration algorithms

Recalibration of binary forecasts can be implemented by computing the con-

ditional distributions of the outcomes given a set of forecasts to estimate the

calibration function [23]

κ(r) = P (Y = 1|p = r), (2.4)

introduced in Section 1.6.4. Bröcker [23] outlines the forecast calibration prob-

lem in a Bayesian framework by defining the calibration function in terms of

the compound distribution function

F (y, r) := P (Y = y|p < r), (2.5)

where y ∈ {0, 1}, so that

κ(r) =
dF (1, r)

d[F (0, r) + F (1, r)]
, (2.6)

where F (0, r) + F (1, r) denotes the marginal distribution of r.

From Eqn. (2.4) it is clear to see that assigning a forecast with κ(p) rather

than p would result in a perfectly calibrated and skilful forecast [23]. Hence, a

recalibrated forecast would ideally be assigned the probability

pre = κ(r = praw), (2.7)

where praw is the pre-recalibrated, or raw, forecast value. Unfortunately, the

calibration function is unknown since usually the “true” PDF is unknown (and

indeed may not even exist), so the task of forecast recalibration becomes an

estimation problem. Estimates of the calibration function, henceforth denoted

κ̂(p), need to be performed with samples of random data, and are thus con-

sidered random variables which are subject to residual errors (i.e. bias and
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variance). Ideally, a balance is found between the bias and the variance of the

calibration function, but typically the trade-off is non-trivial [23]. In the limit

of an infinitely large sample of data, the estimate of the calibration function

ideally converges onto the true calibration function (i.e. the diagonal line on

the reliability diagram), so that

lim
N→∞

κ̂(r) = κ(r)

= r. (2.8)

In reality, the estimate of the calibration function is made using a finite training

set T of forecast-outcome pairs denoted by

T := {(ptraini , Yi); i = 1, . . . , N}, (2.9)

where (ptraini , Yi) denotes the ith forecast– outcome pair. Obtaining accurate

estimates of the calibration function is based on the assumption that all of the

forecast-outcome pairs are independent and identically distributed (i.i.d.) ac-

cording to the underlying distributions of (p, Y ) (in chapter 4, the assumption

of independence in real-world forecasting scenarios is considered). A common

method for finding κ̂(p) is to categorise or “bin” the training set T into a

number of partitions [196, 8, 24] in the same way that reliability diagrams are

constructed. Binning proceeds as follows: let Bk, k = 1, ..., K be the bins de-

fined by partitioning the unit interval into K exhaustive and non-overlapping

subintervals which are ideally of equal width if the forecasts are uniformly dis-

tributed over [0, 1], or are at least equally populated if not, with the data from

T if the forecast values [8]. Let I traink denote the sample of all indices i in Bk

so that

I traink := {i; ptraini ∈ Bk}. (2.10)

Following the partitioning of the forecasts, a discretised estimate of the cali-

bration function is evaluated at each bin average rtraink by finding the observed

relative frequency f train
k i.e. the conditional frequency of occurrence of the bi-

nary event where ptraini ∈ Bk. The observed frequencies and forecast averages
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at each bin Bk are defined by

f train
k =

∑

i∈Ik

Yi

#Ik
, (2.11)

and

rtraink =

∑

i∈Ik

ptraini

#Ik
, (2.12)

respectively. #Ik is the number of indices in bin Bk. A conventional reliability

diagram of the training set of forecast-outcome pairs consists of a plot of f train
k

against rtraink , and thus, the estimate of the calibration function (2.4) is given

by

κ̂T (rk) = P (Yi = 1|rtraink )

= f train
k . (2.13)

As explained in Section 1.6.4, a forecast system at bin Bk is reliable if f
train
k falls

within the consistency bars computed according to rtraink . Note that evaluation

of the calibration function for values p 6= rtraink can be performed using linear

interpolation [23].

Recall from Eqn. (2.7) above that recalibration ideally consists of re-assigning

a raw forecast value praw with the calibration function evaluated at that value

(i.e. κ(praw)). κ(praw) is a perfectly reliable and more skilful forecast than praw

[23]. Without knowing the true calibration function, however, the best alter-

native is to estimate it. Estimation of κ can be performed with a number of

algorithms, including Eqn. (2.13), after binning the forecasts as if constructing

a reliability diagram. Unfortunately, the binning method is likely to introduce

further residual errors into the forecast recalibration process where the probabil-

ities are not fixed in each bin, particularly if a bin population, #Ik, is small [23].

The additional error is unavoidable since reliability diagrams are constructed

on the basis that all the forecast values Xi are binned and averaged so as to

yield non-trivial observed relative frequencies [24]. The best that one can do
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is to reach a balanced trade-off between bias and variance by specifying the

bins so that they are equally populated (this is discussed in more depth in Sec-

tion 3.4.1). There are, however, recalibration algorithms that circumvent the

bin averaging of forecast values before recalibration, such as kernel-smoothing

estimation of the calibration function [23]. All of the recalibration algorithms

reviewed in this thesis are defined with respect to calibration function estimate

κ̂(p).

Simple Translation

A simple algorithm for recalibrating binary forecasts is to find κ̂T (p), and then

reassign the forecast probabilities praw of an evaluation set [70, 7, 196], as de-

scribed in the previous paragraph. In short, for each probability bin Bk in the

evaluation set, the calibrated probability prei , i ∈ Ik is equal to the observed

frequency f train
k corresponding to bin Bk in the training set T , so

prei = κ̂T (r
train
k )

= P (Yi = 1|rtraink )

= f train
k . (2.14)

Equation 2.14 implies that the probability bins in the training and evaluation

sets are identical (i.e. Btrain
k = Braw

k ). This constraint is not ideal where the

categorisation of the forecast probabilities defined for the training set leads to

small populations, and hence, under-representation of the evaluation forecasts

at certain bins. Estimates of the calibration function after recalibration are then

prone to larger sampling uncertainty. If so, linear interpolation can be utilised,

as in Atger [7], to estimate the calibration function κ̂T (r
raw
k ) at each rrawk , and

hence, the calibrated probability prei in such a case. Increasing the size of the

evaluation set to increase bin populations might also alleviate this problem

under the assumption that the training forecasts and evaluation forecasts share

the same distribution.
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Figure 2.5: Simple translation recalibration: reliability diagram schematic of the simple

translation recalibration algorithm using a training set of Lorenz63 binary forecast (asterisks)

to recalibrate the evaluation set of forecasts (pluses → crosses) both generated in Expt. 2

(see table 2.1). Most bins are translated closer to the diagonal suggesting improved forecast

reliability. Each bin is coloured differently for clarity.

Consider a set of Lorenz63 binary forecasts issued by a forecast system

which produces forecasts using the AC forecast density construction method

defined in Section 1.8. The simple translation algorithm defined by Eqn. 2.14

is deployed to recalibrate the forecast system. The schematic plot shown in

Fig. 2.5 demonstrates the recalibration procedure. For each probability bin
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Bk, the average of the forecast values rtraink is translated horizontally to the

diagonal line, determining the magnitude and direction of the translation of

each forecast {prawi ∈ Bk}. Fig. 2.5 is simplified to demonstrate the process

through the translation of the bin average rtraink rather than every single forecast

prawi .

The schematic highlights a previously unreported limitation of the simple

translation algorithm. Increasing the reliability of a forecast system at a given

bin Bk through simple translation can be difficult where there are large devia-

tions between the forecast values prawi in bin Bk and the bin average rk. Those

forecast values prawi which have larger deviations from f train
k will be subject

to relatively larger adjustments, rendering them less reliable after recalibration

if, in fact, they were reliable before recalibration, that is κ̂T (p
raw
i ) ≃ κ(r). Of

course, the reliability of individual forecasts cannot be evaluated, but, by collec-

tively recalibrating forecasts through simple translation, the ability to increase

the overall reliability of the forecast system at Bk is reduced. Hence, the simple

translation algorithm is only likely to be effective for increasing the reliability of

forecast values {prawi ∈ Bk} which are near to the bin average value. The limi-

tation could be addressed by reducing the bin interval widths but this reduces

the bin population #Ik, and can result in under-sampling.

The limitation of the simple translation algorithm is firstly illustrated with

the following hypothetical example: consider a bin BK defined by the interval

(0.7, 1.0] with bin population #{prawi ∈ BK} = 999 that has a high proportion

of large probability values such that ptraini = 0.995, i = 6, . . . , 999, but also has

five forecast values ptraini = 0.75, i = 1, . . . , 5, so that rK = (5 × 0.75 + 994 ×
0.955)/999 = 0.994. Let the forecast bin be perfectly reliable to within 5%−95%

consistency so that, after recalibration, all of the forecast values are translated

to the observed relative frequency fK = rK = 0.994. The recalibrated forecast

system will only issue forecasts prei = 0.994 for all i even though the forecast

ptrain1 = 0.75 might already be reliable.

Recall the Lorenz63 forecasts from Expt. 1 which are plotted on reliability
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Figure 2.6: Limitation of simple translation: distribution of forecasts prei in the fifth

bin B5 (#{prei ∈ B5} = 73) sorted in ascending order (forecasts are generated in Expt. 1; see

table 2.1). 5% - 95% Wald confidence intervals, plotted for the two sub-bin averages at both

sub-bin mid-points show that the difference between the sub-bin average is highly significant

(p-value < 2.2× 10−16).

diagrams in Figs. 2.3 and 2.4. Figure 2.6 shows the distribution of forecast

probability values in the highest bin B5, where r5 = 0.828, which has a large

variance over the interval (0.715, 0.940], and is also skewed towards higher prob-

ability values. Recalibration through simple translation will assign all values

prei = f5 = 0.853, a large increase to lower forecasts in the bin. Ideally, the effec-
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tiveness of this recalibration algorithm would be checked before implementing

it. For instance, by dividing a bin into two equally populated sub-bins, and ap-

plying a simple t-test [217] to determine if the difference between the averages

of the two sub-bins rk1 and rk2 is consistent with the independence assumption.

The test statistic is given as

z =
rk2 − rk1

(s2k1/(#Ik/2) + s2k2/(#Ik/2))
1/2
, (2.15)

where sk,· is the standard deviation of the sub-bins. The test indicates whether

the difference between the averages is significant at a given significance level α,

that is, for p-values < α, it is unlikely that the distributions sampled in each

of the two sub-bins have the same mean (i.e. rk1 = rk2). In that case, the

simple translation algorithm can be considered inappropriate for recalibration.

The test for the difference between the sub-bin averages of bin B5 is highly

significant (p-value < 2.2 × 10−16), indicating that the averages are different

under the assumption of independence. This result may reduce the effectiveness

of recalibration for increasing forecast reliability at that bin.

Linear Regression

Palmer et al [152] propose a recalibration algorithm employing a linear regres-

sion to estimate the calibration function. The algorithm is implemented as

follows: a weighted least-squares regression line is fitted to the plots of f train
k

versus rtraink representing the calibration function estimate κ̂ on a reliability di-

agram for all bins Bk, k = 1, . . . , K. The regression line is expressed in terms

of the calibration function as

κ̂T (r
train
k ) = β̂0 + β̂1r

train
k , (2.16)

where β̂0 and β̂1 are the intercept and slope of the regression line, respectively.

The weights wk are determined according to the sizes of the bins so that

β̂ = argmin
β

K
∑

k=1

wk

∣

∣yk − β0 − β1r
train
k

∣

∣

2
. (2.17)

68



CHAPTER 2. EVALUATION AND RECALIBRATION UNDER PMS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reliability Diagram

Forecast probabilities

O
bs

er
ve

d 
fr

eq
ue

nc
ie

s

+

+

+
+

+

+

+

Figure 2.7: Forecast recalibration using linear regression: Reliability diagram

schematic demonstrating the linear regression recalibration algorithm using a training set

of binned and averaged Lorenz63 binary forecasts (asterisks) to recalibrate the evaluation set

of forecasts both generated in Expt. 2 (see table 2.1). A linear regression line is fitted to

the plotted points, from which the horizontal distance to the diagonal line determines the

magnitude by which a raw forecast needs to be translated to be recalibrated.

The forecast probabilities prawi in the evaluation set are calibrated by finding

the point on the regression line whose abscissa value corresponds to prawi (i.e.

(prawi , κ̂T (p
raw
i ))). The calibrated probability value prei is then given by the

abscissa value corresponding to point on the diagonal line of the reliability
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diagram at the same ordinate value κ̂T (p
raw
i ). This is expressed as

prei = κ̂T (p
raw
i ) (2.18)

= β̂0 + β̂1p
raw
i . (2.19)

Figure 2.7 shows a schematic example of the calibration procedure using a lin-

ear regression line fitted to the training set of forecast-outcome pairs generated

under Expt. 2 (see table 2.1). The regression coefficients of the fitted red line

in Fig. 2.7 are β0 = 0.199 and β1 = 1.459. The forecast value prawi = 0.7 is

translated to the diagonal line in the same fashion as with the simple trans-

lation algorithm described in the previous section, giving a calibrated forecast

value prei = 0.822. In this case, the original forecast system is underconfident,

that is, it over-forecasts at lower probabilities, and under-forecasts at higher

probabilities (see Wilks [217]), hence the calibrated forecasts all tend to be

decreased.

One advantage of the linear regression algorithm over the simple translation

algorithm is that there is no requirement to bin the raw probabilities before

recalibration, and calibrate them according to a single translated forecast bin

average rtraink . This difference implies that information is not lost when recali-

brating each individual forecast value with linear regression. Applying a linear

regression to a reliability diagram to estimate the calibration function κT (p) is

problematic, however, if the line has a slope β1 > 1, and does not span the

unit interval (i.e. the uncalibrated forecast system is underconfident). If one

attempts to calibrate a forecast value where

prawi >
1− β̂0

β̂1
, (2.20)

or

prawi <
−β̂0
β̂1

, (2.21)

then the calibrated forecast value prei will lie outside the range [0, 1]. Obviously,

this is a nonsense [217], as it implies that forecast probabilities can take values
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less than 0% and greater than 100%. Assuming a 0% or 100% probability

violates Cromwell’s law2.

Logistic Regression

The problem of recalibrating forecasts to values outside of the range [0, 1], high-

lighted in the previous section, can be circumvented by employing a generalised

linear model (GLM) such as a logistic regression. Although logistic regressions

have been used to recalibrate ensemble forecasts [161, 215, 218], or forecast

model predictors based on forecast data [120], the algorithm described here,

based on the linear regression algorithm of Palmer et al. [152] above, is a new

technique. The logistic regression model links a single predictor variable x to

the mean of the dependent variable γ, which is assumed to be binomial, via a

logit link function, given by

ln

(

γ(x)

1− γ(x)

)

= β0 + β1x. (2.22)

To fit a logistic regression curve to a reliability diagram, the calibrated probabil-

ities prei are modelled as the mean parameter (i.e. γ(x) = prei ) by regressing the

observed frequencies f train
k on the forecast averages rtraink , in a similar fashion

to the linear regression algorithm in Section 2.4.1. The fitted model can then

be used to determine the calibrated probabilities via the logit link function,

expressed as

ln

(

prei
1− prei

)

= ln

(

κ̂T (p
raw
i )

1− κ̂T (p
raw
i )

)

(2.23)

= β̂0 + β̂1p
raw
i , (2.24)

where β̂0 and β̂1 are the fitted regression coefficients. The relationship between

κ̂T and prawi need not be linear, which is the case for linear regressions. Instead,

the coefficients represent a change in the logit for a unit change in rtraink . So,

2is named by Lindley [115], based on the quote “I beseech you, in the bowels of Christ,

think it possible that you may be mistaken.” (in a letter Cromwell wrote to the Church of

Scotland on August 5th, 1650.)
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applying a logistic regression allows for non-linearity in the calibration func-

tion, and restricts the calibrated forecast values prei to the range [0, 1]. Primo

et al [161] highlight that, although nonlinear techniques may be more flexible

and better for correcting biases in forecast systems than linear techniques, both

techniques tend to reduce the range of forecast probability values after recali-

bration, especially if the forecast system was poor before recalibration. This is

discussed in more depth in Section 3.4.3. Figure 2.8 shows a schematic example

of forecast calibration using a fitted logistic regression curve. The forecast-

parameter values are the same as those in Fig. 2.7 for comparison. So, for

example, a forecast value prawi = 0.7 is translated to the diagonal line, giving a

calibrated forecast value prei = 0.893.

There are three other recalibration algorithms which, unlike the preceding

three, do not require binning and averaging of the training set of forecasts

ptraini , and linear interpolation between the bin averages rtraink
3. Instead, the

calibration function is estimated directly from the forecasts ptraini and, as a

result, is not subject to the residual errors associated with mean estimates (i.e.

rtraink ). These other algorithms - kernel density estimation, beta-transformed

linear pooling, and relative operating characteristic (ROC) curve fitting - are

described in the following sections. A comparison of the performances of all the

algorithms is deferred to Section 3.4.2 where the results of forecast recalibration

under IMS are presented. In short, the kernel density estimation algorithm

and beta-transformed linear pool algorithm perform better than the simple

translation and regression algorithms, while the ROC curve algorithm tends to

perform rather poorly.

3Note that binning the forecasts is not a general requirement of linear and logistic re-

gressions applied to recalibration, see, for example, Wilks [215] and Hamill and Whitaker

[120]
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Figure 2.8: Forecast recalibration using logistic regression: Reliability diagram

schematic demonstrating the logistic regression recalibration algorithm using a training set of

binned Lorenz63 binary forecasts (asterisks) to recalibrate the evaluation set of forecasts both

generated in Expt. 2 (see table 2.1). A logistic regression line is fitted to the plotted points,

from which the horizontal distance to the diagonal line determines the magnitude by which a

raw forecast needs to be translated. For example, the two red lines show evaluation forecast

probability values of 0.3 and 0.7 are calibrated to values of 0.16 and 0.89, respectively. Note

that the fitted curve is a better fit than the linear regression line plotted in Fig. 2.7.

Relative Operating Characteristic (ROC) curve fitting

Atger [8] proposes a statistical framework to estimate the calibration function

for small forecast-outcome pair sample sizes. A Relative Operating Character-
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istic (ROC) curve is fitted with a bi-normal model, and used to estimate the

relative bin populations #Ik/N and observed relative frequencies fk of each bin

Bk in the training set. ROC curve fitting with bi-normal models was outlined in

Section 1.6.5. Under the bi-normal assumption, a ROC curve is a straight line

after transformation of its x and y coordinates (i.e. FAR and HR) into their

corresponding standardised normal deviates. HR and FAR are approxima-

tions of the compound distribution functions F (0, pk) and F (1, pk) respectively

defined by Eqn. (2.5) [23].

The relative bin populations #Ibinormk /N and observed relative frequencies

f binorm
k under the bi-normal assumption can be estimated as follows: the ROC

curve is fitted by transforming HR and FAR into zHR and zFAR and finding

the best-estimate linear fit. Next, the (FAR,HR) points of the original ROC

curve are orthogonally projected onto the fitted curve to estimate HR and

FAR according to the bi-normal model, which are in turn used to recursively

compute #Ibinormk /N and f binorm
k . The raw forecasts are finally recalibrated

using the simple translation algorithm outlined in Section 2.4.1, that is

prei = κ̂T (p
raw
i ) (2.25)

= f binorm
k , (2.26)

where i ∈ Irawk := {i; prawi ∈ Bk}. Bröcker [23] points out that this algorithm

leads to low variance of estimates of the calibration function because they are

restricted to very few degrees of freedom, and therefore subject to a possible

trade-off towards larger bias of calibration function estimates. A more detailed

discussion of controlling the bias-variance trade-off and degrees of freedom of

calibration function estimates is given in Section 3.4.1 in a context including

imperfect models.

Kernel Density Estimation

Bröcker [23] proposes a forecast recalibration algorithm which, like the ROC

curve approach above, includes estimating the compound distribution func-
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tions F (0, r) and F (1, r) to derive the calibration function (see Eqn. (2.6)).

Unlike the ROC curve approach, however, kernel density estimators are instead

employed to estimate F (0, r) and F (1, r), that is

F̂ (y, r) = ptrainy

1

#I trainy

∑

i;Yi=y

Φ

(

r − ptraini

δ

)

, (2.27)

where ptrainy = P (Y = y) and #I trainy := #{i; Yi = y} are estimated from the

training set, and Φ is the standard Gaussian CDF. Hence, F (0, r) and F (1, r)

are estimated by a sum of Gaussian kernels with bandwidth δ which is optimised

by applying a proper scoring rule to the calibration function estimate κ̂T . The

optimised estimate of δ using ignorance can be expressed as

δ̂ := arg min
δ

N
∑

i=1

−log2κ̂T (ptraini (Yi); δ). (2.28)

Note that kernel density estimation differs somewhat to kernel dressing which

was explained in Section 1.8 (see Binter [12] for a discussion on the differences

between kernel density estimation and kernel dressing).

The raw forecasts are finally recalibrated using the calibration function es-

timate with optimised kernel bandwidth parameter δ, that is

prei = κ̂T (p
raw
i ; δ) (2.29)

=
dF̂ (1, prawi )

d[F̂ (0, prawi ) + F̂ (1, prawi )]
, (2.30)

where i ∈ Irawk := {i; prawi ∈ Bk}.

Beta-transform linear pool

Empirical evidence abounds for the improvement in predictive performance

when combining two or more available probabilistic forecasts of some event

compared to individual probabilistic forecasts of that same event [165]. Despite

this evidence, Ranjan and Gneiting [165], and Hora [77] prove that achieving

perfect forecast reliability via the recalibration of probability forecasts using a
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non-trivial weighted average of two or more distinct, calibrated probability fore-

casts is not possible. Ranjan and Gneiting [165] suggest, however, that linear

combined probability forecasts perform better than individual forecasts which

is supported by a wealth of empirical evidence across various fields including

meteorology, economics, and medical science [165].

Ranjan and Gneiting [165] propose a parametric beta-transformed linear

pooling (BLP) technique for nonlinear recalibration of linear combinations of

probabilistic forecasts which is highly effective for increasing forecast reliability

and forecast skill. In its general form, the BLP technique consists of aggregating

m probabilistic forecasts p1, . . . , pm into a weighted linear combination, and then

applying a beta transform. This process is formulated as

p = Hα,β

(

m
∑

j=1

ωjpj

)

, (2.31)

where ω1, . . . , ωm ≥ 0 and ω1 + . . .+ ωm = 1, and

Hα,β(x) = B(α, β)−1

x
∫

0

tα−1(1− t)β−1dt, (2.32)

for x ∈ [0, 1], is the cumulative distribution function of the beta density with

parameters α > 0 and β > 0.

A forecast prawi is recalibrated by compositing a beta transform and the linear

combination of each forecast ptraini in the training set with the climatological

probability of the observed state variable lying above the specified threshold θ.

In effect, the recalibrated forecast is given by

prei = κ̂T (p
raw
i ) (2.33)

= Hα,β

(

ωptraini + (1− ω)pθclim
)

. (2.34)

Maximum likelihood estimates of the weights ω1, . . . , ωm, and the parameters

α and β of the beta transform are found by numerically optimising the log-

likelihood function of the BLP model
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l(ω1, . . . , ωm;α, β) =

N
∑

i=1

[Yilog(p
blp
i ) + (1− Yi)log(1− pblpi )]

=
N
∑

i=1

[Yilog(ωp
train
i + (1− ω)pθclim)

+ (1− Yi)log(1− ωptraini + (1− ω)pθclim)], (2.35)

under the constraints ω1, . . . , ωm ≥ 0, ω1 + . . . + ωm = 1, α > 0, and β > 0.

Note that the model is not constrained to having non-trivial weights so linear

pooling of ptraini and pθclim is not enforced.

2.4.2 Contrasting the challenges of forecast recalibration

in principle and in practice

The process of forecast recalibration has been outlined in this section, and

framed by the problem of estimating the calibration function κ to correct fore-

cast probabilities. An overview of proposed algorithms for estimating the cal-

ibration function has also been presented along with discussion of the various

challenges in principle and in practice for performing forecast recalibration.

These are summarised below.

In principle:

• forecast recalibration requires collection of forecast-outcome pairs to make

statistical corrections to forecast probabilities

• the calibration function κ must be assumed to exist when there may be

no reason for it to exist and, if it does, it is generally unknown

In practice:

• the calibration function κ must be estimated from a training set T of

forecast-outcome pair data (ptraini , Yi)
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• accurate estimation of the calibration function is based on the assumption

that all of the forecast-outcome pairs (ptraini , Yi) are i.i.d.

• estimates of the calibration function κ̂ with finite sample sizes of data

are always subject to residual errors (i.e. bias and variance). Ideally, a

balance between the bias and variance of κ̂ is reached, but in practice,

identifying the balance is difficult.

• binning and averaging steps introduce further residual errors unless fore-

cast probabilities are taken as fixed values and bin populations are similar

• the simple translation recalibration algorithm prei = κ̂T (r
train
k ) is suscep-

tible to erroneous recalibrated forecast probabilities; for example, at a

given bin where training set forecast probabilities deviate substantially

from the bin average rtraink . Specification of bin widths is suggested using,

for example, t-tests for differences in sub-bin averages.

• interpretation of linear regression recalibration algorithms is complicated

by fitted lines leading to recalibrated forecast values outside the range

[0, 1]

• the ROC curve fitting recalibration algorithm is restricted to very few

degrees of freedom, leading to low variance, but possibly large bias in κ̂

2.5 Forecast Information Content

Effective forecast recalibration of any forecast system requires additional in-

formation about a target system if it is to improve forecast performance. In-

formation content can be quantified using a number of information-theoretical

measures. One such measure is relative entropy (or Kullback-Liebler divergence)

which evaluates the difference in uncertainty about a set of outcomes described

by two probability distributions [113, 172, 194, 154]. Although relative entropy
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can be interpreted as the “information divergence” between two probability dis-

tributions, it is not a measure of true distance because it lacks symmetry and

does not satisfy the triangle inequality [35, 172]. Consider two PDFs, denoted

by the vectors p and q, and K possible mutually exclusive outcomes. If the

jth component of these vectors represent the probability of the jth outcome

occurring, then the relative entropy is given by

D(p|q) =
K
∑

j=1

pjlog
pj
qj
. (2.36)

where D > 0 if p 6= q. Relative entropy reflects the additional information

required to reduce the uncertainty of q so that it exactly describes p (i.e. p = q).

Another information-theoretical measure closely related to relative entropy

is called Ignorance, which quantifies the information content (in bits) of a sin-

gle, observed outcome (see Good [63] and Section 1.6.2 for a full description).

Ignorance is a scoring rule which provides a summary measure of forecast skill

for a given sample of forecast-outcome pairs. The score is expressed as

IGN = − 1

N

N
∑

i=1

log2pi(Yi), (2.37)

where pi is the forecast probability assigned to the verifying outcome Yi. The

ignorance of the climatological PDF defines zero skill so that the skill of the

forecast can be expressed as

IGN = − 1

N

N
∑

i=1

log2pi(Yi) +
1

N

N
∑

i=1

log2p
θ
clim(Yi) (2.38)

= − 1

N

N
∑

i=1

log2
pi(Yi)

pθclim(Yi)
. (2.39)

Ignorance is a useful measure of forecast skill because it provides an additive

quantification of the difference between two forecasts in bits of information [172].

The skill of the binary forecasts of the position of the Lorenz63 system x state

variable described in Section 2.2 is now evaluated using ignorance. Figure 2.9

provides a sample of the relative scores of the binary forecasts for the parameter
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Figure 2.9: Forecast ignorance under PMS: Ignorance (with 5% - 95% uncertainty

intervals) for binary forecasts at all lead times generated in Expts. 4, 5, and 6 (see table

2.1) of the observed state of the Lorenz63 x-variable lying above the climatological thresholds

of θ = 0.5 (solid line), θ = 0.9 (dashed line), and θ = 0.99 (dotted line) with increasing

lead time τ . The curves slope downwards with decrease in lead time reflecting the increased

predictability of the outcome and increased skill of the forecasts. Greater forecast skill is also

generally achieved by binary forecasts of lower climatological threshold events.

configurations labelled as Expts. 4-6 in table 2.1. The complete set of ignorance

scores of the binary forecasts constructed with each of the density construction

methods for all parameter configurations under PMS are tabulated in B.3 in

appendix B. From this set of results the best performing density construction

method can be determined.

Firstly, however, the general effects of varying climatological event frequency,

ensemble size, and forecast lead time on forecast skill are now examined. Fore-

cast skill generally improves for lower values of θ reflecting the larger observa-

tional uncertainty (i.e. lack of sharpness) of the climatological PDF. The highest
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skill at each threshold value is IGN = −0.99 (θ = 0.5), IGN = −0.48 (θ = 0.9),

and IGN = −0.06 (θ = 0.99) occurring at shortest forecast lead times. There is

a pattern of increasing skill with increasing ensemble size although the increases

in skill are relatively marginal. The differences in ignorance between the lowest

ensemble size Nens = 4 and largest ensemble size Nens = 1024 are on the order

of 10−2 bits for forecasts produced with all four density construction methods,

and for all three thresholds. The small margin is not surprising under PMS,

however, given that the level of observational noise is relatively low. Clearly, an

ensemble of four members is sufficient in this case to estimate the uncertainty

about the current state of the system (i.e. the initial condition uncertainty),

and produce accurate forecasts. More substantial is the margin of skill between

the shortest and longest lead times which is, at its greatest, of the order of 10−1

bits for the lowest climatological threshold value θ = 0.5. In fact, the fore-

casts are often less skilful than the climatological forecast at longer lead times,

suggesting that an ensemble forecast might be improved by deploying forecast

recalibration at those lead times.

The results are tabulated in appendix B. In short, the KDBmethod performs

the best overall, particularly for smaller ensemble sizes and longer forecast lead

times. The superiority is generally marginal, however, particularly at θ = 0.5

where the margin is, at greatest, 0.1 bits. The Bayesian method is not com-

petitive at the higher thresholds, and worse than the climatological forecast

(i.e. > 0 bits), but appears to perform consistently the best at θ = 0.5 for

larger ensemble sizes. Both the counting methods are competitive under PMS

at the higher thresholds and generally where ensemble sizes tend to be larger.

On the other hand, both counting methods sometimes exhibit superior forecast

skill to the Bayesian and KDB methods at lower ensemble sizes. This atypical

skill is attributable to less smoothness in the forecast PDFs, resulting in “lucky

strikes” [185]. Of the four forecast density construction methods, only the NC

method is susceptible to “forecast busts” [26] (i.e. IGN = ∞), since zero fore-

cast density is placed on the same side of the threshold as the outcome. The
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probability of this occurring from a perfect ensemble is ∼ 2
Nens

[40]. Assign-

ing a zero probability to any outcome is highly inadvisable and in violation of

Cromwell’s law. These forecast busts tend to occur for smaller ensemble sizes

and longer lead times, and are symptomatic of the coarsely defined forecast

PDFs produced from the NC method.

2.5.1 Forecast skill and forecast reliability

The relationship between forecast skill and forecast reliability in the context of

forecast recalibration is now examined. There is an intrinsic link between the

two forecast attributes, and forecast skill is often considered a combination of

forecast reliability and a third attribute, sharpness [142, 59] (see Section 1.6.6).

Murphy [136] stresses the importance of understanding the contributions of the

individual components to overall skill to comprehensively assess forecast quality.

Jolliffe and Stephenson [86] state that forecast reliability is not a necessary

condition for forecast skill, but it is shown in Section 3.4.2 that increases in

forecast skill are generally not possible without increasing forecast reliability.

Forecast evaluation with a proper scoring rule (e.g. ignorance) provides a

measure of the skill of a forecast system, but does not give an indication of

whether a better score is attributable to a larger relative gain of reliability or

sharpness, if indeed, such a separation is sensible. Only by assessing forecast

reliability can systematic biases be removed from a forecast system through

recalibration [135, 159]. Such unconditional biases are revealed in a reliability

diagram if the calibration function plot is consistently above (underforecasting)

or below (overforecasting) the diagonal line (see [217]).

An alternative approach to assessing forecast reliability using reliability di-

agrams is to quantify it by means of an algebraic decomposition of the scoring

rule into its components of reliability and sharpness. Weijs et al. [199] derive

the decomposition of the ignorance score in terms of forecast reliability, forecast

resolution, and uncertainty. If these additive components (defined below) are
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denoted by IGNREL, IGNRES, and IGNUNC respectively then the decomposi-

tion of the ignorance score is expressed as

IGN = IGNREL − IGNRES + IGNUNC , (2.40)

where the right hand side of the equation represents the sharpness term (i.e.

IGNUNC−IGNRES). IGNREL is, like IGN , negatively oriented (i.e. lower val-

ues indicate better reliability) while IGNRES is positively oriented (i.e. higher

values indicate better resolution). Equation (2.40) provides a useful formula-

tion of the score whereby changes to forecast skill and reliability before and

after recalibration can be quantified. A novel examination of the impact of

recalibration on the performance of the binary forecasts with respect to IGN

and IGNREL is given in Section 2.6. Totder and Ahrens [194] explain that the

decomposition is based on the conditional frequency of an event occurrence on

all occasions where pj is forecast, which is equal to the observed frequency fj

(i.e. P (Y |pj) = (fj , 1 − fj)). Forecast reliability is described as the average

relative entropy between each unique forecast distribution (pj , 1 − pj) and the

conditional observed distribution P (Y |pj) so that

IGNREL =
∑

j

P (pj)

[

fjlog
fj
pj

+ (1− fj)log2
1− fj
1− pj

]

. (2.41)

Comparison of forecast resolution before and after recalibration of the binary

forecasts under IMS is presented in chapter 3 by quantifying IGNRES. Authors

of previous studies have noted that recalibration often leads to a decrease in

forecast resolution, but Section 3.4.3 provides the first numerical evaluation of

the changes in resolution.

2.6 Recalibration under PMS

A preliminary analysis of the results of recalibration on forecast skill and forecast

reliability under PMS is presented in this section by comparing the performance

of the Lorenz63 binary forecasts before and after recalibration. Focus is given
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to how the impact of recalibration on forecast performance varies with lead

time. The aim is to determine the upper bound of τ beyond which no substan-

tive information can be gained from sampling the initial conditions to improve

forecasts produced from perfect models. In short, at what lead time does the

forecast PDF become no more informative than the climatological distribution?

At that point, the forecast is no longer “useful” [182], and recalibration might

be more beneficial for improving forecast skill.

Table 2.2: Forecast skill before and after recalibration under PMS

Recalibration Before After Difference

(& PDF method) recalibration recalibration

algorithm θ Nens τ* IGN IGNREL IGN IGNREL ∆IGN ∆IGNREL

Simple 0.5 4 0.2 -0.832 0.093 -0.930 0 -0.098 -0.093

translation 6.4 -0.625 0.122 -0.649 0.006 -0.024 -0.116

(AC) 25.6 0.136 0.121 0.001 0.003 -0.135 -0.118

0.5 1024 0.2 -0.982 0.001 -0.846 0.014 0.136 0.013

6.4 -0.774 0.036 -0.827 0.006 -0.053 -0.03

25.6 -0.004 0.013 0.004 0.011 0.008 -0.002

0.99 4 0.2 -0.058 0 -0.055 0 0.003 0

6.4 -0.008 0.003 -0.012 0 -0.004 -0.003

25.6 0.022 0.007 0.003 0 -0.019 -0.007

0.99 1024 0.2 -0.065 0 -0.049 0.007 0.016 0.007

6.4 -0.033 0 -0.024 0 0.009 0

25.6 -0.004 0.004 0.029 0 0.033 -0.004

Logistic 0.5 4 0.2 -0.832 0.053 -0.847 0.050 -0.015 -0.003

regression 6.4 -0.625 0.076 -0.701 0.006 -0.076 -0.07

(AC) 25.6 0.136 0.121 0.001 0.002 -0.135 -0.119

0.5 1024 0.2 -0.982 0 -0.875 0.050 0.107 0.050

6.4 -0.774 0.036 -0.885 0.004 -0.111 -0.032

25.6 -0.004 0.013 0 0.012 0.004 -0.001

0.99 4 0.2 -0.058 0 -0.066 0 -0.008 0

6.4 -0.008 0.003 0.001 0 0.009 -0.003

25.6 0.022 0.007 0.004 0 -0.018 -0.007

0.99 1024 0.2 -0.065 0 -0.066 0 -0.001 0

6.4 -0.033 0 0.414 0.085 0.447 0.085

25.6 -0.004 0.004 -0.001 0.001 0.003 -0.003

KDE 0.5 4 0.2 -0.832 0.093 -0.941 0.031 -0.109 -0.062

(AC) 6.4 -0.625 0.122 -0.670 0.009 -0.045 -0.113

25.6 0.136 0.121 0.001 0.003 -0.118 -0.135

0.5 1024 0.2 -0.982 0.001 -0.997 0 -0.015 -0.001

6.4 -0.774 0.036 -0.887 0.004 -0.113 -0.032

25.6 -0.004 0.013 -0.005 0.004 -0.001 0.009

0.99 4 0.2 -0.058 0 -0.065 0 -0.007 0

6.4 -0.008 0.003 -0.013 0 -0.005 -0.003

25.6 0.022 0.007 0.003 0 -0.019 -0.007

0.99 1024 0.2 -0.065 0.002 -0.066 0 -0.001 -0.002

6.4 -0.033 0 -0.034 0.007 -0.001 0.007

25.6 -0.004 0.004 0 0.002 0.004 -0.002

*in Lorenz63 seconds [118]. All values are rounded to 3 decimal places.
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Samples of the numerical results of forecast recalibration using the simple

translation, logistic regression, and kernel density estimation (KDE) algorithm

are shown in table 2.2. These show that forecast recalibration is evidently

more effective at increasing forecast skill and reliability at all lead times where

ensemble sizes are smaller, achieving improvements on the order of 0.14 bits of

information. The biggest increases in skill and reliability tend to occur at the

longest lead times where raw forecasts are less skilful and less reliable. The KDE

algorithm performs the best overall but improvements are generally achieved

for the same parameter values by all recalibration algorithms. Only forecasts

constructed with the AC method are shown in table 2.2, but the results for the

other density construction methods (not shown) indicate that recalibration of

more skilful forecasts is not as effective.

Forecast recalibration is performed and assessed in more realistic circum-

stances under IMS in the next chapter. The KDB method for producing binary

forecasts demonstrates the best skill overall, and provides the benchmark for as-

sessing whether forecast recalibration can be beneficial for forecast performance

at longer lead times and for smaller ensemble sizes. The AC and KDB meth-

ods only are deployed in the next chapter to illustrate the impacts of forecast

recalibration.

2.7 Conclusions

The evaluation and recalibration of binary forecasts under a perfect model sce-

nario has been reviewed and examined in this chapter. A perfect model has

been used to produce forecasts of the state of the Lorenz63 dynamical system

using four density construction methods. The performance of these forecasts is

then compared before and after forecast recalibration. A framework has been

proposed for best-practice binary forecast evaluation and recalibration from the

perspective of forecast skill and forecast reliability; two different but related

attributes of forecast quality. Quantitative evaluation of the relative effects of
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recalibration on these forecast attributes can be useful. Such an evaluation can

be achieved using a decomposition, where available, of a proper scoring rule

such as the ignorance score into components of reliability and resolution, along

with reliability diagrams.

The task of forecast recalibration has been framed by the calibration func-

tion κ(p) which measures the conditional probability of a binary outcome occur-

rence given a forecast probability p. The calibration function κ(p) is generally

unknown [23] and must be estimated from a finite sample of forecast-outcome

pairs (ptraini , Yi) which are ideally i.i.d.. In general, estimation of κ(p), and

hence the efficacy of recalibration, is limited by imperfect observations of the

true state of the dynamical system at hand. A comprehensive range of algo-

rithms for estimating the calibration function and performing recalibration have

been reviewed and critiqued, providing a unique perspective of the challenges of

recalibration in both principle and practice. Like all estimation problems, the

calibration function is subject to residual errors, which can be described with

respect to bias and variance. These errors originate from several sources such

as non-independent forecast-outcome pairs, and under-sampling and specifica-

tion of probability bins where binning and averaging the forecasts. A balance

between bias and variance of the calibration function is ideally identified, but

in practice the trade-off is typically non-trivial.

Information theoretical measures of forecast performance employed to assess

the effect of recalibration have also been introduced and discussed. Measures

such as relative entropy and ignorance are appropriate for evaluating recal-

ibration, both because they have ideal properties, and because each can be

decomposed into attributes of forecast quality such as reliability and resolution.

Hence, the effect of recalibration on forecast performance can be assessed with

respect to these attributes as well as forecast skill. These measures contribute

to the novel evaluation framework introduced in this thesis for investigating the

impact of recalibration.

Finally, in Section 2.6, forecast recalibration has been demonstrated on fore-
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casts constructed with the AC density construction method. One of the key aims

of the examination was to identify for which conditions and forecast-parameters

is forecast recalibration effective. It has also been enquired whether, given that

a perfect model is structurally correct and only suffers from initial condition

uncertainty, improving forecast skill is effective through recalibration, or by

increasing ensemble size. It has been determined that recalibration is most ef-

fective at longer lead times particularly for smaller ensemble sizes and where the

climatological probability of the binary event is closer to 0.5 (i.e. θ → 0.5), but

can improve both forecast skill and forecast reliability at lead times as short as

0.2 Lorenz63 seconds for the smallest ensemble sizes at θ = 0.99. Improvements

in forecast skill are generally accompanied by increases in forecast reliability as

measured by the decomposition of the ignorance score, but not exclusively so.

Recalibration has also been found to be less effective where raw forecast skill is

high, as demonstrated by the KDB density construction method.

The following novel contributions or innovations in this chapter include:

• critique of existing recalibration algorithms for binary probabilistic fore-

cast recalibration

• identification of the challenges of forecast recalibration in principle and in

practice

• deployment of a range of recalibration algorithms to assess their respective

effectiveness for improving forecast performance

• examination of the relationship between forecast skill and forecast reliabil-

ity in the context of recalibration using the decomposition of the ignorance

score

• investigation of the conditions where recalibration is effective for increas-

ing forecast reliability and forecast skill in a perfect model scenario
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Chapter 3

Forecast Evaluation and

Recalibration under IMS

In a world of perfect models with known parameters, forecast model error origi-

nates purely from uncertainty in the true state of a system at the point at which

a model is initialised. Initial condition (IC) uncertainty inhibits both correctly

determining the exact current state of the system, and making accurate pre-

dictions of its future state. In the real world, all models are imperfect and are

subject to both observational uncertainty and structural imperfections. The lat-

ter source of model inadequacy is an unavoidable consequence of an incomplete

understanding of the dynamics of the modelled system [90]. The differences be-

tween a perfect model scenario (PMS) and an imperfect model scenario (IMS)

are explicated in Section 1.4.

Chapter 2 presented a novel investigation into the evaluation of binary fore-

cast skill and reliability, and the effectiveness of recalibration of binary forecasts

given a perfect model. The investigation demonstrated that recalibration leads

to improved forecast skill and reliability at longer forecast lead times and cli-

matological probabilities are closer to 0.5 where predictability is limited by un-

certainty in the state of a dynamical system, and IC uncertainty which is larger

for smaller model ensemble size. In other words, it was shown that there is a
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greater potential for forecast improvement after recalibration where forecasts

have less skill before recalibration.

In this chapter, the same line of inquiry into forecast evaluation and recal-

ibration is taken, but under IMS. The conditions are surveyed where forecast

recalibration is effective, and where resources should be instead dedicated to

improving forecast techniques. Following the results of Chapter 2, the expecta-

tion is that, since the performance of imperfect model forecasts is worse than

that of a perfect model, recalibration would be of greater value for improving

performance.

This chapter is structured as follows: imperfect model inadequacy is de-

scribed in Section 3.1 along with the design of the imperfect forecast model

employed to produce binary forecasts of the Lorenz63 system state. The binary

forecasts are constructed from raw imperfect model ensemble output using the

same four different density construction method as in Chapter 2. This novel

comparison of the skill of these forecast systems is presented in Section 3.2.

The investigation of binary forecast performance under PMS and IMS has also

led to the discovery of an interesting property of the ignorance score which is

discussed in Section 3.2. Surprisingly, the relative forecast skill of binary fore-

casts produced from perfect models compared to those produced from imperfect

models can be marginal, even for perfect forecasts (i.e. p(Y ) = 1); it is shown

that limit is dependent on the climatological probability.

An overview of forecast performance before and after recalibration under

both PMS and IMS is first provided in Section 3.4. Comparisons of forecast

performance under the two scenarios reveal that forecast recalibration is more

beneficial for imperfect model forecasts with smaller ensemble sizes and longer

lead times, and where climatological probability closer to 0.5. While not sur-

prising, this is the first quantitative demonstration of the effect.

Finally, in Section 3.4, forecast recalibration is demonstrated on binary fore-

casts; the two best performing forecast models of Section 3.2 are used. All of

the recalibration algorithms outlined in Chapter 2 are employed. As already

89



CHAPTER 3. EVALUATION AND RECALIBRATION UNDER IMS

explained in Chapter 2, forecast recalibration is performed by computing the

conditional distributions of the outcomes given a set of forecasts to estimate

the calibration function κ, and then making corrections to forecast probability

values p according to the calibration function estimate κ̂(p). In practice, cat-

egorisation or binning of the forecasts inherently leads to errors in estimates

resulting from both bias and variance in κ̂(p). Various approaches to fore-

cast categorisation are described, with those achieving a balanced bias-variance

trade-off being most ideal. Again, a novel approach evaluation of forecast per-

formance before and after recalibration with respect to both forecast skill and

forecast reliability is performed. The results confirm that forecast recalibra-

tion is most effective where raw forecast skill is poorer, that is, generally for

longer lead times, smaller ensemble size, and higher climatological event uncer-

tainty. It is concluded that forecast recalibration provides a useful technique

for improving poorly performing forecast systems, and should be considered as

a simple and cost-effective first option. This recalibration experiment is, to the

author’s knowledge, the first of its kind in the published literature.

3.1 Challenges of model inadequacy

There is arguably no such thing as a perfect model for any physical dynamical

system in the real world [90]. There are always imperfections in the mathe-

matical structure of forecast models, not merely in their estimation of initial

conditions. These imperfections are attributable to different forms of model

inadequacy which are now described. Model inadequacy refers to a model’s

inability to simulate the trajectory of a system’s state, even given precise ini-

tial conditions [96]. Model error [88] arises as a result of the model formulation

containing an incomplete mathematical description of the system dynamics (i.e.

structural error), perhaps due to an absence of sub-space where a component

of the system’s dynamics is not included in the model [90]. Ignored sub-space

inadequacy features in numerical weather models, for example, where the model
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Figure 3.1: Ensemble forecasting under IMS: raw imperfect Lorenz63 model ensemble

generated in Expt. 1 (see table 3.1) (top), and fan chart showing the kernel dressed ensembles

(PDFs) constructed from the raw ensembles shown in the upper plot at every time step from

t = 0 up to t = tτ = 6.4s (bottom). The PDF represents the probabilities of the system’s

state and the blue trajectory shows the actual true state at a given time t. See Fig. 2.1 for

further details.

variables represent the physical variables of the weather system on a grid-box

discretisation of model space [153]. These types of computer models are unable

to resolve sub-grid processes [150]. Model inadequacy leads inevitably to fore-

cast error (see Section 1.6) in which the projected state of the model is different

91



CHAPTER 3. EVALUATION AND RECALIBRATION UNDER IMS

−15 −10 −5 0 5 10 15

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Forecast PDF at lead time tau=6.4

X

F
or

ec
as

t D
en

si
ty

Figure 3.2: Ensemble forecasting under IMS: kernel dressed ensemble (PDF) with

Nens = 256 corresponding to that in Fig. 3.1 at tτ = 6.4s. The true state of the system

variable is shown as a blue line at x̃tτ = −5.7, and the dashed horizontal lines denote the 50th,

90th, and 99th percentiles of the climatological distribution representing the climatological

event thresholds θ ∈ {0.5, 0.9, 0.99}. Given that x̃tτ < xθ, and most of the probability density

is below xθ = 0.37, the forecast is more skilful than a climatological forecast pθclim = 0.5,

although not as skilful as the perfect model forecast in the equivalent plot in Fig. 2.2.

to the actual system state at a given lead time (see also section 1.5). Unlike

PMS, it may not be possible to isolate the effect of modification of a forecast

system on its performance to a single property of that system (see 2.1) because

forecast error stems from both IC uncertainty and model inadequacy under IMS.

It should be possible, however, to at least identify the properties of a forecast

system where it is more effective to recalibrate rather than to improve forecast

techniques in a real world scenario. The Lorenz63 ensemble model described
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Table 3.1: Configurations for IMS Lorenz63 binary forecast experiments

Experiment Dynamical State Observational PDF Forecast Parameters

No. Equations Variable Noise Method θ Nens τ*

1 Lorenz63 x N (0, 0.372) KDB 0.5 256 6.4

2 Lorenz63 x N (0, 0.372) All 0.9 All 25.6

3 Lorenz63 x N (0, 0.372) AC 0.5 4 25.6

4 Lorenz63 x N (0, 0.372) KDB 0.99 4 0.2

5 Lorenz63 x N (0, 0.372) KDB 0.5 1024 18.2

5 Lorenz63 x N (0, 0.372) AC 0.5 4 18.2

*in Lorenz63 seconds [118]; see Appendix A.1.

in Chapter 2 is again employed along with the naive counting (NC), adjusted

counting (AC), Bayesian, and kernel dressing and blending (KDB) forecast den-

sity construction methods (see Section 2.2) to examine forecast evaluation and

forecast recalibration under IMS. Structural imperfection is introduced into the

Lorenz63 ensemble model by substituting the x state variable in the system’s

differential equations (see Appendix A.1) so that

x′ = csin
(x

c

)

, (3.1)

where x′ is the imperfect model variable. In these examples c = 16. Figure 3.1

shows example plots of the model ensemble and kernel dressed ensemble iterated

forward in time up until lead time τ corresponding to Fig. 2.1 in Chapter 2.

Figure 3.2 shows the forecast PDF, and the true state of the variable x̃tτ at lead

time τ = 6.4s.

3.2 Which forecast system is best?

The performance of forecasts of the Lorenz63 system state under IMS are as-

sessed and compared in this section. The assessment and comparison of bi-

nary forecasts constructed each of the four density construction methods is a

new contribution. The forecasts are evaluated against climatological forecast

(pθclim = θ). Figure 3.3 provides a sample of the ignorance scores of forecasts con-
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structed from all four methods in Lorenz63 Expt. 2 (see table 3.1). The curves

show that the more skilful forecasts are produced from the KDB, AC, and NC

density construction methods with forecast-parameters θ = 0.9 and τ = 25.6s.

In general, the KDB and AC methods are also found to be generally better than

the NC and Bayesian methods over the whole range of forecast-parameters (the

full set of forecast skill results are tabulated in table B.4). Superior forecast

skill is predominantly demonstrated by the KDB method at longer lead times

and smaller ensemble sizes. It should be noted that the degree of relative skill
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Figure 3.3: Forecast ignorance under IMS: ignorance (with 5% - 95% uncertainty

intervals) for binary forecasts produced from the NC (solid line), AC (dashed line), Bayesian

(dotted line), and KDB (dash-dotted line) density construction methods under Expt. 2 (see

table 3.1) with θ = 0.9, τ = 25.6s and all ensemble sizes. The KDB method performs best

at smaller ensemble sizes, and is equalled in skill for ensemble sizes Nens ≥ 128 by the NC

and AC methods. Note: there is no curve for the NC method where Nens < 128 because it

produces forecast busts at these ensemble sizes.
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of the KDB imperfect model compared to the other methods is quite marginal,

however, and that the AC and NC methods are actually competitive with the

KDB method for larger ensemble sizes, particularly at the highest climatological

event frequency θ = 0.5. The margin of relative skill is 0.15 bits of information

at most between the KDB and the counting methods, and typically close to zero

at higher ensemble sizes. The Bayesian method produces marginally the most

skilful forecasts at shorter lead times and larger ensemble sizes at the highest

climatological event frequency with relative skill of up to 0.05 bits.

The overall superior performance of the KDB method is attributable to

the unique forecast post-processing stage (see Section 1.5) which employs the

following additional steps after constructing the raw model ensemble to improve

the quality of the forecast:

1. the kernel dressed ensemble is translated into a smoothed and continuous

PDF providing a more precise estimate of the underlying distribution [214]

2. the kernel dressed ensemble is blended with the climatological PDF

3. the blending parameter α and kernel width parameter σ are optimised

using a training set of observations before a binary forecast is issued

The optimisation of the KDB parameters α and σ serves to correct system-

atic forecast error in the raw ensemble. Blending the dressed ensemble with the

climatological PDF improves forecast performance at longer lead times where

the imperfect model reaches its own limit of predictability, that is, the lead

time beyond which the forecast is no longer useful. After this limit, an imper-

fect model is systematically unable to simulate the system’s trajectories, and

the ensemble converges onto the imperfect model’s own climatology. All of

the three reasons given above explain how forecast error can be reduced and

forecast skill increased when employing the KDB method. The NC method

produces forecasts which, like their perfect model counterparts, tend to bust

(i.e. IGN = ∞) for smaller ensemble sizes and longer lead times, but over an
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increased range of these two forecast-parameters. In fact, even where the model

ensemble is perfect (see Section 1.5.2), the probability of forecast busts with

the NC method is ∼ 2
Nens

[40]. The AC method is designed to avoid busts by

artificially adding probability density to both binary outcomes. Conversely, an

NC binary forecast might achieve a lucky strike if the ensemble members are

positioned all the same side of the threshold as the outcome at time tτ . This

would appear plausible for smaller values of τ given that an insufficient amount

of time has elapsed for the trajectory of the system to differ significantly from

the trajectories of the ensemble. As discussed in in Chapter 2, forecast busts and

lucky strikes risk violation of Cromwell’s law, and should otherwise be avoided.

Examination of the Lorenz63 forecast evaluation results in Chapters 2 and 3

has revealed a previously unreported property of the ignorance score for binary

forecasts. Even in cases where a density construction method is superior, the

difference in ignorance is always marginal. In fact, the relative loss of skill of

the imperfect model forecasts compared to their perfect model counterparts is

also minimal (compare tables in appendices B.3 and B.4 in appendix B) for

all construction methods, particularly at shorter lead times. There is evidently

a limit to the maximum skill of a binary forecast relative to the climatologi-

cal forecast which is dependent on the climatological event frequency θ. This

property of limited maximum relative skill can be explained by examining the

ignorance score for a forecast system where the perfect forecast is always issued

for each binary outcome, that is

IGNopt =
2
∑

j=1

−pθclimlog2
(

pj
pθclim

)

(3.2)

= −pθclimlog2
(

1

pθclim

)

− (1− pθclim)log2

(

1

1− pθclim

)

(3.3)

= pθclimlog2(p
θ
clim) + (1− pθclim)log2(1− pθclim), (3.4)

where pj is the perfect forecast, and pθclim is the climatological forecast. If the

climatological probabilities are plugged into Eqn. (3.4) the maximum expected

gain in relative skill of a forecast over a climatological forecast is IGNopt = −1.0
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for θ = 0.5, IGNopt = −0.47 for θ = 0.9, and IGNopt = −0.08 for θ = 0.99. So,

as the climatological probability of the binary event decreases so does the skill

of the forecast, and in the limit of the climatological probability approaching

zero, the optimal ignorance approaches 0, that is

lim
θ→1

IGNopt = 0. (3.5)

Eqn. (3.5) implies that a perfect forecast can only demonstrate a very small

degree of skill relative to a climatological forecast where a binary event has low

probability of occurrence. This margin of skill is much smaller than what can

be achieved by a forecast in a continuous outcome scenario, where the margin

can approach infinity. The margin of difference between values of IGNopt and

empirical ignorance can at least quantify how close a forecast is to being perfect,

however.

In the examples of Chapter 2, recalibration is shown to be most effective at

longer lead times, smaller ensemble sizes, and higher climatological event fre-

quencies. These ranges of forecast-parameter values are targeted in Section 3.4

whilst also employing the KDB and AC density construction methods, which

produce the better binary forecasts overall under IMS, to assess the effective-

ness of forecast recalibration. With poorer raw forecast skill exhibited by the

imperfect models compared to their perfect model counterparts, the expecta-

tion is for recalibration to lead to larger improvements in forecast skill. Also of

interest are shorter lead times and larger ensemble sizes at θ = 0.5 where the

Bayesian method, usually the poorest at higher values of θ, produced the most

skilful forecasts. The failure of the recalibrated forecasts constructed using the

KDB and AC methods to outperform those raw Bayesian forecasts would sug-

gest that improving the density construction method appears more beneficial

than recalibration for those forecast-parameter values.
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3.3 Comparison of recalibration under PMS and

IMS

In Section 2.6, forecast recalibration was found to be most effective at im-

proving the performance of perfect model forecasts at longer lead times, with

smaller ensemble sizes, and where θ → 0.5. The expectation is for recalibration

to be even more effective under IMS. Table 3.2 summarises the results of the

recalibration exercise under PMS and IMS for comparison. The raw and recal-

ibrated forecast scores, and their differences are shown for both PMS and IMS.

The imperfect model exhibits inferior forecast skill to the counterpart perfect

model over the entire range of forecast-parameter values. The inferiority in

performance is indicative of the impaired ability of the model to simulate the

trajectory of the system’s state over time under IMS. The increases in forecast

skill are predominantly larger, although marginal, under IMS suggesting that

the performance of forecasts produced from imperfect models can benefit more

from forecast recalibration.

One of the forecast-parameter configurations of interest for investigating the

effectiveness of recalibration is θ = 0.5, Nens = 4, and τ = 25.6s since forecast

skill is generally the poorest under both PMS and IMS for this configuration.

There is an increase in skill of IGN = 0.007 − 0.195 = −0.188 bits after

recalibration of the AC forecasts employing the simple translation method. A

similar gain in skill is attained with the KDE recalibration algorithm. These

are the largest increases in forecast skill of all the parameter configurations

(NB: not all are shown in table 3.2) indicating that recalibration is indeed more

beneficial where raw forecast skill is poorer. Recalibration is less effective where

raw forecast skill is already high, as is the case for forecasts constructed from

the KDB method. For example, for parameters θ = 0.5, Nens = 4, and τ = 0.2s

the difference is IGN = −0.846−−0.979 = 0.133 bits, a decrease in skill.
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Table 3.2: Forecast skill before and after recalibration under IMS

Recalibration PMS IMS

(& PDF) raw recalib. diff raw recalib. diff

method θ Nens τ* IGN IGN ∆IGN IGN IGN ∆IGN

Simple 0.5 4 0.2 -0.832 -0.930 -0.098 -0.832 -0.930 -0.098

translation 25.6 0.136 0.001 -0.135 0.195 0.007 -0.188

(AC) 0.5 1024 0.2 -0.982 -0.846 0.136 -0.982 -0.846 0.136

25.6 -0.004 0.004 0.008 -0.003 0.008 0.011

0.99 4 0.2 -0.058 -0.055 0.003 -0.057 -0.054 0.003

25.6 0.022 0.003 -0.019 0.012 0.018 0.006

0.99 1024 0.2 -0.065 -0.049 0.016 -0.062 -0.049 0.013

25.6 -0.004 0.029 0.033 -0.006 0.010 0.016

Simple 0.5 4 0.2 -0.980 -0.846 0.134 -0.979 -0.846 0.133

translation 25.6 0.016 0.001 -0.015 0.031 0.005 -0.026

(KDB) 0.5 1024 0.2 -0.983 -0.839 0.144 -0.983 -0.846 0.137

25.6 -0.004 0.006 0.010 -0.003 0.011 0.014

0.99 4 0.2 -0.064 -0.044 0.020 -0.061 -0.041 0.020

25.6 0.007 0.002 -0.005 0 0.018 0.018

0.99 1024 0.2 -0.065 -0.049 0.016 -0.062 -0.047 0.015

25.6 -0.004 0.051 0.055 -0.006 0.009 0.015

Kernel 0.5 4 0.2 -0.832 -0.941 -0.109 -0.832 -0.941 -0.109

density 25.6 0.136 0.001 -0.135 0.195 0.008 -0.187

estimation 0.5 1024 0.2 -0.982 -0.997 -0.015 -0.982 -0.997 -0.015

(AC) 25.6 -0.004 -0.005 -0.001 -0.003 -0.005 -0.002

0.99 4 0.2 -0.058 -0.065 -0.007 -0.057 -0.060 -0.003

25.6 0.022 0.003 -0.019 0.012 0.014 0.002

0.99 1024 0.2 -0.065 -0.066 -0.001 -0.062 -0.066 -0.004

25.6 -0.004 0 0.004 -0.006 0 0.006

Kernel 0.5 4 0.2 -0.980 -0.977 0.003 -0.979 -0.977 0.002

density 25.6 0.016 0.002 -0.014 0.031 0.005 -0.026

estimation 0.5 1024 0.2 -0.983 -0.997 -0.014 -0.983 -0.997 -0.014

(KDB) 25.6 -0.004 -0.005 -0.001 -0.003 -0.005 -0.002

0.99 4 0.2 -0.064 -0.066 -0.002 -0.061 -0.065 -0.004

25.6 0.007 0.001 -0.006 0 0 0

0.99 1024 0.2 -0.065 -0.066 -0.001 -0.062 -0.066 -0.004

25.6 -0.004 0 0.004 -0.006 0 0.006

*in Lorenz63 seconds [118]. All values are rounded to 3 decimal places.
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3.4 Recalibration under IMS

A more complete illustration of forecast recalibration under IMS is presented

throughout the remainder of this section from the perspective of both forecast

skill and forecast reliability. Comparisons of the relative performances of the

recalibration algorithms (see Section 2.4.1) are provided. The key forecast-

parameter values, identified in Section 3.2 above (i.e. longer lead times, smaller

ensemble sizes, and higher climatological event frequencies), for which recalibra-

tion is effective are targeted to glean important insights into the effectiveness of

forecast recalibration. Each forecast-parameter configuration is listed in table

3.1.

Recall from Chapter 2 that forecast reliability can be expressed both graph-

ically on a reliability diagram, and mathematically as a component of the al-

gebraic decomposition of the ignorance score (i.e. IGNREL), as in Eqn. (2.41).

While reliability diagrams plotted on probability paper [25] provide some quan-

titative evaluation of forecast reliability, IGNREL provides a numerical measure

of forecast reliability, or loss of information due to miscalibration in bits of bi-

nary information [194]. Still, both reliability diagrams and IGNREL should be

employed for evaluating forecast reliability.

An example of changes to forecast reliability after recalibration is given in

Figs. 3.4 and 3.5 where the simple translation algorithm has been used to re-

calibrate forecasts constructed with the AC method in Expt. 3 (see table 3.1).

The change in reliability of the forecasts is evident with the two recalibrated

forecast bins lying within the 1% - 99% consistency bars whereas only one

out of the four raw forecast bins did so prior to recalibration. The numerical

values of the reliability component of ignorance before and after recalibration,

IGNREL = 0.178 and IGNREL = 0.007, support the visual evidence in the

reliability diagram. Clearly, recalibration has been effective in this particular

recalibration experiment. Figures 3.4 and 3.5 also highlight a challenge of fore-

cast recalibration which was raised in Section 2.4.1. This challenge arises when
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partitioning forecast values into bins so that recalibration can be performed,

and reliability diagrams can be plotted. An algorithm which partitions the

training set of forecast-outcome pairs denoted by

T := {(ptraini , Yi); i = 1, . . . , N}, (3.6)

into equally populated bins has been employed throughout this thesis. The

raw forecasts praw and recalibrated evaluation forecasts prei are then partitioned

according to the same bins. Forecast recalibration has clearly resulted in all

forecast values being adjusted to within the range of the two central bins defined

by [0.3, 0.5] and [0.5, 0.7]. The result is larger bin populations at those two

central bins but zero populations at the other bins, and a calibration function

estimate which has less degrees of freedom, and may be biased [23].

The bias-variance trade-off of the calibration function estimate may vary

between the training, raw, and recalibrated forecasts (see Section 2.4.1), making

equitable comparisons of forecast reliability difficult. A numerical investigation

of the effects of recalibration on the bias-variance of the calibration function is

beyond the scope of this thesis (see Bröcker [23] for more information). Before

proceeding further with the assessment of forecast recalibration under IMS,

however, a novel discussion of the limitations of forecast binning/categorisation,

and review and critique of binning/categorisation methods in the literature is

now presented.

3.4.1 Binning methodology

Several recalibration algorithms employed in this thesis require that forecasts

are partitioned into exhaustive and mutually exclusive bins Bk. Several authors

[8, 23] have studied the effects of forecast categorisation on forecast reliability

when either using reliability diagrams as an evaluation tool, or estimating the

calibration function to measure forecast reliability. The categorisation or bin-

ning problem where forecast values exhibit large deviations from the bin average

rk is briefly discussed in Section 2.4.1. An example was presented demonstrating
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Figure 3.4: Forecast reliability after recalibration: An example reliability diagram

showing the changes in reliability of the raw set (crosses) and recalibrated evaluation set

(pluses) of AC forecasts using the simple translation algorithm. The recalibrated forecasts

appear to be more reliable than the raw forecasts; this is supported by the numerical values

of the reliability component of ignorance before and after recalibration are IGNREL = 0.178

and IGNREL = 0.007. All sets of forecast-outcome pairs are generated under Expt. 3 (see

table 3.1)

how these deviations lead to uncalibrated out-of-sample forecast judgements. In

fact, partitioning forecast values into bins that are too wide, so that the bin pop-

ulations #Ik are sufficiently large, may reduce sampling error, but can result in

“under-utilisation” of the forecast information. As already explained in Section
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Figure 3.5: Forecast reliability after recalibration: Reliability diagram on probability

paper showing the changes in reliability of the raw set (crosses) and recalibrated evaluation

set (pluses) of AC forecasts using the simple translation a with 5% - 95% (1% - 99% verti-

cal dashed line) consistency bars. The recalibrated forecasts are clearly more reliable than

the raw forecasts. Only one out of four raw forecast bins falls within the Bonferroni cor-

rected 0.99 probability distance (upper dotted) band, indicating an unreliable forecast before

recalibration. All sets of forecast-outcome pairs are generated under Expt. 3 (see table 3.1).

2.4.1, under-utilisation of the information contained in the joint distribution

of forecasts and outcomes will impede robust forecast evaluation, and hence,

forecast recalibration. On the other hand, partitioning forecast values so that

there are too few in each bin may result in an excessive influence of each sample

on the calibration function estimate κ̂. Estimation of the calibration function

is likely to contain error, reflected in a poorer ignorance score. Put simply,

smaller bin populations (under-sampling) generally lead to increased variance

whereas larger bin populations (over-sampling) generally lead to increased bias.
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This result is not without exception, however, as a forecast system that always

issues the climatological probability pθclim will correspond to a perfectly reliable

forecast (i.e. zero bias and variance). In that case, however, forecast reliabil-

ity comes at the sacrifice of forecast resolution (see Section 3.4.3), since the

forecast system is not able to discriminate between scenarios where the event

occurs at other than the climatological frequency. In general, however, specify-

ing the bins to strike the right balance between the two undesirable scenarios

(i.e. under-sampling and over-sampling) represents achieving a balanced bias-

variance trade-off of the calibration function estimate κ̂. Fortunately, a good

balance can be checked for ex post by quantifying the effect on a scoring rule of

varying bin specifications (see Bröcker [23]). There are several possible meth-

ods for specifying the bins on a reliability diagram which are now discussed (see

table 3.3 for a listing of the binning methods).

Method No. 1: Fixed bin width

The most straightforward bin specification method is to pre-determine the

number of bins so that the unit interval is divided into fixed, equal intervals

[152, 131]. The specification of the number of bins is somewhat arbitrary, how-

ever, which can lead to an imbalanced bias-variance trade-off of κ̂. In general,

forecast values are not distributed uniformly over the unit interval where fore-

cast PDFs are sharp (i.e. the distribution of forecasts is likely to be heavily

skewed towards lower and/or higher probability values), in which case, some

bins are more likely to suffer from under-sampling [8].

Method No. 2: Equi-probable bins

An ideal bin specification method is to partition the forecast values into equi-

probable bins so that the data are equally represented in all bins across the

unit interval. This method may yield widely varying bin interval widths, but

is generally more robust to under-sampling, and achieves a better bias-variance
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trade-off than the fixed, equal bin width method. The equi-probable bin method

can be limited by non-uniformity of the distribution of forecast values over

the unit interval, however. Such a limitation often arises when forecasting

the state of a nonlinear dynamical system such as Lorenz63. Sensitivity to

initial conditions can lead an imperfect yet reliable model to produce non-

uniform distributions of binary forecasts, depending on location on the Lorenz63

attractor [118]. Figure 3.6 shows an example of a reliability diagram containing

binary forecasts produced from the imperfect Lorenz63 model partitioned into

2 bins (the lowest bin is very narrow [0, 5.8 × 10−13]) with the forecast values

being concentrated at a single, very low probability value p1 = 5.8 × 10−13 so

that #I1 = 496. The much smaller population (i.e. #I2 = 16) of the second

bin defined by the boundaries [5.8× 10−13, 1.0] means that the consistency bar

interval is wide, and the estimate of the calibration function at that bin κ̂(r2)

is subject to large variance. Recalibration of the forecasts in this bin using

the calibration function estimate may lead to decrease in forecast reliability

and skill. The equi-probable binning algorithm is a straightforward approach

that generally minimises any bias-variance trade-off, however, compared to, for

example, the fixed bin width method (see Palmer et al. [152]), and is employed

in this thesis.

Method No. 3: Binomial distribution sampling

A relatively simple binning method is described by Atger [8] whereby the ob-

served frequency fk, corresponding to a given forecast probability value pk, is

assumed to follow a binomial distribution with parameters #Ik and pk. The

binomial assumption is the same basis for determining the consistency bars on

a reliability diagram as outlined by Bröcker and Smith [24], and reported in

Section 1.6.4. The expected sampling variance of the observed frequency is

a function of the bin population #Ik. Hence, #Ik is determined so that fk

falls within a specified consistency bar interval. Depending on the reliability of

the forecasts pk, however, #Ik may have to be reduced to the point where the
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Table 3.3: Reliability diagram bin specification methods

Method Method Method

No. Name Description

1 Fixed bin width Pre-specified number of bins

2 Equi-probable bins Equal bin populations

3 Binomial sampling Determine #Ik so that fk falls

within consistency bars

4 Bin merging Two bins are merged if resulting fk

is not significantly different (see Atger [8])

5 Score optimisation Specify bins after score optimisation

variance of κ̂ becomes large, potentially leading to poorly recalibrated forecasts.

Method No. 4: Bin merging

A second, more complicated method proposed by Atger [8] involves optimising

the forecast bin specification by merging two forecast bins, say Bk and Bk+1, to

make a bin Bk′ if the observed frequency fk′ is not significantly different to fk.

A resampling procedure is used to test the significance of the difference.

Method No. 5: Score optimisation

Bröcker [23] considers the estimation of the calibration function κ(p) as an ill-

posed problem due to the dependence of the calibration function on the size

#Ik of each bin Bk. To address this problem, Bröcker [23] suggests that #Ik

can be determined by way of a regularisation parameter δ which controls the

degrees of freedom of the calibration function estimator κ̂(p;T, δ) (i.e. the bin

diameters) to balance the bias and variance of the calibration function esti-

mate. The bandwidth parameter of the kernel dressing estimation recalibration

method outlined in Section 2.4.1 is an example of the regularisation parameter.
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Figure 3.6: Forecast binning: Reliability diagram showing the variation in sampling error

where the forecast bins are not equi-probable. The bin with boundaries [5.8× 10−13, 1.0] has

a bin population of 16 whereas the bin with boundaries [0, 5.8×10−13] has a bin population of

496. The calibration function estimate κ̂(r2) has a considerably large variance potentially ren-

dering recalibration ineffective for the higher probability values. The forecasts are generated

under Expt. 4 (see table 3.1).

Regularisation normally involves the use of algorithms to determine the value of

such a parameter under asymptotic conditions [73], but, in the case of binning

a limited number of forecasts, it is more difficult to implement. Alternatively, δ

could be selected by optimising a proper score such as ignorance as a function

of δ using a training set of forecast-outcome pairs. Like the estimation of the
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calibration function, however, this approach to determining the regularisation

parameter is likely to be subject to mis-estimation since the training set differs

from the evaluation set.

3.4.2 Binary forecast recalibration results

The effectiveness of forecast recalibration is assessed in this section through

examination of the numerical results of recalibration under IMS. Improvement

in forecast performance after recalibration is measured with respect to both

the ignorance score, and forecast reliability (see Eqns. (2.37) and (2.41)). The

uncertainty component of ignorance IGNUNC remains the same before and after

recalibration since it is dependent only on the climatological probability, that

is

IGNUNC = −pθclimlogpθclim − (1− pθclim)log(1− pθclim). (3.7)

Changes in forecast skill can be regarded purely as the difference between the

change in forecast reliability and forecast resolution, that is

∆IGN = ∆IGNREL −∆IGNRES. (3.8)

Primo et al. [152] find that binary forecast skill is increased through the im-

provement of forecast reliability. The same conclusion is reached here, and in

fact, it has been found that increase in forecast reliability is generally required to

achieve increased forecast skill. The results vary for different calibration meth-

ods so consideration is given to the relative benefits of each of the methods.

A sample of IGN and IGNREL of forecasts before and after recalibration with

the kernel density estimation (KDE) algorithm is given in table 3.4. The KDE

algorithm has proved to be one of the more effective recalibration approaches

for improving forecast skill.

Adjusted Counted (AC) Method

The skill of forecasts produced with the AC density construction method was

found to be competitive with the best performing KDB method in section 3.2
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Table 3.4: Forecast skill before and after recalibration

Recalibration Before After Difference

(& PDF) recalibration recalibration

method θ Nens τ* IGN IGNREL IGN IGNREL ∆IGN ∆IGNREL

Kernel 0.5 4 0.2 -0.832 0.053 -0.941 0.031 -0.109 -0.022

density 6.4 -0.634 0.084 -0.649 0.012 -0.024 -0.072

estimation 25.6 0.195 0.178 0.008 0.006 -0.187 -0.172

(AC) 0.5 1024 0.2 -0.982 0 -0.997 0 -0.015 0

6.4 -0.775 0.047 -0.827 0.004 -0.052 -0.043

25.6 -0.003 0.012 -0.005 0.003 -0.002 -0.009

0.99 4 0.2 -0.057 0 -0.060 0 -0.003 0

6.4 -0.008 0.003 -0.012 0 -0.004 -0.003

25.6 0.012 0.014 0.014 0.016 0.002 -0.002

0.99 1024 0.2 -0.062 0 -0.066 0 -0.004 0

6.4 -0.033 0 -0.024 0.006 0.009 0.006

25.6 -0.006 0.001 0 0 0.006 -0.001

Kernel 0.5 4 0.2 -0.979 0.053 -0.977 0.031 0.002 -0.022

density 6.4 -0.683 0.084 -0.688 0.012 -0.005 -0.072

estimation 25.6 0.031 0.178 0.005 0.006 -0.026 -0.172

(KDB) 0.5 1024 0.2 -0.983 0 -0.997 0 -0.014 0

6.4 -0.774 0.047 -0.881 0.004 -0.107 -0.043

25.6 -0.003 0.012 -0.005 0.003 -0.002 -0.009

0.99 4 0.2 -0.061 0 -0.065 0 -0.004 0

6.4 -0.015 0.003 -0.021 0 -0.016 -0.003

25.6 0 0.014 0 0.016 0 0.002

0.99 1024 0.2 -0.062 0 -0.066 0 -0.004 0

6.4 -0.030 0 -0.031 0.006 -0.001 0.006

25.6 -0.006 0.001 0 0 0.006 -0.001

*in Lorenz63 seconds [118]. All values are rounded to 3 decimal places.

for most forecast-parameter values. For forecast-parameter values where the

raw AC forecasts lack skill and reliability, specifically at longer lead times,

smaller ensemble sizes, and higher climatological event frequencies, forecast

recalibration is shown below to be more effective and robust. Improvement

in forecast performance after recalibration is relatively minimal, however, with

increases in IGN ranging from ∼ 0 to ∼ 0.19 bits, and increases in IGNREL

ranging from ∼ 0 to ∼ 0.17 bits. Increases in recalibrated AC forecast skill tend

to arise mostly from increases in reliability, because they are proportionately

higher than changes in forecast resolution at larger ensemble sizes. In fact,

resolution is decreased after recalibration for larger ensemble sizes which implies

that the reliability increases relatively more.

The KDE algorithm 2.4.1 is one of the more effective recalibration algorithms

and achieves an increase of forecast skill of ∆IGN = 0.008 − 0.195 = −0.187,
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and an increase of forecast reliability of ∆IGNREL = 0.006 − 0.178 = −0.172

for forecast-parameter values τ = 25.6s, Nens = 4, and θ = 0.5. Figs. 3.7

and 3.8 show reliability diagrams which demonstrate the effect of recalibration

on reliability for those forecast-parameter values. The improvement of skill

corresponds to a percentage increase of 16% in terms of bits of information.

Such an increase in skill may justify forecast recalibration rather than improving

forecast technique (e.g. improving a data assimilation (DA) scheme) to improve

forecast performance. An investigation into the relative benefits of forecast

recalibration and resource cost of forecast technique improvement would prove

useful but is beyond the scope of this thesis.

The beta transform algorithm produces similarly effective recalibration re-

sults to the KDE algorithm, and achieves the largest improvements in forecast

skill and reliability for forecast-parameter values τ = 25.6s, Nens = 4, and

θ = 0.5. The increases in skill and reliability are ∆IGN = 0.008−0.195 = −0.18

and ∆IGNREL = 0.006 − 0.178 = −0.172, respectively. The improvement in

forecast performance is quite marginal, however, for most forecast-parameter

values, and the algorithm does not perform as well as the KDE algorithm at

lower climatological event frequencies. Recalibration is evidently more effective

with the algorithms which do not impose binning of forecasts before estimating

the calibration function κ. The exception is the ROC curve fitting algorithm

which generally leads to a decrease of forecast skill and reliability. Bröcker [23]

points out that estimating κ with a bi-normal model reduces its variance, and

the degrees of freedom, and as a result the ROC curve fitting method may be

prone to bias. Furthermore, the degrees of freedom cannot be controlled so that

data cannot be used effectively for estimating κ. These limitations may restrict

the degree of improvement of forecast skill and reliability.

The linear and logistic regression, and simple translation recalibration al-

gorithms are generally effective in improving forecast performance where raw

AC forecast skill is poorer (i.e. longer lead times, smaller ensemble sizes, and

higher climatological event frequencies). The linear regression algorithm ac-
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Figure 3.7: Forecast reliability after recalibration: reliability diagram showing the

forecast reliability of the raw set (crosses) and recalibrated evaluation set (pluses) using the

KDE algorithm. The position of the raw and recalibrated forecast bins suggests that the

recalibrated forecasts are more reliable than the raw forecasts and the changes to forecast

skill and reliability (i.e. ∆IGN = −0.187 and ∆IGNREL = −0.172, respectively) confirm

the improvement. All sets are generated under Expt. 3 (see table 3.1).

tually achieving the best improvement in forecast performance out of all six

algorithms at the smallest ensemble sizes and shortest lead times. The linear

and logistic regression, and simple translation algorithms are less effective as

ensemble size increases, however, and tend to result in deterioration of forecast

performance particularly at the lowest climatological event frequency (θ = 0.5).
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Figure 3.8: Forecast reliability after recalibration: reliability diagram on probability

paper showing the forecast reliability of the raw set (crosses) and recalibrated evaluation set

(pluses) using the KDE algorithm with 5% - 95% (1% - 99% vertical dashed line) consistency

bars.The improvement in reliability is more evident since both the recalibrated forecast bins

lie within the Bonferroni corrected 0.99 probability distance (upper dotted) band whereas

only one raw forecast bins does so. All sets are generated under Expt. 3 (see table 3.1). All

other details are identical to Fig. 3.5.

The decrease in forecast skill after recalibration with the simple translation al-

gorithm is ∆IGN = −0.846 − −0.982 = 0.136 for forecast-parameter values

τ = 0.2s, Nens = 1024, and θ = 0.5. In this case, the decrease in forecast

reliability is relatively minimal (i.e. ∆IGNREL = 0.007 − 0 = 0.007), how-

ever, indicating that the decrease in forecast skill is chiefly caused by a loss of

forecast resolution in accordance with Eqn. (3.8) above. This proportionately

larger loss of resolution is actually a common effect of recalibration with the

simple translation algorithm where ensemble sizes are larger. A discussion of
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the effects of recalibration on forecast resolution is given in section 3.4.3.

Blending Method
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Figure 3.9: Forecast reliability after recalibration: Reliability diagram showing KDB

forecast reliability of the raw set (crosses) and recalibrated evaluation set (pluses) using the

simple translation method. Recalibration is ineffective here since the forecasts are already

well-calibrated. All sets are generated under Expt. 5 (see table 3.1).

Raw probabilistic forecasts which have been constructed with the KDB

method have more skill than those constructed with the AC method, yielding

smaller improvements in skill and reliability after recalibration. Most recali-
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Figure 3.10: Forecast reliability after recalibration: Reliability diagram on probability

paper showing KDB forecast reliability of the raw set (crosses) and recalibrated evaluation set

(pluses) using the simple translation method with 5% - 95% (1% - 99% vertical dashed line)

consistency bars. The right-hand axis indicates the equivalent Bonferroni corrected levels

e.g. for a reliable forecast, all of the points (7 bins) would be expected to fall within the

0.99 probability distance band with a 93.2% chance. In addition, the dashed lines indicate

where the entire diagram would be expected to fall within with a 90% chance. Recalibration

is ineffective here since the forecasts are already well-calibrated. All sets are generated under

Expt. 5 (see table 3.1).

bration algorithms are ineffective, and often lead to a degradation of forecast

performance, particularly at lower climatological event frequencies. A non-

degradation of skill after recalibration would seem to be a minimum requirement

of any recalibration algorithm. Only the KDE algorithm demonstrates relatively

consistent efficacy, however, with the largest increases in skill (∆IGN = −0.25

bits) and reliability (∆IGNREL = −0.16 bits) occurring for larger ensemble

sizes and the highest climatological event frequency θ = 0.5, but increases in
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skill and reliability are mostly less than 0.1 bits of information. These more

marginal increases in skill suggest that recalibration should not be opted for

ahead of advancing forecast technique to improve binary forecast performance

where it is already strong. Note that any marginal increases and decreases in

the skill and reliability of the KDB forecasts are difficult to confidently attribute

to the effectiveness of the recalibration process, and may be explained to some

extent by variation in sampling uncertainty. Increasing the sample size of eval-

uated forecasts can overcome this, of course, if potential changes in forecast

performance are deemed important.

Unlike the AC forecasts, any increases in recalibrated KDB forecast skill

originate from more equal increases in reliability and resolution, and losses of

resolution are not so severe at larger ensemble sizes. Furthermore, the largest

increases in skill and reliability do not occur at the longest lead time τ = 25.6s

with the KDB forecasts because poor raw, or pre-recalibration, skill is avoided

by blending the forecast with the climatological forecast. The relationship be-

tween recalibration efficacy and forecast-parameters is less definitive for the

KDB forecasts with improvements occurring more randomly for given forecast-

parameter configurations. The lack of trend in the relationship and overall

improvement in forecast performance can be attributed to the higher degree of

raw forecast skill, and the upper bounds of skill imposed by optimal ignorance.

The overall relative performance of the recalibration algorithms with the AC

forecasts is replicated with the KDB forecasts. The KDE algorithm is again

the most effective. The beta transform algorithm is not as effective, however,

and results in degradation rather than improvement of forecast performance

for a larger range of forecast-parameters. In fact, recalibration is sometimes

more effective with the linear regression algorithm than the beta transform

algorithm. The ROC curve fitting method is again ineffective, and leads to

substantial reductions in forecast skill, reliability and resolution.

The linear and logistic regression, and simple translation recalibration algo-

rithms are also generally ineffective at improving forecast performance where
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raw KDB forecast skill is higher (i.e. shorter lead times, larger ensemble

sizes, and lower climatological event frequencies). Recalibration often leads

to degradation for various forecast-parameters with the largest decrease in skill

(∆IGN = 0.41 bits) occurring after execution of the logistic regression algo-

rithm at the lowest climatological event frequency θ = 0.99. Figs. 3.9 and

3.10 illustrate how recalibrating perfectly reliable raw forecasts can result in a

decrease of the reliability of the recalibrated forecasts. The bins correspond-

ing to the raw forecasts (crosses) all lie within the 5% - 95% consistency bars,

and are therefore reliable. Performing recalibration with the simple translation

algorithm has minimal effect on increasing the reliability of the forecasts, and

in fact reduces the forecast resolution slightly (∆IGNRES = −0.047 bits). The

overall effect is to reduce the skill of the forecasts (∆IGN = 0.043 bits). The

overall result of recalibration being more effective where forecast performance

is worse before recalibration is expected to generalise beyond these particular

examples of binary forecasting.

3.4.3 Forecast Resolution after recalibration

Forecast resolution (see Section 1.6.4) is also a key attribute of forecast per-

formance [196, 8]. It pertains to the differences between the conditional ex-

pectation of a binary event given a forecast probability (i.e. E(y|p)) and the

marginal (unconditional) expectation of the event (i.e. E(y) = pθclim) [142]. In

short, it measures the ability of a forecast system to discriminate between sce-

narios where the event occurs more or less frequently than the climatological

frequency pθclim. Hence, the poorest possible forecast resolution occurs where

pθclim is always forecast.

As explained in Section 3.4.2, the ignorance score can be decomposed into

components of reliability, resolution and uncertainty (see Eqn. (2.40)). The

difference between the second two components (i.e. IGNUNC − IGNRES) is

referred to as the sharpness of the forecast, and is a measure of the concentration
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Figure 3.11: Simple translation recalibration: reliability diagram schematic of the

simple translation recalibration method using a training set of Lorenz63 binary forecasts

(asterisks) to recalibrate the evaluation set of forecasts (pluses → crosses) both generated in

Expt. 6 (see table 3.1). Recalibration has resulted in most bins being translated closer to the

diagonal so that forecast resolution is decreased. Raw resolution was already low in this case

so the decrease is relatively small ∆IGNREL = −0.003, but this example has merely been

selected to demonstrate the effect. Each bin is coloured differently for clarity.

of the forecast PDF [59]. In the case of binary forecasts, the sharpest forecast

corresponds to p ≃ 0 or p ≃ 1. To maximise forecast skill, the aim is to issue a

forecast which is as sharp as possible subject to it being perfectly reliable (i.e.

zero bias and variance of the calibration function κ) [142, 59]. The resolution
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component of ignorance can be expressed as

IGNRES =
∑

j

P (pj)

[

fjlog
fj
pθclim

+ (1− fj)log2
1− fj

1− pθclim

]

, (3.9)

where fj is the conditional frequency of an event occurrence on all occasions

where pj is forecast. As can be inferred from Eqn. (2.40), IGNRES is positively

oriented, and, as referred to above, a climatological forecast yields perfect reli-

ability but the poorest resolution (i.e. IGNRES = IGNREL = 0).

While recalibration often improves the reliability of binary forecasts, it often

results in a decrease of resolution of the KDB forecasts, particularly at the

highest climatological event frequency (θ = 0.5) and shortest lead times. This

effect has been noted previously in the literature [165, 196, 161]. Jolliffe and

Stephenson [86, 191] point out that, in principle, recalibration can only be used

to improve reliability, but not resolution. They conclude that resolution is a

necessary condition for forecast skill, whereas reliability is not. The results

of recalibration under IMS indicate that KDB forecasts recalibrated with the

simple translation and logistic regression algorithms are particularly susceptible

to decreases in resolution. These decreases are relatively smaller than increases

in reliability where recalibration leads to improvement in forecast skill (see

Eqn. (3.8)). Recalibration of the KDB forecasts with the shortest lead times

where the climatological event frequency is higher (i.e. θ = 0.5) with these two

algorithms can result in some of the largest decreases in skill. Typically, the

raw resolution is higher for these forecast-parameters, indicating that there is

a larger potential for loss of resolution after recalibration. Figure 3.11 shows

the effect of recalibration on resolution using the simple translation algorithm.

The KDE and beta transform algorithms are more resistant to decreases in

resolution, with any decreases in IGNRES being of the order of 10−2 bits.
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3.5 Forward view and conclusions

In this chapter, the forecast evaluation and recalibration framework proposed

in Chapter 2 has been deployed under an imperfect model scenario to survey

the conditions under which recalibration proves an effective tool for improving

forecast performance (i.e. forecast skill and reliability). Model inadequacy

inhibits the ability of imperfect models to accurately simulate the trajectories

of a nonlinear dynamical system’s state in the real world. It was concluded in

Chapter 2 that forecast systems that demonstrate less skill may benefit more

from forecast recalibration given the larger margin for improvement in forecast

performance. This conclusion has been assessed using an imperfect Lorenz63

model in this chapter.

An imperfect model has been used to produce forecasts of the state of the

Lorenz63 dynamical system using the adjusted counted (AC) and kernel dress-

ing and blended (KDB) density construction methods. Forecast recalibration

has indeed been found to be more effective in terms of ignorance where pre-

recalibration forecast performance is most poor. The relative improvement of

the performance of the AC forecasts, which had predominantly lower skill and

reliability before recalibration, was substantially greater than the KDB fore-

casts after recalibration. With respect to the forecast-parameters, poorer pre-

recalibration forecast performance usually occurs where model ensemble size is

smaller, at longer forecast lead times, and where the probability of the clima-

tological event occurring is more uncertain (i.e. values of θ closer to 0.5). The

results of the recalibration experiments under both PMS and IMS suggest that

recalibrating forecasts with poorer raw skill may be preferable to improving

various technical features of a forecast system since it is straightforward and

quick to implement. Quantifying this suggestion, while intriguing, is beyond

the scope of this thesis.

A previously unreported property of the ignorance score has also been pre-

sented in Section 3.2. It has been discovered that the degree of skill of binary
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forecasts is limited by a lower bound on the skill of climatological reference

forecasts. This imposes bounds on the score of a perfect forecast, defining the

optimal ignorance IGNopt, and, hence, a limit on the potential improvement

of forecast performance after recalibration. Indeed, the same limitation on the

best possible skill applies to other scoring rules (e.g. the Brier score) where there

is a lower bound on the skill of reference forecasts. Nevertheless, the margin of

difference between the score of a perfect forecast IGNopt and the actual score

for a given climatological event frequency θ indicates just how skilful a forecast

system is. IGNopt has values: IGNopt = −1.0 for θ = 0.5, IGNopt = −0.47 for

θ = 0.9, and IGNopt = −0.08 for θ = 0.99.

Finally, the effect of recalibration on forecast resolution has been investi-

gated following observations made in the literature that resolution is decreased

after recalibration [165, 196, 161], and in this thesis, that forecasts sometimes

have less skill after recalibration despite little or no decrease in forecast relia-

bility. A more thorough investigation of this undesirable result of recalibration

has been conducted here, revealing that recalibration can indeed result in de-

creases in forecast resolution when performed with the simple translation and

logistic regression algorithms. The largest decreases in resolution occur at the

highest climatological event frequency θ = 0.5, and shorter lead times where

the pre-recalibration forecast resolution is already high.

The novel contributions or innovations in this chapter include:

• quantification of optimal skill of binary forecasts

• new insights regarding the limitations of forecast binning/categorisation

for forecast recalibration, and review and critique of binning/categorisation

methods in the literature

• novel investigation of the efficacy of forecast recalibration under IMS using

all recalibration methods reviewed in Chapter 2, including determination

of the forecast-parameters, e.g. ensemble sizes and lead times, where

forecast recalibration performs the best
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• investigation of the changes to forecast skill and forecast reliability after

recalibration using the decomposition of the ignorance score

• exploration and analysis of the conditions where recalibration has a detri-

mental effect on forecast resolution
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Chapter 4

The effect of serial dependence

on estimates of forecast skill

Establishing statistical confidence in forecast skill can be complicated by serial

dependence in the time series of evaluation outcomes. Wilks [216] demonstrates

how serial correlation of forecasts and outcomes can be transmitted to forecast

evaluation statistics, so that their sampling variances are inflated relative to

uncorrelated forecast evaluation statistics. This is an important result because

it leads to estimates of forecast skill that are overconfident. Moreover, the mag-

nitude of the effect increases with forecast skill as the forecasts correspond more

closely to the serially correlated outcomes, and become themselves more seri-

ally correlated. The effect of serial dependence on forecast evaluation has also

been noted in several other studies such as Hamill [119], Ferro [55], and Pinson

[159]. Such effects on the sampling properties of evaluation statistics have im-

portant implications for proving forecast skill because increased sample sizes are

required to obtain reliable skill estimates. As demonstrated below, serial depen-

dence in a forecast-outcome time series need not always be transmitted to the

evaluation statistics, however; forecasting scenarios where estimates of forecast

skill are not misleading have been identified. Examples of each of three possible

scenarios are described for the first time in this chapter. Firstly, in cases where

122



CHAPTER 4. FORECAST SKILL & SERIAL DEPENDENCE

linear serial correlation in an outcome time series is transmitted to the fore-

cast evaluation statistics, secondly in cases where linear serial correlation in an

outcome time series is not transmitted to the forecast evaluation statistics, and

thirdly in cases where there is nonlinear serial correlation1 in an outcome time

series resulting in linear serial correlation in the forecast evaluation statistics.

The effect of serial dependence on the sampling distributions of statistics,

although often overlooked in forecast evaluation studies [216], is commonly en-

countered in the statistical analysis of geophysical variables, and well covered

in the literature [111, 197, 192]. Consider a random variable which has a popu-

lation distribution with mean µ and standard deviation σ. An intuitive result

of the Central Limit Theorem is that the finite-time average of a sample of

N independent and identically distributed (i.i.d.) observations of the random

variable is a normal random variable with mean µ and standard error σ/
√
N .

The scaling of the standard error as 1/
√
N need not hold, however, if the obser-

vations of the random variable are not i.i.d.. As sample size increases, the rate

of convergence of the sample averages onto the true mean µ can be significantly

slower (or faster) than those which are serially independent. Importantly, this

means that the duration of time required to obtain realistic estimates of µ is

prolonged (or shortened) under serial dependence.

Typically, geophysical phenomena are red processes, meaning that positive

linear serial correlation is present in observational data. In short, a time se-

ries of observations does not satisfy the assumption of independence. Given

that geophysical phenomena can exhibit cycles of variability on timescales of,

for example, up to at least 106 years [111], there are cases where samples of

data are collected at time intervals which are too short for the assumption of

independence to hold. The sampling variance of a time average computed from

serially correlated geophysical data need not scale as 1/
√
N , as do i.i.d. data

(i.e. a white-noise process). Making the assumption of independence leads to a

1while serial correlation can be either linear or nonlinear, serial dependence is the term

generally used here to refer to either definition
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Figure 4.1: Serial correlation in forecast skill statistics: time series of 27 IGN scores

of forecasts of Lorenz63 system states (top) and bootstrap resamples of the same time series

(bottom). The time series is serially correlated while the bootstrap resamples are serially

independent. Averages over sequential samples of size N = 16 (red lines) tend to deviate

from the IGN estimate over the entire time series (IGN = −5.05; horizontal line) in the top

plot compared to the bottom plot, resulting in a sampling distribution of the averages which

is larger. The sampling variances of the 8 subsamples are s2IGN = 0.15 and s2IGNboot
= 0.06.
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discrepancy in the sampling variance, which if not accounted for, will result in

excessively precise estimates of the “true” value of a given statistic. Critically,

in weather and climate statistical analysis, larger data samples (and typically

longer durations of time) are consequently necessary for reliable estimates of

that statistic. Textbook statistical inference tests based upon the assumption

of independence of the observations [217] may lead scientists to make inaccurate

statistical estimates of a given underlying parameter. Generally, linear serial

correlation is not detectable in observations of nonlinear systems with the auto-

correlation function [58], in which case it may not even be possible to determine

whether the assumption of independence is valid.

Wilks [216] found that accurate forecasts of serially dependent observed out-

comes can consequently be themselves serially dependent, resulting in inflation

of the sampling variance of the Brier score, and hence, inaccurate estimation

of its true value (see Section 1.6.2). Statistical inferences of forecast skill made

where sampling variances are inflated are over -confident, yielding overly precise

confidence intervals and p-values for significance tests that are too small (i.e. an

overly frequent occurrence of type I errors). Essentially, a larger sample size is

required if data are serially correlated to obtain the same correct inferences of

skill made with independent data. “Effective sample size” (ESS) (see Thiébaux

and Zwiers [192]) corrections should be made, as in Wilks [216], to ensure that

confidence intervals possess accurate probability coverage, otherwise estimates

of forecast skill are likely to be misleading. An important result fromWilks [216]

is the formulation of ESS corrections from the ratio of the analytical-to-empirical

Brier score sampling variances. That particular analytical solution of the Brier

score sampling variance is derived under the assumption that forecast-outcome

pairs are i.i.d. so it can be used as an indicator of inflation of the empirical sam-

pling variances. Figure 4.1 illustrates how the effect of serial dependence arises

by showing a sample time series of serially correlated forecast skill scores and

an i.i.d. bootstrap resample of serially independent forecast skill scores. The

larger sampling variance of 8 subsample mean scores computed from the serially

125



CHAPTER 4. FORECAST SKILL & SERIAL DEPENDENCE

correlated scores (s2IGN = 0.15) is larger than the serially independent scores

(s2IGNboot
= 0.06)) demonstrating the inflationary effect of serial dependence on

forecast evaluation statistics.

The investigation in chapter extends the study of Wilks [216] of the effects

of serial dependence in sequential forecasts on estimates of the Brier score to a

number of different forecast scenarios. In this case, the sampling properties of

the ignorance score (see Section 1.6.2) under serial dependence is considered.

It is shown for the first time that, while inflationary 2 effects can be exhibited

in the sampling variances of the two scoring rules where there is linear serial

correlation in sequential forecasts, serial dependence is neither a sufficient nor

necessary condition for estimates of forecast skill to be inaccurate. Previously

undiscussed cases have also been identified where serial dependence in evalua-

tion data does not necessarily result in misleading estimates of forecast skill,

and where nonlinear serial dependence in evaluation data, not detectable with

an autocorrelation function, does result in misleading estimates of skill.

This chapter is structured as follows: Section 4.1 provides derivations of the

analytical solutions of the sampling variances of the Brier score and ignorance

estimates in a binary outcome scenario. The latter derivation is an original

contribution in this thesis, and, in theory, can be used as a measure of the

inflation of the empirical sampling variances under serial dependence, and to

determine ESS corrections. The derivation of an analytical solution of the

sampling variance is generally not straightforward for scoring rules, however,

and the solutions need to be evaluated with sufficient sample sizes for them to

be stable [17, 216].

Novel case studies illustrating the three possible scenarios described above

where serial dependence either does or does not affect forecast skill estimates

are presented in Sections 4.2, 4.3, and 4.4. A range of data-generating stochastic

and dynamical systems, and forecast models are employed to demonstrate each

scenario. The first scenario, in which linear serial correlation in evaluation data

2inflation of sampling variances relative to those under the assumption of independence
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is transmitted to forecast evaluation statistics, is demonstrated in Section 4.2

by replicating Wilks’s [216] result and evaluating forecasts of the trajectories of

the Lorenz63 system [118]. Both examples illustrate that the effects of serial

dependence on forecast skill estimation can be significant. An AR(1) process

and stochastic testbed hurricane system are used in Section 4.3 to demonstrate

where serial correlation in evaluation data is not transmitted to evaluation

statistics, leaving statistical inference unaffected. This second case study shows

Wilks’s result does not always apply where forecasts and outcomes are serially

correlated. The third scenario where nonlinear serial correlation in evaluation

data results in sample variance deflation and hence, misleading estimates of

forecast skill is illustrated in Section 4.4.

Estimation of the minimum sample sizes necessary for forecast skill estimates

to converge onto their asymptotic “true” value under serial dependence and

serial independence is examined in Section 4.5 in the context of a new concept

called time until convergence. The relationship between the effect of serial

dependence on forecast skill estimates and the predictability in state space of a

dynamical system is also investigated for the first time.

Finally, an approximate method for ESS corrections by comparing estimates

of the sampling variance under serial dependence and serial independence using

a resampling method (Bradley et al. [17]) is proposed in Section 4.6. Compu-

tation of ESS corrections allow a forecast user to estimate the duration of time

required to achieve statistically significant forecast skill estimates. For example,

in “Weather Roulette” [67], possessing knowledge of how long it would take to

prove the skill of a given forecast system may affect a punter’s decision whether

to immediately place bets using information from that forecast system, or wait

until establishing statistical confidence in it (see also the “swindled statistician

scam” in Chapter 5).

127



CHAPTER 4. FORECAST SKILL & SERIAL DEPENDENCE

4.1 Sampling distributions of scoring rules

Forecast evaluation is routinely carried out to monitor and improve the quality

of forecast systems, yet often the sampling uncertainty of a scoring rule is in-

sufficiently accounted for [85]. Statistical inference of model output or forecast

quality should only be made when sampling uncertainty is quantified, yet this

is often omitted. The sampling variance of a scoring rule is dependent on both

sample size and the statistical characteristics of the forecasts and outcomes [17].

In that sense, a scoring rule can be considered in the same way as standard sta-

tistical inference, where some underlying parameter or value, θ, is estimated, for

example, by constructing a confidence interval for an empirical estimate θ̂ using

a resampling method [85]. This is a simple and robust approach to determining

sampling variance, but it can also be computationally inefficient. Illustration

of the effects of serial dependence on forecast evaluation does not require in-

ordinate sample sizes, however, so the empirical approach is opted for in this

section.

An alternative approach which requires minimal computational effort is to

derive the sampling variance of a particular scoring rule analytically using sam-

pling theory [17]. Such a derivation is based on the assumption that the forecast-

outcome pairs (pi, Yi) are independent random samples from their joint distri-

bution. This assumption is commonly (and mistakenly) made in real world

weather and climate forecasting [177], potentially resulting in misleading esti-

mates of forecast skill. Derivations of the analytical sampling variance of the

ignorance score is now presented, following Bradley et al. [17] and Wilks [216].

The sample estimator of the ignorance score (IGN) is expressed as

IGN = − 1

N

N
∑

i=1

log2(p(Yi)), (4.1)

where p(Yi) is the probability assigned to outcome Yi. The sampling variance
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is then

V ar[IGN ] = V ar

[

− 1

N

N
∑

i=1

log2p(Yi)

]

=
1

N2

N
∑

i=1

V ar[log2p(Yi)]

=
1

N
V ar[log2p(y)]. (4.2)

The variance term on the RHS can be expanded as follows

V ar[log2p(y)] = E[log22p(y)]− E[log2p(y)]
2

= E[log22p(y)]− IGN2. (4.3)

Therefore,

V ar[IGN ] =
1

N
[E[log22p(y)]− IGN2], (4.4)

where E[log22p(y)] is numerically estimated from the outcome dataset of size N

as

E[log22p(y)] =
1

N

N
∑

i=1

log22p(Yi). (4.5)

The derivation of Eqn. (4.4), based on the derivation of the Brier score sam-

pling variance given by Bradley et al. [17], is an original contribution in this

thesis. Wilks [216] utilises the fact that the sampling variance of the Brier score

depends only on the moments of the joint distribution of the forecasts p and

outcomes y to express it in terms of the parameters of a model. Expressions

for ESS corrections can then be derived also in terms of the model parameters.

Derivation of such ESS corrections is more difficult for IGN because Eqn. (4.4)

depends on E[log22p(y)] rather than the moments of the joint distribution, and

is beyond the scope of this thesis. Instead, an alternative approximate method

for ESS corrections is proposed here. This approximate method consists of

finding the difference between sample sizes corresponding to a given empirical

sampling variance computed respectively from serially dependent synthetic time

series and serially independent bootstrap resamples. Section 4.6 provides a fuller

explanation and demonstration of the approximate ESS correction method.
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As previously stated, the analytical sampling variance solution in Eqn. (4.4)

should be evaluated with sufficient sample sizes for them to yield stable results

so that they are usefully accurate. Bradley et al. [17] found that, because of the

inclusion of the higher moments of the joint distribution of the forecasts and

outcomes in the Brier score, sample sizes are required to be fairly large. Wilks

[216] determined that a sample size of N = 3000 yields stable enough results.

The analytical sampling variance solution of IGN requires a larger sample size

owing to its logarithmic function.

4.2 Case Study 1: Transmission of linear serial

correlation to forecast evaluation statistics

Wilks’s [216] key result is that positive serial correlation in evaluation data re-

sults in inflation of the variances of the sampling distributions of the Brier score

where forecasts are sufficiently skilful. Inflation of the variance of the sampling

distribution of the ignorance score is demonstrated here by both replicating

Wilks’s approach [216] using a probability model for forecast refinement distri-

butions, and employing the Lorenz63 [118] system, which is used here for the

first time in this context.

4.2.1 Linear-calibration/beta-refinement model

The stochastic “linear-calibration/beta-refinement” (LCBR) probability model

[142, 213] used by Wilks [216] to study the effects of serial dependence on

forecast evaluation statistics is also used here to frame the problem. The

LCBR model provides a useful representation of the statistical properties of

probability-of-precipitation binary forecasts in the USA over the period 1972-

1987, and has been used to realistically simulate precipitation statistics. This

simple stochastic model is not intended to accurately represent forecast statis-

tics [216], but serves as an effective tool for examining the effects of serial
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dependence on forecast evaluation sampling distributions.

Let p be a binary forecast produced from the probability model for beta-

refinement distributions be defined by a probability density function given by

f(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1, (4.6)

where α, β < 0 and Γ(· ) denotes the gamma function. The parameters of the

beta distribution control the sharpness of the forecasts (see Section 1.6), and

the reliability of the forecasts is modelled using the linear function

µy|p = a+ bp, (4.7)

where µy|p denotes the conditional probability of outcome y given a particular

forecast value p. A perfectly reliable, or calibrated, forecast is indicated where

a = 0 and b = 1. To generate a synthetic time series of outcomes in this

experiment, the occurrence of the binary event is determined as follows:

Yi =











1, if ui ≤ a+ bp(Yi).

0, if ui > a + bp(Yi),

(4.8)

where ui is an independent uniform [0, 1] random variable. Serial dependence is

induced in the corresponding time series of forecasts by first transforming them

to standard Gaussian variates (see Murphy [134]), that is

zi = Φ−1[F (pi)], (4.9)

where Φ−1[· ] denotes the quantile function for the standard Normal distribu-

tion, and F (pi) denotes the CDF of the beta distribution. Next, a first-order

autoregressive process is applied to the transformed forecasts to induce serial

correlation, so that

zi+1 = ϕzi +
√

1− ϕ2εi, (4.10)

where ϕ is the lag-1 autocorrelation in the time series of the standard Gaussian

variates, and εi denotes the Gaussian noise component of the autoregression.
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After this step, the forecast values pi can be derived by reversing the trans-

formation in Eqn. (4.9). The parameters of the forecast-outcome time-series

model described above determine the skill of the forecasts, the climatological

probability of the event, and the degree of serial correlation in the sequential

forecasts. Wilks [216] finds that, as the sharpness of the forecasts increases,

the actual degree of induced lag-1 autocorrelation r1 in the sequential forecasts

diverges negatively from ϕ. The autocorrelation function (ACF) is used in all

three case studies in this chapter to quantify serial correlation. Note that the

ACF cannot be used to quantify nonlinear serial correlation which, if present in

evaluation data, can result in inflated score sampling variances as illustrated for

the first time in Section 4.4. The degree of inflation in the sampling distribu-

tions of the scoring rule induced by serial correlation in the forecast and outcome

time series is assessed here by comparing the empirical statistical properties of

the ignorance score computed from the correlated time series with bootstrap

resamples of the time series. This is a slightly different approach to Wilks [216],

who compares the empirical statistical properties of the Brier score with those

of the analytical solutions. Estimates of scoring rule sampling variances made

using the two approaches should be equal, however, since they are both made

under serial independence.

ESS corrections are made by Wilks [216] using the equation derived by

fitting the ratio of the analytical-to-empirical Brier score sampling variances

with respect to the parameters of the LCBR model, given by

N ′

N
=

1− (1− µy)[b(1 −BS)r1]
2

1 + (1− µy)[b(1− BS)r1]2
, (4.11)

where BS is the Brier score and N ′ is the effective sample size. As previously

discussed, Eqn. (4.11) is only applicable to the LCBR model and the Brier

score. Sample size corrections for all other systems in this chapter using IGN

are performed with the approximate method (described later in Section 4.5).

In general, one does not expect analytical corrections to be at hand.

Figure 4.2 shows a clear inflation of the sampling variances of the IGN esti-
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Figure 4.2: LCBR model forecast skill statistics under serial dependence: sampling

variances of IGN estimates computed fromN = 210 simulations correlated time series (r1(y) ≈
0.8; red circles) of reliable forecasts (a = 0, b = 1) of a low probability event (µy = 0.05) and

bootstrap resamples (r1(y) ≈ 0; blue circles), both with 5% − 95% uncertainty intervals.

The sampling variances computed from the serially correlated IGN statistics exhibit inflation

relative those computed from non-serial correlated IGN statistics. The forecasts are generated

from a beta distribution with parameters α = 0.0333, β = 0.6333.

mates of reliable forecasts (a = 0, b = 1) of a low probability event (µy = 0.05)

generated from the LCBR model. The difference between the sampling vari-

ance under serial dependence and serial independence decreases with increase

in sample size as expected indicating the convergence of the score statistics onto

the true score. To demonstrate the effect on statistical inference of the forecast

skill estimates, Wilks’s approach of computing the probability coverage of 95%

confidence intervals is followed here. The probability coverage estimates are

calculated as the relative frequency, out of N = 210 simulations, of the confi-

dence interval including the true values of the BS and IGN, considered equal
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Figure 4.3: Statistical inference of LCBR model forecast skill under serial depen-

dence: probability coverage of 95% confidence intervals for N = 210 IGN estimates computed

from a serially correlated time series (r1(y) ≈ 0.8) of reliable forecasts (a = 0, b = 1) of a low

probability event (µy = 0.05) and bootstrap resamples (r1(y) ≈ 0; blue circles), both shown

with increasing sample size. The plot demonstrates that confidence intervals are too compact

under serial dependence by showing that the probability coverage of the confidence intervals

for the serially correlated IGN statistics is lower than those for the non-serially correlated

IGN statistics. As N increases, the probability coverages of both converge onto the nominal

95% coverage (dashed line) but a larger sample size is required for the former to do so. The

values of lag-1 autocorrelation, climatological probability, and model parameters are identical

to Fig. 4.2.

to the expectations of those scores. The former is given with respect to the

parameters of the LCBR model as

E[BS] = (σ2
p + µ2

p)(1− 2b)− 2aµp + µy. (4.12)

where µp and σ2
p are the first and second moment of the beta-refinement (fore-

cast) distributions. E[IGN ] cannot be computed in the same manner so a suf-

ficiently large sample size (N = 211.5) is used to determine the true IGN score.
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Figure 4.4: Statistical inference of LCBR model forecast skill under serial depen-

dence: IGN estimates of correlated time series plotted against 95% confidence interval widths

computed from the IGN statistics of a correlated time series (r1(y) ≈ 0.8) of reliable forecasts

(a = 0, b = 1) of a low probability event (µy = 0.05). The plot shows how confidence intervals

tend to be too narrow under serial dependence where forecasts are more skilful and where

sample sizes are too small. The values of lag-1 autocorrelation, climatological probability,

and model parameters are identical to Fig. 4.2.

Figure 4.3 compares the probability coverage of the 95% confidence intervals

for the empirical IGN estimates for serially correlated (r1(y) ≈ 0.8) and serially

independent (r1(y) ≈ 0) time series of evaluation data with increasing sample

size. Both probability coverage curves converge onto the nominal 95% coverage

(dashed line) with increase in sample size but the probability coverage of con-

fidence intervals computed from the correlated time series is more insufficient,

and even at a sample size of N = 211.5 lies below the nominal range. Figure

4.4 illustrates the relationship between 95% confidence interval width and both

forecast skill and sample size. Note that the width of the confidence interval

shrinks with increase in skill, and the upper bound on the widths also decreases
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with increase in sample size. The excessive precision of confidence intervals

under serial dependence is demonstrated by the exhibited relationship.

Repeating the experiment with calibration parameter b = 0.8 results in

lower degrees of sampling variance inflation (plots not shown), reflecting the

expected result from Wilks [216] that more skilful forecasts of serially correlated

outcomes are also serially correlated. The experimental results from the LCBR

model show agreement with Wilks’s results demonstrating misleading statistical

inference of forecast skill where serial correlation is transmitted from outcomes

to forecast evaluation statistics, and exacerbation of the effect for more skilful

forecasts.

4.2.2 Lorenz63
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Figure 4.5: Lorenz63 observations: time series of x state variable observations illustrat-

ing the bimodal behaviour of the Lorenz63 attractor. The observations have a strong degree

of linear serial correlation (r1(y) ≈ 0.96) measured over the whole sample size of N = 211

timesteps.
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Induced inflation in scoring rule sampling variances and imprecision in fore-

cast skill estimates under serial dependence, as demonstrated with stochastic

simulations generated with the LCBR model, can also be demonstrated with a

nonlinear dynamical system. The inflationary effect of serial dependence on ig-

norance score estimates is assessed here by evaluating sequential forecasts of the

state trajectory of the Lorenz63 dynamical system [118]. The Lorenz63 system

is recognisable by its double fixed point attractor (resembling butterfly wings)

which occupy two distinct regions of state space. Consequently, the x-variable

exhibits bimodal behaviour (see Fig. 4.5) which can result highly correlated

sequential trajectory observations for sufficiently short time steps.

The forecasts in this experiment are produced using the KDB density con-

struction method (see Section 1.8), while the initial conditions at each fore-

cast initialisation and corresponding outcomes are sampled from the inverse of

the stochastic observational noise model (see Section 2.1). Sequential forecast-

outcome pairs are generated for a number of lead times and sample sizes, from

which time series of forecast evaluation scores can be compiled. As with the

LCBR model experiment above, reference sets of i.i.d. score estimates are cre-

ated by bootstrap resampling from the score time series.

Representative examples illustrating the effect of serial dependence on fore-

cast evaluation are shown in Figs. 4.6 and 4.7 for a forecast lead time of τ = 1.0

Lorenz unit. Linear serial correlation in the outcome time series (r1(x) ≈ 0.94)

is transmitted to the time series of score statistics (r1(IGN) ≈ 0.5), resulting in

inflation of the variance of the score sampling distribution, lack of probability

coverage in confidence intervals, and overconfidence in skill.

The transmission of serial correlation from data to forecast evaluations can

be interpreted by considering that the underlying distribution of score statistics

is time-dependent, implying that the autocovariance of the score is expected to

be non-zero. In mathematical notation, the autocovariance R(τ) of a score S is
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Figure 4.6: Lorenz63 forecast skill statistics under serial dependence: Sampling

variances of a) ignorance estimates computed from forecasts of a correlated time series of

Lorenz63 observations (r1(y) ≈ 0.94; red circles) and b) the natural measure of ignorance

estimates (r1(y) ≈ 0; blue circles), both with 5%−95% uncertainty intervals. There is a clear

inflation of the sampling variances until at least a sample size of 25 showing that the serial

correlation in the observations is transmitted to the score statistics.

given as

R(τ) = E[(St − E[St])(St+τ − E[St+τ ])] (4.13)

= E[StSt+τ ]− E[St]E[St+τ ] (4.14)

6= 0, (4.15)

where E[St] 6= E[St+τ ] are the means of the score distributions at time t and

time t+τ (lag τ) respectively. The non-zero result arises under serial dependence

since, only where St and St+τ are independent, is it true that

E[StSt+τ ] = E[St]E[St+τ ]. (4.16)

Although the inflation of the scoring rule sampling variance induced by serial
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Figure 4.7: Statistical inference of Lorenz63 forecast skill under serial depen-

dence: probability coverage of 95% confidence intervals for increasing sample size (top), and

IGN estimates of correlated Lorenz63 forecast time series plotted against 95% confidence in-

terval widths (bottom). The two plots show the tendency of confidence intervals to be too

compact under serial dependence where forecasts are more skilful or sample sizes are too

small.
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dependence has only been demonstrated for probabilistic forecasts in this sec-

tion, it can also easily be shown for point forecasts.

4.3 Case Study 2: Non-transmission of linear

serial correlation to forecast evaluation statis-

tics

While there are forecast evaluation scenarios where linear serial correlation in

data can lead to misleading estimates of forecast skill (see Section 4.2 and Wilks

[216]), the presence of linear serial correlation in an observational time series is

not a sufficient condition for estimates of forecast skill to be misleading. For

the first time, it is demonstrated that there are forecasting scenarios where the

distribution of a forecast evaluation measure is not time-dependent so serial

correlation in a time series of observations is not transmitted to the forecast

evaluation statistics. Without the inflationary effect induced by serial depen-

dence on the sampling variance of the scoring rule, ESS corrections are not

required and statistical inference of skill can be made under the assumption of

serial independence.

Two stochastic target systems are employed in this section to show how

serial dependence can be transmitted from sequential evaluation outcomes (i.e.

observational data) to the corresponding point forecasts if they are sufficiently

skilful, but not to the forecast evaluation statistics. The first is a first-order

autoregressive process, and the second is a testbed system designed to simulate

Atlantic basin hurricane annual counts using a Poisson process.

4.3.1 AR(1) process

Consider a time series of observations st generated from a first-order autore-

gressive (AR(1)) process, first introduced by Yule [219] to model sunspots. An
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observation st at time t is given by

st = ϕst−1 + ǫt, (4.17)

where ǫt ∼ N (0, σ2
ǫ ) is the normally distributed random noise component of

the AR(1) process. Since the noise is a Gaussian process, the observations st

are also Gaussian distributed. The model parameter ϕ controls the degree of

autocorrelation in the time series, and the process is weak-sense stationary for

values |ϕ| < 1, meaning that the mean E[st] and covariance Cov[st, st+τ ] are

constants in time. In that case, as ϕ approaches a value of 1, the influence on

st from the previous observation st−1 increases.

Let Xt represent a 1 step ahead forecast of the observation st generated from

an imperfect model using the observation st−1 so that

Xt ∼ N (st−1, σ
2
ǫ ). (4.18)

Hence, the forecasts are, like the observations, Gaussian distributed, and exhibit

a similar degree of serial correlation determined by the parameter ϕ.

The effect of serial dependence is now assessed by examining the differences

between forecast evaluation statistics from a number of numerical experiments.

As in Section 4.2, the sampling variances of scoring rule estimates computed

from a serially correlated time series of forecast-outcome pairs are compared

with bootstrap resamples from the same time series for different sample sizes.

Figure 4.8 shows the estimates of the sampling variances of the score statistics

for the correlated forecast time series and bootstrapped forecasts over increasing

time windows (i.e. sample sizes). In this case, however, the sampling variance

estimates for both sets of forecast-outcome pairs at all time windows lie within

95% uncertainty intervals constructed for the sampling variance of score esti-

mates computed from a time series of forecast-outcome pairs where each of the

pair are both standard normal distributed and, hence, i.i.d.. The containment

of the estimates within the uncertainty interval indicates that sampling vari-

ances of the time series and bootstrap resamples score estimates are statistically

141



CHAPTER 4. FORECAST SKILL & SERIAL DEPENDENCE

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Sample Size

S
am

pl
in

g 
va

ria
nc

e 
of

 IG
N

 e
st

im
at

e

2^6 2^6.5 2^7 2^7.5 2^8 2^8.5 2^9 2^9.5 2^10 2^10.5 2^11 2^11.5

Data Type

Time Series Random Re−sample

Figure 4.8: AR(1) forecast skill statistics under serial dependence: Estimates of

sampling variances of IGN estimates for an AR(1) observation time series (ϕ = 0.9; red cir-

cles) and the bootstrapped observations (blue circles). Both sets of points all lie within 95%

uncertainty intervals constructed from Nboot = 27 bootstrap resample estimates of the sam-

pling variance of Gaussian distributed forecasts showing that there is no significant difference

between either of the sampling variances and uncorrelated Gaussian forecasts. Each sampling

variance estimate contains 28 IGN estimate samples.

indistinguishable both from the sampling variance of the standard normal fore-

cast score estimates, and from each other. Hence, the distributions of the score

statistics of the serially dependent sequential forecasts and serially independent

bootstrapped forecasts can both be considered Gaussian and identical.

The indistinguishability of the sampling variances reflects the fact that the

forecast errors of both datasets are normally distributed and independent (i.i.d.)

(i.e. the score distribution is time independent) so that there is no serial correla-

tion present in the skill score time series, and hence, no inflation of the sampling

variances. The independence of the forecast errors satisfies Eqn. (4.16). The
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lack of serial correlation in the score statistics is also evident in Fig. 4.9 where

a 1-step time delay scatterplot reveals almost no linear relationship between

ignorance at time t and time t+1. While an example of zero sampling variance
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Figure 4.9: AR(1) forecast skill statistics under serial dependence: Example of

a 1 step delay plot showing the lack of linear serial correlation in a single IGN time series

of sample size N = 210 computed from serially correlated observations (ϕ = 0.9). The red

coloured points, denoting ignorances scores−log(p(st+1)) > 3 (signifying less skilful forecasts)

at time t+ 1 (y-axis), also indicate that forecasts are more skilful at time t, highlighting the

lack of serial correlation. The mean and standard error of the lag-1 autocorrelation values of

the Nboot = 28 replications of time series are not significantly different from zero.

inflation has been demonstrated above, a counterexample is now also described

where the linear serial correlation in the time series of observations and fore-
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casts generated under the AR(1) process is transmitted into the corresponding

scoring rule time series. If the forecast PDF is non-state dependent, so that a

realisation of a score at time t is only dependent on the outcome st, then the

sequential scores will also be serially dependent. Consider a “perfect” climato-

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

AR(1) Ignorance Sampling Variance (phi=0.9)

Sample Size

S
am

pl
in

g 
V

ar
ia

nc
e

2^6 2^6.5 2^7 2^7.5 2^8 2^8.5 2^9 2^9.5 2^10 2^10.5 2^11 2^11.5

Time Series
Random Re−sample
Climatology

Figure 4.10: AR(1) forecast skill statistics under serial dependence: Mean sampling

variance of the IGN for AR(1) time series of forecasts of serially correlated observations

(r1(y) = 0.9; red line), forecasts of bootstrapped observations (r1(y) ≈ 0; blue line), and

climatological forecasts (green line), all with 5%− 95% uncertainty intervals computed from

Nboot = 27 samples. There is a clear inflation of the climatological sampling variance

logical Gaussian forecast which is non-state dependent be defined as

Xclim ∼ N
(

0,
σ2
ǫ

1− ϕ2

)

, (4.19)

since E(st) = 0. The variance of the climatological forecast distribution is
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derived as follows:

V ar(Xclim) = V ar(st)

= V ar(ϕst−1 + ǫt)

= ϕ2V ar(st−1) + σ2
ǫ

=
σ2
ǫ

1− ϕ2
, (4.20)

since V ar(st) = V ar(st−1). Hence, the forecast distribution is time indepen-

dent. The sampling variances of the ignorance statistics for the climatological

forecasts, serially correlated forecasts, and bootstrapped forecasts over increas-

ing sample sizes are shown in Fig. 4.10. The inflationary effect on the climato-

logical forecast sampling variance is clearly visible from the fact that the green

curve lies well above the other two curves. The demonstration of both accurate

and inaccurate estimates of forecast skill with a single data-generating system

(i.e. an AR(1) process) in this section highlights the importance of understand-

ing how serial dependence is transmitted from a time series of observations to

the forecast evaluation statistics. Both the data-generating system and the fore-

cast model need to be considered when determining whether serial dependence

will have an impact on the inference of forecast skill.

4.3.2 Testbed hurricane system

A stochastic testbed hurricane system is now introduced to examine the effect of

serial dependence on forecast evaluation statistics in a scenario more analogous

to real geophysical phenomena than the other systems employed so far in this

chapter. Consider a hurricane system in which the mean number of storms

follows a cycle of Tp years, while the number of storms in any given year is

a random variable. The annual storm counts are generated according to a

stochastic Poisson process given as

Yt ∼ Pois(λ(t)), (4.21)
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where Yt is the number of hurricanes in a given year t, and has a sinusoidal

time-dependent mean parameter λ which is determined by the equation

λ(t) = Asin

(

2πt

Tp

)

+ yc. (4.22)

A stochastic Poisson process has been used to simulate hurricane counts since

it is a simple model for discrete response variables [2], and has be shown to be

consistent with the behaviour of many underlying physical processes [46]. The

parameters of Eqn. (4.22) have been set to realistically simulate real Atlantic

basin CAT1-5 hurricane counts (i.e. A = 2.5, yc = 6, and Tp = 24). With

these parameter values, the lag-1 autocorrelation of a time series is measured

to be r1(y) ≈ 0.4. Now let a forecast model of the annual simulated hurricane

counts be defined by a “squared Gaussian” distribution so that it is structurally

incorrect (i.e. imperfect), that is, for a given random variable

Vt ∼ N (µ, σ2), (4.23)

the random variable

Xt = ⌊V 2 + 0.5⌋, (4.24)

represents the number of annually forecast hurricanes where ⌊·⌋ is the floor

function. In addition, the model parameters µ and σ have been fitted to each of

the 24 phases of the hurricane system’s cycle by minimising the relative entropy

(see Section 2.5) of the forecast PDF p and the true PDF q. Hence, although

the true PDF is unknown, it is assumed that the forecaster knows that there

is a 24 year cycle and the fitting process can be regarded as the model training

period. Expressed mathematically, the parameter estimates are given by

(µ̂, σ̂)φ := arg min
µ,σ

−qφ(Yj)
M
∑

j=0

log2

(

pφ(Yj)

qφ(Yj)

)

, (4.25)

where qφ(Yj) and pφ(Yj) are the true and forecast probabilities respectively of

the jth outcome occurring at phase φ.

A time series of synthetic annual forecast-outcome pairs (pφ(Yt), Yt) is gen-

erated by sampling the outcome data from the Poisson distribution defined in
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Eqn. (4.21) with the initial phase being selected at random from a discrete

uniform distribution (i.e. φt ∼ U{1, . . . , 24}). The forecast probability pφ(Yt)

is determined according to the fitted parameters (µ̂, σ̂)φ of the forecast model.
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Figure 4.11: Hurricane forecast forecast skill statistics under serial dependence:

Sampling variances of IGN estimates computed for 28 time series of serially correlated obser-

vations (r1(y) ≈ 0.4; red line) and bootstrapped observations (r1(y) ≈ 0; blue line).

The sampling variances of the forecast skill estimates computed from the

generated correlated time series are compared with bootstrap resamples for

increasing sample sizes to assess the effect of serial dependence on the forecast

evaluation statistics. Figure 4.11 shows that, for time window lengths greater

than ∼ 64 years, there is no statistically significant evidence of score sampling

variance inflation. Like the evaluation of the forecasts of the AR(1) time series

in the previous section, the non-effects of serial dependence occur because the

score statistics are serially independent.

The results presented in this section demonstrate that there are forecasting

scenarios where serial correlation in data does not result in misleading estimates
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of forecast skill. Even with high degrees of lag-1 autocorrelation in the time

series generated from both the AR(1) (r1(y) ≈ 0.9) and the toy hurricane system

(r1(y) ≈ 0.35), there is almost no lag-1 autocorrelation present in the scoring

rule time series (r1(IGN) ≈ 0), and no induced inflation of the score sampling

variance. Incidentally, the lack of serial correlation present in the forecast skill

statistics can also be demonstrated for a nonlinear stochastic process. Consider

again an autoregressive process, but now defined as

st = ϕst−1 + ǫ2t . (4.26)

so that the noise is no longer Gaussian, and the process is not linear. A similar

degree of linear serial correlation is present in a time series generated from this

process compared to the linear AR(1) process defined in Eqn. (4.17) at all

values of ϕ ∈ [0, 1]. If forecasts are constructed in the same way as those in the

AR(1) forecast scenario above (see Eqn. (4.18)), then the score statistics are

i.i.d., and there is no induced inflation of the sampling variance of the score.

Hence, linearity in the data generating process itself is not a sufficient condition

for linear serial correlation to be present in the forecast evaluation statistics. A

nonlinear process can also be employed to show that nonlinear serial correlation

in an observational time series can result in misleading estimates of forecast skill.

Case study 3 examines this scenario in Section 4.4.

4.4 Case Study 3: nonlinear serial correlation

in data; linear serial correlation in skill score

statistics

In the previous two case studies in Sections 4.2 and 4.3, examples have been

given to demonstrate the how linear serial correlation in a time series of obser-

vations can have both an effect and a non-effect on estimates of forecast skill. It

is shown in this section that there are systems that do not exhibit linear serial
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correlation yet serial dependence still has an effect on estimates of forecast skill.

As explained in Section 4.2, the skill score distribution may be time dependent

given that forecast error is dependent on the state of the system. The depen-

dence of the forecast skill statistics results in a degree of linear serial correlation

in the skill score time series and, hence, to fallacious estimates of skill.

4.4.1 Logistic map

The logistic map is a well-known 1-dimensional nonlinear dynamical system

which was popularised by May [126] as an ecological model of the dynamics of

breeding populations in time. The mathematical form of the logistic map is

expressed as

xi+1 = f(xi) (4.27)

= axi(1− xi), (4.28)

where xn ∈ (0, 1) represents the state of the map. Figure 4.12 shows the logistic

map with parameter value a = 4.0. Even though there is no measurable degree

of linear serial correlation (r1(y) ≈ 0), a nonlinear relationship between sequen-

tial data is evident in the displayed curve. The effect of serial dependence in

observations of a nonlinear dynamical system is demonstrated here by utilising

a simple forecast model based on a Gaussian distribution to generate sequential

forecasts of the state of the logistic map iterated forward in time. The initial

state is uniformly sampled from the support of the logistic map x ∈ [0, 1]. Con-

sider a 1 step-ahead Gaussian forecast PDF ρfcst at time i+ 1 with a standard

deviation σfcst which is dependent on the gradient of the logistic map (see Eqn.

(4.28)) at time i. The expected ignorance, or entropy, of the forecast ρfcst, as

defined by Roulston and Smith [172], is given as

E[IGN ] = − 1

ln2

∫ ∞

−∞

ρtruthlnρfcst(x) dx (4.29)

=
1

2ln2

[

ln2π + lnσ2
fcst +

σ2
truth + (x̄truth − x̄fcst)

2

σ2
fcst

]

. (4.30)
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Figure 4.12: Logistic map: the logistic map given by xi+1 = 4xi(1 − xi). The parabolic

shape of the curve indicates the presence of serial dependence although there is zero lag-1

autocorrelation (r1(y) ∼ 0). The linear regression fit (dashed line) has a zero slope which

also hints at the lack of a linear dependency between sequential observations.

Consider now that the forecast PDF is perfect so that there is no bias in the

forecast (i.e. x̄fcst = x̄truth), and the variance of the forecast equals that of

the truth (i.e. σfcst = σtruth). The last term on the right hand side of Eqn.

(4.30) then simplifies to unity. Now consider a variant of the E[IGN ] of a

perfect Gaussian forecast, referred to as Theoretical Ignorance Expected, which

evaluates the expected ignorance of a one step ahead forecast. The theoretical

ignorance expected score (TIE) is so-called because it is based on the assumption
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Figure 4.13: Logistic map forecast skill: theoretical ignorance expected (relative to

TIE with σtruth = 1/128) at f(f(x)) and f(x) of a single logistic map time series (α = 4.0)

of sample size N = 28. A linear fit is shown as a dashed line and the value of the lag-1

ACF of the time series is r1(TIE) = −0.26, both indicating a degree of negative linear serial

correlation in the skill score time series.

that there is an arbitrary uncertainty in the underlying distribution of system

states at time i + 1 which is dependent on the gradient of the logistic map at

time i. The TIE score is expressed as

TIE =
1

2ln2

[

ln(2π) + ln(σtruthf
′(xi))

2 + 1

]

, (4.31)
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Figure 4.14: Logistic map forecast evaluation statistics under serial dependence:

sampling variances of a) TIE estimates computed from forecasts of a correlated time series of

Logistic map observations (r1(TIE) ≈ −0.26; red line) and b) TIE estimates (r1(TIE) ≈ 0;

blue line) computed from forecasts of the natural measure of the Logistic map, both with

5% − 95% uncertainty intervals. There is a clear deflation of the sampling variances of a)

until at least a time window length of 25 showing that the serial correlation in the observations

is transmitted to the score statistics.

where f ′(xi) is the first derivative of the logistic map at xi, and σtruth is the

standard deviation of the underlying distribution of system states at time i.

Example numerical results of the TIE of forecasts at time i+ 1 relative to the

TIE at time i, where there is zero uncertainty (i.e. f ′(xi) = 1), are shown in Fig.

4.13. The linear serial correlation in the skill score statistics is evident from the

linear fit and the lag-1 ACF value r1(TIE) = −0.26 computed from a time series

of 28 iterations of the map. A comparison of Figs. 4.12 and 4.13 shows how serial

dependence in an observation time series may be unmeasurable using the ACF,

but can result in linear serial correlation in the forecast evaluation statistics.
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Serial dependence in this case may prove to be particularly problematic for

those wishing to demonstrate statistically significant forecast skill since it could

easily be overlooked, resulting in misleading estimates of skill.

4.5 Convergence of information deficit under

serial dependence

Consider two forecast models, one perfect and one imperfect, constructed to

make predictions of the trajectory of a nonlinear dynamical system. The per-

fect model is only subject to initial condition (IC) and parameter uncertainty

whereas the imperfect model is subject to structural imperfections, and IC and

parameter uncertainty. If sequential probabilistic forecasts p and q are produced

from the imperfect model and perfect model respectively, then there exists an

expected information deficit in p relative to q which can be measured with

relative entropy (see section 2.5), defined as

D(p|q) =
∫ ∞

−∞

−(p(y)− q(y))log2p(y) dy. (4.32)

In real-world forecasting, q is not obtainable, hence the true value of the in-

formation deficit is also unknown. Indeed, precise numerical estimation of the

information deficit of the forecast p is only possible for a sufficiently large sam-

ple of forecast-outcome pairs to sufficiently reduce sampling uncertainty. An

alternative formulation is to estimate the information deficit [41] by contrasting

the empirical ignorance of the forecast p with the ignorance expected of p if it

were in fact perfect. The latter is referred to as implied ignorance. The infor-

mation deficit can be interpreted as the difference in skill between the imperfect

model and its internally perfect version, and is defined thus

ID =

[

1

N

N
∑

i=1

−log2p(y)− Sclim

]

−
∫ ∞

−∞

−p(y)log2p(y) dy, (4.33)

where

Sclim =

∫ ∞

−∞

−pclim(y)log2pclim(y) dy. (4.34)
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Sclim is the implied ignorance of the climatological forecast pclim and the mea-

sure of zero skill of ignorance. The left hand term of Eqn. (4.33) in square

brackets represents the empirical ignorance of the forecast while the the right

hand term represents the implied ignorance of the forecast. The information

deficit should converge onto its true value with increase in sample size in ac-

cordance with the law of large numbers (LLN) [189]. If serial dependence is

present to some degree in the time series of observations, the sampling variance

of the forecast evaluation statistic will be prone to inflation/deflation effects

relative to a serially independent time series as shown in Section 4.2. In that

case, the sample size required for a precise estimate of the true information

deficit is further modified.

The degree of serial dependence in the information deficit statistics varies

depending on the location on the Lorenz63 attractor since the degree of serial

dependence also varies over state space. Moreover, the degree of serial depen-

dence is also dependent on the level of forecast skill, as has been noted by Wilks

[216] and in Section 4.2. So, the question is posed here for the first time: how

long does it take to estimate the true information deficit where sequential ob-

servations are serially dependent and forecast skill varies for a given lead time?

In the absence of a known analytical solution of the sampling variance of a log-

based scoring rule (see Section 4.2), a Monte Carlo method has been employed

here to sample sequential observations along the trajectory of the Lorenz63 at-

tractor at different forecast lead times. The time durations (i.e. samples sizes)

required for the estimates of the information deficit to converge to its true value

determine the time until convergence (TUC). Comparing the time until conver-

gence of the information deficit under serial dependence and serial independence

also provides an indication of how much longer a statistician or forecaster must

wait to demonstrate statistically significant forecast skill when forecasting red

processes. The importance of this understanding is demonstrated in a fictitious

betting scenario in Section 5.5.
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Figure 4.15: Information deficit time series: 29 step time series of information deficit

statistics for Lorenz63 forecasts constructed using IN (blue line) and PDA (red line) data

assimilation schemes (τ = 0.1). The PDA forecasts are have a lower information deficit

IDPDA = 0.18 bits compared to the IN forecasts IDIN = 0.21 bits over this time window.

The differences between the information deficit values for the two forecast systems tend to be

smaller than the corresponding differences in IGN , the values of which are IGNPDA = −5.30

and IGNIN = −3.57 for the same observation time series.

4.5.1 Experimental design

The Lorenz63 system is employed here to assess the TUC of the information

deficit onto its true value as it exhibits serially correlated behaviour, and, being

defined by ordinary differential equations (ODEs), has a continuous-time flow

allowing for higher sampling rates (shorter forecast launch steps) than discrete-

time systems such as the logistic map. Up until this point, investigation of

the effect of serial dependence on forecast skill estimates in the context of the

Lorenz63 system has been performed with analysis of a single state variable

(x). The TUC of the information deficit is assessed here for several different

forecast lead times to investigate the impact of sampling from various locations
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on the attractor in 3-dimensional space. The degree of serial dependence varies

with location on the attractor. Both the perfect and imperfect Lorenz63 models

are identical to those presented in Chapters 2 and 3 utilising the inverse noise

data assimilation (DA) scheme3. A second DA scheme, called pseudo-orbit data

assimilation (PDA) [89], is also utilised here. The PDA scheme consists of

finding a sequence of system trajectories in the model state space which are

consistent with the observational noise, and provides a better approximation

of the initial conditions than the more simple and cost-effective inverse noise

method [40]. This feature of PDA often produces more skilful forecasts than

those produced from an inverse noise model. An example of a time series of

ID statistics for forecasts produced using the PDA and IN schemes is shown in

Fig. 4.15. Note that a robust evaluation of the relative performance of these

two DA schemes is beyond the scope of this thesis. The aim is to examine

the relationship between forecast skill and TUC by producing forecasts with

different levels of skill. Table 4.1 lists the configurations of all of the TUC

experiments using Lorenz63. The forecast launch step ∆ determines the steps

between forecast initialisation on the attractor, and αblend denotes the blending

parameter (see Section 1.5.3).

Table 4.1: Experimental Configurations for Lorenz63 Forecasts

Expt. System State DA Noise Forecast Parameters

No. variable scheme model ∆ αblend Nens τ*

1 Lorenz63 x Inverse N (0, 0.52) 0.1 1.0 64 0.1

Noise

2 Lorenz63 x PDA N (0, 0.52) 0.1 1.0 64 0.1

*integration step size h = 10−2 [118].

3data assimilation is not the focus of this thesis. The numerical Lorenz63 forecast re-

sults have been kindly provided by Ed Wheatcroft and Hailiang Du at the Centre for the

Analysis of Time Series, London School of Economics. The novel aspects contributed by this

thesis research is the analysis of these results, not the construction of the forecasts and DA

themselves.
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Figure 4.16: Sampling variance with IN and PDA: Sampling variances of ID estimates

computed from IN (top) and PDA (bottom) forecasts (∆ = 0.1, τ = 0.1) of a) a correlated

time series of Lorenz63 observations (red circles) and b) the natural measure of ID estimates

(blue circles) with increasing sample size, both with 5%− 95% uncertainty intervals.
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4.5.2 Numerical results

Figure 4.16 shows the evaluation statistics of the PDA (Expt. 2) forecasts

sampled sequentially with those sampled from the natural measure using boot-

strap resampling of the Lorenz63 attractor at lead time τ = 0.1. While there

is no effect of serial dependence in the observation time series (r1(y) ≈ 0.86)

on the sampling variance of the information deficit (ID) for the IN forecasts

(r1(ID) ≈ 0.38), it is clearly evident for the PDA forecasts. Lag-1 autocor-

relation values computed from a sample size N = 29 are r1(IDIN) ≈ 0 and

r1(IDPDA) ≈ 0.38, respectively. This difference in the sampling variance results

is attributable to the differences in skill between the two sets of forecasts which

is of the order of 0.03 bits for N = 29. Crucially, the time until convergence of

the information deficit is longer for the PDA forecasts given the inflation of its

sampling variance. This difference between the sampling variances of ID of the

IN and PDA forecasts reflects an inversely proportional relationship between

forecast skill and rate of convergence.

Given that predictability of the flow evolution of the Lorenz63 system varies

depending on the location in state space, both the degree of serial dependence in

observations, and forecast skill can vary over state space. Figure 4.17 shows the

profile of the information deficit statistics of the PDA forecasts in 3-dimensional

state space. All of the information deficit statistics are coloured coded depend-

ing on within which range of values they lie. For example, many of the forecasts

constructed at locations with high unpredictability on the attractor (e.g. where

the left and right lobes meet) tend to have larger information deficits, indicated

by the red symbols. Many of the poorest forecasts lie around this location.

4.6 Approximate ESS corrections

As explained in section 4.1, expressions for effective sample size (ESS) correc-

tions can be derived if the sampling variance of a scoring rule can expressed in
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−0.06  < ID <= 0
0  < ID <= 0.07
0.07  < ID <= 0.28
ID >  0.28

Figure 4.17: Forecast skill with PDA: forecast ID (∆ = 0.1, τ = 0.1) illustrating

the degree of predictability of the Lorenz63 system in state space. The double fixed point

attractors are clearly represented by the ID samples in state space. Black circles denote very

skilful forecasts (ID < −2) while black squares denote very poor forecasts (ID > 4).

terms of a model’s parameters, as in Eqn. (4.11). Wilks [216] used this ESS cor-

rection for the Brier score with a “linear-calibration/beta-refinement” (LCBR)

probability model. Such expressions are more difficult to derive for the igno-

rance score (and information deficit) since V ar[IGN ] does not depend on the

moments of the joint distribution of forecasts p and outcomes y. Furthermore,

derivations of ESS expressions for the other system-model configurations in
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CHAPTER 4. FORECAST SKILL & SERIAL DEPENDENCE

Sections 4.2, 4.3, and 4.4 is beyond the scope of this thesis.

Estimation of the time until convergence (TUC) can provide an approxi-

mate alternative method for making ESS corrections. By simply comparing

empirical estimates of the sampling variance under serial dependence and serial

independence using a resampling method [17], as has been done throughout

this chapter, the required sample size correction can be estimated. The ratio

of the sample sizes of skill scores computed under serial dependence and serial

independence which correspond to the same skill score sampling variance indi-

cates the ratio N ′

N
. The correction is given simply by the difference N − N ′.

For example, consider the sampling variances computed from serially dependent

and serially independent (natural measure) information deficit estimates for the

PDA forecasts shown in Fig. 4.16. A sampling variance of ≈ 0.04 corresponds

to a sample size N ′ ≈ 26 for the time series and N ≈ 24.5 for the natural

measure. This indicates a required extra increase in sample size of ≈ 41.

Of course, accurate estimates of the forecast skill are ultimately the aim so

the TUC determines which minimum sample size is necessary. Referring again

to Fig. 4.16, it is evident that the 5%− 95% uncertainty intervals for sampling

variances of the PDA forecast information deficit estimates do not quite overlap

by N = 29 so a larger sample size is required to be certain of obtaining correct

estimates under serial dependence. On the other hand, convergence of the IN

forecast information deficit estimates occurs at a sample size of N = 25 which

reflects the lack of serial dependence transmitted to the ID statistics4. At the

point at which they do, the estimates of ID under serial dependence and serial

independence can be considered to converge ensuring that the estimates are

accurate.

4The differences in the sampling variances between the sample size N = 23 and N = 25

reflect a small degree of negative lag-1 auto correlation in the ID time series at small sample

sizes.
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4.7 Forward View and Conclusions

Three case studies of the effects of serial dependence on estimates of forecast

skill have been presented in this chapter using various system-model possibil-

ities. In the first case study, the inflationary effect on the sampling variance

of scoring rules resulting from the presence of serial correlation in the fore-

cast evaluation statistics using Wilks’s [216] probability model for refinement

distributions (LCBR model) has been replicated, and also demonstrated using

forecasts of the Lorenz63 nonlinear dynamical system. The second case study

shows for the first time that linear correlation is not necessarily transmitted to

the forecast evaluation statistics where evaluation data are serially correlated.

Two stochastic target systems (AR(1), testbed hurricane system) have been em-

ployed to show that inflation of the score sampling variance does not occur if the

distribution of score statistics is not time-dependent. The third case study has

described, for the first time, a forecasting scenario where a deflationary effect

on a scoring rule’s sampling variance can occur in the presence of serial corre-

lation which is not linear in data generated using the logistic map. Together,

the results of these three case studies reveal a previously unreported complexity

of forecast evaluation under serial dependence, and highlights how forecasters

should exercise caution when making statistical inferences of forecast skill.

To address the limitations imposed by serial dependence on evaluating fore-

casts of geophysical phenomena, forecasters are advised to make sample size

(ESS) corrections dependent on the degree of inflation of the sampling vari-

ance of the scoring rule. In addition to serial correlation in observational data,

the degree of score sampling variance inflation can be dependent on other fore-

cast properties such as forecast skill, forecast calibration and climatological

frequency (of a binary event) as explained in Wilks [216], and also on the given

scoring rule. Wilks fits an empirical relationship between the ESS correction and

analytical-to-empirical sampling variance ratio with respect to all of the above

properties. Since the properties are only defined for the LCBR model, however,

161



CHAPTER 4. FORECAST SKILL & SERIAL DEPENDENCE

derivation of an empirical fit for ESS corrections for all other system-model

configurations in this chapter has not been possible. Furthermore, analytical

solutions for the sampling variances of some scoring rules are likely to be difficult

to obtain for multi-categorical or continuous outcome scenarios.

The empirical fit approach for ESS corrections used by Wilks [216] is also

not tractable where serial correlation in the observational data is not linear but

results in linear serial correlation in the score statistics, as shown in Section 4.4.

Serial correlation which is not linear cannot be factored into the ESS correction

equation which is dependent on lag-1 autocorrelation. Moreover, given that

serial correlation which is not linear is undetectable using the autocorrelation

function (ACF), a forecaster may not even be aware that their estimates of

forecast skill are inaccurate.

An alternative approximate method for determining ESS corrections has

been proposed and demonstrated in Section 4.6. This method consists of deter-

mining for which sample sizes the sampling variances are equal for the dependent

and independent datasets, and take the difference as the correct sample size.

Determination of the time until convergence (TUC) of a scoring rule towards

its asymptotic “true” value is another approach to assessing the effect of serial

dependence on statistical confidence in forecast skill. An examination of the

TUC of the information deficit has illustrated how the effect of serial depen-

dence can vary depending on which region of state space is being observed and

predicted when evaluating forecasts of a dynamical system. This insight high-

lights how the relationship between serial dependence in observations and the

state of the target system being observed can be of importance when aiming to

obtain accurate estimates of forecast skill.

The results presented in this chapter illustrate the effect of serial dependence

on forecast evaluation, and provide useful guidelines on how to compensate for

the effect and arrive at accurate estimates of forecast skill.

The following are novel contributions in this chapter:
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1. derivation of the analytical sampling variance of ignorance score estimates

for binary forecasts

2. demonstration of how misleading estimates of forecast skill can result from

the presence of serial correlation in evaluation data (with both a stochastic

and nonlinear dynamical system)

3. explanation of how the presence of serial correlation in evaluation data

is neither a necessary nor sufficient condition for misleading estimates of

forecast skill (with stochastic systems)

4. illustration of how misleading estimates of forecast skill can occur where

serial correlation is not present in evaluation data but is present in forecast

evaluation statistics (with a nonlinear dynamical system)

5. examination of the time until convergence of score estimates to their

asymptotic “true” value

6. proposal and demonstration of an empirical method for effective sample

size (ESS) corrections where serial correlation is present in evaluation

statistics
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Chapter 5

Techniques and Unresolved

Challenges for Hurricane

Forecasting

This chapter brings into focus a number of statistical aspects of hurricane fore-

casting which warrant consideration by forecasters to ensure best practice when

constructing and evaluating forecasts.

Section 5.1 gives an overview of the challenges of hurricane forecasting, and

briefly outlines the role that forecasting plays in mitigating hurricane impacts.

The various hurricane forecast predictands (i.e. forecast variables) relevant to

the (re)insurance industry and policy-makers are then introduced in section

5.1.3. Among the categories of predictands considered most important in oper-

ational hurricane forecasting is annual hurricane counts [82, 158], which are the

subject of the modelling/forecasting studies presented in sections 5.1 to 5.5.

Sections 5.2 and 5.4 introduce two novel yet simple statistical forecast sys-

tems designed for constructing year-ahead predictions of annual hurricane counts.

The first forecast system is based on a method of constructing probability den-

sity functions (PDFs) conditioned on the state of a key environmental index

relating to hydro-meteorological conditions which modulate hurricane activity.
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This modelling technique is herein referred to as synoptic conditioning [32, 46].

The other forecast system is based on an empirical forecasting approach which

uses temporal analogues from the historical hurricane time series to construct

forecast PDFs, and is referred to as conditional analogue forecasting [183, 200].

An innovative “top-hat” kernel estimation method is introduced to smooth the

forecast PDFs which would otherwise be coarse having been constructed from

limited samples of small-count data. This method is a generalisation of Bröcker

and Smith [26]. The synoptic conditioning and conditional analogue forecast

systems are both trained and evaluated with synthetic data generated from the

hurricane model of section 5.2 using conventional scoring rules and via a bet-

ting scenario called “Hurricane Roulette”, which has been creatively adapted

from “Weather Roulette” from Hagedorn and Smith [67]. In both evaluation

exercises, the forecast systems demonstrate relative skill over climatological

forecasts, indicating their potential usefulness as easily constructible statistical

forecast models. Both of the forecast systems are put to the test in chapter 8

where they are used to produce forecasts of the 2013 hurricane season.

An investigation into the limitations of statistical inference with small-count

data, relevant for hurricane prediction, is presented in section 5.3. A forecast

predictand of particular interest to the (re)insurance and civil planning indus-

tries is annual U.S. hurricane landfall counts owing to their direct relation to

impacts on livelihoods and property [82, 117]. Much research in those indus-

tries has been focussed on statistical modelling of U.S. landfalls because of the

inability of dynamical models to simulate hurricane tracks [28, 46, 64, 175]. It is

demonstrated in this chapter that robust statistical inferences of annual landfall

counts are not realistic, providing a cautionary guide for users of such statistical

predictions.

Finally, a unique perspective of forecast quality is presented in section 5.5 by

examining the relationship between forecast skill and forecast value, and high-

lighting important distinctions between the two concepts. Forecast value, or

utility, is a complex quantity because it is dependent on the forecast user, and
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consequently is not often distinguished from forecast skill. This can lead both

to the avoidance of forecast systems which have not demonstrated statistically

significant skill and to pressure to use systems with “skill” but no value relative

to the task at hand. A novel approach to distinguishing between forecast skill

and forecast value is described in the context of Hurricane Roulette, and used

to show that a decision-maker is not obligated to wait until proving forecast

skill before utilising a forecast system to realise its value. All of the concepts

discussed in this chapter form part of the statistical framework of forecast con-

struction and evaluation proposed in this thesis as best-practice guidance for

forecasters and decision-makers alike.

The key new contributions included in this chapter are: the proposal of two

statistical models based on conditional probability forecasting for producing

one year-ahead predictions of hurricane counts, discussion of the limitations

of conventional statistical inference methods for small-count variables, and a

unique analysis of the statistical relationship between forecast skill and forecast

value which highlights that the two concepts need not be considered identical.

5.1 Hurricane forecasting: its limits and the

role in reinsurance

Forecast systems have been developed using dynamical or statistical techniques,

or a combination of both, to make predictions of North Atlantic basin tropical

cyclones on a range of timescales. Depending on lead time, the forecast predic-

tand can range from a single weather system forming over an hourly timescale

(see Chapter 6) to annual tropical cyclone counts to the power dissipation index

(PDI), an aggregate measure of tropical cyclone activity, on decadal timescales

[204]. Tropical cyclone forecasts are typically probabilistic, issued in the form

of a PDF, or are point forecasts accompanied by some estimate of uncertainty.
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5.1.1 Limitation of models

The skill of tropical cyclone forecasts is currently curbed by various limitations

on forecast models. These limitations vary depending on the forecast lead time.

On daily timescales, dynamical models are employed to model tropical cyclone

formation and tracks, but they have a tendency to overforecast tropical cyclone

formation [11], and tracking their movement across the North Atlantic basin

is difficult [175], despite improvements in skill in recent years [144]. The NHC

uses dynamical models only as objective guidance in their formation predictions

(see chapter 6) while statistical-dynamical models have been used to forecast

tropical cyclone intensity (i.e. windspeed) with less success [39]. In addition

to limitation of model biases, an insufficient amount of time has passed to

demonstrate forecast skill since the operational inception of these models [175].

Operational seasonal tropical cyclone forecasts are abundant [57, 65, 143,

147, 198], and although they are mostly produced using statistical methods,

dynamical models are able to simulate cyclonic-like disturbances, and have

achieved some degree of skill [28]. Many predictors, such as Atlantic and global

tropical sea surface temperatures (SSTs), have been identified as important

for statistical predictions of seasonal TC activity [208], including the El Niño-

Southern Oscillation (ENSO), a mode of climate variability in tropical Pacific

SSTs and sea level air pressure, which has emerged as a key predictor in seasonal

statistical tropical cyclone models [28, 64]. Unfortunately, accurate predictions

of the phase and strength of ENSO are not considered possible before the bo-

real spring preceding the hurricane season. This limitation is referred to as the

“spring predictability barrier” [211] . Aside from physical constraints on TC

predictability, accurate seasonal forecasting is further complicated by the lack

of reliability of the historical hurricane data archive.

At the longer end of the forecast lead timescale, dynamical models are cur-

rently unable to resolve mesoscale weather systems such as tropical cyclones so

skilful predictions of hurricane activity out to multi-decadal timescales have not
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so far been demonstrated using these models alone [53, 99, 162, 204]. One alter-

native is to adopt a downscaling approach to simulate TCs with high-resolution

regional models by forcing them with boundary conditions taken from global

coupled models [204, 99]. Another method is to exploit the statistical rela-

tionships between local and remote large-scale climate processes that influence

tropical cyclone development with the tropical cyclone activity itself [205, 208].

Otherwise, univariate modelling using a timeseries of hurricane activity is a par-

simonious approach although it is limited, like seasonal statistical predictions,

by the size of the reliable historical data archive.

There is disagreement in the literature [49, 100, 149, 181, 204] which of

the dynamical, statistical, or statistical-dynamical methods has provided the

most accurate approach to modelling TC activity on seasonal to multi-decadal

timescales due to the lack of out-of-sample evaluations. Camargo et al [28], how-

ever, state that the seasonal forecast skill of the best performing operational

dynamical models is comparable to that of their statistical model counterparts.

On the other hand, Vecchi et al [204] point out a limitation in statistical mod-

els by highlighting the very different projections of the Atlantic cyclone power

dissipation index (PDI) when regressed on absolute SSTs and relative SSTs

separately. They conclude that additional empirical research will unlikely yield

a unique, statistically significant hypothesis of the SST-Tropical cyclone rela-

tionship, and that that non-statistical theories and models should be used in

conjunction with statistical techniques to ensure that there is a physical basis

for the modelling of tropical cyclones using environmental covariates. Of course,

statistical association does not imply physical causality, which should be taken

into account in any purely statistical analysis of hurricane activity.

5.1.2 Role of forecasting in (re)insurance

Although North Atlantic basin hurricanes are typically not the largest or most

intense storms globally, they sometimes make landfall in heavily populated re-
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Figure 5.1: Distribution of insured losses caused by U.S. natural catastrophes

1950-2011: the distribution of insured losses (normalised to 2011 dollars for inflation) in-

curred by the insurance industry due to U.S. natural catastrophes during 1950-2011. Tropical

cyclones have caused 63% of the total insured losses. Data source: TOPICS GEO 2011, Mu-

nich Re

gions of the Caribbean Sea, Mexico and the eastern seaboard of North America

where they can inflict a huge amount of devastation. The impact on the insur-

ance industry has been significant; over half of the insured U.S. natural hazard

losses paid out for by the industry between 1950 and 2011 have been due to

tropical cyclone damage (∼ US$230billion1 - see Fig. 5.1) [43, 167]. Not only

do hurricanes bring powerful winds to coastal and inland areas (reaching speeds

of up to 200mph), but also flooding rain and storm surges which are huge waves

created by the offshore winds. There has been an increasing trend in hurricane

1normalised to 2011 dollars for inflation
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losses since the middle of the 20th century, and in recent years the insurance

industry has been heavily impacted by hurricanes such as Sandy, Katrina, and

Andrew (nearly US$400 million in insured losses went unpaid after the occur-

rence of the latter [43, 104]). Clearly, skilful forecasts of hurricane activity on

all timescales would hold potential value for hurricane risk management (e.g.

pricing annual insurance premiums) [116, 117, 156].

Arguably, the insurance sector does not currently hold the view that longer

term (i.e. seasonal to multi-decadal timescales) hurricane predictions are more

reliable than its existing predictive methods which consist of climatological base-

line forecasts [116]. There is a perceived lack of practised forecast evaluation,

and a single poor performance by a forecasting system is enough to negatively

affect the overall perspective of those in the insurance sector. Hence, long-term

predictions are not widely believed to be skilful and are generally not utilised.

Such scepticism is, to some extent, justified since there is a limited historical

data archive archive available for operational forecast evaluation, and proving

statistically significant skill (before proving the value) of long-term hurricane

forecasting is not currently possible. Communication of forecast skill and its

translation into forecast value also poses a challenge when the relationship is

nonlinear. For example, if there is an exponentially increasing relationship

between historical hurricane losses and hurricane intensity then a forecasting

system which predicts both CAT1 and CAT5 storms equally well may be of

significantly higher value in the latter case owing to a greater potential for pre-

vention of loss, at least to property [112, 157]. Nevertheless, the potential value

to the various sectors affected by storms may be substantial if sufficient forecast

skill is demonstrated on seasonal to decadal timescales.

5.1.3 Hurricane forecasting scenarios

There are a number of operational forecast products available for a range of

hurricane-related predictands on different spatial and temporal scales. Several
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of these predictands are of particular interest to the (re)insurance sector, policy-

makers, and those of the public who are vulnerable to hurricane risk [34], and are

the subject of the statistical analyses and forecast construction, evaluation, and

recalibration in this thesis. These specific forecast predictands are summarised

below.

Hurricane formation, track and intensity

Operational forecasts of the activity of individual hurricanes on daily timescales2

and local spatial scales are regularly issued by several forecasting centres around

the globe such as the National Hurricane Center and Joint Typhoon Warning

Center. Forecast products for several predictands including tropical cyclone

formation, best-track, and wind speeds are available from these centres, and

have shown improvements in skill out to longer lead times over the past 20

years [144, 166]. These forecasts are vitally important for the planning and

decision-making of the (re)insurance industry and government because they

provide predictive information on the location and severity of hurricanes that

make landfall. The information is usually fed into catastrophe (CAT) models to

assess short-term risk and make loss projections (Trevor Maynard, pers. comm.,

January 2010).

Annual Atlantic basin hurricanes

North Atlantic basin hurricanes are represented by one of the longest available

historical data archives of any extreme geophysical phenomenon with earliest

windspeed records dating back to 1851. As a result, basin hurricanes are com-

monly analysed, modelled and forecast to make predictions of hurricane activity

on anywhere from seasonal to multi-decadal timescales. Seasonal forecasts are

potentially important for users in (re)insurance because the timescale corre-

sponds to the cycle of annual insurance premium renewals. Forecasts of annual

2out to 120 hours forecast lead time
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counts with longer lead times (i.e. years to decades ahead) would also be of

benefit to those in risk management and (re)insurance for long-term planning

applications such as capital and asset management [116]. Seasonal forecast

information has only been minimally utilised in (re)insurance as guidance to

date, however, because of lack of proven skill (see section 5.1.2). Annual At-

lantic basin hurricane counts are predominantly studied in this thesis because

of their relevance for (re)insurance, and the relative robustness and availability

of annual count data at least since the 1960’s.

Annual U.S. landfalls

North Atlantic basin hurricanes that strike the coast of the United States, Cen-

tral America, and Atlantic basin island nations during their lifetime have the po-

tential to wreak some of the worst devastation to life and property [13, 117, 157].

A hurricane is classified as a landfall when all or part of the hurricane eye wall

crosses the coastline [43]. U.S. landfalls are of concern to the insurance com-

munity because these inflict the worst damages where populations are dense

and economic value is relatively high. The most intense of these (CAT3-5) in-

flict 85% of the total damage in the continental U.S. (∼ US$150billion3) yet

comprise only 24% of the total U.S. landfall counts [157]. Predictions of the

number of U.S. landfalls and their intensities on a range of timescales strongly

influence (re)insurance property premiums [82, 117] so clearly skilful forecasts

have potential value to that industry [34, 45].

Environmental indices

There are a number of environmental atmospheric and oceanic factors that

have been used to as predictors of hurricane activity owing to their role in

modulating hurricane variability. Those factors relating to SSTs in the tropical

Atlantic are of fundamental importance since they are a measure of the avail-

3normalised to 2005 dollars for inflation
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able heat energy required for a tropical cyclone to form and develop [51, 178].

PDI and ACE are modelled on Atlantic and global tropical mean SSTs [206]

because they are significantly correlated with inter-annual SST variability. The

El Niño-Southern Oscillation (ENSO), a dominant mode of atmospheric-oceanic

oscillation of Pacific Ocean sea level pressure and SSTs, is considered impor-

tant because of its relation for global tropical SST anomaly patterns and vertical

windshear over the Atlantic which both influence TC activity [15, 64, 28]. El

Niño (warm) episodes are associated with passive hurricane seasons and La

Niña (cold) episodes are associated with active hurricane seasons. Accurately

predicting the phase of ENSO before the beginning of the hurricane season is

thought to be important for achieving skilful seasonal forecasts of the Atlantic

basin TCs, but is difficult before the boreal spring (see Webster and Hoyos

[211]). Other modes such as North Atlantic Oscillation, Atlantic Multidecadal

Oscillation (AMO), and Quasi-biennial Oscillation are also used in hurricane

modelling but since they are indices often of very similar geophysical variables

it is difficult to deconvolve their relative importance [207].

5.1.4 Challenges to hurricane forecasting

While there have been improvements in the techniques and skill of statistical

hurricane forecasting [28, 65, 149], there remain a number of unresolved chal-

lenges for achieving skilful forecasts of annual hurricane counts and for robust

evaluation of these forecasts. Each of these challenges is illustrated and guide-

lines are provided throughout the remainder of this chapter so that forecasters

and forecast users alike can capitalise or, at least, avoid any adverse conse-

quences. The challenges are summarised as follows:

• small-count data: when modelling a variable which is represented by

small-count data, standard Gaussian-based statistical techniques need to

be modified to reliably fit model parameters and perform robust statistical

inference [2]
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• forecast uncertainty: forecasts of variables on specific temporal and

spatial scales of material value for users may not be skilful; those which

are skilful may not have direct relevance

• evaluation: there exist several limitations with seasonal hurricane data

(i.e. short historical archive, serial dependence in data) which limit the

significance of any measurement of forecast skill

• profit vs proof: making a decision to utilise a forecast can be difficult

if a decision-maker believes that it has value but its skill is unproven

5.2 Synoptic conditioning hurricane forecast sys-

tem

A novel hurricane forecasting methodology, designed to exploit the dependency

of TC activity on the ENSO phase, is now presented and evaluated. The

methodology, henceforth referred to as synoptic conditioning, consists of a bi-

variate modelling of historical annual Atlantic basin hurricane counts condi-

tioned on the phase of ENSO (see section 5.1.3) during the peak period of the

hurricane season (August-October). Conditional probability distributions are

constructed from the historical modelling so that probabilistic forecasts of sea-

sonal hurricane counts can be issued depending on the expected August-October

(ASO) ENSO phase.

Real observational data have been used to calibrate the forecast system so

as to demonstrate its plausibility in real-world forecasting. The hurricane data

are sourced from the National Hurricane Center’s (NHC) HURDAT database4

while the ENSO data are sourced from the Climate Prediction Center’s (CPC)

website5, both hosted at the National Oceanic and Atmospheric Administration

4http://www.aoml.noaa.gov/hrd/data sub/re anal.html
5http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml#current
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(NOAA). ENSO is classified here using the Oceanic Niño Index (ONI), a mea-

sure of 3 month running mean SST anomalies in the critical Niño-3.4 region6

based on 30-year climatological records updated every five years to remove a

long-term warming trend in SSTs. El Niño (warm) and La Niña (cold) episodes

occur when the index rises above or below a threshold of ±0.5, respectively.

The performance of the synoptic conditioning (SC) forecast system is assessed

in a betting scenario in section 5.2.2.

5.2.1 Testbed ENSO-hurricane system

Models based on Poisson processes are considered the canonical method for an-

nual hurricane counts [46]. Let the hurricane system be defined by a stochastic

Poisson process with a mean parameter dependent on the ENSO phase φt so

that the seasonal hurricane count Yt is a Poisson-distributed random variable

expressed as either

Yt ∼











Pois(λA), if φt = A.

Pois(λB), if φt = B.

(5.1)

where the parameters λA and λB are the 1966-2012 means of hurricane counts

during events A (El Niño) andB (non-El Niño) respectively. Hence, the seasonal

CAT1-5 hurricane counts are distributed according to one of two probability

distributions PA or PB dependent on the ENSO phase.

5.2.2 Hurricane roulette

In this section, a conceptual framework for communicating forecast skill called

Hurricane Roulette [67] is defined. Hurricane Roulette is a betting scenario

where a betting client (the “punter”) the is offered odds by a cooperative insurer

(the “house”) defined by the unconditional climatological PDF pclim of annual

CAT1-5 hurricane counts at the start of each hurricane season. The client

places her bet by distributing all of her wealth (Kelly betting strategy [95]) on

6Latitude: 5◦N-5◦S, Longitude: 120◦W-170◦W [71]
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K possible annual hurricane count outcomes yk, k = 1, . . . , K over a number

of games (seasons) t = 1, . . . , N . The stake on each outcome is determined by

the client’s forecast PDF P which is conditioned on the ENSO phase φt. The

odds ot =
1

pclim(Yt)
against the actual outcome Yt set by the cooperative insurer

determines the client’s return, or pay-off, on each annual bet. Four important

assumptions are made in this betting scenario:

1. the client is motivated to maximise her wealth over N games of Hurricane

Roulette;

2. both the decision-maker and cooperative insurer possess perfect forecast

models which are calibrated with the same historical annual hurricane

count records, and these models are unmodified over N games;

3. the client only has access to a priori information about the forthcoming

peak season (ASO) ENSO phase at the time of each annual bet;

4. for simplicity, ENSO episodes are classified into two phases: El Niño (less-

active hurricane season) and non-El Niño (active hurricane season) so that

there are two conditional probability distributions.

Co-operative insurer

Consider two events A and B (representing El Niño and non-El Niño phases,

respectively) which are mutually exclusive (i.e. A ∩ B = ∅) and complete (i.e.

A∪B = S where S is the entire sample space). The unconditional climatological

probability distribution of seasonal hurricane counts pclim is a convex linear

combination of individual probability distributions relating to two mutually

exclusive and complete events so that

Pclim = αPA + βPB, (5.2)

where α and β are the probabilities that the cooperative insurer assigns to each

event A and B occurring, respectively. Considering that only the client has a
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priori information about the ASO phase, the best information available to the

cooperative insurer is the historical climatological frequencies of the El Niño

or non-El Niño episodes. The values computed from the Oceanic Niño Index

(ONI) data during the period 1966-2012 are α = 0.34 and β = 0.66.

Client

In the games of Hurricane Roulette, the client places her stake according to

one of the conditional distributions p(Y |A) and p(Y |B), which represent her

beliefs of the probabilities of hurricane number outcome Y occurring given either

the occurrence of event A (El Niño) or event B (non-El Niño), respectively.

Following Bröcker and Smith [26], conditional distributions p(Y |A) and p(Y |B)

can be expressed as

p(Y = y|A) = δPA(y) + (1− δ)Pclim(y), (5.3)

and

p(Y = y|B) = ǫPB(y) + (1− ǫ)Pclim(y), (5.4)

where δ and ǫ reflect the confidence that the client has in her a priori informa-

tion (i.e. how she weights the probabilities of events A and B occurring). These

linear combinations are akin to “linear pooling” as described in Section 2.4.1.

Hence, the client’s forecast system has been perfectly calibrated so, if she has

knowledge of the ENSO phase φt at the start of a hurricane season (i.e. δ = 1

and ǫ = 1), her probability forecast is perfect, that is pt(y) = P (y).

5.2.3 Forecast skill

Given that both the forecast models employed by the client and cooperative

insurer in this betting scenario are structurally correct, the only limitation on

issuing a perfect forecast pt(Y = y) = PA(y) at round, or “season”, t is in-

complete knowledge of the ENSO phase φt. The client relies on her a priori

information to determine her forecast PDF each season while the cooperative

insurer issues a time independent PDF.
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To assess the skill of the client’s forecast system, the expected ignorance of

her forecasts relative to the cooperative insurer’s climatological forecast model

after each season over the period 1966-2012 (i.e. N = 47) is evaluated. The

phase φt at each season is specified according to the historical ONI record while

the hurricane count is drawn at random from a Poisson distribution (see Section

5.2.1). The relative expected ignorance at each round of Hurricane Roulette is

given as

E[IGN ]t =























−
M
∑

j=0

PA(yj)log2

(

p(yj|A)
pclim(yj)

)

, if φt = A.

−
M
∑

j=0

PB(yj)log2

(

p(yj|B)

pclim(yj)

)

, if φt = B.

(5.5)

where M is the maximum hurricane count, and pclim is randomly selected ac-

cording to α and β.

There are two possible values of E[IGN ]t for each {δ, ǫ} pair depending on

the phase φt. Under the assumption that the client has perfect knowledge of

the occurrence of the ENSO events A and B, she is able to select precisely

from which distribution she should draw her forecast pt(Y = y). Suppose that

the rounds of Hurricane Roulette are played numerous times by independent

clients (i.e. in different simulations) with the same forecast system. Figure

5.2 shows the quantiles of expected ignorance of the 2048 clients’ probabilistic

forecasts overN = 47 rounds from 1966-2012 to show the distribution of possible

forecast skill. All quantiles lie on either E[IGN ] = −0.23 where φt = A or

E[IGN ] = −0.05 where φt = B since the client uses two forecasts PDFs and

the cooperative insurer uses a single forecast PDF. Hence, the client’s forecasts

have expected skill in both El Niño and non-El Niño years. In fact, even with

much lower confidence in her forecasts (e.g. δ = 0.4, ǫ = 0.7), the client still has

expected forecast skill. Clearly, more skill is gained in El Niño years because

the cooperative insurer puts less weight on PA than it does on PB.

Now consider the empirical skill of the client’s forecast system where sea-

sonal hurricane count outcomes yt are drawn at random. The empirical relative
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Figure 5.2: Expected skill of SC forecasts: the distribution of the expected relative ig-

norance of 2048 clients’ forecasts when betting against the cooperative insurer’s climatological

forecasts from 1966-2012 with parameters δ = ǫ = 1. The client’s forecasts consistently have

expected skill over the cooperative insurer’s forecasts. Note the collapse of all the isopleths

onto two different values, indicating either an El Niño or non-El Niño phase, contrasting with

Fig. 5.3.

ignorance at each betting round t is given as

IGNt =











−log2
(

pt(yt|A)
pclim(yt)

)

, if φt = A.

−log2
(

pt(yt|B)
pclim(yt)

)

, if φt = B,

(5.6)

where yt is the hurricane count outcome at time t. The relative ignorance of

the client’s forecasts with parameter values δ = ǫ = 1 is illustrated in Fig.

5.3. Clearly, there is more uncertainty in the skill of the 2048 clients’ forecasts

than the expected forecast skill shown in Fig. 5.2, due to sampling uncertainty

arising from the stochastic hurricane process. The median of IGN is consis-

tently negative over the whole time series. The client’s forecast system exhibits

superior forecast skill to the cooperative insurer’s climatological forecast sys-

tem as shown in Figs. 5.2 and 5.3, but the question is: whose forecast system

will emerge victorious in the game of Hurricane Roulette? The following section
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provides a novel demonstration of how the client’s profit and loss exhibits a par-

ticular symmetry with information theoretic skill measures such as ignorance,

and hence, how forecast skill can be equivalent to forecast value in this case.
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Figure 5.3: Empirical skill of SC forecasts: the distribution of the empirical relative

ignorance of 2048 clients’ forecasts when betting against cooperative insurer’s climatological

forecasts from 1966-2012 with parameters δ = 1 and ǫ = 1. The median is constantly negative

indicating that the skill of the majority of clients’ forecasts is greater than the cooperative

insurer.

5.2.4 Results of Hurricane Roulette

In the standard version of Hurricane Roulette, the client places Kelly bets [95]

(distributing her wealth proportionate to the probability she assigns to each

outcome); this will to maximise the expected growth rate of wealth. There

are other possible versions of Hurricane Roulette including different betting

scenarios, reflecting various players’ attitudes towards risk or profit targets [67].

Given an arbitrary initial investment c0, the cooperative insurer offers odds

ot =
1

pclim(yt)
at the start of each hurricane season so that the capital retained by

the client ct is the product of the odds and the client’s stake st on the seasonal
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hurricane count outcome yt, that is

ct = ot(yt)× st(yt) (5.7)

=
pt(yt)

pclim(yt)
× ct−1. (5.8)

Therefore, the client’s capital after each round t is simply her initial capital
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Figure 5.4: Client’s accumulation of wealth: the distribution of clients’ profit ct − c0

in rounds of Hurricane Roulette over the period 1966-2012 computed from 211 simulations.

90% of clients have profited within 50 years by betting on the synoptic conditioning forecast

system against the cooperative insurer’s climatological forecast.

multiplied by the ratio of her and the cooperative insurer’s forecast probabilities

at round t. Depending on the ENSO phase φt, this return ratio is defined by

ut =











p(yt|A)
pclim(yt)

, if φt = A.

p(yt|B)
pclim(yt)

, if φt = B.

(5.9)

The client’s capital ct is thus governed by the return ratio ut and the capital
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Figure 5.5: Client’s wealth: The distribution of clients’ return ratios u in rounds of

Hurricane Roulette over the period 1966-2012 computed from 211 simulations. The median

lies above the u = 1 line indicating that most clients have profited by betting on the synoptic

conditioning forecast system against the cooperative insurer’s climatological forecast. Also

given the log scale, the average (arithmetic mean) wealth of a punter is well above zero (i.e.

the house has also lost). The bumps reflect where forecast PDFs are sharper (i.e. El Niño

phases where the Poisson mean parameter λA is smaller) resulting in more extreme incidences

of forecast skill.

acquired in the previous round, that is

c1 = u1 × c0 (5.10)

...

ct = ut × ct−1 (5.11)

= ut × ut−1 × ct−2 (5.12)

= ut × ut−1 × . . .× u1 × c0 (5.13)

...

cN = uN × uN−1 × . . .× u1 × c0 (5.14)

= UN × c0, (5.15)
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where U is the geometric average of the client’s return ratio u after N rounds.

The standard version of Hurricane Roulette described above can be defined

in terms of the logarithmic ignorance score [67]. The growth rate G(N) of the

client’s capital over N rounds is the logarithm of the geometric return ratio

average U [209], that is

G(N) =
1

N
logU (5.16)

=
1

N
log

cN
c0
. (5.17)

The correspondence with relative ignorance (e.g. [172]) is evident in Eqn.

(5.17). Hence, the growth rate reflects a proper score (inasmuch as ignorance

is a proper score, see section 1.6). G(N) can be used to compare the relative

performance of two forecast systems. The numerical results of 2048 games (in-

dependent clients) of Hurricane Roulette from 1966-2012 are shown in Figs. 5.4

and 5.5.

5.3 Statistical inference with small-count data

Two properties of annual hurricane count data pose a challenge when making

statistical inferences of hurricane activity; one is that they are discrete, and

the other is that the counts tend to be low (there are approximately 6 Atlantic

basin CAT1-5 hurricanes each year on average). Standard Gaussian-based data-

analytic methods are not appropriate for small-count data analysis because

they are based on asymptotic theory which is only valid for large and evenly

distributed samples [2, 3]. There are number of specialised methods, however,

which can be employed; for example, “exact” inference is often considered for

estimating p-values and confidence intervals that does not require large samples

or values of the count variable [180]. In the context of hurricane count data

analysis, obtaining robust statistical inference is particularly challenging with

sub-categories of Atlantic basin hurricanes such as U.S. landfalls which have

even lower annual counts.
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Risk Management Solutions (RMS), a risk management consultancy, has

taken the approach of constructing a wide variety of statistical models to make

medium-term predictions of U.S. landfalls including varying baseline periods

and change-point analysis to account for changes in the underlying distribution

of U.S. landfall activity [83, 34]. One such method is to infer U.S. landfall

activity from predictions of Atlantic basin hurricanes [97], of which there is

naturally more available data, providing a stronger signal-to-noise ratio. The

signal-to-noise ratio effectively measures the relative strength of the signal and

corresponding noise for some quantity, and is given by

A2
s

A2
n

, (5.18)

where As is the amplitude of the signal (e.g. the rate (mean) of annual U.S.

landfall counts) and An is the amplitude of the noise (e.g. the variance of annual

U.S. landfall counts).

RMS models U.S. landfall rates based on the assumption that they have been

constant since 1948 [34, 202]. Inference of U.S. landfall counts using a constant

landfall fraction model is potentially limited, however, by the relatively small

historical counts of basin-wide hurricanes (the 1966-2012 average is 6.2 CAT1-5

hurricanes).

A simple experiment is now presented to illustrate the challenge for robust

statistical inference of U.S. landfall fractions. The standard statistical model for

fraction statistics is the binomial distribution [2]. Villarini et al. [208] employ

a binomial, or logistic, regression to model fractions of basin tropical cyclones

making landfall over the U.S. on predictors such as Atlantic SSTs. A binomial

model is used here to highlight the limitations imposed by small-count data

on statistical inference of a variable such as the U.S. landfall fraction. Let Y

denote a random variable representing the annual number of CAT1-5 Atlantic

basin hurricanes making landfall over the U.S., while π is the U.S. landfall

fraction rate computed for some historical period. Hence, under the binomial

assumption, Y ∼ B(n, π). Typically, approximate Wald confidence intervals are
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constructed for Y/m (i.e. the fraction of Y landfalls out of n annual Atlantic

basin hurricanes), is defined as

π̂k ± zα/2
√

(π̂k(1− π̂k)). (5.19)

zα/2 is the 1−α/2 quantile of the standard normal distribution. This confidence

interval suffers from poor probability coverage when sample sizes are small and

for parameter values π close to 0 or 1. A rule of thumb for the Wald interval

to perform well is that nπ ≥ 5 and n(1− π) ≥ 5.

The exact Clopper-Pearson confidence interval, constructed by inverting a

two-tailed binomial test, is considered a better alternative [3]. The upper and

lower limits of the Clopper-Pearson confidence interval, expressed as a function

of the parameters n and π, are given by

n
∑

Y=x

(

n

Y

)

πY
0 (1− πn−Y

0 ) = α/2, (5.20)

and
x
∑

Y=0

(

n

Y

)

πY
0 (1− πn−Y

0 ) = α/2. (5.21)

The Clopper-Pearson confidence interval defined by Eqns. (5.20) and (5.21)

can be used for statistical inference of U.S. landfall fractions by providing a

range of expected landfall counts for each Atlantic basin hurricane count cat-

egory. Figure 5.6 shows 95% Clopper-Pearson confidence intervals (α = 0.05)

computed for a range of Atlantic basin hurricane count categories for a given

parameter value π = 0.22 which represents the landfall fraction rate from 1966-

2012. The limitation of employing likelihood intervals to infer U.S. landfalls

from Atlantic basin hurricanes is evident in Fig. 5.6, particularly for smaller

basin count categories. The discreteness of the binomial distribution leads to

conservative confidence intervals (and higher probability of type II errors in hy-

pothesis tests) [3, 145]. The computed coverage probability can be much larger

than the nominal confidence interval unless n is very large.

The discretisation of U.S. landfall counts leads to conservative exact intervals

[3], thereby making precise estimates of landfall activity difficult to achieve
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Figure 5.6: Statistical inference of U.S. landfall fractions: 95% Clopper-Pearson

confidence intervals with parameter π = 0.22 estimated from the U.S. landfall fraction rate

over the period 1966-2012. ‘+’ symbols denote set of possible fractions for each landfall

count category. The lack of precision in the likelihood intervals demonstrates the limitation

of statistical inference with small count data.

with exact confidence intervals. In addition, the Clopper-Pearson confidence

intervals above are only applicable to a landfall fraction rate assumed constant

for all basin count categories. So, what of approximate confidence intervals for

U.S. landfall fraction estimates computed individually for each category from

the real hurricane data? The score confidence interval, provides probability

coverage close to nominal levels, even for smaller sample sizes [3]. The score-

test confidence interval is given by

(

π̂ +
z2α/2
2n

± zα/2
√

([π̂(1− π̂) + z2α/2/4n]/n)

)

/(1 + z2α/2/n). (5.22)

Figure 5.7 contains score confidence intervals constructed from the real hur-

ricane data for each basin count category. Evidently, the score confidence inter-

vals are more precise than the Clopper-Pearson confidence intervals on account
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of their design to provide probability coverage closer to the nominal level.
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Figure 5.7: Statistical inference of U.S. landfall fractions: 95% score confidence

intervals computed from 1966-2012 U.S. landfall fraction rate. ‘+’ symbols correspond to the

fractions for each landfall count category.

Several studies [208, 37, 101, 186] have taken the statistical modelling of

landfalling hurricanes to smaller spatial scales, and hence smaller U.S. landfall

fractions, by modelling the dependency of U.S. landfalls on sub-regions of the

U.S. coastline. The limitations on statistical inference imposed by small-count

data, however, are even more problematic for smaller subsets of Atlantic basin

hurricanes. One storm risk research institute, Risk Prediction Initiative (RPI),

hosts a seasonal hurricane forecast competition where entrants are invited to

submit probabilistic forecasts of seasonal U.S. landfalls (of various intensity

categories) at 6 coastal regions of the U.S. The competition was opened as an

initiative to standardise and compare the skill of forecasts issued by commercial,

academic, and amateur forecasts alike. Forecasters are asked to assign predic-

tive probabilities to each U.S. landfall outcome between 0 and 5, occurring in

each sub-region. Such predictions are affected by the limitations on statistical
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inference with small-count data discussed above, and, as a result, comparisons

of forecast skill are neither realistic nor informative.

5.4 Empirical conditional analogue hurricane

forecast system

A novel yet simple and computationally inexpensive approach to producing sea-

sonal hurricane forecasts based on an analogue forecasting technique [195, 200,

183] is presented in this section. Analogue forecasting (AF) has emerged from

the belief that weather patterns are self-repeating, and so, present initial con-

ditions, if observed to be similar to those in the past, are likely to evolve in

the same way. Studies of interannual and interdecadal variability of Atlantic

basin hurricane behaviour suggest that there may be periodic and self-repeating

patterns of hurricane activity [61, 31]. Analogue forecasting has a long history

in weather prediction owing to its directly empirical nature and straightfor-

ward application [195]. The continued improvement of dynamical models, and

requirement of sufficiently large datasets to achieve skilful analogue forecasts,

however, have confined its use to longer time scales [195, 200]. Nevertheless,

the analogue method has been shown to demonstrate some degree of skill by

limiting the geographical region for which forecasts are produced so that good

previous matches are more likely [200]. The same reasoning is followed in the

development of the Atlantic basin hurricane forecast methodology described

here given the relatively local scale of the main development region (MDR) [62]

where most hurricanes form.

In forecasting scenarios where the predictand is a continuous variable, the

selection of candidate analogues is made by, for example, measuring the correla-

tion [10, 12] between the current state sn and a previous state sm, or minimising

their Euclidean distance [195, 200], that is

d(sn, sm) = argmin
s∈R

||sn − sm||. (5.23)
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In the case of forecasting discrete predictands such as annual hurricane counts,

Euclidean distance metrics may not be necessary since it is entirely reasonable

to make sm = sn the selection criterion to find the best candidate analogues.

Consider an historical time series of Atlantic basin hurricane outcomes yt,

t = 1, . . . , N which is to be utilised to produce a forecast of the outcome yN+1.

In a simple version of 1-year lead time AF, analogues yA of the outcome yN

are located in the remaining subset so that the collection of analogue indices

(years) t = i is given by

IA := {i; yA = yN}. (5.24)

Given a 1-year lead time forecast, hurricane outcomes occurring in the subse-

quent years to those of the selected analogue outcomes, referred to as images

[12] of the analogues, are then collected from the remaining subset. So, if the

images are denoted yAI
i+1 then I

AI is the collection of years t = i+ 1 in the time

series for which all images of the selected analogues belong so that

IAI := {i+ 1; yA = yN}. (5.25)

Finally, histograms of the set of images yAI
i with indices IAI might then be

used to produce a point forecast by, for example, computing the mean or mode

from the histogram, or to produce a probabilistic forecast by translating the

histogram into a forecast PDF with, for example, a kernel dressing method.

The latter probabilistic method is referred to as Conditional Analogue (CA)

forecasting in this thesis, although it is based on the “Random Analogue Pre-

diction” method of Smith [183]. CA forecasting can be deployed for a single

observation analogue, but also for an ordered sequence of consecutive observa-

tions, called a series analogue. In addition, the analogue selection criteria time

window can be extended to beyond just one year preceding the year t = N +1,

as described in the simple example above, so as to sample more information

from the dataset7. Let the analogue selection criteria for a forecast for the year

t = N + 1 be a d element base vector of observations preceding the year t,

7it is perhaps intuitive that sampling more information from the historical dataset by

189



CHAPTER 5. HURRICANE FORECASTING

defined by yt−1 = {yt−1, . . . , yt−d} where d is the analogue window length. The

two analogue methods are now formally defined.

Single analogue method

To sample forecast information conditioned on the d hurricane outcomes pre-

ceding the year t = N +1 using the single analogue method, the following steps

are taken:

1. the base vector for the year t = N + 1 according to window length d is

defined as

yt−1 = {yt−1, . . . , yt−d} (5.26)

2. analogues yAi are located in the dataset according to the base vector yt

conditioned on each window length 1, . . . , d to obtain the sets of indices

IA1 := {i; yAi = yt−1,1} (5.27)

...

IAd := {i; yAi = yt−1,d} (5.28)

3. images yAI
i of the analogues yA are collected to build the sets of indices

IAI
1 := {i+ 1; yAi = yt−1,1} (5.29)

...

IAI
d := {i+ d; yAi = yt−1,d} (5.30)

4. the sets of indices IAI
1 , . . . , IAI

d are combined into one climatological dis-

tribution of hurricane outcome images for all selected analogues which

represents the raw conditional forecast information.

extending the analogue time window would lead to better calibrated forecasts but, of course,

this may be dependent on the memory (i.e. serial dependence of observations) of the hurricane

system.
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Series analogue method

The procedure for locating series analogues is similar to that of the single ana-

logue but requires that the analogue consists of the entire ordered series corre-

sponding to the base vector (i.e. d hurricane outcomes); for example, if d = 3

then the series yt−1 = {yt−1, yt−2, yt−3} must occur in the same order elsewhere

in the dataset to be considered an analogue. This method is based on the delay

reconstruction of chaotic dynamical systems [92]. The following steps are taken:

1. the base vector for the year t = N + 1 according to window length d is

defined as

yt−1,d = {yt−1, . . . , yt−d} (5.31)

2. series analogues yA
i are located in the dataset according to the base vector

yt conditioned on each window length 1, . . . , d to obtain the sets of indices

IA1 := {i;yA
i = yt−1,1} (5.32)

...

IAd := {i;yA
i = yt−1,{1,...,d}} (5.33)

3. images yAI
i of the series analogues yA

i are collected to build the sets of

indices

IAI
1 := {i+ 1;yA

i = yt−1,1} (5.34)

...

IAI
d := {i+ 1;yA

i = yt−1,{1,...,d}} (5.35)

4. the sets of indices IAI
1 , . . . , IAI

d are combined into one climatological distri-

bution of hurricane outcome images for all selected series analogues which

represents the raw conditional forecast information.

To clearly demonstrate and compare the single analogue and series analogue

methods, consider the following simple example: to construct a year ahead
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prediction of the 1990 season hurricane count from the 1950-1989 historical

dataset using both analogue methods and choosing a window length d = 3.

The base vector is y1989,3 = {y1989, y1988, y1987} = {7, 5, 3}. For the first year

(i.e. 1989) of the base vector, the single analogues (and series analogues, since

yAi = yA
i ) occur in previous years 1958, 1959, 1963, 1966, 1981, and 1985.

The images of the analogues in 1959, 1960, 1964, 1967, 1982 and 1986 are

then identified and collected, yielding yAI
i = {7, 4, 6, 6, 2, 4}. The procedure is

repeated for the years 1988 and 1987 according to steps 2 and 3 in the analogue

procedures defined above. All of the analogues and their images are listed in

table 5.1 for window length d = 3.

Table 5.1: Single and series analogue methods for forecast of the 1990 hurricane

season

Analogue Method

Single Series

Year Analogues Analogue images Analogues Analogue images

yAi yAI
i yA

i yAI
i

1989 7 7, 4, 6, 6, 2, 4 {7} 7, 4, 6, 6, 2, 4

1988 5 3, 5, 9, 4 {7, 5} 4

1987 3 4, 4, 6, 4 {7, 5, 3} 4

The sets of accumulated analogue images for window length d = 3 using the

single analogue and series analogue methods are

yAI
i = {7, 4, 6, 6, 2, 4, 3, 5, 9, 4, 4, 4, 6, 4}, (5.36)

and

{yAI
i } = {7, 4, 6, 6, 2, 4, 4, 4}, (5.37)

respectively. Hence, the single analogue method samples more information from

the dataset than the series analogue method. In fact, as a rule,

#IAI(single) ≥ #IAI(series), (5.38)
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since the likelihood of locating an ordered sequence is lower than locating a

single value. The series analogue, however, is designed to exploit serial depen-

dence in observations more effectively. At this point, conditional probability

forecasts p(y1990|y1989, y1988, y1987) could be constructed from histograms of the

collected analogue images listed in Eqns. (5.36) and (5.37). Given the small

sample of analogues, however, there is little information contained in the his-

tograms, a problematic issue when the available dataset is as small as the reliable

HURDAT hurricane archive. To address this limitation, several post-processing

techniques can be implemented to optimise the forecast including finding the

optimal window length dopt. These techniques are discussed in section 5.4.1.

Note that, for both the single and series analogue methods, duplicate years

may be accumulated up to d times if the base vector yt is coincidentally repeated

elsewhere in the historical dataset. Duplicated hurricane outcomes result in

more forecast probability mass being placed on self-repeating observed states

of a system. The strength of CA forecasting, like all analogue methods, lies

in its utilisation of self-repeating patterns in observations. If a target system

exhibits such patterns, sequences of observations may be expected to contain

information. This is the case with testbed hurricane system (see section 4.2)

which is used to evaluate the skill of the CA forecasting method later in section

5.4.2.

5.4.1 Probabilistic forecast construction with discrete data

Kernel density estimation is a nonparametric method of translating forecast en-

sembles (see section 1.8) into continuous PDFs [179, 26]. A different approach

is required when estimating probability mass on discrete variables. A histogram

is a straightforward and commonly used probability mass estimator [179] but

lacks smoothness, particularly if the number of data is limited. Aitchison and

Aitken [4] adapt the nonparametric approach to discrete multivariate binary

data using a “cubical binomial” kernel function. A more simple top-hat kernel
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density estimation approach has been developed and applied in this thesis. A

weight function w., similar to a kernel function, is used to determine the prob-

ability mass assigned to a discrete outcome yk, and its two adjacent outcomes

yk−1 and yk+1, respectively. The weight function defined on yk is given by

w0(yk) =
2κ+ 1

3
, κ ∈ [0, 1), (5.39)

while, defined on yk−1 and yk+1, it is given by

w−1(yk) =
1− w0

2
, (5.40)

and

w+1(yk) =
1− w0

2
. (5.41)

Like other kernel estimators, the bandwidth, or smoothing parameter, κ controls

the “spread” of the symmetric weights; 0 indicates a uniform distribution on

{yk−1, yk, yk+1}, and 1 indicates 100% weight on the central outcome yk. In

addition, the weight function satisfies the condition

1
∑

j=−1

wj(yk) = 1. (5.42)

The main difference between the top-hat weight (THW) function and standard

kernel functions is that the THW function only determines the weights placed

on existing histogram probability mass or relative frequencies rather than acting

purely as probability mass estimator. Therefore, the probability mass assigned

to outcome, yk, is

p̂κ(yk) = w−1p(yk−1) + w0p(yk) + w+1p(yk+1). (5.43)

As with other kernel density estimation methods, the choice of the bandwidth

κ is crucial to obtain accurate estimates of the true p, it such a thing exists,

and hence, to construct skilful forecasts. A sensible approach to optimising κ

is to minimise some cost function such as a scoring rule

(κ̂) := argmin
κ

− 1

N

N
∑

t=1

S(p(yi; κ)). (5.44)
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The optimisation step has been executed out-of-sample [4] with either a training

set of forecast-outcome pairs or K-fold cross-validation (CV) [69] (see 1.8).

Two additional steps have been performed when deploying the THW method

to address the finite range of the kernel weights and to account for counting

statistics:

1. a finite probability of 1
N+1

is placed on outcomes lying outside the range

of the raw histogram i.e. p(yk < ymin = 1
N+1

) and p(yk > ymax = 1
N+1

).

1
N+1

represents the probability of a missing outcome occurring once less

than an outcome occurring just once, having probability p(yk) =
1
N
;

2. if there are hurricane number bins where p(yk) = 0 after kernel dressing

then a probability mass of 1
N+1

is distributed across all kernel dressed bins

and then all bin probabilities are normalised to form the pdf

After kernel dressing with the THW method, all probabilities are normalised to

retain a probabilistic forecast PDF [67], that is

K
∑

k=1

p̂κ(yk) = 1. (5.45)

Normalisation consists of re-scaling probabilities p(yk) with the sum of the pre-

normalised total such that

p(yk) =
p(yk)

K
∑

k=1

p(yk)

. (5.46)

The final step in the histogram post-processing procedure is to blend (see sec-

tion 1.8) the normalised forecast PDF with the unconditional climatological

hurricane outcome distribution to ensure that it performs at least as well as

a climatological forecast. The blending parameter α controls the weighting

between the forecast p and climatology pclim to produce a “final” forecasting

probability given by

p(y) = α× p(y) + (1− α)× pclim(y), (5.47)
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where α ∈ [0, 1].

All of the parameters of the CA forecast system κ, α, and d can be optimised

by minimising a scoring rule over a training set of forecast-outcome pairs for

the given range of parameter values (i.e. d = 1, . . . , D, κ ∈ [0, 1), α ∈ [0, 1]).

An example of a simple iterative algorithm to find precise optimal values of a

single parameter (i.e. κ or α) is given in Algorithm 1 where the parameter is

denoted by θ.

Algorithm 1 can be modified to optimise both κ and α concurrently by

inserting a second loop, and is executed for a range of values of d to find the op-

timal window length dopt. The three optimised parameters can then be plugged

into

p̂t+1(y|κopt, αopt, dopt) = αopt × pκopt
(y|dopt) + (1− αopt)× pclim(y), (5.48)

to produce a year ahead hurricane forecast. The quality of the forecast is de-

pendent on the size of the training set. The CA forecast system is calibrated

and evaluated in section 5.4.2 with large datasets of synthetic hurricane data,

ensuring a well-calibrated forecast model. In real world hurricane forecasting,

the reliable historical record is limited in size, but still may show skill rela-

tive to climatology if hurricane activity exhibits repeating patterns. A testbed

hurricane system with periodic behaviour is defined in the next section to eval-

uate the CA forecast system. In addition, a Bayesian forecast model which is

designed to exploit such periodic behaviour is also introduced, and used as a

benchmark model to evaluate the relative skill of the CA forecast system (see

section 5.4.2).

5.4.2 Assessing the skill of the conditional analogue fore-

cast system

Consider the testbed hurricane system which was introduced in section 4.3 to

simulate annual CAT1-5 hurricane counts. The number of storms in a given
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Algorithm 1: Forecast parameter θ optimisation

1: ǫ = c // set step value ǫ

Ensure: θmin ≤ θopt ≤ θmax // set bounds on θ

2: θL = θmin

3: θU = θmax

4: for k = 1 to L do

5: ǫi =
ǫ

10i−1

6: θtest = {θL, θL + ǫi, θL + 2ǫi, . . . , θU} // create array of test values

7: M = length(θtest)

8:

9: for j = 1 to M do

10: for i = 1 to N do

11: IGNi,j = −log2(pθj (Yi))

12: end for

13: ÎGN j =
1
N

N
∑

i=1

IGNi,j

14: end for

15:

16: I = which(ÎGN j = min(ÎGN j))

17: θopt = θI

18:

19: if θopt − ǫi > θmin then

20: θL = θopt − ǫi

21: else

22: θL = θmin

23: end if

24: if θopt + ǫi < θmax then

25: θU = θopt + ǫi

26: else

27: θU = θmax

28: end if

29: end for

30: return θopt
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year is drawn randomly from a Poisson distribution with a time-dependent mean

parameter, λ(t), which follows a sinusoidal cycle over time to simulate observed

patterns of hurricane behaviour [31, 61, 98] in the Atlantic basin. Hence, if Yt

is a hurricane number at year t then

Yt ∼ Pois(λ(t)), (5.49)

where

λ(t) = Asin

(

2π(t+ φ0)

Tp

)

+ yc, (5.50)

where A is the amplitude, yc is the count offset, Tp is the period, and φ0 is the

initial phase of the oscillatory system. The unconditional climatological forecast

used to measure zero skill is constructed by taking the sum of the system PDFs

over all phases φ of the sinusoidal oscillation i.e. if pφ(y) is the probability

according to the system Poisson distribution, then

pclim(yk) =
1

Tp

Tp
∑

φ=1

pφ(yk). (5.51)

The climatological forecast is used in the blending stage of producing a forecast

PDF with the CA forecast method (see 5.4.1). Figure 5.8 displays an example

of a time series of synthetic storm counts generated from the testbed hurricane

system.

A Bayesian Hurricane Forecast Model

Given prior knowledge of the underlying periodic behaviour of the testbed hurri-

cane system it is possible to construct a Bayesian model to produce benchmark

forecasts. The standard Bayesian approach is to condition a probabilities of

future unknown events (posterior) on information that is known so that

posterior ∝ likelihood × prior. (5.52)

Consider that a Bayesian forecaster employs an imperfect hurricane forecast

model to make predictions of hurricane counts at year t but knows that the
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Figure 5.8: Atlantic basin hurricane counts: Example 50 year time series of synthetic

CAT1-5 Atlantic basin hurricane counts. The mean (dashed line) corresponds to the real-

world dataset average, and the solids line represents the 5-year running mean.

hurricane system has observes a periodic cycle with phases φ ∈ {1, 2, ..., Tp}.
Let the imperfect forecast model be defined by a squared Gaussian distribution.

That is, if V represents a random variable drawn from this distribution, then

V ∼ N (µ, σ2), (5.53)

then

X = ⌊V 2 + 0.5⌋, (5.54)

where X represents the number of annually forecast hurricanes and ⌊·⌋ is the

floor function. The model parameters µ and σ have been fitted to each of the Tp

phases of the hurricane system’s cycle by minimising the relative entropy (see

section 2.5) of the forecast PDF p and the true PDF q, that is

(µ̂, σ̂)φ := arg min
µ,σ

−qφ(yk)
K
∑

k=0

log2

(

pφ(yk)

qφ(yk)

)

, (5.55)
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where qφ(yk) and pφ(yk) are the true and forecast probabilities respectively of

the kth outcome occurring at phase φ. The Bayesian forecaster selects her prior

belief of a hurricane outcome yk occurring as the unconditional forecast mass

p(yk), and the likelihood function as p(φ|yk) so that the posterior probability

on hurricane outcomes yk given phase φ is expressed as

p(yk|φ) =
p(φ|yk)× p(yk)

1/Tp
, (5.56)

where 1/Tp represents the unconditional probability of the hurricane system

having phase φ at any given time t.
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Figure 5.9: Forecast skill of CA forecasts: Ignorance scores computed for three training

sets of single (red lines line) and series (blue lines) analogue forecasts at increasing window

lengths. The score minima are shown for both the single (plus) and series analogue methods

(cross). The single and series analogue methods both demonstrate skill relative to climatology,

and better than the Bayesian forecast (green line), but are outperformed by the perfect model

forecast (brown line).
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CA forecast training and evaluation

To perform a robust calibration of the CA forecasts, three training sets of

N = 212 synthetic annual hurricane counts are drawn with the initial phase

φ0 selected at random. The other parameter values are set to A = 2.5, Tp = 24,

and yc = 6. The performance of the calibrated CA forecasts is then evaluated

with ignorance relative to the climatological forecast pclim with a further evalu-

ation set of size N = 211, and compared with the performance of the Bayesian

model and a perfect model. Figure 5.9 shows the results of the evaluation stage.

The single and series analogue forecast systems exhibit comparable skill which

is superior to both the climatological forecast and the Bayesian forecast model,

although they are, not surprisingly, less skilful than the perfect forecast model.

The single analogue forecast system has maximum skill at window length of

d = 2 years, but its skill evidently deteriorates with increase in window length,

and is outperformed by the series analogue forecast system at longer window

lengths. The series analogue forecast system performs consistently well across

window lengths and has maximum skill at d = 3 years.

5.5 Forecast skill and forecast value

Establishing statistical confidence in results from data analysis is important

for climate scientists aiming to detect temporal climate trends, and equally for

forecasters who wish to prove that their forecast system has reliable skill. Prov-

ing out-of-sample skill of an annual hurricane forecast system is unrealistic on

less than decadal timescales, however, because of the slow rate at which new

evaluation information is collected. These timescales are too lengthy for those

decision-makers who operate on the same timescales as the forecast lead times

[116]. The temporal limitation on proof of skill has led to the belief that hur-

ricane forecast information is of little economic value for decision-makers, and

that baseline climatological expectations are a better predictive tool until the
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skill of forecast systems can be established [156]. Such a belief stems from a

confusion of skill with value, however, often coupled with the use of näıve sta-

tistical tests. While, of course, the degree of statistical uncertainty increases

with decrease in sample size (time duration) [85, 18], it is shown in this thesis

that there is a fundamental difference between the skill of a forecast and its

value. Hurricane counts appear to reflect slowly changing hydro-meteorological

conditions (e.g. the AMO), and the evaluation of both skill and value is com-

plicated by long timescales. It is shown in this section, however, that these

factors do not compel a risk tolerant decision maker to wait decades until skill

is “proven”. Forecasts may well have statistical skill without adding any value

for decision-makers. At the same time, imperfect forecast systems can possess

non-trivial value long before one might establish that their skill was statistically

significant. The concept of profiting before proving forecast skill is explained

and demonstrated in this section.

Relatively little consideration has been given to measuring the economic

value of forecasts in particular, however, because of the complex, multi-disciplinary

nature of the task [54, 94, 112, 193]. In addition to meteorology, the fields of

economics, psychology, statistics, management science, and operations research

are all relevant when evaluating forecast value. A detailed investigation of fore-

cast value is beyond the scope of this thesis although the relationship between

forecast skill and forecast value is discussed in section 5.5.3.

The evaluation and comparison of forecast skill and value in this section is

framed in a betting scenario, referred to as the “Swindled Statistician Scam” [79],

which unfolds as follows: a wily underwriter approaches a statistician with a

business deal. The statistician will produce a probability forecast of the number

of CAT1-5 Atlantic basin hurricanes in the coming year, and the underwriter

will use her market contacts to bet on the forecast. As soon as the statistician

can prove the forecast really does have skill, the underwriter will pay royalties.

Will this leave the statistician swindled out of a small fortune?

Recall the testbed hurricane system based on a stochastic Poisson process
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defined in Eqn. (5.50), and the imperfect forecast model of that system defined

in Eqns. (5.53) and (5.54) in section 5.4.2 to generate synthetic datasets of

storm counts. The system parameter values are set to the same values used in

section 5.4.2 (i.e. A = 2.5, Tp = 24, and yc = 6) along with a random selection

of the initial phase φ0.
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Figure 5.10: System, forecast, and climatology: probability distributions for the system

(black), and an imperfect model (green) for phase year φ = 12 of the 24 year cycle. The

climatological PDF (computed over all values of φ) is also shown in blue. The imperfect

model PDF appears is a better fit than the climatological PDF with respect to the difference

between the expected ignorance of the two (i.e. E[IGNfcst]− E[IGNclim] = −0.11).

The model parameters µ and σ are, as before, fitted to each of the Tp =

24 phases of the hurricane system’s cycle8 by minimising relative entropy of

the forecast PDF p and the true PDF q. An example, showing q, p, and the

8There is a variety of proposed values for hurricane cycles in reality [61, 31]. The demon-

stration here holds for any value of Tp & 8.
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climatological PDF (equally-weighted sum of the 24 system phase PDFs) at

phase φ = 12 is illustrated in Figure 5.10. A Monte Carlo approach is adopted

to compare the outcomes of “waiting” or “betting”. Firstly, the performance

of the imperfect hurricane forecast model is assessed, and the duration of time

required to attain statistically significant forecast skill from 211 simulations

utilising standard hypothesis testing (p-values) is measured. Following that,

the value of the forecast model is assessed in N games of Hurricane Roulette,

where the imperfect (but time dependent) model probabilities are used to place

bets against odds set by the cooperative insurer using the correct (but not time

dependent) climatological probability distribution. The results can be reported

in either bits of information or as an expected annual return (see Hagedorn and

Smith [67]).

5.5.1 Time to forecast skill

Jolliffe ([85]) discusses the importance of including statistical uncertainty in

forecast verification through the use of confidence intervals and hypothesis test-

ing. Attempts to quantify uncertainty in forecast skill statistics are hindered,

however, when there is only a small amount of available evaluation data. Wilks

[215], Jolliffe and Stephenson [86], Bradley et al [18] and Seaman et al [177]

all discuss the limitations imposed by small data samples on forecast evalua-

tion which cause large sampling variability, and hence statistical uncertainty

in empirical measures of forecast skill. Recall from section 1.6 that the fore-

cast evaluation problem is a distributions-oriented approach [142] where the

correspondence between forecasts and outcomes is modelled explicitly by their

joint distribution. Higher dimensionality in the joint distribution of forecasts

and outcomes (i.e. the range of possible forecast values is large) (see Murphy

[134]) results in further increased sampling variability, and hence, increased du-

ration of time to prove forecast skill. Confidence intervals and null hypothesis

significance tests (NHST) are commonly used to detect statistical significance
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of forecast skill, but are based on the assumption of independence in forecast-

outcome pairs (see chapter 4), asymptotic normality of the sample score, and

do not perform well for small sample sizes (Agresti, [3]; Jolliffe, [85]). Although

other options for small samples exist (e.g. nonparametric bootstrap intervals,

Bayesian intervals), the standard hypothesis test is employed here because the

likelihood of rejection is (erroneously) higher than other methods (see Nicholls

[146] for a critique of hypothesis tests), and can therefore be used to demonstrate

the minimum duration of time required to prove forecast skill.

The duration of time required for the statistician to skill of his hurricane

forecast system is now assessed using relative ignorance (IGN) and the Pearson

linear correlation coefficient, denoted r, which is defined as

r =

N
∑

i=1

(Xi − X̄)(Yi − Ȳ )

√

√

√

√

N
∑

i=1

(Xi − X̄)2

√

√

√

√

N
∑

i=1

(Yi − Ȳ )2

, (5.57)

where X denotes either the mean or median probability forecast, and Y is

the annual hurricane outcome. A comparison is also made between statistical

inference with these two different scoring rules.

Figure 5.11 illustrates the distributions of p-values resulting from hypothe-

sis tests H1 : IGN < 0.0 with increasing sample size (numbers of years) after

N = 211 forecast evaluation simulations (or independent statisticians). It is

evident that to establish statistically significant forecast skill (at the 95% level;

p-value=0.05) would take 64 years for ∼ 91% of independent statisticians in the

case of the correlated time-series. The effects of serial dependence on skill score

sample statistics (see chapter 4) imply that an even longer duration of time

would be required to prove the statistical significance of the forecast skill than

indicated by the results of the former case. Bootstraps of forecast-outcome pairs

can easily be used to demonstrate longer time durations under serial indepen-

dence (not shown). The time durations required to establish forecast skill using

linear correlations are even longer. Statistical significance is attained by 96%
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Figure 5.11: Time to forecast skill: Distribution of forecast skill p-values (H1 : IGN < 0)

of 211 independent statisticians (simulations) as evaluated with IGN (top) and r (bottom).

91% of the statisticians have established statistically significant skill (p-value ≤ 0.05) by 64

years with IGN while 78% have established statistically significant skill using rmean.

of independent statisticians using mean forecasts after 64 years with hypothesis

H1 : r > 0.3, and 78% using mean forecasts after 64 years with hypothesis

H1 : r > 0.4 (r = 0.4 is considered to be a minimum value of skill for Atlantic

basin hurricanes, and by Owens and Landsea [149]). Table 5.2 summarises the
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results are almost identical for the use of median forecasts. It is also noteworthy

that the p-values are mostly larger and have a wider spread at the smallest sam-

ple sizes (time duration) (< 26 years) - especially with H1 : r > 0.4, compared

to the relative ignorance results. The larger sampling uncertainty highlights

the limitation of using linear correlations as a skill measure on these shorter

timescales (this is discussed in section 5.5.2).

Table 5.2: Hypothesis tests of forecast skill

Score H : 1 p-value %age after

64 years 128 years

Relative

ignorance IGN < 0 0.05 ∼ 91% ∼ 99%

Linear corr

(forecast mean) rmean > 0.3 0.05 ∼ 96% ∼ 99%

Linear corr

(forecast mean) rmean > 0.4 0.05 ∼ 78% ∼ 97%

5.5.2 Time to forecast value

The time duration required to demonstrate the value of the hurricane forecast

system is now investigated in the Hurricane Roulette scenario, and then com-

pared with the time to establish its skill as estimated in the previous section.

The concept of “time to value” has been conceived in this thesis. Recall the

scenario where the underwriter has agreed to pay royalties to the statistician

once he has demonstrated statistical significance of the skill of his hurricane

forecasts while she uses them to place bets on the outcomes of each hurricane

season in a game of Hurricane Roulette (see section 5.2). Hurricane Roulette is

recapitulated here as follows: at the start of each annual hurricane season the

underwriter is offered odds defined by the climatology PDF. She then places

her bet by distributing all of her current wealth (see Kelly betting strategy [95])

according to the forecast probabilities assigned to K possible annual hurricane
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count outcomes yk, k = 1, . . . , K. The actual hurricane outcome determines

the pay-off on each annual bet.
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Figure 5.12: Time to forecast value: Percentage of 211 independent underwriters ex-

pected to make a profit with time when betting against climatology using the imperfect model

in a game of hurricane roulette (main plot), and frequency distribution of underwriters’ wealth

with time (inset plot). 99% of underwriters make a profit by 35 years, much earlier than the

time for 99% of the statisticians to prove the skill of the forecast system (> 100 years for

IGN).

The results of the Monte Carlo simulations of Hurricane Roulette are illus-

trated in Fig. 5.12. The percentage of 211 independent underwriters who are

likely to profit, and the frequency distribution of their wealth over time indicate

that the underwriter is very likely to have made a non-trivial profit before two

system cycles (i.e. 48 years) have even completed (NB: the initial phase, φ0,

is selected at random for each simulation to avoid bias). A comparison of the

distributions of p-values in Fig. 5.11 to Fig. 5.12 reveals that the underwriter

is highly likely to profit by betting on the statistician’s hurricane forecast sys-

tem before he is capable of proving the statistical significance of its skill using

NHSTs.
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5.5.3 Relationship between forecast skill and forecast value

A clear distinction between forecast skill and forecast value has been made in the

previous sections, but is it actually possible to precisely quantify the relationship

between the two metrics? Studies invariably conclude that the relationship is

often complex [84, 171, 170]. For example, Richardson [170] found that an

ensemble prediction system (EPS) which demonstrated little skill could still be

of value to some users, and that there is more sensitivity in value (to increase in

forecast ensemble size) than skill. Still, by comparing the results of the previous

two sections, the intention is to provide guidelines here for using forecast scoring

rules, and the relevance of their properties for forecast utility or value.

Figure 5.13 shows scatterplots of both estimates of wealth and relative ig-

norance (u and IGN) outcomes from 211 Monte Carlo simulations of Hurricane

Roulette. The strong degree of correspondence between ignorance and betting

returns is evident, and is reflective of the fact that the Kelly betting variant of

Hurricane Roulette is, like ignorance, proper [25]. Conversely, the relationship

between forecast mean-outcome linear correlations rmean and wealth exhibits a

positive relationship, but there is more uncertainty than in the IGN plot. In

fact, the relationship is not monotonically positive indicating that linear cor-

relation coefficient cannot be considered a proper measure of forecast quality.

There is no general answer to the question of whether a skilful forecast can be

expected to be of value in application unless the quantities being forecast are

based on the particular actions being taken.

5.6 Forward view and conclusions

A number of challenges posed by limited historical datasets and small-count

data for forecasters aiming to make accurate predictions of hurricanes (or indeed

other small-count predictands) have been discussed in detail in this chapter.

These include the limitations on statistical inference with small-count data, the
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Figure 5.13: Bettor’s wealth: Scatter plot of wealth vs ignorance (top) and wealth

vs forecast mean-verification correlations (bottom) for 211 underwriters who bet using the

imperfect hurricane forecast model over different time windows. The vertical dotted line

shows the threshold of relative skill (better than climatology) while the horizontal dotted line

indicates the profit line. The relationship between IGN and wealth is strictly monotonic while

the relationship between linear correlation r and wealth is not, highlighting the importance

of employing proper scoring rules. NB: the x-axis in the top plot is negatively orientated.

difficulty in proving forecast skill with limited data that are collected at a slow

rate, and deciding whether to utilise forecast information which lacks statistical

confidence, but is potentially valuable.

Two novel univariate and bivariate statistical predictive techniques to exploit
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the reliable data record have been proposed while best practices for robust

forecast construction and evaluation have also been examined in depth. This

research forms a part of the statistical framework for best-practice forecast

construction, recalibration and evaluation proposed in this thesis. Firstly, a

synoptic conditioning (SC) hurricane forecast system is described for the first

time where forecast probabilities of hurricane count outcomes are conditioned on

the El Niño-Southern Oscillation (ENSO), an index of periodic tropical Pacific

SSTs and sea level air pressure. The influence of the El Niño phenomenon on

tropical cyclone variability is well documented, and is considered an important

predictor for seasonal hurricane predictions. The potential skill and value of

the SC forecast system have been demonstrated in a Hurricane Roulette [67]

betting scenario.

A second new forecast system for annual hurricane count predictions based

on a univariate analogue forecasting has also been described. This technique

is predicated on the basis that interannual and interdecadal hurricane activ-

ity exhibits periodic cycles. Both a single and series analogue method have

been formulated where single or series of occurrences are found in the histori-

cal hurricane record to construct histograms and construct conditional forecast

probability distributions. A novel top-hat kernel density estimation method

has been introduced to smooth the constructed forecast PDFs, which are also

blended with the climatological distribution to optimise the skill of the forecast

PDF. Evaluation of forecasts produced of synthetic annual hurricane counts has

shown that the forecast has higher skill than both a Bayesian forecast and the

climatological forecast.

Insights into the limitations on making accurate predictions of hurricane

counts with small-count data using conventional statistical inference have also

been discussed. Skilful statistical forecasts of counts of annual hurricanes which

make landfall over the North American coastline would be of tremendous value

to the (re)insurance industry and government agencies. Given the small counts

of this category of hurricanes, however, arriving at robust predictions through
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statistical analysis is very difficult.

The relationship between forecast skill and forecast value has been examined

with key distinctions illustrated in a “profit before proof” betting scenario. The

“swindled statistician scam” demonstration is based on the assumptions that

the statistician has constructed a skilful forecast system, and is not incentivised

to do otherwise. The key purpose of the demonstration is to show that forecast

skill and forecast value need not be confused. The results of the wealth and

skill scatterplots in Section 5.5.3 indicate that there is an increasing monotonic

relationship between the ignorance score and the profit made in a game of

roulette (see Hagedorn and Smith [67]); which is not so evident in the wealth-

linear correlation results. The predictive intervals in the wealth-correlation

plots at all time windows are significantly larger than the wealth-ignorance

scatterplots. This indicates that linear correlations are a less precise measure

of the value of a forecast in the hurricane roulette/ Kelly betting scenario.

The relationship between the two forecast evaluation measures is evident which

shows that there exists a weaker trend at shorter time windows, and further

reflects the unreliability of linear correlations as a corresponding evaluation of

capital gain in the case of hurricane roulette.

The following are novel contributions or innovations in this chapter:

• formulation and evaluation of a new statistical conditioning hurricane fore-

cast system utilising information about environmental conditions

• investigation of implications for statistical inference of U.S. landfall pre-

dictions where storm counts are small, and data are sparse

• formulation and evaluation of a new statistical empirical conditional ana-

logue hurricane forecast system using temporal single and series analogues

• development and implementation of a novel top-hat kernel dressing method

designed for forecast PDF smoothing with count data
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• examination of the relationship between forecast skill and forecast value

in an evaluation/betting scenario
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Chapter 6

Evaluation and Reinterpretation

of Atlantic Basin Tropical

Cyclone Forecasts: 2012 Season

Chapters 2 and 3 have explored the evaluation and recalibration of binary fore-

casts in the context of a low-dimensional nonlinear dynamical system where it

was concluded that forecast recalibration provides a straightforward and com-

putationally cheap option for improving forecast quality. In this chapter, that

forecast evaluation and recalibration framework is deployed for the first time in

a novel real-world hurricane forecasting case study.

The subject of the evaluation/recalibration case-study in this chapter is

the National Hurricane Center’s (NHC) 48-hour tropical cyclone genesis binary

forecasts from the 2012 hurricane season. The reliability of the NHC tropical

cyclone genesis forecasts is assessed in Section 6.2 using reliability diagrams

with consistency bars. Although reliability diagrams are published annually by

the NHC to monitor the performance of its tropical cyclone genesis forecast

system, it is argued that they are not in format which clearly quantifies forecast

reliability. The performance of the 2012 NHC tropical cyclone (TC) genesis

is reinterpreted here using reliability diagrams with consistency bars and on
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probability paper to account for sampling uncertainty. The forecast system is

shown to be mostly reliable over the 2012 season with some margin for im-

provement at several forecast probability categories. In Section 6.3, forecast

recalibration is applied to the 2012 NHC TC forecasts (for the first time to the

author’s knowledge) to investigate whether or not it improves their reliability.

Forecast recalibration evaluated in-sample is effectively meaningless. Hence,

recalibration of the NHC TC forecasts is considered truly out of sample using

the equivalent forecasts from the 2011 hurricane season as the training set, and

via leave-one-out cross-validation [155]. It is shown that the reliability of the

2012 forecasts is decreased when calibrated with the 2011 forecasts, while it

arguably increases when calibrated with the leave-one-out scheme. The relative

improvement using the latter approach is attributable to the fact that the train-

ing and evaluation data are sourced from the same dataset (i.e. year), avoiding

year-to-year variability in the joint forecast-outcome distribution.

In Section 6.4, an important characteristic of the NHC TC genesis forecasts

which complicates the interpretation of forecast reliability is identified and in-

vestigated. The actual time duration between forecast and tropical cyclone

formation, or “Time Until Event”, varies between forecasts issued during the

2012 hurricane season. Given that forecasts are issued sequentially while a spe-

cific weather disturbance is tracked, the Time Until Event naturally decreases

as the time of forecast issuance approaches the time at which that disturbance

develops into a tropical cyclone. Consequently, there is a bias of reliability

towards forecasts with shorter times until event. This concept has not been

previously reported in the literature. The relationship between the Time Un-

til Event and forecast probability category of the 2012 NHC TC forecasts is

investigated, leading to an innovative proposal of diagrams to be included as

supplementary to reliability diagrams in varying Time Until Event scenarios.

After the provision of technical background on NHC tropical cyclone genesis

forecasts in Section 6.1, the remaining chapters contain the following new con-

tributions: Section 6.2 presents an evaluation of the NHC TC genesis forecasts
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from the 2012 hurricane season using reliability diagrams with consistency bars

and on probability paper. These forecasts are then recalibrated for the first

time in Section 6.3 by deploying the simple translation algorithm described in

Chapter 2 using TC genesis forecast-outcome data from 2011 and leave-one-out

cross-validation. Section 6.4 presents an investigation of variation in the Time

Until Event of the NHC TC forecasts which has not been previously accounted

for when assessing their reliability. Useful supplementary information for relia-

bility diagrams is proposed for forecasting scenarios where Time Until Event is

applicable.

6.1 NHC tropical cyclone genesis forecast overview

Throughout each hurricane season, the U.S. National Hurricane Center (NHC)

publishes regular “Tropical Weather Outlooks” which report on significant re-

gions of disturbed weather in the Atlantic basin, and their likelihood of de-

velopment within two days. The outlooks include probabilistic forecasts of the

development of these regions into tropical cyclones out to 48 hours as part of the

NHC’s operational remit [175]. The forecasts are subjective insofar as a duty

forecaster assigns a probability of tropical cyclone genesis using observational

data, objective reanalysis and global dynamical model output as guidance; the

forecaster signs off on each forecast.

Every 6 hours during the Atlantic basin hurricane season, the NHC is-

sues probability forecasts of the transition of a region of disturbed weather

into a tropical cyclone (TC) up to 48 hours ahead. “Tropical Weather Out-

looks” (TWO)1, consist of a text forecast and a web display of satellite images,

1TWOs are issued at 2:00 AM EDT, 8:00 AM EDT, 2:00 PM EDT, 8:00 PM EDT and 1:00

AM EST, 7:00 AM EST, 1:00 PM EST, and 7:00 PM EST during the Atlantic hurricane season

from June 1st until November 30th. “Special TWOs” are occasionally issued at asynoptic

times if important changes to weather disturbances occur since the previous issuance (these

are not included in this forecast evaluation exercise)
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and are published daily on the NOAA website2. See Fig. 6.1 for an example of a

“Graphical Tropical Weather Outlook” image. Developing regions of disturbed

weather are circled and given a colour-coded probability of development into

a tropical cyclone (cyclogenesis) within 48 hours. Probabilities below 30% are

coloured yellow, 30−50% are coloured orange, and above 50% are coloured red.

Each region is tracked for as long as there is a considered likelihood of cyclo-

genesis, and a probability forecast is issued up to every 6 hours. If a specific

region develops into a tropical cyclone then it is assigned a pictorial symbol

denoting its current classification of intensity. A tropical depression (a trop-

ical cyclone with maximum sustained winds of 38 mph or less) is assigned a

red-coloured symbol resembling a “L×”. If the cyclone develops further into a

tropical storm (a tropical cyclone with maximum sustained winds of 39 to 73

mph) then a red-coloured vortex-shaped symbol with an unfilled centre is as-

signed. Finally, to denote the cyclone’s development into a hurricane (a tropical

cyclone with maximum sustained winds of 74 mph or higher), a red-coloured,

filled vortex-shaped symbol is used. The sequence of symbol assignment for

each forecast does not necessarily occur in this strict progressive order since

a tropical cyclone may develop rapidly within the 6-hour period in between

forecasts, and one or more stages may be skipped in the process. Probability

forecasts are also issued during the process of dissipation of the cyclone (cyclol-

ysis) if it is judged that a secondary cyclone may subsequently develop within

48 hours. In this case, the secondary cyclone is considered to be a separate

event occurrence to the first one. Tropical cyclone genesis forecasts are issued

“ad hoc” by a human forecaster (using model output and observational data

as guidance http://www.nhc.noaa.gov/about gtwo5.shtml?) generally in 10%

probability increments (i.e. 10%, 20%, 30%,...). Each probability increment can

be considered an individual forecast probability category. In the cases where 0%

probabilities are denoted on a graphical TWO, however, a “near-zero” probabil-

2details are provided at http://www.nhc.noaa.gov/aboutgtwo.shtml? and

http://www.nhc.noaa.gov/archive/gtwo/atl/latest
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Figure 6.1: NHC Graphical Tropical Weather Outlook 2nd October 2012: an

example of a graphical TWO issued by the NHC consisting of a satellite image containing

symbols which indicate both regions of disturbed weather (circled area), and already formed

tropical cyclones (red vortex symbol labelled “NADINE”).

ity is stated in the accompanying text. There have also been two 1% probability

forecasts issued for the 2012 season.

6.2 NHC 2012 tropical cyclone genesis forecast

evaluation

The NHC’s TC genesis forecasts represent probabilities of either the occurrence

(Yi = 1) or non-occurrence (Yi = 0) of TC formation within 48 hours (i.e

they are binary forecasts); hence, reliability diagrams are an appropriate tool

to assess the quality of those forecasts. The NHC has been evaluating its TC
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forecasts with reliability diagrams since 2007, but in a format that does not

easily communicate the sampling error expected of observed frequencies of TC

formation a reliable forecast system. The reliability of the 2012 TC forecasts

is assessed here using the same reliability diagram format used in previous

chapters (i.e. including consistency bars and on probability paper). Since the

TC forecasts belong to discretised probability categories, the forecast values can

be assumed to be fixed at each category. Forecast probability values of 0.5%

have been assigned (only in this thesis) to the “near-zero” forecasts issued by

the NHC so that the reliability of these forecasts can be quantified. The value of

0.5% has been selected because it represents the median of a continuous uniform

distribution U(0, 1) of probability values between 0% and 1%, where 1% is the

next highest forecast probability category.

So, in the same notation as in Chapter 2, if Xi is a forecast value falling

into category, or bin Bk and Ik := {i;Xi ∈ Bk} denotes the set of indices i for

which Xi falls into Bk then Xi = rk where

rk =

∑

i∈Ik

Xi

#Ik
, (6.1)

is the bin average. Given that the forecast values are fixed at each bin, it

might be tempting to construct consistency bars under the assumption that the

observed frequencies fk follow a binomial distribution with parameters Ik and

rk (see Section 1.6.4). Recall from Chapter 2 that these observed frequencies

are expressed as

fk =

∑

i∈Ik

Yi

#Ik
. (6.2)

The consistency bars are then representative of sampling variations alone, and

not additional uncertainty arising from varying Ik and rk. Clearly, this method

is also based on the assumption that the bin populations Ik are fixed, which is

probably not justifiable in the case of the TC forecasts from year to year. In fact,

the parameter Ik has a larger impact on the expected sampling uncertainty than

219



CHAPTER 6. EVALUATION OF 2012 NHC TC FORECASTS

rk [24], particularly where bin populations are low, as they are for the lowest and

highest TC forecast probability categories. Hence, the consistency resampling

method of Bröcker and Smith [24], employed in Chapters 2 and 3, has also been

used here.
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Figure 6.2: NHC 2012 TC forecast reliability: reliability diagram for the NHC’s 2012

48-hr TC forecasts* with 5% - 95% (1% - 99% vertical dashed line) consistency bars. All but

three forecast categories lie within the consistency bars, indicating that the forecast system

is mostly reliable. The forecast probability bin boundaries (grey dotted lines) have been

determined by taking the mid-points between each probability category value. *Sourced from

NHC online Tropical Weather Outlooks.

The reliability of the NHC’s 2012 TC forecasts is conveyed by the reliability
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Figure 6.3: NHC 2012 TC forecast reliability: reliability diagram on probability paper

for the NHC’s 2012 48-hr TC forecasts* showing that all but three forecast categories are

consistent with forecast reliability. The dash–dotted line denotes the exact position of the

diagonal. The right-hand axis indicates the equivalent Bonferroni corrected levels i.e. for

a reliable forecast, all of the points (12 categories) would be expected to fall within the

0.99 probability distance band with an 88.6% chance. In addition, the dashed lines indicate

where the entire diagram would be expected to fall within with a 90% chance. The forecast

probability bin boundaries (grey dotted lines) have been determined by taking the mid-

points between each probability category value. *Sourced from NHC online Tropical Weather

Outlooks.
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diagram and reliability diagram on probability paper in Figs. 6.2 and 6.3,

respectively. The relevant forecast statistics are also tabulated in Table 6.1.

Most of the observed frequencies lie inside the 5%-95% consistency bars in Fig.

6.2 and the 90% reliability band in Fig. 6.3, indicating a mostly reliable forecast

system. The position of the reliability curve (solid line), however, suggests that

NHC forecasters have overforecast (i.e. fk < rk) slightly for the lowest forecast

probabilities (except for 0.5% probability forecasts), and have underforecast

(i.e. fk > rk) to a larger degree for higher forecast probabilities, particularly

for those higher than 0.6. This combination of an overforecast bias at lower

probability bins and an underforecast bias at higher probability bins reflects

a degree of under-confidence ( see Wilks [217]). An interesting feature of the

reliability diagram is exhibited at the 0.5% probability category where there is

underforecasting due to two occurrences of TC development within 48 hours

during the 2012 season. The distance between the observed relative frequency

from the diagonal at the 0.5% bin compared to the 80% bin, for example, is

smaller in Fig. 6.2 yet the distance on probability paper is considerably larger

in Fig. 6.3 with the observed relative frequency lying outside the 5%-95%

consistency range. This discrepancy in distance between the two diagrams is

attributable to the differences in the values of Ik and rk. Firstly, the sample

size of the 0.5% bin (#I1 = 46) is larger than the 80% bin (#I10 = 14) (see

table 6.1), and secondly, the probability category 0.5% is more extreme (i.e.

closer to 0 or 1), resulting in a more precise consistency bar (recall that the

parameters Ik and rk control the consistency bar width when employing the

binomial consistency resampling approach above). The latter condition implies

that, for a given sample size, there is greater sensitivity at the lowest probability

bins to underforecasting and the highest probability bins to overforecasting.

The difference between probability bins highlights the fact that consistency

bars are necessary to reliably gauge the true extent to which a forecast system

is calibrated from a reliability diagram.
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Table 6.1: NHC 2012 TC forecast reliability diagram statistics

NHC Evaluation Observed relative Number in bin Probability distance

Probability Probability frequency from diagonal

0 0.005 0.043 46 0.98

0.01 0.01 0 2 0

0.1 0.1 0.079 127 -0.55

0.2 0.2 0.135 74 -0.83

0.3 0.3 0.438 48 0.96

0.4 0.4 0.5 28 0.68

0.5 0.5 0.645 31 0.90

0.6 0.6 0.737 19 0.78

0.7 0.7 1.0 21 0.99

0.8 0.8 1.0 14 0.88

0.9 0.9 1.0 14 0.50

1.0 0.995 1.0 3 0

6.3 NHC 2012 tropical cyclone genesis forecast

recalibration

The 2012 NHC TC genesis forecasts were shown to be some degree reliable

in Section 6.2 using reliability diagrams with consistency bars, but can their

reliability be improved using a simple recalibration scheme? As was shown in

in Chapter 3, the largest improvements in recalibrated forecast skill appear to

occur where the uncalibrated forecast skill is poorest (i.e. for small ensemble

sizes and longer lead times), and/or where climatological probability of the

event is closer to 0.5 (i.e. θ → 0.5).

The simple translation algorithm outlined in Section 2.4.1, although shown

not to be the most effective of all the algorithms utilised in that chapter, is

employed here to recalibrate the 2012 NHC TC genesis forecasts to assess the

minimum achievable increase in forecast reliability. Forecast recalibration is

carried out using two forms of cross-validation: one with the NHC’s 2011 TC

forecast-outcome dataset, and the other with leave-one-out cross-validation us-

ing the 2012 NHC TC genesis forecast-outcome dataset. So, for each probability
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Figure 6.4: Recalibrated NHC 2012 TC forecast reliability: reliability diagram for

the recalibrated NHC 2012 TC forecasts using 2011 forecasts as a training set with 5% -

95% (1% - 99% vertical dashed line) consistency bars. Forecast recalibration has resulted in a

decrease of forecast reliability. The forecast probability bin boundaries (grey dotted lines) are

identical to those on the original 2012 reliability diagram although the number of populated

categories has decreased to 8. *Sourced from NHC online Tropical Weather Outlooks.
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Figure 6.5: Recalibrated NHC 2012 TC forecast reliability: reliability diagram for

the NHC 2012 TC forecasts recalibrated using 2011 forecasts as training set with 5% - 95%

(1% - 99% vertical dashed line) consistency bars. Forecast recalibration has resulted in a

decrease of forecast reliability since most recalibrated probability categories (pluses) have

larger probability distances than raw forecast categories (crosses). For a reliable forecast, all

of the points (8 categories) would be expected to fall within the 0.99 probability distance

band with an 92.3% chance. The forecast probability bin boundaries (grey dotted lines) are

identical to those on the original 2012 reliability diagram although the number of populated

categories has decreased to 8. Refer to Fig. 6.3 for further details. *Sourced from NHC online

Tropical Weather Outlooks.

bin Bk in the evaluation set, the recalibrated probability prei , i ∈ Ik is equal to

the observed frequency f train
k corresponding to the same bin Bk in the training

set. The recalibrated probability can be expressed as

prei = f train
k , (6.3)

where rtraink is the forecast probability category in the training set.
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Figures 6.4 and 6.5 show the reliability diagrams of the recalibrated 2012

NHC forecasts evaluated truly out-of-sample using a training set of forecasts

from the 2011 hurricane season. Like the raw 2012 forecasts, the recalibrated

forecasts exhibit a significant underforecast bias at higher probability categories

but to an even larger degree. Evaluated on their own, the 2011 forecasts demon-

strate reliability to within 5% − 95% consistency (not shown), and so most of

the 2012 forecast probabilities are only minimally adjusted after recalibration,

suggesting why underforecasting is still evident at the higher categories in Fig.

6.4 (cf. Fig. 6.2). Note that the amount of populated forecast categories has

decreased to 8 after recalibration. Figure 6.5 also displays the decrease in relia-

bility with observed frequencies falling outside of the 90% Bonferroni threshold

for 2 of the 8 forecast probability categories. Hence, recalibration has led to

a decrease in the reliability of the 2012 TC forecasts. This deterioration of

performance may, of course, be explainable by year-to-year variability in the

quality of a forecast system, but also may be indicative of variability in the

ocean-atmospheric conditions affecting the predictability of TC formation.

Figures 6.6 and 6.7 show the reliability diagrams resulting from recalibration

of the 2012 TC forecasts with leave-one-out cross-validation. The reliability of

the forecasts is significantly increased after recalibration, and are superior to

those recalibrated with the 2011 TC forecast training set, with the exception

of two probability categories, those with forecast averages r6 = 0.63 and r8 =

0.78. The simple translation recalibration algorithm with leave-one-out cross-

validation benefits from the fact that the training set and evaluation set are

almost identical, and so translating the forecast values in most bins is clearly

effective. The reason for the two forecast categories with poor reliability is that

there are two possible values for each recalibrated probability in each bin prei

where i ∈ Tk is the collection of indices in the training set Tk for bin Bk. Since

f train
k can take two different values depending on the removed outcome (either
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Yi = 0 or Yi = 1, respectively), since

f train
k =

∑

j /∈Tk

Yj

#Tk − 1
, (6.4)

then so do the recalibrated forecast values prei . Those recalibrated forecasts

with corresponding outcome Yi = 0 take a higher value than the forecasts with

corresponding outcome Yi = 1, and may be translated to separate vacant bins,

resulting in f re
k = 1 or f re

k = 0. The margin between the two values increases

with decrease in bin population #Tk, increasing the likelihood of separation

when binning. This result reflects the problems with reliability diagram fore-

cast categorisation (see Section 3.4.1), but also the effect small that sample size

can have. Of course, deploying the leave-one-out method in operational fore-

casting to recalibrate forecasts in real time is not practical given that the full

training/evaluation dataset would not be complete until the end of the season.

Instead, it might be used to retrospectively recalibrate a forecast system to be

employed in the following season.

6.4 Time Until Event

An important characteristic of the NHC TC forecasts is that, even though

they represent predictions of the formation of a tropical cyclone out to 48 hours

ahead at the time of issuance, TC formation actually often occurs well within 48

hours. In fact, there is an inversely proportional empirical relationship between

forecast probability values and Time Until Event (TUE). The association be-

tween forecast probability and TUE complicates both the interpretation of the

overall reliability of the forecast system, and comparisons of the performance

of different probability categories. Not only is there a bias towards smaller

sample sizes at higher probability categories, but also a bias towards shorter

TUE lengths at higher probability categories. Given that many of the forecasts

of higher probability value are issued closer to the time of TC formation, one
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Figure 6.6: Recalibrated NHC 2012 TC forecast reliability: reliability diagram for the

NHC 2012 TC forecasts recalibrated using leave-one-out cross-validation with 5% - 95% (1%

- 99% vertical dashed line) consistency bars. Six of the nine recalibrated forecast probability

categories lie on the diagonal indicating perfectly reliability while two others lie completely

outside their corresponding consistency bars. The reliability curve shows that leave-one-

out recalibration can both significantly improve and decrease reliability depending on the

categorisation of the forecasts. The forecast probability bin boundaries (grey dotted lines)

are identical to those on the original 2012 reliability diagram. *Sourced from NHC online

Tropical Weather Outlooks.
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Figure 6.7: Recalibrated NHC 2012 TC forecast reliability: reliability diagram for

the NHC 2012 TC forecasts recalibrated using leave-one-out cross-validation with 5% - 95%

(1% - 99% vertical dashed line) consistency bars. Seven of the nine recalibrated probability

categories (pluses) have smaller probability distances than raw forecast categories (crosses).

The reliability curve shows that leave-one-out recalibration can both significantly improve

and decrease reliability depending on the categorisation of the forecasts. All of the points (9

categories) would be expected to fall within the 0.99 probability distance band with an 91.4%

chance. The forecast bin boundaries (grey dotted lines) are identical to those on the original

2012 reliability diagram. Refer to Fig. 6.3 for further details. *Sourced from NHC online

Tropical Weather Outlooks.

is left to conclude that there would also be a reliability bias at those higher

probability categories. While sample size is accounted for by consistency bars,

information about the TUE is not conveyed on reliability diagrams. Hence,

in such forecasting scenarios, it is important to communicate the variability of

TUE with forecast probability, unlike scenarios where forecasts have a fixed

lead time, for example, what is the probability air temperature will be above
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a given threshold at 24 hours lead time? A second companion diagram, or

set of diagrams, to the reliability diagram is proposed here to communicate

the distribution of TUE for each forecast probability category, and provide a

more comprehensive picture of forecast reliability. By comparing the fractions

of forecasts having different TUE lengths across forecast probability categories,

it can be determined whether there might be a performance bias towards any

particular forecast probability value rk.
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Figure 6.8: NHC 2012 TC forecast Time Until Event: fractions of verifying NHC

2012 TC forecasts* having different TUE lengths (in hours) for all probability categories.

The coloured TUE categories denote the occurrence of TC formation between the time given

and 6 hours previous to it. There is a clear pattern of larger fractions of shorter TUE with

increasing forecast probability category. Total counts of verifying forecasts for each category

are shown at the top of the bars. *Sourced from NHC online Tropical Weather Outlooks.

Figure 6.8 shows the fractions of NHC 2012 forecasts which verify with a

TC formation within 48 hours (Y = 1) at each probability category rk. Given

a TC formation event during the 2012 hurricane season, it is evident that there

is a significant amount of variation in the proportions of TUE lengths, and
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Figure 6.9: NHC 2012 TC forecast Time Until Event: CDFs of NHC 2012 TC

forecast* TUE times (in hours) for each forecast probability category rk (solid lines), and

for a set of reliable forecasts (fk = rk) where the TUE times are computed with a discrete

uniform distribution function (dashed lines). The higher probability curves lie well above

the corresponding uniform distribution of reliable forecast TUE lengths. The TUE categories

indicate the occurrence of a TC event between the time given and 6 hours previous to it,

and “NO” indicates a non-occurrence of a TC within 48 hours. *Sourced from NHC online

Tropical Weather Outlooks.

that there is a pattern of shorter TUE with increasing forecast probability,

suggesting there may be a reliability bias towards the higher bins. Caution

should therefore be exercised when comparing the reliability of the different

categories of the NHC 2012 forecasts. For example, approximately 40% of

the 90% probability forecasts are verified within 6 hours whereas not a single

0.5% probability forecast is verified within 30 hours. Given this difference, the

expectation would be for the forecasts in the 90% category to perform more

reliably since they were issued nearer in time to the formation of a tropical

cyclone. Figure 6.9 compares the cumulative distribution functions for the

maximum TUE lengths of the actual forecasts in each probability category
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Figure 6.10: NHC 2012 TC forecast Time Until Event: Maximum, minimum (mi-

nuses) and median (pluses) of verifying NHC 2012 TC forecast* TUEs for each forecast

probability category, rk. The TUE time categories indicate the occurrence of a TC event be-

tween the time given and 6 hours previous to it. *Sourced from NHC online Tropical Weather

Outlooks.

with those for a set of reliable forecasts (fk = rk) for which the maximum TUE

lengths are uniformly distributed. For example, a reliable forecast of probability

category 50% with uniformly distributed maximum TUE would be expected to

verify with an event occurrence within 48 hours 50% of the time, within 24 hours

25% of the time, etc. Instead, the NHC 2012 50% forecasts have a distribution

skewed towards shorter maximum TUE lengths (compare the solid and dashed

turquoise curves). In fact, all of the probability category curves above 40%

lie entirely above their corresponding uniformly distributed maximum TUE

curves, reflecting the reduced TUE lengths at those categories. Conversely,

the lowest probability categories (0.5% − 20%) exhibit a bias towards longer

TUE lengths, suggesting that achieving reliability is more difficult at those

categories. Finally, Fig. 6.10 shows simpler versions of the distributions of
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maximum TUE lengths for each probability category by displaying the median,

minimum, and maximum values. The pattern of decreasing maximum TUE

length with forecast probability category is again clearly evident. The reliability

diagram statistics rk and fk are decomposed into two TUE ranges are listed

in table 6.2. The values in the cells show the observed frequency fk of each

subset of forecasts with TUE lengths falling into either the range 0-24 hours

or 24-48 hours. In both cases, the colour coding indicates where each observed

frequency lies with respect to the consistency bars. Red coloured values fall

outside the 1− 99% consistency interval while green coloured values fall within

the 5%− 95% range, indicating forecast reliability. Orange values indicate the

remaining 8%ile range. The data in table 6.2 reveal a tendency for improved

reliability of higher forecast probabilities at shorter TUE lengths, and improved

reliability of lower forecast probabilities at longer TUE lengths (except for the

lowest probability category 0.5%).

The underforecast bias at higher probability categories may be reflective of

conditions being more favourable for tropical cyclone formation than expected,

or of a physical phenomenon known as rapid intensification (RI) where the

development of a tropical cyclone progresses rapidly over the last hours before

its formation [93]. Investigation of such causes is beyond the scope of this thesis

however.

Table 6.2: NHC 2012 TC forecast reliability diagram statistics by TUE

Forecast probability rk

TUE 0.005 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0-24 hrs 0 0 0.024 0.014 0.104 0.25 0.387 0.368 0.619 0.857 0.929 1.0

24-48 hrs 0.044 0 0.055 0.122 0.333 0.25 0.258 0.368 0.381 0.143 0.071 0

Green 5% − 95% ; Orange 95 − 99% ; Red > 99%.
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6.5 Forward view and conclusions

The performance of the NHC’s 2012 short-term Atlantic basin tropical cyclone

(TC) genesis forecasts has been assessed in this chapter using reliability dia-

grams. The adopted diagram format is based on that proposed by Bröcker and

Smith [24] which includes 5%− 95% consistency bars. These consistency bars,

quantified using a consistency bootstrap resampling technique, represent the

sampling error expected of observed relative frequencies. The NHC’s 2012 TC

forecasts have been shown to have performed reliably for less extreme proba-

bility categories with some overforecast bias at the lower probability categories

and underforecast bias at the higher probability categories. Subsequently, an as-

sessment has been made whether recalibrating the 2012 forecasts with a simple

translation algorithm could lead to improvement of their reliability. The re-

calibration procedure has been deployed out-of-sample using both the previous

year’s (2011) forecast-outcome dataset as training data, and via leave-one-out

cross-validation.

Recalibration resulted in a decrease of forecast reliability with the previous

year training data, and in improved reliability at most forecast probability cat-

egories with the leave-one-out approach. The decrease of reliability occurs as a

result of year to year variability in both the quality of forecasts, and the pre-

dictability of TC formation. Hence, recalibration across years has been demon-

strated not to be beneficial for, and in fact, degrades the reliability of the NHC’s

TC genesis forecasts in the cases considered. Of course, limited sample size of

the training set also restricts the effectiveness of recalibration. Establishing

robust conclusions on the matter, however, is beyond the scope of this thesis.

The general improvement in reliability after leave-one-out cross-validation is a

result of the similarity between the training and evaluation data, and would not

likely be realistic in real-time forecast recalibration since the full training set

would not be available until the end of the hurricane season.

The concept of “Time Until Event” and its relationship with the reliability
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of the NHC 2012 TC forecasts has been also explored. A bias towards shorter

TUE lengths has been exhibited at higher probability categories, indicating

a reliability bias at those categories which is supported by the information

contained in table 6.2. The 70% category is shown to be unreliable, however,

with a substantial margin of underforecasting. Information on the impact of

TUE on forecast reliability is not provided in conventional reliability diagrams.

Hence, supplementary material such as table 6.2, and Figs. 6.8, 6.9, and 6.10

are recommended to accurately and robustly interpret the reliability of forecast

systems in Time Until Event scenarios.

The insights gained from the research in this chapter are as follows:

1. the National Hurricane Center’s short-term Atlantic basin tropical cyclone

(TC) genesis forecasts from the 2012 hurricane season were generally re-

liable with a degree of overforecasting at the lower probability categories

and underforecasting at the higher probability categories

2. increasing the reliability of the National Hurricane Center’s short-term

Atlantic basin tropical cyclone (TC) genesis forecasts after out-of-sample

recalibration is difficult due to inter-annual variability in forecast distri-

butions and predictability of tropical cyclone formation, and/or because

of the limitations of recalibration algorithms

3. varying forecast “Time Until Event” complicates the interpretation of

the reliability of forecast systems such as NHC short-term Atlantic basin

tropical cyclone forecast system

The novel contributions of this chapter are:

• evaluation NHC 2012 short term TC genesis forecasts using reliability

diagrams both with consistency bars and on probability paper to quantify

forecast reliability
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• out-of-sample recalibration of NHC 2012 short term TC genesis fore-

casts using a simple translation algorithm using the 2011 forecast-outcome

dataset and leave-one-out cross-validation. In the first instance, recalibra-

tion failed to increase forecast reliability while the second approach was

more effective given that the training and evaluation data are from the

same hurricane season.

• evaluation of the relationship between NHC short term TC genesis forecast

reliability and Time Until Event

• proposal of supplementary diagrams/tables to reliability diagrams which

provide additional information about the effect of Time Until Event on

forecast reliability where relevant
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Chapter 7

Hurricane Count Modelling

(long-term lead)

Statistical modelling studies of seasonal to decadal Atlantic basin tropical cy-

clone activity are diverse and numerous in the literature to date. Intensified

research on long-term hurricane activity has been motivated by both the severe

and increasing impacts [157, 148] caused by hurricane landfalls, and scientific

interest in the physical mechanisms that control cyclone formation and devel-

opment. Although there have been significant improvements in modelling tech-

niques, there is a large degree of uncertainty in long-term projections [164],

and the out-of-sample skill of seasonal predictions is still yet to be proven

[208, 46, 156]. These limitations are due to uncertainty in the relationships

between predictor variables and tropical cyclone (TC) activity, the difficulty in

distinguishing between natural variability and long-term trend, and the rela-

tively short length of a reliable historical record of tropical cyclone statistics

[106, 76]. As a result, there has been a substantial amount of debate on the

existence of long-term TC trends over the past century [102, 105, 103]. There

does appear to be some evidence, however, that the frequency of the more in-

tense TCs has increased since the 1970’s [47, 52, 102, 210]. A more contentious

issue is whether any detectable trends can be attributed to anthropogenic cli-
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mate change [122, 78, 9]. In spite of the uncertainty surrounding long-term

trends in hurricane activity, however, statistical hurricane modelling studies are

worthwhile to improve our understanding of which physical mechanisms are

important for the modulation of hurricane activity.

The relationship between long-term Atlantic basin hurricane behaviour and

various environmental physical indices such as tropical Atlantic sea surface tem-

peratures (SSTs), El Niño-Southern Oscillation (ENSO), and the Atlantic Mul-

tidecadal Oscillation (AMO) has been rigorously examined in the literature

by means of regression models [64, 74, 46, 201]. A number of generalised lin-

ear model (GLM) and generalised additive model (GAM) techniques, based on

those used in recent studies by Villarini et al. [207, 208] and Mestre and Halle-

gate [129], are employed in this chapter to model key categories of TC activity

in the Atlantic basin. Whereas Villarini et al. [208] model CAT1-5 Atlantic

basin hurricane and CAT1-5 U.S. landfall counts, and fractions of those hurri-

canes making landfall at the U.S. coast (i.e. CAT1-5 U.S. landfall fractions),

the modelling of counts and fractions is extended here to include Atlantic basin

named storms and CAT3-5 basin hurricanes, and the fraction of CAT1-5 At-

lantic basin hurricanes intensifying into CAT3-5 basin hurricanes. Additional

GLM and GAM modelling techniques which include both polynomial and cu-

bic spline regression smoothers [72] are employed to examine both linear and

nonlinear dependencies between response and predictor variables.

This chapter is structured as follows: Section 7.1 outlines the definitions of

the GLMs and GAMs used to model hurricane counts and fractions, and the

model fitting process which includes the use of quadratic polynomial and cubic

spline regression smoothers. These smoothers allow for estimates of trends in

a response variable that vary less than the response variable itself. Collinear-

ity between predictor variables is also considered by modelling hurricanes with

interaction terms [36]. This specific regression modelling framework, in conjunc-

tion with a unique combination of predictor variables, is a novel contribution

to this thesis.
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Section 7.2 describes the selection criteria which are utilised to select the

most appropriate model fit. The Akaike Information Criterion (AIC; [5]) and

Schwarz Bayesian Criterion (SBC; [176]), sometimes known as the Bayesian

Information Criterion (BIC), are conventional model selection measures which

rank the goodness-of-fit of a model according to a trade-off between model

complexity and accuracy. Burnham and Anderson [27] recommend that the

corrected Akaike Information Criterion (AICc) is used where the relative number

of model parameters is large compared to data sample size. Given that size of

the reliable historical hurricane count record is limited, the AICc is the preferred

selection criterion here.

In addition to presenting the estimates of the model parameters along with

their standard errors, as in Villarini et al. [208], confidence intervals for the

parameter estimates constructed in Section 7.3. Wald confidence intervals are

typically constructed for statistical inference of regression model parameters,

but, given the limitations of small sample sizes of count data, inverted score-

test and likelihood-ratio confidence intervals perform better so that actual error

probabilities are close to their nominal levels [1]. Computation of these two

inverted test confidence intervals is difficult, however, because they are depen-

dent on the log-likelihood function which is not an explicit function of a regres-

sion model’s parameters. A new ‘sliding quadratic’ root-finding algorithm for

confidence interval construction based on a method proposed by Lang [110] is

proposed in Section 7.3 as an alternative to constructing the inverted score-test

(henceforth referred to as score) and inverted likelihood-ratio (LR) confidence

intervals.

Generalised linear models and generalised additive models (GAM) mod-

els of count data are often subject to overdispersion [2] where the data have

greater variability than expected by the model. Although previous tropical cy-

clone modelling studies have taken overdispersion into consideration [207], a test

based on an auxiliary ordinary least squares regression is described in Section

7.4, and has been employed here for the first time to test for overdispersion in
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tropical cyclone modelling.

Finally, the results of GLM and GAM modelling of tropical cyclone counts

and fractions are presented in Section 7.5. The best-fit regression models in

each hurricane category have been employed to produce predictions of the 2013

seasonal hurricane counts and U.S. landfall fractions in Chapter 8.

7.1 Modelling Atlantic basin and U.S. landfall

hurricanes using GLMs and GAMs

Two types of regression model have been used to model hurricanes here. Firstly,

a Poisson regression is employed to model annual counts of Atlantic basin named

storms, Atlantic basin hurricanes, and U.S. landfalling hurricanes. Poisson re-

gressions have emerged as the canonical method over the past couple of decades

for modelling annual hurricane counts [46]. The sophistication of Poisson re-

gression hurricane models has developed over time to incorporate a range of

climate indices known to modulate regional hurricane activity [50, 48] as pre-

dictors, and to account for any non-linear dependencies of annual counts on

these predictors. A relatively straightforward, although unique, combination of

predictor variables is opted for here: year and global tropical mean and tropical

Atlantic sea surface temperature anomalies. Both of the latter two environmen-

tal indices relate to the physical factors which modulate Atlantic basin hurricane

activity. Tropical Atlantic sea surface temperatures are known to have a strong

influence on hurricane activity because a warmer Atlantic Ocean supplies more

available energy for cyclone formation [51, 203], and global tropical sea surface

temperatures tend to control the atmospheric conditions such as windshear

[64]. Tropical Atlantic sea surface temperature non-detrended anomaly data1

is spatially averaged over a box 10◦-25◦N and 80◦W-20◦W, while the global

1sourced from the National Oceanic and Atmospheric Administrations (NOAA) Extended

Reconstructed sea surface temperature (ERSSTv3b; [187])
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tropical sea surface temperature anomalies are spatially averaged over a zonal

band 30◦S-30◦N. Both datasets are temporally averaged over the period June

to November, as in Villarini et al. [208].

Secondly, a logistic regression has been employed to model fractions of an-

nual hurricane counts making landfall at the U.S. coastline [208], and the frac-

tions of Atlantic basin hurricanes which develop into intense CAT3-5 hurricanes.

Both response variables are regressed on the same predictor variables described

above. Both sets of modelled hurricane categories are modelled over the period

1966-2012, which is the period of the reliable hurricane record available from

the National Hurricane Center’s (NHC) HURDAT database2. Figure 7.1 dis-

plays the time series of Atlantic basin named storms, CAT1-5 Atlantic basin

hurricanes, and CAT1-5 U.S. landfalls.

Both the Poisson and logistic regressions fall into the class of generalised

linear models [128]. A GLM is a linear regression technique applied to non

Gaussian-dependent variables whose distribution belongs to the so called “ex-

ponential family” : Poisson, Gamma, Binomial, Gauss. GLMs can be used to

determine the relative importance of various predictor variables on hurricane

formation although they should be interpreted in conjunction with physical rea-

soning. Poisson regression and logistic regression models also fall into the class

of generalised additive models (GAMs) which blend properties of GLMs with

additive models to account for any non-linear dependence between the response

variable and the predictor variables. Simple versions of both these models are

deployed here by regressing various hurricane category annual counts on year,

and tropical Atlantic and global tropical sea surface temperatures. Formal defi-

nitions of the GLMs and GAMs are now provided along with their mathematical

notation.

GLMs are generalisations of ordinary linear regression models that allow for

a non-normal distribution in the response variable based on the assumption that

the predictor effects are linear in the parameters [30]. Let the linear predictor

2http://www.aoml.noaa.gov/hrd/data sub/re anal.html

241



CHAPTER 7. HURRICANE COUNT MODELLING (LONG-TERM LEAD)

1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010

Year

C
ou

nt

0
5

10
15

20
25 Named Storms

CAT1−5 Basin
CAT1−5 US Landfall

1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010

Year

C
ou

nt

0
5

10
15

20
25 Named Storms

CAT1−5 Basin
CAT3−5 Basin

Figure 7.1: Time series of all annual Atlantic basin named storm counts from 1966-2012

with CAT1-5 basin hurricanes and CAT1-5 U.S. Landfalls shown as sub-categories (top), and

CAT1-5 basin hurricanes and CAT3-5 Basin hurricanes shown as sub-categories (bottom).

be defined as

η = xT
i β, (7.1)

where xT
i = [x1i, ..., xki] is the vector of predictors, and β is the k×1 parameter

vector. The link function η = η(µ) relates the linear predictor to the mean µ of

the distribution of the response variable.
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A GAM is designed so that the linear predictor η is not restricted to a linear

dependence on the predictors or covariates. The linear component xT
i β of the

GLM model is substituted with an additive component of the form

k
∑

j=1

fj(xj)

where fj(· ) are smooth univariate, or basis, functions, one for each covariate

[72]. These basis functions define “transformed predictors” fj(xj) which act

additively on the response variable. The GAM now implies that the conditional

mean is given by

g(E[Yi|xi]) = β0 +
k
∑

j=1

fj(xij), (7.2)

where xij is the j
th component of xT

i and g(· ) is prescribed by the type of model

e.g. for a Poisson regression g(· ) = log(· ).
GLMs and GAMs are employed here to model both linear and nonlinear

dependencies of annual storm counts and fractions on year, Atlantic basin sea

surface temperature anomalies (SSTAtl), and global tropical sea surface tem-

perature anomalies (SSTtrop). A Poisson regression is used to model counts

of Atlantic basin named storms, CAT1-5 and CAT3-5 basin hurricanes, and

CAT1-5 U.S. landfalls while a logistic regression is used to model CAT1-5 U.S.

landfalls and CAT3-5 basin hurricanes both as a fraction of the total number of

annual CAT1-5 basin hurricanes. The computational regression analysis is car-

ried out with the GAMLSS package available in the R statistical programming

language [190].

7.1.1 Poisson regression model

The standard model used for modelling annual hurricane counts is the Poisson

regression [46] although there is some suggestion that it may be a better fit for

the intense hurricane (CAT3-5) category given the smaller counts [50]. Annual

hurricane counts (Yi) are modelled based on the assumption that the counts

follow a Poisson distribution. If these counts are defined by Yi in the ith year

conditional on the vector xi of predictors variables then Yi is Poisson distributed
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with density

f(Yi = y|xi) =
eµiµy

i

y!
, y = 0, 1, 2, ..., (7.3)

and mean parameter

µi = E[Yi|xi] = exp(f(xi)
Tβ), (7.4)

in GAM model form. The functions fj(· ) are linear in a GLM model, in which

case, the mean parameter definition is simplified to

µi = E[Yi|xi] = exp(xT
i β). (7.5)

The predictor is linked to the mean µi by the log link function

xT
i β = log(µi). (7.6)

The loglinear nature of the Poisson regression GLM means that interpreting

the parameter estimates is not as straightforward as it is for a linear regression

model, although they have the same basic structure. For a linear regression

model, the regression coefficient, βj , is interpreted as the estimated expected

change in the response variable associated with a one unit change in the jth

predictor variable, xj , keeping all others fixed. For a Poisson regression model,

the exponent of the coefficient exp(βj) is the estimated expected multiplicative

change in the response variable with a one unit change in the jth predictor

variable xj (or fj(xj)), keeping all others fixed. This means that the absolute

magnitude of the effect is dependent on the value of the response variable. Both

trends in storm activity over time and the dependency of storm counts on sea

surface temperatures are modelled to determine their relative importance for

modelling annual Atlantic basin hurricane counts.

7.1.2 Logistic regression model

A logistic regression is a standard model for binary response variables and can

conveniently be employed to model fractions of an event occurring [2]. It has
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been used here to model fractions of annual CAT1-5 Atlantic basin hurricanes

that make landfall in the United States and/or intensify into CAT3-5 Atlantic

basin hurricanes. The logistic regression model treats these fractions as binomial

distributed. If n represents the number of basin hurricanes and Ya a Poisson

variable with mean µa represents the annual count rate of landfalls (and Yb the

annual counts of non-landfalling hurricanes with mean µb so that n = Ya + Yb)

then the distribution of Ya can be defined by

f(Ya = y|n, π) = Γ(n+ 1)

Γ(y + 1)Γ(n− y + 1)
πy(1− π)(n−y), (7.7)

where π = µa/(µa + µb). Hence, the mean and variance of Ya/n are π and

π(1 − π). Storm fractions have been regressed on the same three predictor

variables used in the Poisson regression model (i.e. year, SSTAtl, and SSTtrop).

These predictors are linked to the mean parameter π by the logit link function,

given as

xT
i β = log

(

πi
1− πi

)

. (7.8)

Like the Poisson regression model, the coefficients in the logistic regression

model do not indicate a directly proportional relationship between the response

variable and the predictor variables. Instead, they represent the change in

the logit for each unit change in the predictor, so the relationship needs to be

interpreted in terms of the odds ratio, that is

π(x)

1− π(x)
= exp(f(xi)

Tβ), (7.9)

where

π(x) =
exp(f(xi)

Tβ)

1 + exp(f(xi)Tβ)
. (7.10)

Equation (7.9) implies that exp(βj) is the estimated expected multiplicative

change in the odds of a U.S. landfall strike with a one unit change in the jth

predictor variable xj (or fj(xj)), keeping all others fixed.
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7.1.3 Model fitting

To allow for a nonlinear relationship between hurricane counts and fractions

and the predictor variables, extended GAM versions of the Poisson and logistic

regression models are fitted by estimating each function fj(· ) by means of either

a quadratic polynomial or a cubic spline regression smoother [72, 73]. Both these

regression smoothers offer more flexibility than does a simple or multiple linear

regression in the sense that changes in the response variable may be dependent

on the value of the predictor variable.

Polynomial regression smoother

A popular and straightforward method for modelling nonlinear relationships

between response and predictor variables is to fit a regression model with a

polynomial regression smoother [121]. In its most parsimonious form, a polyno-

mial regression model consists of a polynomial function of order p. For example,

a model with predictor variable x incorporating a pth-order polynomial in x has

f(x) = β0 + β1x+ β2x
2 + . . .+ βpx

p. (7.11)

Cubic spline regression smoother

Cubic splines are arbitrary smooth polynomial functions which can be viewed

as a link between conventional polynomials in the GLM framework and more

modern methods of nonparametric smoothing such as scatterplot smoothers [33,

174]. They consist of piecewise defined cubic polynomials fitted over different

regions of x, so, unlike the polynomial regression smoother, the coefficients of

the spline function can vary over different regions of x. The cubic polynomials

are joined at ξm, m = 1, . . . ,K points on the domain of x called knots, where

the function values and first p − 1 derivatives are equal. The more knots that

are used the more flexible the cubic spline is. Cubic splines can be represented

as a linear combination of their natural B-spline, or basis spline, functions,
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expressed as

f(x) =

K
∑

m=1

αmBm(x), x ∈ [a, b] (7.12)

where αm are coefficients, and Bm(x) are the piecewise cubic B-spline basis

functions which are non-zero over a range of at least five distinct knots in the

arbitrary domain [a, b].

Cubic splines are considered the explicit, unique minimiser over all functions

of the regulated residual sum of squares of the estimated model, given by

min
f

N
∑

i=1

[Yi − f(xi)]
2 + λ

∫ b

a

[f
′′

(t)]2dt, (7.13)

where λ is a fixed constant, and a ≤ x1 ≤ . . . ≤ xN ≤ b. The term on the

left-hand side evaluates the distance between the data and the predictor while

the term on the right-hand side penalises curvature in the function.

The relative advantages and disadvantages of polynomial and cubic spline

functions in GLMs and GAMs are now discussed. Fitting the polynomial

smoother is more straightforward than for cubic splines, and the flexibility of

the model can be controlled to some extent by specifying the order p of the

polynomial. The selection of p is typically made using significance tests or con-

ventional model selection criteria [121] although in this case only a quadratic

polynomial is employed, hence p = 2. The polynomial model is also more par-

simonious than a cubic spline fit when p ≤ 4. On the other hand, polynomial

regressions have undesirable non-local properties whereby a fitted value of the

response variable at a given value of x = xi may depend strongly on other values

which are some distance from xi. Cubic splines do not suffer from this issue

since they use local models [174]. Cubic splines also allow for a greater degree

of flexibility than polynomial functions with fewer limitations on the functional

form.
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7.1.4 Interaction terms

The inclusion of more than one predictor variable in an regression analysis can

have important ramifications for the interpretation of the fitted model. The

relationship between a response variable y and a predictor variable x1 can vary,

depending on the value of a second predictor variable x2. Collinearity between

x1 and x2 implies that the causal relationship between the y and x1 is moderated

by x2. Moderated relationships in regression models are sometimes referred to

as “interaction effects” [36, 44]. The presence of interaction effects effectively

means that the combined effect of two or more predictor variables on the re-

sponse variable is not additive. To accommodate the impact of interaction

between predictor variables in the hurricane regression models, a two-way in-

teraction term is also introduced into the model. The interaction term takes the

form of βx1x2, so that the linear coefficient of the predictor variable x1 changes

smoothly according to the other predictor variable x2. For example, a Poisson

model with two predictors and a two-way interaction term can be expressed as

µi = E[Yi|xi] = exp(β0 + β1x1 + β2x2 + β3x1x2). (7.14)

The two sea surface temperature predictor variables, tropical Atlantic sea sur-

face temperature anomalies and global sea surface temperature anomalies, are

positively correlated (r = 0.78) suggesting that there are interaction effects in

the models which include them both. Burnham and Anderson [27] suggest not

dropping a predictor unless the correlation coefficient is extremely high, and

state that |r| = 0.95 is a reasonable cutoff value for dropping a covariate. The

added two-way interaction term should account for any collinearity between the

predictor variables.

7.2 Model selection

Model selection is performed here by means of a stepwise approach employing

the Akaike Information Criterion (AIC) and the Schwarz Bayesian Criterion
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(SBC) to rank models whilst managing the trade-off between model complexity

and goodness of fit. These criteria are expressed as

AIC = −2log(L) + 2d, (7.15)

and

SBC = −2log(L) + dlog(N), (7.16)

where L denotes the maximum likelihood value for the estimated model, d is

the number of parameters or degrees of freedom of the model, and N is the

number of observations. The SBC penalises a model more where there is a

larger number of parameters than the AIC when N is small, which is the case

here since the modelled period is 1966-2012 (i.e. N = 47). The AIC with

correction (AICc) is therefore used here which, like the SBC, penalises models

with extra parameters [27]. The AICc is defined as

AICc = AIC +
2d(d+ 1)

N − d− 1
. (7.17)

Since AIC and SBC only measure the relative quality of the model fit (e.g.

Hipel [75]), the model performance has been evaluated by analysing the model

residuals, which should be i.i.d. Gaussian distributed if the model is a good fit.

The normalized randomized quantile residuals [42] have been examined to assess

the distribution of the residuals by computing the first four moments of their

distribution (mean, variance, and coefficients of skewness and kurtosis), and

their Filliben correlation coefficient [56]. In addition, quantile-quantile plots

and worm plots have also been analysed as a visual reference of model goodness

of fit (see appendix C).

7.3 Inference for regression coefficients

The standard approach to estimating confidence intervals (CI) for regression

model parameters is to invert a two-sided significance test of H0 : βj = β0
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for the entire parameter space βj ∈ S(P). A 100(1 − α)% confidence interval

contains the set of β0 values for which the test has p-value ≥ α. Three candidate

test statistics for constructing confidence intervals for βj are the inverted Wald,

score, and likelihood-ratio tests. Each can be expressed in terms of the log-

likelihood function L(βj) where the maximum likelihood estimate is β̂j. The

Wald test statistic uses the Fisher information ι(βj) = −E[∂2L(βj)/∂β2
j ] and

can be expressed as

[(β̂j − β0)/SE(β̂j)]
2 = (β̂j − β0)

2ι(β̂j), (7.18)

where ι(β̂j) denotes ι(βj) evaluated at β̂j. SE(β̂j) is computed from the variance-

covariance matrix for the regression coefficients, given as

SE(β̂j) =

√

V ar(β̂j)

=
√

σ2(XTX)−1
jj , (7.19)

where σ is the residual variance term and X is the n×k matrix of elements xij .

The corresponding 100(1− α)% Wald CI for βj is defined

β̂j ± zα/2SE(β̂j), (7.20)

where zα/2 denotes the 1−α quantile of the standard normal distribution. The

Wald test is an asymptotic approximation of the likelihood-ratio (LR) test using

the Gaussian distribution [2]. The LR test statistic for a parameter from a single

predictor regression model is given by

− 2[L(β0)− L(β̂)]. (7.21)

The score test statistic is

[u(β0]
2

ι(β0)
=

[∂L(β)/∂β0]
2

−E[∂2L(β)/∂β2
0 ]
, (7.22)

where u(β) is the score function, and the partial derivatives are evaluated at

β0.
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The Wald confidence interval is most commonly employed in statistical soft-

ware for its ease of use, but inversions of the score and likelihood-ratio tests

provide better probability coverage where the sample size is small, or the pa-

rameter estimate is close to the lower and upper bounds of the parameter space

[1]. The latter issue is usually irrelevant for inference of regression coefficients

but in the case of hurricane counts and fractions the former issue is potentially

problematic due to the limited availability of reliable data. The inverted score

and likelihood-ratio tests provide probability coverage that is usually close to

nominal levels. Interpreting the Wald interval is also difficult because of its

dependency on the scale of measurement [1]. For example, when constructing a

confidence interval for the coefficients of the Poisson regression, a Wald CI for

eβj is not transformable from the exponentiated values of the Wald CI for βj .

Inversion of the score and likelihood-ratio test statistics, which are both

functions of the log-likelihood function L(βj), are difficult to perform, however,

where the likelihood function is not an explicit function of the model parameters

as is the case with regression coefficients [1]. Instead, a computational algorithm

can be used to perform the test inversion by exhibiting all values of β0 for which

the p-value exceeds α in the test H0 : βj = β0. The aim is to compute the

confidence interval (CI) where

CI(βj) = {βj ∈ S(P) : z(βj) ≤ zα/2} = [β̂L
j , β̂

U
j ], (7.23)

where the bounds of the interval β̂L
j and β̂U

j are the two roots of the test-inversion

equation

z(β) = (βj − β̂j)/SE(β̂j) = zα/2. (7.24)

An algorithm based on the ‘sliding quadratic’ root-finding algorithm devised by

Lang [110] for computing the score and inverted likelihood-ratio test confidence

intervals for contingency tables is appropriated for determining equivalent confi-

dence intervals for regression coefficients. This algorithm is efficient and robust

so that, when the root of the test-inversion equation is close to, or equal to, the

boundary of S(P), it will not fail unlike the bi-section and Newton-Raphson
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methods [110]. The algorithm for finding the upper root β̂U
j is detailed by Al-

gorithm 2. The lower root β̂L
j is computed in the same way as β̂U

j . The only

essential differences are the initial values, given as β
(0)
j = β̂−ǫ and β(1)

j = β̂−2ǫ,

and the choice of linear equation root being the smallest root rather than the

largest root.

7.4 Overdispersion

Both the Poisson and logistic regression models are potentially limited by the

constraint that the mean of the response variable determines its variance. This

constraint can result in a phenomenon called overdispersion [2, 180]. Overdis-

persion is encountered when the variance of observed count data is often larger

than would be expected if the response variable were Poisson or binomially dis-

tributed. Such scenarios can arise where there is clustering, or heterogeneity,

in a population which is not accounted for in the parameters of the Poisson

and logistic regression models. For example, regressing hurricane counts on

year alone may exclude dependence of the response variable on other important

predictors each having a different mean for the response variable.

7.4.1 Poisson regression models

The assumption of independence, or equidispersion, of the observations is made

for the Poisson regression model; where this assumption is baseless then the

goodness of fit of the Poisson model may be compromised by overdispersion

[29, 38]. To test for overdispersion of hurricane counts, the auxiliary ordinary

least squares (OLS) regression approach described by Cameron and Trivedi

[29] has been employed here. Once a Poisson regression model has been fitted

using the standard GLM method (see Section 7.1.1), the predicted values µ̂i =

exp(xT
i β) are used to perform an additional OLS regression, given by

zi =
(Yi − µ̂i)

2 − Yi
µ̂i

= αµ̂i + ǫi, (7.25)
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Algorithm 2: ‘Sliding linear’ root-finding algorithm

1: β̂j, ase(β̂j) // coefficient estimate and asymptotic standard error

Ensure: βmin
j ≤ βopt

j ≤ βmax
j // set bounds on β

2: β
(0)
j = β̂j + ǫ

3: β
(1)
j = β̂j + 2ǫ

4: z(β
(0)
j ) =

β
(0)
j −β̂

ase(β̂)

5: z(β
(1)
j ) =

β
(1)
j −β̂

ase(β̂)

6: a =
(z(β

(1)
j )−z(β

(0)
j ))

(β
(1)
j −β

(0)
j )

7: b = z(β
(0)
j )− aβ

(0)
j // coefficients of linear equation that passes through

points (β
(0)
j , z(β

(0)
j )) and (β

(1)
j , z(β

(1)
j ))

8: c1 = min{z(β(1)
j ) + 0.5, zα/2} // 1− α is level of confidence

9: β
(2)
j = c1−b

a

10: z(β
(2)
j ) =

β
(2)
j −β̂

ase(β̂)

11: for i = 2 to N do

12: a =
(z(β

(i+1)
j )−z(β

(i)
j ))

(β
(i+1)
j −β

(i)
j )

13: b = z(β
(i)
j )− aβ

(i)
j

14: ci = min{z(β(i+1)
j ) + 0.5, zα/2}

15: β
(i+1)
j = ci−b

a

16: z(β
(i+1)
j ) =

β
(i+1)
j −β̂

ase(β̂)

17: if z(β
(i+1)
j )− zα/2 ≥ tol then

18: β̂U
j = β

(i+1)
j

19: break // breaks the loop

20: end if

21: end for

22: return β̂U
j
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where ǫi is an error term. The constant α is then tested under the null hypothesis

that α = 0.

7.4.2 Logistic regression models

The logistic regression, like the Poisson regression, is susceptible to overdis-

persion due to heterogeneity but also due to positive correlation in the un-

derlying Bernoulli trials which determine the response [128, 180]. One com-

monly used method using a parametric model to test overdispersion in bino-

mial data is to use a beta-binomial model. Although the beta-binomial dis-

tribution is not a member of the exponential family, it generalises to regres-

sion models in a straightforward manner. Let pi and ni be the parameters of

a binomial distribution. Under the assumptions of the beta-binomial model,

Yi ∼ B(ni, pi), and pi is beta distributed with parameters (αi, βi). In addition,

let E(pi) = πi = αi/(αi + βi) satisfy a logistic relationship, as in Eqn. (7.7),

with predictors xi. In that case, Yi follows a beta-binomial distribution where

E(Yi) = miπi, (7.26)

and

V ar(Yi) =
miαiβi[1 + (ni − 1)(αβi + 1)−1]

(αi + βi)2
(7.27)

≡ miπi(1− πi)[1 + (ni − 1)ψi],

where ψi = (αi+βi+1)−1 is the scale parameter. A positive value of ψi indicates

overdispersion.
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7.5 Results of GLM and GAM modelling of

Atlantic basin tropical cyclones

7.5.1 Poisson regressions for 1966-2012 storm counts

The results of modelling of annual counts of Atlantic basin named storms,

CAT1-5 and CAT3-5 hurricane counts and CAT1-5 U.S. landfall hurricane

counts over the period 1966-2012 using a Poisson regression model are now

discussed. The response count data have been sourced from the HURDAT

database3, and time series of all storm categories from 1966-2012 are shown in

Fig. 7.1. Each response variable is modelled so that the logarithm of the count

rate µ is a function of a given combination of the three predictor variables (i.e.

year, SSTAtl, and SSTtrop). Three GLM or GAM versions of the regression

model are considered, one to model linear dependence of the response variable

on the predictors, given by

E[Yi] = µi = exp(constant), (7.28)

and two to model non-linear dependence with polynomial and cubic spline func-

tions, given by

E[Yi] = µi = exp(fpolyn(i)), (7.29)

and

E[Yi] = µi = exp(fspline(i)). (7.30)

The parameter estimates and measures of model fit for the “best-fit” models

of annual hurricane count rates ranked according to the AIC model selection

criterion are listed in Table 7.1. SSTAtl and SSTtrop are both retained as sig-

nificant predictors for all four storm categories, and in all cases the modelled

3http://www.aoml.noaa.gov/hrd/data sub/re anal.html
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relation between the logarithm of the count rate µ and these two predictors is

linear. There is a clear positive relationship between SSTAtl and all storm count

rates, and a negative relationship between SSTtrop and all storm count rates.

The score CIs for the regression coefficients of both the SSTAtl and SSTtrop

predictors indicate that the signs of these relationships are reliable at the 95%

confidence level except for the relationship between SSTtrop and CAT1-5 U.S.

landfalls which has the least precise CI. This result is consistent with several

studies [100, 204, 208] which suggest that sea surface temperatures in the At-

lantic basin relative to global tropical SSTs are an important factor in modu-

lating hurricane activity. There is also a linear relation between the logarithm

of the rate µ of Atlantic basin named storms and year, although this is not

significant. Year has been found to be significant when acting as sole predictor

but its effect on all storm count response variables is minimal compared to the

other two predictors.

None of the dependencies of the storm count rates are modelled via the

regression smoothers in these best-fit models. The AICc values for the models

which do include nonlinear dependencies (i.e. quadratic polynomial and cubic

spline fits) are comparable to those of the linear models, however, suggesting

that they are penalised more for the higher degrees of freedom. This marginality

in the model selection may be reflective of the short duration of the modelled

time period. The SBC model selection criterion penalises models more for

increased degrees of freedom, but in this case the relative ranking of the models

is the same given the use of AICc. The inclusion of interaction terms is evidently

detrimental to the model fit as they increase the degrees of freedom, and are

shown to be insignificant in all model fits.

Multidecadal variability is more pronounced in named storms and hurricane

counts than the U.S. landfall counts (see Fig. 7.1). The counts are smaller

for the U.S. landfall time series making trend detection or cycle detection more

difficult [34, 207]. The (un)detectability of trends in storm counts over time

is reflected in the p-values where storm counts are regressed on “year” only.
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For example, year is retained as an important predictor for named storms (p-

value= 4.3× 10−5), but not so for CAT1-5 U.S. landfalls (p-value= 0.26).

The model fit diagnostics shown in Table 7.1, and plotted in appendix C,

indicate that all four best-fit models are adequately able to reproduce the annual

counts of all four storm categories over the period 1966-2012. The normalized

(randomised) quantile residuals and worm plots for the basin named storm

model exhibit the best approximation of a normal distribution which is perhaps

reflective of the largest degree of multidecadal variability in that category.

Finally, tests for overdispersion using an auxiliary OLS regression explained

in Section 7.4 show that the null hypothesis of equidispersion is rejected only for

the best-fit Poisson regression model for CAT1-5 U.S. landfall counts (p-value=

0.03). Hence, only this model is subject to overdispersion, but, given that the

result is not highly significant, it is not necessarily a poor fit. Overdispersion of

the CAT1-5 U.S. landfall counts may be indicative of statistical dependence in

the data [2], but an investigation of this phenomenon is suggested as a subject

for further research.

7.5.2 Logistic regressions for 1966-2012 storm fractions

A logistic regression has been used to model CAT3-5 Atlantic basin hurricanes

and CAT1-5 U.S. Landfall hurricanes as a fraction of the total basin hurricane

annual counts for the period 1966-2012. Fractions of storm counts for these two

categories are regressed on year, SSTAtl, and SSTtrop. Each response variable

is modelled so that the logarithm of the odds ratio is a function of a given

combination of the three predictor variables. Three GLM or GAM versions

of the regression model are considered, one to model linear dependence of the

response variable on the predictors, given by

π(x)

1− π(x)
= exp(constant), (7.31)

and two to model non-linear dependence with polynomial and cubic spline func-
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Table 7.1: Poisson regression models of Atlantic basin storms 1966-2012

Basin named CAT1-5 basin CAT3-5 basin CAT1-5 U.S.

storms hurricanes hurricanes landfalls

Intercept 2.01*** 1.67*** 0.61*** 0.23

(0.13) (0.07) (0.12) (0.15)

Year 0.01* - - -

Standard error (0.01) - - -

Score 95% CI (0,0.02) - - -

SSTAtl 0.97*** 1.53*** 1.95*** 1.50**

Standard error (0.22) (0.29) (0.46) (0.59)

Score 95% CI (0.52,1.42) (0.96,2.10) (1.03,2.86) (0.32,2.68)

SSTtrop -1.37*** -1.74*** -1.80*** -1.80*

Standard error (0.41) (0.51) (0.83) (1.04)

Score 95% CI (-1.78,-0.95) (-2.76,-0.72) (-3.47,-0.13) (-3.89,0.30)

Deg. of Freedom

for the fit 4 3 3 3

Mean (residuals) 0.03 0.04 0.02 -0.07

Variance (residuals) 0.75 0.54 0.82 1.26

Skewness (residuals) 0.37 0.43 -0.05 -0.12

Kurtosis (residuals) 3.04 3.0 3.76 3.06

Filliben (residuals) 0.99 0.99 0.98 0.99

AICc 244.54 201.10 161.02 152.47

SBC 250.99 206.70 166.0 157.46

*p < 0.10; **p < 0.05; ***p < 0.01 (two-tailed).

Standard errors are given in parentheses. Score CIs are determined using a ‘sliding linear’ root-finding

algorithm. The plot is produced using R statistical software (R Development Core Team, 2008) using the

freely available Generalized Additive Models for Location Scale and Shape (GAMLSS) package [190].

tions, given by

π(x)

1− π(x)
= exp(fpolyn(i)), (7.32)

and

π(x)

1− π(x)
= exp(fspline(i)). (7.33)

Interpreting the effect of the predictors is more complicated with a logistic

regression since the coefficients represent a change in the logit function for each
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Figure 7.2: Modelling Atlantic basin CAT1-5 basin hurricanes: fitted values of the

rate of CAT1-5 Atlantic basin hurricane annual counts µ regressed on SSTAtl and SSTtrop

from 1966-2012 with linear (green line), quadratic polynomial (dark blue), and cubic spline

(light blue) Poisson regression models. The linear fit corresponds to the best-fit model in the

second column of Table 7.1 with AICc = 201.1.

unit change in the predictor, not the response variable itself (i.e. the fraction of

CAT1-5 U.S. landfalls or CAT3-5 basin hurricanes). The parameter estimates

and measures of model fit for the best-fit models of annual hurricane count

fractions ranked according to the AIC model selection criterion are listed in

Table 7.2.

Unlike the Poisson regression models of storm counts, there are no clear

important predictors for both CAT3-5 Atlantic basin hurricane fractions and

CAT1-5 U.S. landfall fractions. Year is the only significant predictor retained

by the best-fit model for the former category where the modelled relation be-

tween log
(

π(x)
1−π(x)

)

and the predictor is positive and linear. The high precision

of the score CI for the regression coefficient shows that the positive relationship

is reliable at the 95% confidence level. The best-fit model for the latter cate-

gory only retains SSTAtl as a predictor, but it is not significant. In that case,
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the modelled relation between log
(

π(x)
1−π(x)

)

and the predictor is negative and

linear, but the score CI for the regression coefficient straddles both negative

and positive values reflecting the lack of significance of SSTAtl as a predictor.

Substantially high statistical confidence in the predictor of the CAT3-5 At-

lantic basin hurricane fraction model compared to the CAT1-5 U.S. landfall

fraction model reflects the higher counts and larger multidecadal variability of

CAT3-5 Atlantic basin hurricanes during the years 1966-2012 [34, 202]. The re-

sults of this logistic regression modelling exercise are somewhat divergent from

those of Villarini et al. [208] who found that SSTtrop is an important predictor

for CAT1-5 U.S. landfalls. The period of their modelling study was 18782008,

however, providing a much larger sample size, although the reliability of the

data over the earlier part of that period is questionable [106].

Like the best-fit Poisson regression models in the previous section, none of

the modelled dependencies of the storm count rates are nonlinear in the best-fit

logistic regression models, but the AICc and SBC values are similar for all three

of the linear, quadratic polynomial and cubic spline fits. The linear models are

penalised less by AICc and SBC for having less degrees of freedom so that they

tend to be ranked as the best-fit models. As before, the short duration of the

modelled time period (i.e. small storm count sample size N = 47) results in

similarity of the values of AICc and SBC.

Inclusion of interaction terms has a similar impact on model selection as was

the case for the Poisson regression models. The additional model parameters

increase the degrees of freedom, but do not result in relative improvement of

model fit. Moreover, they are again shown to be insignificant in all model fits.

Model fit diagnostics are shown in Table 7.2, and plotted in appendix C, and

indicate that both best-fit models are adequately able to reproduce the annual

counts of both storm count fraction categories over the period 1966-2012.

Testing for overdispersion reveals that the beta-binomial model (see Section

7.4) is a slightly better fit than the CAT1-5 U.S. landfall fraction logistic regres-

sion model. The AICc values are 144.45 and 144.87, respectively. This result
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Table 7.2: Logistic regression models of Atlantic basin storms 1966-2012

CAT3-5 basin hurricanes CAT1-5 U.S. landfall

fractions fractions†

Intercept -0.97*** -1.16***

(0.26) (0.18)

Year 0.02** -

Standard error (0.01) -

Score-test 95% CI (0,0.04) -

SSTAtl - -0.14

Standard error - (0.47)

Score-test 95% CI (-1.07,0.79)

SSTtrop - -

Standard error - -

Score-test 95% CI - -

Deg. of Freedom

for the fit 2 3

Mean (residuals) -0.04 0.05

Variance (residuals) 0.59 0.78

Skewness (residuals) 0.04 0.60

Kurtosis (residuals) 2.43 3.73

Filliben (residuals) 0.99 0.98

AIC 133.89 144.45

SBC 137.31 149.45

*p < 0.10; **p < 0.05; ***p < 0.01 (two-tailed).

†The CAT1-5 U.S. landfall best-fit model is the beta-binomial version.

Standard errors are given in parentheses. Score-test CIs are determined using a ‘sliding linear’ root-finding

algorithm. The plot is produced using R statistical software (R Development Core Team, 2008) using the

freely available Generalized Additive Models for Location Scale and Shape (GAMLSS) package [190].

indicates that there is overdispersion present in the CAT1-5 U.S. landfall frac-

tion data, but its effect on the validity of the logistic regression model would be

minimal. The parameter values for the beta-binomial fit are shown in Table 7.2
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rather than the logistic regression model. The equivalent test for overdispersion

of the CAT3-5 Atlantic basin hurricane fraction logistic regression model shows

no overdispersion is present.

7.6 Conclusions

GLM and GAM regression models have been employed to describe annual At-

lantic basin tropical cyclone counts and fractions over the period 1966-2012 in

this chapter. Four different categories of annual counts have been modelled (i.e.

basin named storms, CAT1-5 and CAT3-5 basin hurricanes, and CAT1-5 U.S.

landfalls using a Poisson regression while fractions of CAT1-5 Atlantic basin

hurricanes which make landfall over the U.S., or develop into CAT3-5 hurri-

canes have been modelled using a logistic regression. There are three predictor

variables: year, tropical Atlantic SST anomalies (SSTatl), and global tropical

SST anomalies (SSTtrop) have been included in the models. The latter two have

often been cited in the literature as playing an important role in the modula-

tion of Atlantic basin tropical cyclone activity. A novel combination of GLM

and GAM techniques which includes regression smoothers to model both linear

and nonlinear dependencies of hurricane response variables on the three predic-

tor variables has been incorporated into the models. In addition, collinearity

between the predictor variables has been accounted for by the inclusion of in-

teraction terms in the models.

An innovative approach to constructing inverted score and likelihood-ratio

test confidence intervals for regression coefficients using a ‘sliding linear’ root-

finding algorithm has been proposed and executed. These CIs provide better

probability coverage that is closer to the nominal level than the conventional

Wald CI where the sample sizes are small, but are difficult to construct because

likelihood function is not an explicit function of the model parameters. The

‘sliding linear’ root-finding algorithm is an efficient and robust method which be

used for finding the lower and upper bounds of the inverted score and likelihood-
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ratio tests.

The results of the Poisson regression model fits has revealed that SSTatl and

SSTtrop are important predictors for explaining annual TC counts for all four

categories. The signs of the regression coefficients of these two predictors have

been found to be in agreement with those estimated by Villarini et al. [207, 208]

albeit over a different modelled time period. The positive relationship between

tropical cyclone counts and SSTatl is consistent with scientific understanding of

the physical influences on TC formation while the negative relationship between

tropical cyclone counts and SSTtrop supports recent findings on relative sea sur-

face temperatures [100, 204]. Year is retained as a significant predictor of basin

named storms, but its effect is not as strong as SSTatl and SSTtrop. Although

the relative importance of the three predictor variables has been assessed, it

is not entirely clear whether the dependency of Atlantic basin tropical cyclone

counts and fractions on the predictors over the period 1966-2012 is linear or

nonlinear. Given the relatively short duration of the modelled period, there is

a relatively small variation in the values of AICc and SBC for most model fits.

The relative parsimony of the linear models (as low as 3 degrees of freedom)

compared to the models which include quadratic polynomial and cubic spline

regression smoothers means that they tend to be penalised less, yet are able

to reproduce the variability exhibited by the count data over the last 47 years

reasonably well.

The modelling of CAT3-5 basin hurricane and CAT1-5 U.S. landfall frac-

tions using a logistic regression has resulted in less significant fits of the three

predictor variables. This is likely to be attributable to the fact these are sub-

categories of total Atlantic basin counts, and therefore contain lower counts

(i.e. less data), resulting in less power in significance tests. Year is retained

as a statistically significant predictor of fractions of CAT1-5 basin hurricanes

developing into CAT3-5 basin hurricanes while the model which includes SSTatl

as the sole predictor for CAT1-5 U.S. landfalls is selected as the best fit by AICc

and SBC. The relationship between CAT1-5 U.S. landfalls and SSTatl appears
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to be insignificant, however. The lack of strong influence of the three predictors

on CAT3-5 basin hurricane and CAT1-5 U.S. landfall fractions may be indica-

tive of the small counts of these two categories over a relatively short modelled

time period. Analysis of both the Poisson and logistic regression model fit

diagnostics has shown that the residuals of all best-fit models exhibit reason-

able approximations of a normal distribution while tests for overdispersion have

demonstrated that there are no serious deficiencies in the models. The beta-

binomial model for CAT1-5 U.S. landfall fractions has a slightly better fit than

the logistic model according to AICc. The best-fit Poisson and logistic regres-

sion models in each hurricane category are employed to produce predictions of

the 2013 seasonal hurricane counts and U.S. landfall fractions in Chapter 8.

The following novel contributions or innovations in this chapter are:

• development of GLM and GAM models of annual hurricane counts and

fractions using Poisson and logistic regression models with polynomial

functions and cubic splines employing a unique set of predictor variables;

• determination of score and inverted likelihood-ratio confidence intervals

for regression model coefficients using an innovative ‘sliding linear’ root-

finding algorithm;

• application and interpretation of tests for overdispersion of tropical cy-

clone count data for Poisson and logistic regression models.
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Chapter 8

Forecasting the 2013 Atlantic

basin Hurricane Season

The investigations presented in Chapters 3-7 have motivated and illustrated

a proposed statistical framework for best-practice forecast construction, recali-

bration and evaluation in the setting of testbed dynamical and stochastic target

systems, and real-world forecasting. Discussion focussed on more specific sta-

tistical aspects of applied hurricane forecasting in Chapter 5 in the context

of several predictands and forecast lead times which are important to relevant

decision-makers. The challenges posed by small-count data, and the slow collec-

tion of annual forecast evaluation data were highlighted, along with suggested

approaches to address these challenges. A number of novel statistical forecast

systems designed to exploit the limited information contained in a relatively

short historical hurricane record were then introduced and evaluated. These

forecast systems are simple to construct, and easy to implement, making them

potentially useful as benchmark hurricane forecast models.

This final chapter brings together the forecast construction and evaluation

methods featured within the statistical framework to be tested in a real-world

hurricane forecasting case-study. A real-time outlook for the 2013 Atlantic

basin hurricane season is presented, and then evaluated using the outcomes of
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the 2013 hurricane season. The purpose of the out-of-sample forecast evalua-

tion procedure in this chapter is to assess the potential skill of each statistical

forecast system as a benchmark model, and compare their performance with

other operational forecast systems.

The various statistical forecast systems introduced and evaluated in Chap-

ter 5 are reviewed in Section 8.1, and then implemented in forecasting mode to

construct predictions of total counts of named storms, CAT1-5 hurricanes, and

CAT1-5 US landfalls occurring during the 2013 season. Subsequently, the per-

formance of these forecasts is assessed with various forecast evaluation measures

discussed in earlier chapters, and compared with equivalent predictions issued

by other forecasting organisations (i.e. operational forecast centres, academic

institutes, etc).

The novel (re)analysis of the National Hurricane Center’s (NHC) 48 hour

tropical cyclone (TC) genesis forecasts, presented in Chapter 6, is extended to

the 2013 hurricane season in Sections 8.2 and 8.3. The assessment of the relia-

bility of the NHC’s 48-hour TC genesis forecasts for the 2012 hurricane season

before and after recalibration is repeated for the 2013 season in Section 8.2.

Next, the relationship between the reliability and “Time Until Event” (TUE)

of the genesis forecasts is examined in Section 8.3. The TUE diagrams proposed

in Chapter 6 as supplementary to reliability diagrams are presented to complete

the interpretation of the reliability of the NHC’s 2013 TC genesis forecasts. All

of the analyses above and predictions for the 2013 hurricane season are new

contributions.

The conjectures and methodologies for hurricane forecast construction, re-

calibration, and evaluation discussed in this thesis have been formalised since

before the 2013 hurricane season commenced. Furthermore, statistical analy-

ses of 2013 seasonal data and predictions produced from the forecast systems

presented thus far have been made in real-time. No other analyses have been

made.
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8.1 Statistical forecast systems

Probabilistic predictions of three different TC count categories for the 2013 hur-

ricane season are produced here: Atlantic basin named storms, CAT1-5 Atlantic

basin hurricanes, and CAT1-5 U.S. landfalls. The skill of these three predictions

is measured with the ignorance score defined with respect to the climatological

reference forecast, and also compared with that of other operational forecasts.

The 2013 hurricane season had officially come to a close at the time of writing

(November 2013), and so the official counts for the season are available for the

forecast evaluation procedure. An interesting point to note at this point is that

the 2013 hurricane season ended with storm numbers well below the predic-

tions of many operational forecasting centres1. The hurricane count data, used

in the construction and evaluation of the 2013 predictions, is sourced from the

HURDAT database2.

8.1.1 Synoptic conditioning forecast system

Accurate pre-season predictions of the ENSO phase are widely considered to

be key for constructing skilful statistical hurricane forecasts (see Gray [64] and

Camargo et al. [28] and Section 5.1.3). The synoptic conditioning (SC) forecast

system outlined in Section 5.2 is deployed here to produce probabilistic fore-

casts of the 2013 by conditioning historical storm counts on the ENSO phase

3 during the peak of each season. A Poisson process is used to model seasonal

storm counts where the mean parameter λ is determined by the historical storm

average during El Niño episodes and non-El Niño episodes. Hence, annual storm

prediction Yt is defined by

Yt ∼











Pois(λA), if φt = A.

Pois(λB), if φt = B.

(8.1)

1http://hurricane.atmos.colostate.edu/forecasts/2013/nov2013/nov2013.pdf
2http://www.aoml.noaa.gov/hrd/data sub/re anal.html
3data sourced from http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml#current
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where λA and λB are the mean storm counts in El Niño and non-El Niño years,

respectively. Recall that the underlying assumption of the SC forecast system

in Section 5.2 is that storm counts are distributed according to one of two

probability distributions PA or PB dependent on the ENSO phase.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 270
Storm count (y)

0.00

0.05

0.10

0.15

p(
y)

0 130

Climatology PDF

Forecast PDF

Figure 8.1: Synoptic conditioning forecast for 2013: SC forecast (red) and climatolog-

ical forecast (blue) PDFs for Atlantic basin named storms in 2013. The synoptic conditioning

technique utilises information on the annual August-October ENSO phases. There were 13

named storms in 2013 (axis label coloured red) which the SC forecast PDF has assigned

larger probability mass to than the climatological PDF, and hence, has achieved superior

skill IGN = −0.28.

The unconditional climatological forecast employed to measure the skill of

the SC forecast system is, as in Section 5.2, defined by a weighted convex linear

combination of the PA and PB, that is

Pclim = αPA + βPB. (8.2)

The values of α and β are updated to include the ONI data in 2013 (i.e. α =

0.33 and β = 0.67). Figure 8.1 shows the forecast PDF for named storm counts

for the 2013 season along with the climatological forecast PDF. The forecast
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skill results of the 2013 forecasts of named storms, CAT1-5 basin hurricanes,

and CAT1-5 U.S. landfalls are listed in Table 8.1.

8.1.2 Conditional analogue forecast system

A straightforward and computationally inexpensive empirical statistical fore-

casting scheme based on temporal analogue searching was presented in Section

5.4. Two analogue methods, single analogue and series analogue, have been

designed to exploit self-repeating patterns of hurricane counts in the historical

time series. In short, forecasts of future hurricane outcomes are conditioned by

finding where analogues of current outcomes occurred in the past, and construct-

ing distributions of the images (i.e. successive outcomes) of these analogues.

Hence, the forecast system is referred to as conditional analogue forecasting.

The effectiveness of the conditional analogue (CA) forecast system was

tested in a testbed hurricane system environment, and it was shown that both

analogue methods demonstrated superior skill to both a Bayesian forecast model

and a climatological model. The CA forecast system was calibrated with three

training sets of size N = 212, but, when producing forecasts of 2013 hurri-

cane outcomes, may be disadvantaged by the relatively short historical storm

datasets with which to calibrate. Two model parameters need to be optimised

to produce predictions in forecasting mode. Firstly, the parameter κ controlling

the top-hat probability mass weights on each hurricane outcome y. Secondly,

the blending parameter α determining the balance of weight between the kernel

dressed forecast and climatological probability masses p and pclim, respectively.

As explained in Section 5.4.1, the parameter optimisation step is executed out-

of-sample, and employs some cost function such as ignorance. Whereas pa-

rameter optimisation utilised training sets of forecast-outcome pairs in training

mode in the previous chapter, it is executed here using k-fold cross-validation

[69] (see 1.8). Given the limited size of the reliable historical hurricane record,

the leave-one-out k = N method is the most appropriate [155]. Hence, the
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optimised parameters are given by

(κ̂, α̂) := argmin
κ,α

− 1

N

N
∑

i/∈T

α× pκ,T (Yi) + (1− α)× pclim(Yi), (8.3)

where T denotes the leave-one-out training set storm counts from 1966-2013.

The CA single analogue forecast PDF showing the forecast PDF of named storm

counts for the 2013 season is shown in Fig. 8.2 along with the climatological

forecast PDF.
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Figure 8.2: Conditional analogue forecast for 2013: single CA forecast (red) and

climatological forecast (blue) PDFs for Atlantic basin named storms in 2013. There were 13

named storms in 2013 (axis label coloured red) which the CA forecast has assigned larger

probability mass to than the climatological PDF, and hence, achieves superior skill IGN =

−0.40.

The skill of the 2013 single and series analogue forecasts of basin named

storms, CAT1-5 basin hurricanes, and CAT1-5 U.S. landfalls are listed in Ta-

ble8.1. The CA forecast system evidently demonstrates skill where forecasting

basin named storms and CAT1-5 basin hurricanes with the series analogue
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method performing slightly better than the single analogue method. The series

analogue method has the advantage that, if series analogues are found elsewhere

in the time series, they contain more information than a single analogue so that

there is more information utilised in the forecast. If the CA forecast system

shows skill, there may be some indication of periodic behaviour in hurricane

activity over the Atlantic basin. Robust testing of this idea is not possible with

the limited size of the hurricane record, however, and is beyond the scope of

this thesis.

8.1.3 Hurricane regression models

The Poisson regression models fitted to annual tropical cyclone counts over the

period 1966-2012 which were described in Chapter 7 are deployed here to provide

predictions of basin named storms, CAT1-5 basin hurricanes, and CAT1-5 U.S.

landfalls for the 2013 season. Model selection has been performed for these three

categories using the corrected Akaike Information Criterion (AICc). Given the

lower degrees of freedom of the linear GLM versions of the models compared to

the GAM models which includes regression smoothers, and the limited duration

of the reliable hurricane record, the linear models have been preferred in each

case. The predictor variables which were found to be important were tropical

Atlantic sea surface temperature (SST) anomalies SSTAtl and global tropical

SST anomalies SSTtrop. Year as a predictor variable has also been retained only

for the model of Atlantic basin named storms. So, in that case, the logarithm

of the mean count rate of annual basin named storms according to the best-fit

linear model is given by

µi = E[Yi|year, SSTAtl, SSTtrop] (8.4)

= exp(β0 + yearβ1 + SSTAtlβ2 + SSTtropβ3),

where the regression coefficients take the values β0 = 2.01, β1 = 0.01, β2 = 0.97,

and β3 = −1.37. A probabilistic forecast for the 2013 season can be produced

271



CHAPTER 8. 2013 ATLANTIC BASIN HURRICANE SEASON

using this fitted count rate parameter, given by

f(Yi = k|xi) =
eµiµk

i

k!
, k = 0, 1, 2, ..., (8.5)

where k is the storm count. The Poisson regression forecast PDF showing the

predictive distribution of named storm counts for the 2013 season is shown in

Fig. 8.3 along with the climatological forecast PDF.
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Figure 8.3: Poisson GLM forecast for 2013: Poisson GLM forecast (red) and climatolog-

ical forecast (blue) PDFs for Atlantic basin named storms in 2013. The regression coefficients

of the model are: β0 = 2.01, β1 = 0.01 (year), β2 = 0.97 (SSTAtl), and β3 = −1.37 (SSTtrop).

There were 13 named storms in 2013 (axis label coloured red) which the Poisson GLM fore-

cast has assigned larger probability mass to than the climatological PDF, and hence, achieves

superior skill IGN = −0.16.

The skill of the 2013 Poisson GLM forecasts of basin named storms, CAT1-5

basin hurricanes, and CAT1-5 U.S. landfalls are listed in Table 8.1. The Poisson

GLM forecast is more skilful than the climatological forecast where forecasting

basin named storms and CAT1-5 U.S. landfalls, but less so for the prediction

of CAT1-5 basin hurricanes.
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8.1.4 Review of skill of 2013 hurricane forecasts

One of the key requirements of robust forecast evaluation is sufficient forecast-

outcome pair sample size. This requirement has been been highlighted through-

out this thesis (see Chapters 1 through 5). Arriving at robust conclusions about

the skill of the predictions of the 2013 hurricane season produced by the forecast

systems introduced in this thesis is not possible. Nevertheless, it of interest to

assess whether these forecast systems have at least some capability of producing

an accurate hurricane forecast.

Table 8.1: 2013 hurricane forecast skill (IGN)

Storm Category (number of storms in 2013)

Named CAT1-5 CAT1-5

storms (13) basin hurricanes (2) U.S. landfalls (0)

Forecast Parameter IGN Parameter IGN Parameter IGN

system values values values

SC δ = ǫ = 1 -0.28 δ = ǫ = 1 0.84 δ = ǫ = 1 0.41

CA single κ = 0.99, κ = 0.99, κ = 0.93,

analogue α = 0.15 0.02 α = 0.21 -0.17 α = 1.0 0.62

CA series κ = 0.99, κ = 0.99, κ = 0.99,

analogue α = 0.22 -0.28 α = 0.42 -1.25 α = 1.0 0.95

Poisson β0 = 2.01,

GLM β1 = 0.01 β0 = 1.67, β0 = 0.23,

β2 = 0.97, β2 = 1.53, β2 = 1.50,

β3 = −1.37 -0.16 β3 = −1.74 0.13 β3 = −1.80 -0.28

The statistical forecasts of the 2013 Atlantic basin hurricane season are now

compared with operational forecasts of the 2013 Atlantic basin hurricane season

as a brief (but not statistically significant) assessment of their performance as

benchmark models. At the beginning of the 2013 hurricane season, many op-

erational forecast organisations anticipated an active season [65, 143, 198, 147]

due to favourable environmental conditions such as anomalously warm tropical

Atlantic SSTs, and an expected cool-neutral (non-El Niño) ENSO phase. The

expectation of above-long term average activity persisted along with these con-

ditions until the mid-season predictions were issued in August 2013. The season,
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which closed on 30th November, proved to be one of quietest on record, how-

ever, owing to anomalous mid-tropospheric conditions, unfavourable for hurri-

cane formation4. Such unexpected outcomes can lead to large statistical forecast

error if the statistical relationship between hurricane activity and predictor vari-

ables is incomplete, or changing over time [43]. In theory, dynamical models

should not be susceptible to the same kind of forecast error due to anomalous

hurricane behaviour. The UK Met Office TC dynamical model forecasts is also

included for comparison.

Table 8.2 below lists sets of predictions of the 2013 hurricane season from

four high profile forecasting organisations along with predictions from the statis-

tical forecast systems introduced in this thesis. All of the predictions are point

forecasts (with uncertainty intervals where available), hence, they are compared

with the medians of the probabilistic forecasts presented above. Comparison of

the forecasts is intended to be cursory, and not an assessment of skill. Clearly,

virtually all of the hurricane predictions are higher than the actual 2013 hur-

ricane season outcomes. The median forecasts produced from the statistical

forecast systems presented in this thesis have performed comparatively well, at

least in the named storm category. The predictions of these forecast systems

are all within 2 counts of the observed outcome of 13 named storms. In the

other categories they are less accurate but are comparable with the operational

forecasts. To reiterate, any quantitative evaluation of forecast skill would not

be statistically significant here, a much larger set of out-of-sample evaluations

is necessary to prove forecast skill (as discussed in Chapter 5). Still, the rela-

tively accurate predictions produced from the thesis statistical forecast systems

indicates that they may at least provide useful benchmark forecast models,

particularly the single CA method.

4http://hurricane.atmos.colostate.edu/Forecasts/
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Table 8.2: 2013 statistical hurricane forecasts (operational/thesis

Storm Category (number of storms in 2013)

Forecasting Model Named CAT1-5 CAT1-5

centre type storms basin hurricanes U.S. landfalls

Colorado State

University (CSU) Statistical 18 8 -

National Oceanic and

Atmospheric

Administration (NOAA) Statistical 13-19 6-9 -

Tropical Storm

Risk (TSR) Statistical 14.8± 2.9* 6.9± 1.8* 1.8± 1.5*

UK Met

Office (UKMO) Dynamical 14± 4** 9± 5** -

Observed outcome 13 2 0

Thesis forecast

system

SC (median) Statistical 12 7 1

CA single

analogue (median) Statistical 11 6 1

CA series

analogue (median) Statistical 13 7 2

*1 forecast error standard deviation **range represents 70% probability

8.2 NHC 2013 48-hour tropical cyclone genesis

forecast reliability and recalibration

The reliability of the National Hurricane Center’s 2012 48-hour TC genesis fore-

casts before and after recalibration was examined in Chapter 6. While the raw

forecasts were found to be reliable at less extreme probability categories with

some under-forecast bias at higher probability categories, out-of-sample recali-

bration using the 2011 forecasts as the training set degraded the performance

of the forecasts, and increased the margin of under-forecasting. Leave-one-out

cross-validation recalibration resulted in improved reliability of the 2012 fore-

casts.

The evaluation of the NHC 48-hour TC genesis forecasts is extended here
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Figure 8.4: NHC 2013 TC forecast reliability: reliability diagram for the NHC’s 2013

48-hr TC forecasts* with 5% - 95% (1% - 99% vertical dashed line) consistency bars. Forecast

categories 80% and 90% have consistency bars with wide intervals and medians which lie

off the diagonal because of small bin populations. The forecast probability bin boundaries

(grey dotted lines) have been determined by taking the mid-points between each probability

category value. *Sourced from NHC online Tropical Weather Outlooks.

to the 2013 hurricane season. Again, the reliability of the forecasts is assessed

pre- and post-recalibration. Recalibration is implemented using the 2012 fore-

casts as the training set, and the reliability of the recalibrated 2013 forecasts

is compared with the recalibrated 2012 forecasts (evaluated in Section 6.3) to

determine whether out-of-sample recalibration can be beneficial for short-term
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Figure 8.5: NHC 2013 TC forecast reliability: reliability diagram on probability paper

for the NHC’s 2013 48-hr TC forecasts*. The consistency bar median of forecast categories

0.8 and 0.9 lie off the diagonal because of small sample sizes. The dash–dotted line denotes

the exact position of the diagonal. The right-hand axis indicates the equivalent Bonferroni

corrected levels i.e. for a reliable forecast, all of the points (11 categories) would be expected

to fall within the 0.99 probability distance band with an 89.5% chance. If it were not for the

0.3 probability category, the forecast could be considered reliable. In addition, the dashed

lines indicate where the entire diagram would be expected to fall within with a 90% chance.

The forecast probability bin boundaries (grey dotted lines) have been determined by taking

the mid-points between each probability category value. *Sourced from NHC online Tropical

Weather Outlooks.
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TC forecasts.

Figures 8.4 and 8.5 illustrate the reliability of the NHC 2013 48-hour TC

genesis forecasts. The forecast system would be considered reliable but for one

forecast category falling outside the 5% - 95% consistency bars. The perfor-

mance has also improved on the 2012 hurricane season (see Fig. 6.2) and is less

under-confident, although there is still some indication of under-forecast bias at

the highest probability categories. Since the 2013 forecasts are evidently more

reliable with more probability categories falling within the 5% - 95% consistency

bars than the 2012 forecasts, it is of interest to determine whether forecast re-

calibration can be any more beneficial for the 2013 forecasts than it was for

the 2012 forecasts in Section 6.3. The improvement after forecast recalibration

was shown to be reduced in Chapter 3 if pre-recalibration forecast skill was

already high since there is a maximum level skill possible for binary forecasts

(see Section 3.2).

The simple translation method outlined in Section 2.4.1 is again employed

here to recalibrate the 2013 NHC TC genesis forecasts out-of-sample using the

2012 TC forecast-outcome dataset as training data. Figures 8.6 and 8.7 show

the results of forecast recalibration using the 2012 forecasts as the training

set. Only three of the seven forecast categories now fall within the 5% - 95%

consistency bars indicating a decrease of the reliability of the recalibrated 2013

forecasts. The degradation in forecast performance replicates the result of the

2012 forecasts recalibrated with the 2011 forecasts as training data. Particularly

poor, is the highest recalibrated forecast probability category (rk = 0.999) and

the forecast category with rk = 0.649 which both suffer from significant over-

forecasting and lie well beyond the lower limit of the 1% - 99% consistency bars.

The lack of reliability of these two forecast categories reflects the under-forecast

bias demonstrated by the 2012 forecasts. Recalibration has appears to resulted

in over-compensation at the higher categories such that some of the recalibrated

forecast values are too high.
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Figure 8.6: Recalibrated NHC 2013 TC forecast reliability: reliability diagram for

the recalibrated NHC 2013 TC forecasts using 2012 forecast-outcome set as training data with

5% - 95% (1% - 99% vertical dashed line) consistency bars (the highest category r7 = 0.999

has a consistency bar with zero width). The forecast probability bin boundaries (grey dotted

lines) are identical to those on the original 2013 reliability diagram although the number of

populated categories has decreased to 7. Forecast recalibration has resulted in a decrease of

forecast reliability (c.f. Fig. 8.4). *Sourced from NHC online Tropical Weather Outlooks.
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Figure 8.7: Recalibrated NHC 2013 TC forecast reliability: reliability diagram for

the NHC 2013 TC forecasts recalibrated using the 2011 forecast-outcome set as training data

with 5% - 95% (1% - 99% vertical dashed line) consistency bars. Forecast recalibration has

resulted in a decrease of forecast reliability since most recalibrated probability categories

(pluses) have larger probability distances than raw forecast categories (crosses). The forecast

probability bin boundaries (grey dotted lines) are identical to those on the original 2013

reliability diagram although the number of populated categories has decreased to 7. See Fig.

8.5 for further details. *Sourced from NHC online Tropical Weather Outlooks.

8.3 NHC 2013 tropical cyclone forecast Time

Until Event

This final section investigates the forecast Time Until Event (TUE) profile of

the NHC’s 2013 48-hour TC raw forecasts, thereby completing the examination

of their reliability. Some indication of an inversely proportional relationship

between forecast probability and TUE was exhibited by the 2012 forecasts (see
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Figure 8.8: NHC 2013 TC forecast Time Until Event: fractions of verifying NHC

2013 TC forecasts* having different TUE lengths (in hours) for all probability categories.

The coloured TUE categories denote the occurrence of TC formation between the time given

and 6 hours previous to it. There is a clear pattern of larger fractions of shorter TUE with

increasing forecast probability category. Total counts of verifying forecasts for each category

are shown at the top of the bars. *Sourced from NHC online Tropical Weather Outlooks.

Section 6.4) demonstrating a reliability bias towards higher forecast probabil-

ities. By decomposing the forecasts by TUE lengths, it was shown that there

is indeed some bias towards reliability where higher probability categories have

shorter TUE lengths and lower probability categories have longer TUE lengths.

The reliability bias would otherwise be masked when reading from a reliabil-

ity diagram only so several supplementary diagrams were introduced. These

diagrams are employed again here to examine whether the 2013 forecasts are

subject to the same reliability bias. Figure 8.8 displays the fractions of NHC

2012 forecasts which verify with a TC formation within 48 hours (Y = 1) at

each probability category rk. Like the corresponding diagram for the 2012 fore-

casts, there is significant variation in the proportions of TUE lengths with a
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Figure 8.9: NHC 2013 TC forecast Time Until Event: CDFs of NHC 2013 TC

forecast* TUE times (in hours) for each forecast probability category rk (solid lines), and

for a set of reliable forecasts (fk = rk) where the TUE times are computed with a discrete

uniform distribution function (dashed lines). The higher probability curves lie well above

the corresponding uniform distribution of reliable forecast TUE lengths. The TUE categories

indicate the occurrence of a TC event between the time given and 6 hours previous to it, and

an “NO” indicates a non-occurrence of a TC within 48 hours. *Sourced from NHC online

Tropical Weather Outlooks.

tendency for shorter lengths with increasing forecast probability. Figure 8.9

compares the cumulative distribution functions for the maximum TUE times of

the actual forecasts in each probability category with those for a set of reliable

forecasts (fk = rk) for which the maximum TUE lengths are uniformly dis-

tributed. As in Fig. 6.9 in Section 6.4, the CDF curves at the highest probabil-

ity categories lie above the corresponding uniform CDF curves, demonstrating

higher empirical probabilities at shorter TUE lengths. The lower probability

categories of the 2013 forecasts do not appear to exhibit the same bias towards

longer TUE lengths, however, as did the 2012 forecasts. To confirm whether a

reliability bias does exist, the reliability diagram statistics rk and fk are listed
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in Table 8.3 according to TUE (see Section 6.4 for the equivalent 2012 table).

The statistics indicate a similar pattern of improved reliability of higher forecast

probabilities at shorter TUE lengths, and improved reliability of lower forecast

probabilities at longer TUE lengths to the 2012 forecast reliability statistics.

Table 8.3: NHC 2012 TC forecast reliability diagram statistics by TUE

Forecast probability rk

TUE 0.005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0-24 hrs 0 0.006 0.035 0.16 0.378 0.286 0.722 0.474 1.0 1.0 1.0

24-48 hrs 0 0.099 0.188 0.34 0.135 0.107 0 0.105 0 0 0

Green 5 − 95% ; Orange 95 − 99% ; Red > 99%.

8.4 Forward view and conclusions

The statistical framework for hurricane forecast construction, evaluation, and

recalibration proposed in Chapter 5 has been tested in a real-world hurricane

forecasting scenario in this chapter. Probabilistic forecasts of storm counts dur-

ing the 2013 Atlantic basin hurricane season have been constructed from the

SC and CA forecast systems in Section 8.1, and evaluated with a proper scoring

rule. The SC forecast and CA forecast systems achieved superior skill to the

climatological forecast when predicting the total number of basin named storms

for the 2013 season. In addition, the CA forecast system performed better in

the predictions of CAT1-5 basin hurricanes using both the single and series CA

methods. Both systems failed to outperform the climatological forecast, how-

ever, where predictions were made for the number of CAT1-5 U.S. landfalls. The

superior performance of the two forecast systems’ predictions of basin named

storms compared to those of CAT1-5 U.S. landfalls may be reflective of the

larger quantity of available observational data of the former category. The lim-

itations of U.S. landfall predictions have already been discussed in Section 5.3.

A cursory comparison of the 2013 seasonal hurricane predictions produced from

the SC forecast and CA forecast systems, and those issued by several global
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operational forecasting centres was also provided. All of the forecasts tended

to over-estimate counts of all three categories: named basin storms, CAT1-5

basin hurricanes, and CAT1-5 U.S. landfalls. The inaccuracy of the statistical

forecasts of the 2013 hurricane season outcomes serves as an example of where

statistical modelling can perform poorly if relationships between predictands

and predictors are incompletely understood, or are changing over time. The SC

and CA models performed comparatively well, however, and may prove useful

at least as benchmark models for future predictions of hurricane counts.

The latter part of the chapter focussed on the performance of the NHC’s

operational 2013 short-term TC forecasts in Section 8.2, evaluated using reli-

ability diagrams. The 2013 TC forecasts demonstrated good reliability overall

with 10 out of 11 forecast categories falling within the 5% - 95% consistency

bars, and superior reliability to the equivalent operational forecasts from the

2012 hurricane season (see Section 6.2). The 2013 TC forecasts have also been

recalibrated using a simple translation method, and the 2012 forecasts as the

training set, and then re-evaluated with reliability diagrams. Recalibration re-

sulted in a decrease of forecast reliability (as it did where recalibrating the 2012

TC forecasts with the 2011 training set in Section 6.3) suggesting that the pre-

dictability of TC formation, and hence, reliability of the TC forecast system,

varies from year to year. Limited sample size of the training set has also most

likely restricted the effectiveness of recalibration.

To present a more robust interpretation of the reliability of the NHC’s

2013 TC forecasts, the relationship between forecast reliability and “Time Until

Event” was investigated by analysing the profile of forecast TUE lengths on the

diagrams and table proposed in Chapter 5. The added dimension of forecast

TUE provides a more realistic interpretation of the reliability of each forecast

probability category. Like the 2012 forecasts, there is a bias towards shorter

TUE lengths at higher forecast probability categories indicating a potential for

a reliability bias at those higher categories. Categorising the reliability statis-

tics by TUE uncovers a more accurate picture of forecast reliability which is
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dependent on TUE.

Included in this chapter are the following novel contributions or innovations:

• deployment of statistical hurricane forecast systems introduced in Chapter

5 to produce and evaluate predictions of the 2013 hurricane season

• comparison of statistical hurricane forecast systems introduced in Chapter

5 with existing operational seasonal hurricane forecasts

• evaluation and recalibration of the National Hurricane Center’s 2013 48-

hour TC genesis forecasts using reliability diagrams with consistency bars,

and out-of-sample recalibration

• analysis of “Time Until Event”of the National Hurricane Center’s 2013 48-

hr TC genesis forecasts to provide a more complete illustration of forecast

reliability
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Appendix A

Dynamical Systems

A.1 The Lorenz63 System

The Lorenz63 system [118] is a three dimensional dynamical system defined by

a set of three ordinary differential equations (with respect to time) given as

ẋ = −σx+ σy (A.1)

ẏ = −xz + rx− y (A.2)

ż = xy − bz, (A.3)

where σ is the Prandtl number, r is the Rayleigh number, and b is the system

parameter. The standard parameter values are: σ = 10, r = 28, and b = 8/3

[188], and the initial conditions are set to {x0 = 0, y0 = −0.01, z0 = 9}. Nu-

merical solutions are obtained using a fourth order Runge-Kutta time stepping

scheme [160], with a time step of h = 10−2.

A.2 Logistic Map

The logistic map is considered one of the most simple of chaotic nonlinear

dynamical systems given that it is one-dimensional and involves a single control

parameter. Exact solutions exist for the state variable, and the system can be
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easily graphically visualised. The trajectory of the state variable is given by

xi+1 = axi(1− xi), (A.4)

where xi+1 is the system’s state at time i + 1, and a is the control parameter.

The values of xn are constrained so that 0 ≤ xn ≤ 1.

A.3 Toy hurricane system

A stochastic toy system is used to simulate annual Atlantic basin hurricane

counts in several sections in this thesis. The mean number of storms follows

a cycle of Tp years, while the number of storms in any given year is a random

variable denoted Y . The annual storm counts are generated according to a

stochastic Poisson process given as

Yt ∼ Pois(λ(t)), (A.5)

where Yt is the number of hurricanes in a given year t. The time-dependent

mean parameter λ is determined by a sinusoidal function given by

λ(t) = A · sin
(

2πt

Tp

)

+ C, (A.6)

where A are constants representing the amplitude and offset. The parameter

values are typically set so that the simulated storm counts are similar to those

that are observed in the Atlantic basin [61, 31]. These values correspond to

A = 2.5, C = 6.0, Tp = 60 for CAT1-5 Atlantic basin hurricanes.

288



Appendix B

Forecast evaluation statistics of

binary forecasts of Lorenz63

B.1 Datasets

The full set of numerical results of the binary forecast evaluation experiments

in Chapters 2 and 3 are presented in this appendix. The target system is the

three-dimensional Lorenz63 nonlinear dynamical system, formally defined in

Appendix A.1. All probabilistic binary forecasts are constructed to predict the

location of the x state variable lying above or below a given threshold xθ. To

generate system states of x, the Lorenz63 system is integrated using a fourth

order Runge-Kutta time stepping scheme [160], with a time step of h = 10−2.

Sequences of observed system states are generated by sampling at a given

rate fs using the model Ψ with additional observational noise. The noise level

is set to 5% of the standard deviation of the climatological distribution of true

states of x in all experiments. The size of the entire dataset of forecast-outcome

pairs is N = 210, which is equally divided into the training and evaluation

subsets. The former is used to recalibrate the forecasts while the latter is used

to evaluate the recalibrated forecasts. Each non-overlapping sequence consists

of sampled states up to the maximum forecast lead time of τ = 25.6s. For
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example, in a single non-overlapping sequence with τ = 25.6s (measured in

“Lorenz” seconds [118]) there are 25.6 ∗ 5 = 128 sampled states from which

the initial conditions and evaluation outcomes are determined for each forecast

lead time. These initial conditions and outcomes are then combined to form

the observation time series - one for each forecast lead time.

Table B.1: Lorenz63 datasets

Parameter

size of dataset (training + evaluation) 210

sampling rate (fs) 5

observational noise level as percentage

of climatological range of x (NL) 5%

climatological standard

deviation of x (σ) 0.37

lead time range (τ) {0.2, 0.4, 0.8, 1.6, 3.2,
6.4, 9.2, 12.8, 18.2, 25.6}*

ensemble size (Nens) {4, 8, 16, 32, 64,
128, 256, 512, 1024}

*in Lorenz63 seconds [118].

B.2 Forecasts

Corresponding binary forecasts are produced for each of the outcomes described

in Section B.1 above. The model Ψ is initialised with the initial conditions

sampled at time t = 0. The resulting binary forecast is determined from the

ensemble of size Nens at lead time τ depending on the climatological distribution

quantile θ using each of the density construction methods described in Section

2.2. Each forecast evaluation experiment is defined by a given set of the forecast-

parameters; Nens, τ , and θ. The numerical values of all relevant sampling
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parameters and forecast-parameters used to produce the datasets are listed in

Table B.1.

All forecast evaluation results listed in Sections B.3 and B.4 show the ig-

norance scores (rounded to 2 decimal places) of the forecasts relative to the

climatological reference forecast pclim. The best score is highlighted in green if

it is strictly the minimum value or yellow if it is the joint minimum value.
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B.3 Forecast evaluation results under PMS

Forecast PDF Construction Method: Naive Counted

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.4 -0.97 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.8 Inf -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97

1.6 Inf -0.95 -0.95 -0.95 -0.95 -0.95 -0.96 -0.95 -0.95

3.2 Inf Inf -0.91 -0.90 -0.90 -0.91 -0.90 -0.90 -0.90

6.4 Inf -0.75 -0.76 -0.77 -0.77 -0.77 -0.77 -0.78 -0.78

9.2 Inf Inf -0.55 -0.56 -0.56 -0.57 -0.57 -0.57 -0.57

12.8 Inf Inf -0.16 -0.21 -0.22 -0.22 -0.22 -0.22 -0.22

18.2 Inf Inf 0.03 -0.02 -0.04 -0.05 -0.05 -0.05 -0.05

25.6 Inf Inf 0.03 0.01 0 0 -0.01 -0.01 -0.01

θ = 0.9

0.2 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.4 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.8 -0.47 -0.47 -0.47 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

1.6 Inf -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

3.2 Inf Inf -0.41 -0.41 -0.42 -0.42 -0.42 -0.42 -0.42

6.4 Inf Inf Inf Inf -0.37 -0.37 -0.37 -0.37 -0.37

9.2 Inf Inf Inf Inf -0.3 -0.3 -0.3 -0.3 -0.3

12.8 Inf Inf Inf Inf Inf -0.22 -0.22 -0.22 -0.22

18.2 Inf Inf Inf Inf Inf -0.12 -0.12 -0.12 -0.12

25.6 Inf Inf Inf Inf Inf -0.05 -0.06 -0.05 -0.05

θ = 0.99

0.2 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.4 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.8 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

1.6 Inf -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

3.2 Inf Inf -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04

6.4 Inf Inf Inf -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

9.2 Inf Inf Inf Inf -0.02 -0.03 -0.02 -0.02 -0.02

12.8 Inf Inf Inf Inf -0.02 -0.01 -0.02 -0.02 -0.02

18.2 Inf Inf Inf Inf Inf -0.02 -0.02 -0.02 -0.02

25.6 Inf Inf Inf Inf Inf Inf Inf -0.01 -0.01
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Forecast PDF Construction Method: Adjusted Counted

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.83 -0.90 -0.94 -0.96 -0.97 -0.98 -0.98 -0.98 -0.98

0.4 -0.83 -0.90 -0.94 -0.96 -0.97 -0.97 -0.98 -0.98 -0.98

0.8 -0.82 -0.89 -0.93 -0.95 -0.96 -0.97 -0.97 -0.97 -0.97

1.6 -0.80 -0.87 -0.91 -0.93 -0.94 -0.95 -0.95 -0.95 -0.95

3.2 -0.75 -0.82 -0.87 -0.88 -0.89 -0.90 -0.90 -0.90 -0.90

6.4 -0.63 -0.69 -0.73 -0.75 -0.76 -0.77 -0.77 -0.77 -0.77

9.2 -0.41 -0.47 -0.53 -0.54 -0.56 -0.57 -0.57 -0.57 -0.57

12.8 -0.06 -0.11 -0.16 -0.20 -0.22 -0.22 -0.22 -0.22 -0.22

18.2 0.11 0.07 0.02 -0.03 -0.04 -0.04 -0.05 -0.05 -0.05

25.6 0.14 0.08 0.03 0.01 0 0 -0.01 -0.01 -0.01

θ = 0.9

0.2 -0.42 -0.45 -0.46 -0.47 -0.48 -0.48 -0.48 -0.48 -0.48

0.4 -0.42 -0.45 -0.46 -0.47 -0.48 -0.48 -0.48 -0.48 -0.48

0.8 -0.42 -0.45 -0.46 -0.47 -0.47 -0.47 -0.48 -0.48 -0.48

1.6 -0.40 -0.42 -0.44 -0.44 -0.45 -0.45 -0.45 -0.45 -0.45

3.2 -0.35 -0.39 -0.40 -0.41 -0.41 -0.41 -0.41 -0.42 -0.42

6.4 -0.31 -0.34 -0.35 -0.36 -0.37 -0.37 -0.37 -0.37 -0.37

9.2 -0.23 -0.27 -0.28 -0.29 -0.30 -0.30 -0.30 -0.30 -0.30

12.8 -0.13 -0.16 -0.19 -0.19 -0.21 -0.21 -0.22 -0.22 -0.22

18.2 -0.02 -0.04 -0.09 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11

25.6 0.06 0.02 0 -0.03 -0.04 -0.05 -0.06 -0.05 -0.05

θ = 0.99

0.2 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.4 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.8 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

1.6 -0.04 -0.05 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

3.2 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04

6.4 -0.01 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

9.2 0 0 0 -0.01 -0.02 -0.03 -0.02 -0.02 -0.02

12.8 0.01 0.01 0.02 0 -0.02 -0.01 -0.02 -0.02 -0.02

18.2 0.01 0 0 0 0 -0.02 -0.02 -0.02 -0.02

25.6 0.01 0.02 0.02 0.01 0 0.01 0 -0.01 -0.01
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Forecast PDF Construction Method: Bayesian

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99

0.4 -0.98 -0.99 -0.98 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99

0.8 -0.96 -0.97 -0.97 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

1.6 -0.91 -0.93 -0.95 -0.96 -0.96 -0.97 -0.97 -0.97 -0.97

3.2 -0.81 -0.85 -0.90 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91

6.4 -0.58 -0.67 -0.76 -0.80 -0.81 -0.81 -0.82 -0.82 -0.82

9.2 -0.21 -0.34 -0.47 -0.54 -0.57 -0.58 -0.58 -0.59 -0.59

12.8 0.14 0.04 -0.07 -0.16 -0.22 -0.22 -0.22 -0.22 -0.22

18.2 0.23 0.13 0.05 -0.01 -0.03 -0.04 -0.04 -0.05 -0.04

25.6 0.14 0.08 0.03 0.01 0 0 -0.01 -0.01 -0.01

θ = 0.9

0.2 -0.04 -0.26 -0.35 -0.39 -0.42 -0.44 -0.45 -0.45 -0.46

0.4 0.1 -0.16 -0.27 -0.32 -0.38 -0.4 -0.42 -0.42 -0.43

0.8 0.26 -0.02 -0.15 -0.21 -0.27 -0.3 -0.32 -0.33 -0.34

1.6 0.43 0.16 0.02 -0.04 -0.1 -0.12 -0.13 -0.13 -0.13

3.2 0.58 0.35 0.19 0.11 0.06 0.02 0.02 0.02 0.02

6.4 0.68 0.51 0.38 0.31 0.26 0.22 0.21 0.22 0.21

9.2 0.74 0.62 0.51 0.46 0.42 0.39 0.38 0.39 0.39

12.8 0.69 0.62 0.52 0.47 0.45 0.43 0.42 0.43 0.42

18.2 0.53 0.48 0.41 0.37 0.36 0.34 0.33 0.34 0.34

25.6 0.25 0.21 0.19 0.17 0.16 0.15 0.14 0.14 0.14

θ = 0.99

0.2 0.27 0.22 0.21 0.13 0.08 0.06 0.04 0.02 0.01

0.4 0.29 0.24 0.23 0.16 0.12 0.1 0.09 0.07 0.06

0.8 0.3 0.26 0.26 0.2 0.16 0.14 0.13 0.12 0.12

1.6 0.31 0.29 0.29 0.23 0.19 0.18 0.17 0.17 0.17

3.2 0.31 0.29 0.29 0.24 0.2 0.19 0.18 0.18 0.18

6.4 0.28 0.26 0.28 0.22 0.19 0.18 0.17 0.16 0.16

9.2 0.24 0.23 0.24 0.2 0.16 0.16 0.15 0.14 0.14

12.8 0.18 0.18 0.19 0.15 0.13 0.13 0.12 0.11 0.11

18.2 0.11 0.11 0.11 0.1 0.09 0.09 0.08 0.07 0.07

25.6 0.05 0.06 0.06 0.05 0.04 0.05 0.04 0.03 0.03
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Forecast PDF Construction Method: Kernel dressed and blended

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.4 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.8 -0.96 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97

1.6 -0.92 -0.94 -0.94 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95

3.2 -0.84 -0.86 -0.89 -0.89 -0.90 -0.90 -0.90 -0.90 -0.90

6.4 -0.67 -0.71 -0.73 -0.75 -0.75 -0.76 -0.77 -0.77 -0.77

9.2 -0.41 -0.46 -0.51 -0.53 -0.54 -0.55 -0.56 -0.56 -0.57

12.8 -0.08 -0.11 -0.15 -0.19 -0.21 -0.21 -0.21 -0.22 -0.22

18.2 0.03 0.03 0.01 -0.03 -0.04 -0.04 -0.05 -0.05 -0.05

25.6 0.02 0.02 0.01 0.01 0 0 -0.01 -0.01 -0.01

θ = 0.9

0.2 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.4 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.8 -0.47 -0.47 -0.47 -0.48 --0.48 -0.48 -0.48 -0.48 -0.48

1.6 -0.44 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

3.2 -0.38 -0.4 -0.41 -0.41 -0.41 -0.41 -0.42 -0.42 -0.42

6.4 -0.33 -0.35 -0.36 -0.36 -0.37 -0.37 -0.37 -0.37 -0.37

9.2 -0.23 -0.26 -0.27 -0.28 -0.29 -0.29 -0.3 -0.3 -0.3

12.8 -0.13 -0.17 -0.18 -0.19 -0.2 -0.21 -0.21 -0.21 -0.22

18.2 -0.05 -0.06 -0.09 -0.1 -0.11 -0.12 -0.12 -0.12 -0.12

25.6 -0.01 -0.03 -0.03 -0.05 -0.04 -0.05 -0.05 -0.05 -0.05

θ = 0.99

0.2 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.4 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.8 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

1.6 -0.05 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

3.2 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04

6.4 -0.01 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

9.2 0 0 0 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02

12.8 0.01 0.01 0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.02

18.2 0 0 0 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02

25.6 0 0 0 0 0 0 0 -0.01 -0.01
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B.4 Forecast evaluation results under IMS

Forecast PDF Construction Method: Naive Counted

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.4 -0.97 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.8 Inf -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97

1.6 Inf -0.95 -0.95 -0.95 -0.96 -0.96 -0.96 -0.96 -0.96

3.2 Inf Inf -0.91 -0.90 -0.90 -0.91 -0.90 -0.90 -0.90

6.4 Inf Inf -0.76 -0.77 -0.77 -0.77 -0.77 -0.78 -0.78

9.2 Inf Inf -0.55 -0.56 -0.56 -0.57 -0.57 -0.57 -0.57

12.8 Inf Inf Inf -0.20 -0.21 -0.21 -0.22 -0.22 -0.22

18.2 Inf Inf 0 -0.04 -0.05 -0.05 -0.05 -0.05 -0.05

25.6 Inf Inf 0.06 0.02 0 -0.01 -0.01 -0.01 -0.01

θ = 0.9

0.2 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.4 Inf -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.8 Inf Inf Inf Inf Inf -0.48 -0.48 -0.48 -0.48

1.6 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

3.2 Inf Inf -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41

6.4 Inf Inf -0.37 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37

9.2 Inf Inf Inf -0.29 -0.3 -0.3 -0.3 -0.3 -0.3

12.8 Inf Inf Inf Inf Inf -0.22 -0.22 -0.22 -0.22

18.2 Inf Inf Inf Inf Inf Inf -0.12 -0.12 -0.12

25.6 Inf Inf Inf Inf Inf -0.05 -0.05 -0.05 -0.05

θ = 0.99

0.2 Inf Inf -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.4 Inf Inf Inf Inf -0.06 -0.06 -0.06 -0.06 -0.06

0.8 Inf Inf Inf -0.06 -0.05 -0.05 -0.05 -0.05 -0.05

1.6 Inf Inf -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

3.2 Inf -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

6.4 Inf Inf -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

9.2 Inf Inf Inf Inf -0.02 -0.02 -0.02 -0.02 -0.02

12.8 Inf Inf -0.02 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02

18.2 Inf Inf Inf Inf Inf -0.02 -0.02 -0.02 -0.01

25.6 Inf Inf Inf Inf Inf Inf 0 0 0
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Forecast PDF Construction Method: Adjusted Counted

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.83 -0.90 -0.94 -0.96 -0.97 -0.98 -0.98 -0.98 -0.98

0.4 -0.83 -0.90 -0.94 -0.96 -0.97 -0.97 -0.98 -0.98 -0.98

0.8 -0.82 -0.89 -0.93 -0.95 -0.96 -0.97 -0.97 -0.97 -0.97

1.6 -0.80 -0.87 -0.91 -0.93 -0.95 -0.95 -0.95 -0.95 -0.96

3.2 -0.75 -0.83 -0.87 -0.88 -0.89 -0.90 -0.90 -0.90 -0.90

6.4 -0.63 -0.69 -0.73 -0.75 -0.76 -0.77 -0.77 -0.77 -0.77

9.2 -0.40 -0.47 -0.53 -0.55 -0.56 -0.57 -0.57 -0.57 -0.57

12.8 -0.06 -0.1 -0.16 -0.20 -0.21 -0.21 -0.22 -0.22 -0.22

18.2 0.08 0.03 -0.01 -0.01 -0.04 -0.05 -0.05 -0.05 -0.05

25.6 0.15 0.08 0.06 0.02 0 -0.01 -0.01 -0.01 -0.01

θ = 0.9

0.2 -0.42 -0.45 -0.46 -0.47 -0.47 -0.48 -0.48 -0.48 -0.48

0.4 -0.42 -0.45 -0.46 -0.47 -0.47 -0.47 -0.47 -0.48 -0.48

0.8 -0.41 -0.44 -0.45 -0.46 -0.46 -0.46 -0.47 -0.47 -0.47

1.6 -0.40 -0.43 -0.44 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

3.2 -0.35 -0.39 -0.40 -0.40 -0.41 -0.41 -0.41 -0.41 -0.41

6.4 -0.31 -0.34 -0.36 -0.36 -0.37 -0.37 -0.37 -0.37 -0.37

9.2 -0.22 -0.27 -0.28 -0.29 -0.30 -0.30 -0.30 -0.30 -0.30

12.8 -0.14 -0.18 -0.21 -0.21 -0.21 -0.22 -0.22 -0.22 -0.22

18.2 -0.03 -0.06 -0.09 -0.11 -0.11 -0.12 -0.12 -0.12 -0.12

25.6 0.04 0.02 0 -0.01 -0.03 -0.05 -0.05 -0.05 -0.05

θ = 0.99

0.2 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.4 0.05 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.8 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

1.6 -0.04 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

3.2 -0.03 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

6.4 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

9.2 0 0 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02

12.8 0 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.01 -0.02

18.2 0.02 0.01 0.01 0.01 -0.02 -0.01 -0.01 -0.01 -0.01

25.6 0.02 0.02 0.02 0.01 0.01 0 0 0 0
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Forecast PDF Construction Method: Bayesian

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.98 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99

0.4 -0.97 -0.98 -0.98 -0.98 -0.99 -0.99 -0.99 -0.99 -0.99

0.8 -0.96 -0.98 -0.98 -0.98 -0.98 -0.99 -0.99 -0.99 -0.99

1.6 -0.90 -0.94 -0.95 -0.96 -0.97 -0.97 -0.97 -0.97 -0.97

3.2 -0.78 -0.85 -0.89 -0.90 -0.91 -0.91 -0.91 -0.91 -0.91

6.4 -0.56 -0.67 -0.75 -0.79 -0.80 -0.81 -0.81 -0.82 -0.82

9.2 -0.20 -0.35 -0.47 -0.54 -0.57 -0.58 -0.58 -0.59 -0.59

12.8 0.13 0.02 -0.08 -0.17 -0.20 -0.21 -0.21 -0.21 -0.21

18.2 0.22 0.1 0.05 -0.02 -0.03 -0.04 -0.04 -0.04 -0.04

25.6 0.15 0.08 0.06 0.02 0 -0.01 -0.01 -0.01 -0.01

θ = 0.9

0.2 -0.12 -0.31 -0.39 -0.42 -0.44 -0.45 -0.46 -0.46 -0.46

0.4 0 -0.23 -0.33 -0.36 -0.4 -0.42 -0.43 -0.44 0.44

0.8 0.14 -0.11 -0.23 -0.26 -0.32 -0.35 -0.36 -0.38 -0.38

1.6 0.31 0.05 -0.07 -0.11 -0.17 -0.19 -0.2 -0.2 -0.21

3.2 0.48 0.24 0.1 0.05 -0.01 -0.04 -0.05 -0.05 -0.06

6.4 0.58 0.41 0.29 0.24 0.19 0.15 0.14 0.14 0.14

9.2 0.66 0.54 0.45 0.41 0.37 0.34 0.33 0.33 0.33

12.8 0.61 0.56 0.48 0.44 0.41 0.4 0.39 0.39 0.38

18.2 0.48 0.44 0.4 0.37 0.34 0.33 0.31 0.32 0.31

25.6 0.22 0.21 0.18 0.17 0.16 0.14 0.13 0.13 0.13

θ = 0.99

0.2 0.2 0.15 0.1 0.07 0.02 0 -0.02 -0.03 -0.04

0.4 0.22 0.18 0.13 0.11 0.07 0.05 0.03 0.02 0.01

0.8 0.23 0.2 0.16 0.15 0.11 0.1 0.09 0.08 0.08

1.6 0.25 0.22 0.19 0.18 0.15 0.14 0.14 0.14 0.14

3.2 0.24 0.23 0.2 0.19 0.17 0.16 0.15 0.15 0.15

6.4 0.23 0.22 0.19 0.18 0.15 0.15 0.14 0.14 0.14

9.2 0.2 0.19 0.17 0.16 0.14 0.13 0.13 0.12 0.12

12.8 0.16 0.15 0.13 0.13 0.11 0.1 0.1 0.1 0.1

18.2 0.12 0.12 0.11 0.1 0.08 0.07 0.07 0.07 0.06

25.6 0.05 0.06 0.05 0.04 0.04 0.04 0.03 0.03 0.03
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Forecast PDF Construction Method: Kernel dressed and blended

Ensemble Size Nens

4 8 16 32 64 128 256 512 1024

τ θ = 0.5

0.2 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.4 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

0.8 -0.96 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97 -0.97

1.6 -0.93 -0.94 -0.95 -0.95 -0.96 -0.96 -0.96 -0.96 -0.96

3.2 -0.85 -0.87 -0.89 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90

6.4 -0.68 -0.71 -0.73 -0.75 -0.76 -0.76 -0.77 -0.77 -0.77

9.2 -0.41 -0.47 -0.52 -0.54 -0.55 -0.56 -0.57 -0.57 -0.57

12.8 -0.08 -0.11 -0.15 -0.19 -0.21 -0.21 -0.21 -0.22 -0.22

18.2 0.01 0 -0.01 --0.04 -0.05 -0.05 -0.05 -0.05 -0.05

25.6 0.02 0.02 0.03 0.01 0 -0.01 -0.01 --0.01 -0.01

θ = 0.9

0.2 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.4 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48

0.8 -0.46 -0.46 -0.46 -0.46 --0.46 -0.47 -0.47 -0.47 -0.47

1.6 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45

3.2 -0.38 -0.4 -0.40 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41

6.4 -0.32 -0.35 -0.36 -0.36 -0.37 -0.37 -0.37 -0.37 -0.37

9.2 -0.23 -0.27 -0.28 -0.29 -0.29 -0.30 -0.30 -0.3 -0.3

12.8 -0.14 -0.17 -0.20 -0.21 -0.21 -0.22 -0.22 -0.22 -0.22

18.2 -0.05 -0.07 -0.09 -0.11 -0.12 -0.12 -0.12 -0.12 -0.12

25.6 -0.02 -0.02 -0.03 -0.03 -0.04 -0.05 -0.05 -0.05 -0.05

θ = 0.99

0.2 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.4 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

0.8 -0.06 -0.05 -0.05 -0.06 -0.05 -0.05 -0.05 -0.05 -0.05

1.6 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.06 -0.06

3.2 -0.03 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

6.4 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

9.2 0 0 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02

12.8 0 -0.01 -0.02 -0.02 -0.02 0.02 -0.01 -0.02 -0.02

18.2 0.01 0 0 0 -0.02 -0.01 -0.01 -0.01 -0.01

25.6 0 0.01 0.01 0 0 0 0 0 -0
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Appendix C

Hurricane Regression Modelling

Diagnostics

All diagnostic output is based on the normalised quantile residuals of the fitted

regression models in Chapter 7. This type of residual analysis ensures that,

irrespective of the distribution of the response variable, the true residual values

r have a standard normal distribution based on the assumption that the model

is an adequate fit. Normality tests are well established in statistical practice so

the analysis of the normalised quantile residuals is a convenient check for model

adequacy. The following notation follows Dunn and Smyth [42].

Let y1, . . . , yN denote the response outcomes which are assumed to be inde-

pendent and distributed according to a distribution P(µi, θ) where µi = E[y]

and θ is the parameter vector of the regression model. The response variable

is assumed to depend on the vector of predictors xi, and the k × 1 parameter

vector β. Also, let F (y;µ, θ) represent the cumulative distribution function of

P(µi, θ). In the case where F is continuous, then the F (y;µi, θ) are uniformly

distributed on the unit interval so that the quantile residuals r are given by

rq,i = Φ[F (y; µ̂i, θ̂)], (C.1)

where Φ is the standard normal distribution function. Ignoring sampling uncer-

tainty in the µ̂i and θ̂, all rq,i have an asymptotic standard normal distribution
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as long as β and θ are consistently estimated.

Given the case that y and F are discrete, as is the case with storm counts in

the regression modelling exercise in Chapter 7, a more general definition of the

quantile residuals is necessary. In this case, the normalised quantile residuals

are randomised. Let ai = limy→yiF (y;µi, θ) and bi = F (yi;µi, θ). Now let the

randomised quantile residual for yi be given by

rq,i = Φ−1(ui), (C.2)

where ui is a random variable on the interval (ai, bi]. The formulation of the

normalised quantile residuals in Eqn. (C.2) ensures that all rq,i are standard

normal distributed, taking into account sampling uncertainty in the µ̂i and θ̂.

See Dunn and Smyth [42] for further details.

C.1 Regression diagnostics plots

All of the plots below have been produced with R statistical software (R De-

velopment Core Team, 2008) using the freely available Generalized Additive

Models for Location Scale and Shape (GAMLSS) package [190].

301



APPENDIX C: HURRICANE REGRESSION MODEL DIAGNOSTICS

+

++

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

+

+ +

+

+

+

+
+

+ +

+
+

10 15 20

−
2

−
1

0
1

2
Against Fitted Values

Fitted Values

Q
ua

nt
ile

 R
es

id
ua

ls

+

++

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

++

++

+

+

+

+

+

++

+

+

+

+
+

++

+
+

0 10 20 30 40

−
2

−
1

0
1

2

Against  index

index

Q
ua

nt
ile

 R
es

id
ua

ls

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Density Estimate

Quantile. Residuals

D
en

si
ty +

++

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

++

+ +

+

+

+

+

+

++

+

+

+

+
+

++

+
+

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−4 −2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Unit normal quantile

D
ev

ia
tio

n

Figure C.1: Diagnostics plots and worm plot for Poisson model of Atlantic basin named

storm counts regressed on year, SSTAtl and SSTtrop from 1966-2012.
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Figure C.2: Diagnostics plots and worm plot for Poisson model of Atlantic basin CAT1-5

hurricane counts regressed on SSTAtl and SSTtrop from 1966-2012.
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Figure C.3: Diagnostics plots and worm plot for Poisson model of Atlantic basin CAT3-5

hurricane counts regressed on SSTAtl and SSTtrop from 1966-2012.
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Figure C.4: Diagnostics plots and worm plot for Poisson model of Atlantic CAT1-5 US

landfall counts regressed on SSTAtl and SSTtrop from 1966-2012.
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Figure C.5: Diagnostics plots and worm plot for logistic model of Atlantic basin CAT3-5

hurricane count fractions regressed on year from 1966-2012.
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Figure C.6: Diagnostics plots and worm plot for logistic model of Atlantic CAT1-5 US

landfall count fractions regressed on SSTAtl from 1966-2012.
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Glossary

AC Adjusted counted forecast density construction method . . . . . . . . . . . . 54

AIC Akaike information criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

AICc Corrected Akaike information criterion . . . . . . . . . . . . . . . . . . . . . . . . . . .239

AR(1) First-order autoregressive process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

AMO Atlantic Multidecadal Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

CA Conditional analogue forecasting method . . . . . . . . . . . . . . . . . . . . . . . . 189

CDF Cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

DA Data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ESS Effective sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

GLM Generalised linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

GAM General additive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

i.i.d. Independent and identically distributed . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IC Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

IMS Imperfect model scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

KDB Kernel dressed and blended forecast density construction method . 44

KDE Kernel density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

LLN Law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

LR Likelihood-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

NC Naive counted forecast density construction method . . . . . . . . . . . . . . . 53
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NHC National Hurricane Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

NHSTNull hypothesis significance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

OLS Ordinary least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
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PMS Perfect model scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

PDF Probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ROC Relative operating characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

SBC Schwarz Bayesian criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239

SC Synoptic conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

SST Sea surface temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

TC Tropical cyclone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

TIE Theoretical ignorance expected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

TUC Time until convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

TUE Time until event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
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