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Abstract

This thesis explores the predictability of nonlinear systems, both mathematical sys-

tems (as realised on a digital computer) and geophysical systems (the El Niño Phe-

nomena, and climate prediction via downscaling). How far into the future does a

forecast system provide information beyond that available purely from the past?

How does information in a probabilistic forecast decay with time? Is it true that, no

matter how good the simulation model used for prediction is, there will be a point

where predictability is lost? That is, that there is always a time horizon beyond

which any forecast fails to yield useful information.

The two main limits to predictability are identified and discussed. Sensitivity to

initial condition complicates the forecasting of chaotic dynamical systems, even when

the model is perfect. Structural model error (model inadequacy) is a distinct cause

of the decay of predictability, a decay that may often be mistakenly interpreted as

resulting from chaos. These features are distinguished and demonstrated both in

low-dimensional mathematical systems and weather and climate models.

Model inadequacy is shown to be important in real-world forecasting, with ref-

erence to Columbia University's C-Z model for El Niño predictions and climate

models used in the North American Regional Climate Change Assessment Program

(NARCCAP). Repercussions for forecast performance are discussed. In short, (i)

NARCCAP regional simulations are quickly inconsistent with the global simula-

tions used to drive them, (ii) the C-Z model allows experiments into the decay of

predictability when one model version is employed as the system, and a second,

structurally distinct model version is used as the model.

The decay of predictability is studied from the view point of information theory.

Information theoretic tools are allied both to mathematical system-model pairs and

to physical system-model pairs. A flaw in formulating one such tool, proposed by Du

and Smith (2012, PRE) is exposed and alternative normalisations are explored in

various experiments. A quantity called the information deficit, introduced in that

same paper, is considered in several settings. New properties of the information

deficit are discovered, and it is demonstrated that the information deficit can be a

useful tool in identifying (and correcting) shortcomings of a forecasting system.
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Chapter 1

Introduction

The main theme of this thesis is predictability and the exploration of useful informa-

tion in nonlinear forecasting situations. Two distinct factors that limit predictability

of nonlinear models, specifically structural model error and uncertainty in the ini-

tial condition, are explored in various experiments. We consider predictability from

the perspective of information theory. Throughout the thesis, models are used to

form probabilistic forecast distributions and information is quantified in terms of

information (measured in bits) with reference to some baseline. Climatology, which

comprises of typical values derived from a large number of past observations of the

system, serves as this reference standard.

This chapter provides an overview of the thesis. Some terminologies may be new

to the reader and are explained in later chapters when they are used for the first

time. In short, the thesis is structured as follows: chapter 2 and chapter 3 pro-

vide background knowledge used and explored throughout the thesis. Broadly, the

mathematical content can be found in chapter 4 and 5, while applications to two

1
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real-world modelling systems are described in chapter 6 (the Cane-Zebiak [21] model

of El Niño) and chapter 7 (the set of NARCCAP models of the Earths climate, fo-

cused on North America [6]).

Chapter 2 presents the foundations of nonlinear dynamics that we will adopt. Method-

ology underpinning prediction scenarios used later in the thesis such as ensemble

forecasting, are introduced. There are no novel contributions in chapter 2 beyond

the presentation of background material.

Chapter 3 introduces a number of measures for quantifying predictability which are

exploited and developed throughout this thesis. We discuss the concept of pre-

dictability and how it decays, define the procedures required to convert ensembles

into probability density functions and describe the methods of model selection used

in the thesis. While there is no new theory introduced in this chapter, a distinction

between two methods of computing the Ignorance and the Information Deficit in sec-

tions 3.3 and 3.4 is new to this thesis. Several inconsistencies found in the literature

are identified and an improved approach to further calculations is proposed.

Chapter 4 clarifies the distinction between model inadequacy and sensitivity to

initial condition uncertainty. Structural model error occurs when the equations of

the model differ from those of the system that generated the data. In the real-

world, this is always the case. A system is sensitive to initial conditions when small

differences cause a large difference in how the system evolves into the future (under

the same dynamics). Most notably, initial condition error is caused by observational

uncertainty which is always likely to be present in real-world forecasting scenarios.

This means that exact predictions of the future would be impossible even if the

true nature of the system dynamics were known perfectly [95]. New results in this

chapter show that, if the mathematical structure of the equations of the system
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differ from those of the model, predictability decays in a different way to when

uncertainty is caused purely by initial condition error. Another novel result of this

chapter lies in illustrating how the predictability of a chaotic system varies with

the date on which the forecast is launched (that is the location of the ensemble

of initial conditions). Probabilistic prediction can be improved by taking more

precise observations (decreasing the noise level), more expensive forecasts (increasing

the number of Monte-Carlo ensembles) or using some data assimilation technique

[100, 98, 101]. None of these actions can improve errors related to model inadequacy

[103]. More generally, acknowledging and recognising the distinction between model

inadequacy and sensitivity to initial condition can lead to more effective resource

allocation in dealing with these two limits of predictability.

Chapter 5 expands our understanding of the decay of predictability focusing on low-

dimensional mathematical system-model pairs. Experiments in this chapter are fo-

cused on the Logistic and Quartic maps as an illustrative system-model pair. Whilst

the Quartic Map was introduced previously [38], its properties are more fully anal-

ysed for the first time in this thesis. Using Relative Entropy, we derive a threshold

level of imperfection in the model at which the model and system are distinguish-

able. Bifurcation diagrams of the model and the system support this conclusion.

The decay of predictability is contrasted in both a perfect and an imperfect model

scenario. The Information Deficit, a tool to identify and improve predictability, is

used here for the first time. In this context, it is shown that one of the two normal-

isation methods in the literature (introduced in chapter 3) is superior to the other,

and the reasons why are presented. The novel contributions in this chapter form a

significant contribution to a paper in preparation for submission [101].

Chapter 6 focuses on study of the Cane-Zebiak model [21], a real-world operational
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model developed at Columbia University in New York. This is an example of a very

complex model used to forecast events of social and economic interest such as El

Niño [42]. El Niño is a global climatic phenomenon with widespread socio-economic

impacts. Prediction of El Niño behaviour would be of great value to society and

would have the potential to reduce loss and damage. Existing forecast methods are

inadequate to provide useful information in the timescales of interest. This provided

the motivation to study predictability in the context of the C-Z model. Our original

research goals were: (i) to introduce a structural difference into the computer code

of the model, and then define this alternative code as the ‘system’ for which the

C-Z model would serve as a structurally imperfect model. We would then proceed

in a similar way as with the lower-dimensional system-model pairs. (ii) to construct

several structurally distinct versions of the C-Z model and examine the impact of

using these in forecasting when the total computational resource was fixed.

In this chapter, we analyse both the qualitative and quantitative behaviour of the

C-Z model, demonstrate that it incorporates the features of El Niño realistically and

show it exhibits sensitivity to small differences in the initial conditions. While trying

to obtain structurally different versions of the C-Z model, it soon became apparent

that the numerical model itself is fragile. Small changes in model structure would

result in very different qualitative behaviour, as discussed briefly in chapter 6. As a

result, the research focused on contrasting a simple structural difference: the system

being the C-Z model with the standard integration time step of 10 days, while the

model is the same computer code with the time step set to 5 days. The decay of

predictability in the Perfect Model Scenario was studied in detail for the first time.

Its decay in this system-model pair was then considered. To our knowledge, this

is the first time an imperfect model scenario of this nature has been performed on



5

an operational El Niño forecasting model. The Information Deficit again helped to

reveal practical difficulty in the experimental methodology, such as how to define

outcomes and ensembles from a set of model runs, specifically that an outcome

should be chosen randomly.

Chapter 7 reports the initial steps of another experiment where the quality of the

results we unearthed led to the early rejection of further research plans. The NAR-

CCAP [6] data set is a large database in which regional climate models with high

spatial resolution outputs are simulated by lower resolution models that are global

in scope. In NARCCAP, regional models are usually driven by a global model

in a one-way fashion; no information from the regional model feeds back into the

evolution of the global model that drives it. The result of this could be that the

physical fields (temperature, rainfall, etc) simulated by the two types of models will

diverge with time, leading to physical inconsistency between them. At that point,

the use of these simulations in science-informed policy making would be question-

able. Decision makers exploit available outputs from regional models as an aid to

policy development. If they deviate too much from the global model that simulated

them this could lead to poor decision making. The initial experimental design was

to explore this divergence over time and develop a test of internal consistency in

order to determine whether computer model simulations are reliable or not. Results

shown in this chapter revealed that significant divergence was almost immediate:

the regional model ‘climate’ is inconsistent with the global model ‘climate’ in a fun-

damental sense. This made studying their divergence over time impossible but lead

to additional work with Dr Erica Thompson and a paper is in preparation on this

fundamental challenge to the NARCCAP approach [108].

A summary, conclusions and the identification of new material in each chapter are
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included at the end of that chapter.



Chapter 2

Introduction to Predictability of

Dynamical Systems

This chapter presents a literature review of relevant concepts in the theory of dy-

namical systems, which are a subject of the exploration in the thesis. There is no

new material in this chapter beyond the presentation.

This chapter is structured as follows. First, in sections 2.1 - 2.3 terminology and

properties of nonlinear dynamical systems are defined. In section 2.4 the concept

of model and system is described. Section 2.5 defines two scenarios used in exper-

iments later in the thesis: the Perfect and Imperfect Model Scenarios. Section 2.6

gives a brief introduction to ensemble forecasting and the techniques applied in the

formation of an ensemble.

7
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2.1 Nonlinear dynamical systems

Most processes in nature are best modelled as nonlinear, i.e. change of the output

is not proportional to change of the input [16]. In this thesis we are going to focus on

nonlinear systems, which are typically described by nonlinear differential equations

or nonlinear discrete-time mappings.

A dynamical system [110], is a mathematical system whose evolution in time from

some initial state is governed by set of rules. The evolution of the dynamical system

is best described in a state space S1. A dynamical system can be defined in the

form xt = F t(x0), where x ∈ S. F is a function (including any parameters) which

defines the dynamics of the system, x0 is the initial state or initial condition of

the system, t is the evolution time.

As a given initial condition of a dissipative dynamical system is iterated forward

in time, it will evolve towards an attractor [104], a subset of points in the D-

dimensional state space which are explored by the system as t→∞. One example

of an attractor, the Ikeda attractor, is shown in Fig.2.1. States that are inconsistent

with the long-term behaviour of the dynamical system are referred to as transient

(TRAN). Typically, the trajectory of a randomly chosen initial conditions at an

early stage of the evolution, is far from the attractor. In this thesis, we assume

that a system has been evolving long enough that there are effectively no transient

states. The same can not be said for the model. The trajectory [107] consists of

the ordered set of future positions in state space of a point that is evolved in time.

1For example S ≡ RD.
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Figure 2.1: The Ikeda attractor as defined in Appendix A.3. In the long term, all
initial conditions will converge to this attractor.

Dynamical systems in continuous time described by differential equations for dx/dt

in terms of x are referred to as flows [105]. Often, there is no analytical solution to

the ordinary nonlinear differential equations; nevertheless, the continuous dynamical

system can be simulated using some numerical integration scheme, e.g. 4th order

Runge-Kutta approximation [83]. Dynamical systems that are evolved in discrete

time described by a set of differential equations for xn+1 in terms of xn are called

maps.

Two different categories of dynamical systems can be distinguished: stochastic and

deterministic [18]. In a stochastic dynamical system some elements of the sys-
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tem are random; for example, a random noise may be introduced at each time step

or there may be a random variation in some parameters. By contrast, in a deter-

ministic dynamical system the initial state determines all future states under

iteration and a randomness does not affect evolution. In this thesis we study de-

terministic dynamical systems; the climate models (chapter 7) and El Niño model

(chapter 6) are formulated as deterministic dynamical systems.

2.2 Climatology

Climatology has two common meanings. The first is a study of climate of an area

[85], the second is to represent a distribution based on observations over a defined

period of time [19], generalising this first notion to observations from any dynamical

system. A climatology, describes the long-term behaviour of the dynamical sys-

tem and is essentially a description of the attractor as a probability distribution in

state space. In practice it is formed from past observations of a system, but ex-

cluding transient states. Climatological distributions are usually constructed using

parametric or non-parametric density estimation methods.

Climatology can be used as a forecasting distribution [5]. For example, suppose that

we would like to know the temperature in London in 3 months from today. If weather

models do not provide much information for such a long period in advance, then one

could look at historical statistics over the last 30 years for the date of interest to

have an indication of what to expect. This climatology contains information about

the seasonal variation of the weather. At a minimum, we hope for an operational

dynamical weather forecast to perform as well as a climatological forecast, which

can act as a benchmark or reference for assessing the quality of predictions.
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2.3 Chaos

Some dynamical systems are chaotic. Smith [100] defines chaos as ‘a mathematical

dynamical system which is deterministic, recurrent and has sensitive dependence on

initial state’. The sensitivity to the initial condition means that starting iterations in

a slightly different position on the dynamical system, can cause drastically different

behaviour in later states [65]. Another feature of a chaotic system is that it is both

recurrent, that is, the system state returns infinitely often and arbitrarily closely

to its original condition, and deterministic, as no randomness is involved in the

evolution of the system.

2.4 System-Model pair

Making predictions of a dynamical systems requires a forecasting model. Different

disciplines may use a different mathematical description to construct a model of

a dynamical system. These could be differential equations in physics, logic and

graphical models in artificial intelligence, sequential decision processes in operations

research or a stochastic model in statistics [92] to give just a few examples.

It is not possible to describe a system accurately (that is, with a mathematical

precision), as a model can only ever be an approximate representation of nature’s

laws. A model dynamics F tries to mathematically formalise a system’s dynamics

F̃ [93]. Model and system are subtractable, therefore they share the same state

space [99]. An observation of a forecasted system state is called an outcome or a

target. A set of model forecasts and the corresponding outcomes will constitute a

forecast-outcome archive.

In this thesis in chapters 4 and 5, different mathematical theoretical models will
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constitute both system and model, allowing theoretical concepts to be developed

and demonstrated. In chapter 6, a system-model pair will concern the much more

complex oceanic-atmospheric model of partial differential equations, while in chap-

ter 7 climate models in the North American Regional Climate Change Assessment

Program (NARCCAP) [6] will be used.

2.5 Perfect and Imperfect Model Scenarios

To investigate the properties of the forecasting model two cases are considered in this

thesis: the Perfect Model Scenario (PMS) [95] and the Imperfect Model Scenario

(IMS) [96]. Both concepts are defined below.

2.5.1 Perfect Model Scenario

In the Perfect Model Scenario (PMS) both the model and the system are mathemat-

ically equivalent F=F̃ , that is, the dynamics of the system is described perfectly by

the model. Arguably, such a situation is possible only in pure mathematics, never

in reality. Under the PMS, a forecast trajectory is imperfect only when the exact

initial conditions or parameter values are unknown. If there is some uncertainty in

the initial condition, then there will be a corresponding uncertainty in the forecast,

but the forecast range can contain the correct answer. If a probabilistic method is

used, a reliable probability forecast for the outcome can in principle be constructed.

2.5.2 Imperfect Model Scenario

In the Imperfect Model Scenario (IMS) a model only approximates the dynamics of

the system F 6= F̃ . There is structural model error, that is, the mathematical form

of the model differs from that of the system (if such a thing even exists). This idea
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reflects real world forecasting. Processes in nature or real life can not be described

precisely in the form of mathematical equations, because they are too complex.

Like the Perfect Model Scenario, in the IMS the initial condition uncertainty is

due to observational error [98]. In the IMS, however, there is an additional ‘model

uncertainty’ caused by the error in the dynamics of the model itself. For short time

periods this uncertainty may be negligible but over some time interval the forecast

will almost surely depart from the true outcome, even in cases where all initial

condition uncertainty is accounted for.

2.6 Ensemble forecasting

Ensemble forecasting [64, 109, 27] is based on running simulations of the same model

with slightly different initial conditions in order to reveal the diversity of the model

trajectories in hopes of quantifying the impact of the initial condition uncertainty.

This approach is a Monte-Carlo method and is often used to make a probabilistic

forecast of a dynamical system [63, 109, 64]. In the Perfect Model Scenario, these

probabilistic forecasts will be reliable. Ensembles are widely deployed [3, 29, 71] in

Numerical Weather Prediction (NWP) to give a range of possible future states of

the system.

An ensemble is formed by sampling m initial conditions consistent with an observa-

tion of the initial condition of a dynamical system and, ideally, the long term dynam-

ics of the system [97]. This constitutes an initial condition ensemble, while an

ensemble member is a single initial condition of such an ensemble. Each ensemble

member is then evolved forward into the future by a period of time called a lead

time, under the forecast model, to produce an ensemble of point forecasts. In this

thesis we will refer to each ensemble and corresponding outcome as an ensemble-
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outcome pair and the collection of these as the ensemble-outcome archive.

In the experiments in this thesis two different techniques are used to form ensembles:

1. Inverse Noise In this method, the initial condition ensemble is formed by

adding random draws from the inverse of the distribution of observational

noise on the true initial condition (observation) [31]. The inverse distribution

is obtained by reflecting the noise distribution in the y axis. If the noise

distribution has mean zero and is symmetric, the noise distribution and the

inverse distribution are the same. With this Inverse Noise method, the initial

states will not be consistent with the long-term model dynamics (e.g. they

are not on the attractor, if there is one). This approach is applied in the

experiments in chapters 4 and 6.

2. Truncation In this method, the initial condition ensemble is formed by adding

random draws to the truncated (i.e. the number of decimal digits is limited)

value of the observation. Truncation can be done by for example limiting the

number of decimal digits. This technique is applied in the experiments in

chapter 5.

Inside the PMS, more complex ensemble formation methods are justified [32]. These

will not be considered in this thesis.

2.7 Summary

This chapter has defined terms used in this thesis. There is nothing new in this

chapter beyond the presentation.



Chapter 3

Tools for Measuring Predictability

In this chapter, we describe background material on techniques used for computa-

tions and analyses in chapters 4, 5 and 6. Whilst there is no new derivation in this

chapter, the distinction between two methods of computing the Ignorance [47, 88]

and the Information Deficit [34] is new and as is the formulation in section 3.3.

The overarching theme of this thesis is predictability. In section 3.1 we give our

definition of predictability and explain how it decays. In section 3.2 we introduce

the concept of skill scores, give some examples and define some properties of them.

One of the scores we define is the Ignorance score which is of particular interest in this

thesis in terms of measuring the quality of the forecasting scheme. In section 3.3 the

Climatological Ignorance [34], the Empirical Ignorance [34] and the Model Implied

Ignorance [34] by method are introduced using two slightly differing approaches.

In section 3.4, a diagnostic tool called Information Deficit [34] is introduced. In

section 3.5, we describe the Relative Entropy, which we use later in the thesis to

quantify the difference between two probability distributions. In section 3.6 we

15
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describe procedures required to convert ensembles into probability forecast densities.

A method called kernel dressing [19] is then defined and the concept of blending with

climatology [19] is also introduced. Akaikes Information Criterion [10, 9] and cross-

validation, two methods of model selection used in this thesis are then described.

3.1 Predictability

The main theme of this thesis is the predictability of certain real-valued observations

from a dynamical system. Before proceeding, we require a definition of what exactly

we mean by predictability. In fact, there is no universally accepted definition of pre-

dictability and its meaning may differ both within and between different disciplines.

Many attempts have been made to define and quantify predictability. Quantifying

the predictability of dynamical deterministic systems is a subject of statistical or

dynamical studies [84, 99, 58], as well as philosophical investigation [39, 79]. Smith

[100] suggests that what a mathematician may think of as predictability may well

be very different from a physicist’s conception of it. In this thesis, we follow Smith’s

mathematician’s definition, which states that predictability can be understood as a

property that allows the creation of a forecast distribution that is expected to be

more informative than the final (climatological) distribution.

A number of different variables are forecast in this thesis. In chapter 4 and 5 the

predictand1 is the x variable of low-dimensional mathematical models such as the

Henon Map, Ikeda Map and Logistic Map. In chapter 6 the target of the forecast

is a computer generated observation of the model sea surface temperature anomaly

in a specific region of Pacific in ◦C. In chapter 7 the predictand of our interest is

radiation upwards in W/m2, temperature in K and precipitation in kg/m2.

1Predictand is a value to be predicted, which in this thesis is a real valued scalar quantity.
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3.1.1 The decay of predictability

We explained in section 2.4 that a model can be used to predict the behaviour of a

dynamical system. For a model to be useful in terms of prediction, it is expected

that, at least at early lead times, forecasts generated using the model are able to

outperform the climatological distribution. We have already defined the climatol-

ogy in section 2.2. As the lead time is increased, the average skill of the forecasts

is expected to decrease and eventually they become unable to outperform the cli-

matology. We call the drop in skill with lead time the decay of predictability

and say that predictability is lost when, on average, the forecasts perform no better

than the climatology [103].

An important issue regarding predictability is how long the trajectory of the model

remains close to the true trajectory of the system. Later in this chapter, measures of

predictability such as the Ignorance and the Information Deficit are introduced. In

chapter 5 we apply these measures to a low-dimensional mathematical model, while

in chapter 6 they are applied to a deterministic numerical model of the coupled

ocean and atmosphere, which is used to study El Niño events.

3.1.2 Limitations to predictability

There are several reasons that may limit the predictability of even a deterministic

dynamical system. These are [78], most notably:

1. Initial condition uncertainty. In nonlinear systems, small initial errors can

grow very quickly leading to larger errors later down the line [65].

2. Structural model inadequacy. A model is only an approximate representation

of the laws of nature. When model inadequacy is present, the equations used to
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describe the model differ from those of the system, e.g. a function is incorrectly

defined.

3. Parameter error. The estimated parameter values may differ from the ‘true’

parameter values. Note that, in the IMS, arguably no ‘true’ parameter values

exist.

For a stochastic dynamical system the random changes constitute a limit to the

predictability. This has a similar effect to initial condition uncertainty which means

that forecasts should be probabilistic in nature. In stochastic systems, even knowl-

edge of the precise initial state and a perfect model does not allow precise point

predictions. In a chaotic system it would. Operationally, the decay of information

in a probability forecast of a stochastic system is evaluated in the same manner as

probability forecast of a chaotic system with uncertain initial condition.

3.2 Skill Scores

Probabilistic forecasts are assessed using functional of the forecast distribution and

the real valued outcome called skill scores. The discussion about what is being

forecast in the thesis can be found in section 3.1. Scoring rules can be used to assess

the relative performance of two forecasting systems. A skill score is a function of

a probabilistic forecast and a corresponding outcome S(p(y), Y ), where Y is the

outcome and p(y) is the probability density. By convention, skill scores are defined

to be negatively orientated, that is, the lower the score the better the forecast. It

is not appropriate to evaluate the performance of a single probabilistic forecast.

As a result, the mean score of many comparable (i.e. using the same forecasting

system and lead time) forecasts and outcomes can be taken as a measure of forecast
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performance.

A wide variety of scoring rules have been suggested over the years. These include,

for example [102], the Root Mean Squared Error (RMSE) [36], the Naive Linear

Score [37], the Proper Linear Score [56] and the Continuous Ranked Probability

Score (CRPS) [35]. In order to choose an appropriate scoring rule, a number of

useful properties can be taken into account. Thus a scoring rule is proper [112, 13]

if it is optimised when the distribution from which the outcomes are drawn is issued

as the forecast. A scoring rule is proper if the following inequality holds:

∫ ∞
−∞

S(p, y)q(y)dy ≥
∫ ∞
−∞

S(q, y)q(y)dy, (3.1)

where p is the model density and q is the system density.

Propriety is a desirable property of skill scores because it encourages a forecaster

to issue their true belief as a forecast. Another property of skill scores is locality.

A score is local [13] if it only takes into account the forecast density or probability

at the outcome rather than the entire distribution. Further discussion of propriety

and locality can be found in [22, 72, 56, 35, 36].

3.3 Ignorance

One particular scoring rule is the ignorance score. The ignorance score is the only

scoring rule that is both proper and local [44, 68]. It is also often referred to as the

logarithmic score and is defined by [47, 88] as

S(p, Y ) = − log2(p(Y )) (3.2)
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where p(Y ) is the density or probability placed on the outcome Y by the forecast.

Due to its desirable properties, the ignorance score is the only score we use through-

out this thesis. We are going to use this measure to assess a forecast in chapter 5,

where we use a mathematical model - Logistic Map to model another more complex

mathematical model - Quartic Map. Ignorance is also applied in chapter 6 to an

oceanic-atmospheric model of El Niño events.

In this thesis we use three types of Ignorance: Climatological Ignorance, Empirical

Ignorance and Model Implied Ignorance.

3.3.1 Climatological Ignorance

The ignorance score, as defined in equation 3.3, gives no indication of absolute skill.

To be useful, a forecasting system should outperform the climatology. If this were

not the case, a forecaster would be better off issuing the climatology as the forecast.

We therefore define the ignorance of the climatology to be the zero skill level. This

is denoted pc [34].

There are two competing ways to normalise ignorance. We will call these IGNClimE

and IGNClimD. IGNClimD is described in section 3.3.4. Following Bröcker and

Smith [19], we define IGNClimE to be

IGNClimE = − log2(pc(Y )), (3.3)

The quantity IGNClimE corresponds to the ignorance of the actual outcome when

using the climatology as the forecast.

In the discussion below we adopted method E for normalisation (see eq.3.3). The
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reasons for this choice of method are made clear in section 5.2.4.

3.3.2 Empirical Ignorance

The Empirical Ignorance quantifies the skill of a probabilistic forecast. Computing

the Empirical Ignorance requires the outcome to be known. In this thesis, following

[34] we define the Empirical Ignorance to be the ignorance of a forecast relative to

climatology as

IGN = − log2(p(Y ))− (− log2(pc(Y ))), (3.4)

where Y is an outcome.

The Mean Ignorance of a set of n forecasts is given by

< IGN >=
1

n

n∑
i=1

(− log2(pi(Yi))−
1

n

n∑
i=1

(− log2(pc(Yi))), (3.5)

where pi(Yi) is the probability placed on the ith outcome by the ith forecast.

3.3.3 Model Implied Ignorance

The Model Implied Ignorance is the expected value of the ignorance in the case

where the outcome is a random draw from the forecast distribution itself [34]. The

Model Implied Ignorance provides a quantitative idea of how much information one

would expect to gain from having the forecast rather than climatology if the model
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forecast distribution was perfect. The distribution of differences between Empirical

Ignorance and Model Implied Ignorance gives an indication the inadequacy of the

forecast.

Following [34], we define the Model Implied Ignorance of a forecast to be the expected

ignorance, relative to climatology, that would be achieved were the outcome drawn

from the forecast itself. Specifically

IGNMI = −
∫ ∞
−∞

p(y) log2 (p(y))dy −
(
−
∫ ∞
−∞

p(y) log2 (pc(y))dy
)
, (3.6)

where p(y) is a forecast density and pc(y) is the climatology. If p(y) approaches

pc(y), the Model Implied Ignorance approaches zero.

3.3.4 Alternative normalisation

In section 3.3.1 we defined the zero skill level of the ignorance score to be the

ignorance of the outcome when using the climatological distribution as a forecast.

An alternative normalisation, defined by Du and Smith [34], is given by

IGNClimD = −
∫ ∞
−∞

pc(y)log2pc(y)dy, (3.7)

This method corresponds to the expected climatological ignorance rather than the

climatological ignorance of the outcomes. We will refer to this approach as method

D.
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In this case, the Empirical Ignorance becomes

IGN = − log2(p(Y ))− IGNClimD (3.8)

and the Model Implied Ignorance becomes

IGNMI = −
∫ ∞
−∞

p(y) log2 (p(y))dy − IGNClimD (3.9)

Two different ways of calculating the Empirical Ignorance and the Model Implied

Ignorance are explored in chapter 5.2. In section 5.2.4, we argue that method E

yields a more useful measure of the performance of a set of forecasts and hence

method D is dropped. Thereafter, each time we refer to the ignorance score, the

quantity IGNClimE (eq.3.3) has already been used for normalisation unless otherwise

stated. Method E is then adopted and applied in section 5.3, and in the case of a

real world forecasting model for El Niño predictions in sections 6.3 and 6.4.

3.4 Information Deficit

The concept of the Information Deficit was introduced by Du and Smith in ‘Param-

eter estimation through ignorance’ [34]. Following [34], we define the Information

Deficit to be
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InfDef = IGN − IGNMI , (3.10)

where IGN and IGNMI are the Empirical Ignorance and the Model Implied Ig-

norance respectively of a given forecast. This definition differs slightly from that

given by the authors of this paper who do not define the Empirical Ignorance and

the Model Implied Ignorance in terms of the raw ignorance (i.e. not relative to

climatology). Inasmuch as the raw ignorance alone is hard to interpret, we believe

that our approach is more informative and can be considered an extension of the

approach proposed by Du and Smith.

The Information Deficit can reveal inadequacies in the forecast system and quantify

the closeness of the predictability of the current model to (its internal) perfection. If

the Model Implied Ignorance is the same as the Empirical Ignorance, the Information

Deficit is, by definition, zero. In a perfect forecast scenario, that is one in which

the outcome is truly drawn from the forecast density, we expect, on average, for

the Information Deficit to be zero. In general, if the forecast is imperfect, the

Information Deficit is not expected to be zero. When the climatology is used as a

forecast, the Information Deficit is expected to be zero. When forecasts are blended

with climatology, the forecast density approaches the climatology. Therefore, the

Information Deficit is expected to approach zero. In sections 5.2, 5.3, 6.3 and 6.4

we develop and demonstrate a novel approach to the use of the Information Deficit

as a diagnostic tool.
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3.5 Relative Entropy

Relative Entropy (RE) or Kullback-Leibler divergence [67] is a measure which can

be used to quantify the difference between two probability distributions P and Q.

In the discrete case, the RE from Q to P is given by

RE(P ‖ Q) =
∑
i

P (i) log2

(
P (i)

Q(i)

)
, (3.11)

where i is the number of possible values of P .

The RE can be interpreted as the information lost, in bits, when a true Q is ap-

proximated using some distribution P . The RE is always non-negative [83] and is

equal to zero only when the two distributions are identical.

The RE can be used to measure the difference between two continuous distributions

given a sample from each. This is done by defining Nb number of intervals, called

bins, and counting how many members from each sample fall into each bin. This

defines two discrete probability distributions P and Q.

Two ways of choosing the bins are considered in this thesis:

1. RE with equally likely bins. Each bin is defined such that P is a discrete

uniform distribution. As a result, the width of each bin is allowed to vary and,

if the two samples are the same, the probability of falling into each bin is 1
Nb

.

2. RE with equally spaced bins. Each bin is defined according to a fixed, iden-

tically spaced grid. This means that, usually, the distribution of P will vary
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depending on i, that is the probability varies with each bin. Here we restrict

application to one dimension where equally spaced bins are easily obtained by

rank ordering.

Relative Entropy and Ignorance

The Relative Entropy is a measure of the difference between two distributions. For

continuous distributions p(x) and q(x) equation 3.11 has the form:

RE(p ‖ q) =

∫ ∞
−∞

p(x) log2

(
p(x)

q(x)

)
dx, [15] (3.12)

Applying simple algebra to equation 3.12 yields:

RE(p ‖ q) =

∫ ∞
−∞

p(x) log2

(
p(x)

q(x)

)
dx

=

∫ ∞
−∞

p(x) log2(p(x))dx−
∫ ∞
−∞

p(x) log2(q(x))dx,

(3.13)

In the particular case when we consider the RE of the model with respect to clima-

tology, that is, setting p(x) = pm(x) and q(x) = pc(x) in equation 3.13, where pm(x)

is the model distribution and pc(x) is the climatological distribution, equation 3.13

becomes:

RE(pm ‖ pc) =

∫ ∞
−∞

pm(x) log2(pm(x))dx−
∫ ∞
−∞

pm(x) log2(pc(x))dx, (3.14)
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Equation 3.14 quantifies the information lost (in bits) when the model distribution

is approximated with the climatology.

From this we can note that:

RE(pm ‖ pc) = −IGNMI (3.15)

This is not surprising, since the Model Implied Ignorance can be interpreted as the

expected gain in information (in bits) from having the model distribution as opposed

to the climatology, assuming that the model distribution is perfect.

3.6 From Ensembles to Probability Forecasts

We introduced ensembles in chapter 2.6. Raw ensembles are inconvenient to in-

terpret. It is often useful to convert ensembles into a probability density function

which acts as a probabilistic forecast called a forecast density. In addition to

being easier to interpret, forecast densities are arguably easier to evaluate than raw

ensembles [111]. In this thesis, we use the performance of forecast densities as a

method of quantifying predictability.

There are many possible approaches to converting ensembles into forecast densities.

For example, a parametric distribution such as a Gaussian distribution could be

fitted to the ensemble [89, 113, 28]. For nonlinear models, in which the ensemble

is unlikely to follow a known parametric distribution, a more flexible approach,

however, is to use kernel density estimation [26, 74, 50] which is defined below.
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3.6.1 Kernel density estimation

Kernel density estimation is a nonparametric method to estimate the probability

density function from a finite sample [80, 91]. Given a sample x = x1, .., xn from

some unknown distribution f a kernel density estimate of f is defined by:

p(x : X, σ) =
1

nσ

n∑
i=1

K
(x− xi

σ

)
, (3.16)

where K is the Gaussian kernel as defined in eq.3.18. The shape of the density

is determined by the kernel width σ . Many different approaches to the selection

of the bandwidth parameter exist which usually make some assumption about the

underlying distribution of the sample [57, 17].

3.6.2 Kernel dressing

It has been argued [19] that constructing forecast densities by fitting parametric

distributions or using a nonparametric approach such as kernel density estimation

have a serious shortcoming. Whilst both of these approaches aim to estimate the

distribution of the ensemble, in fact, we wish to attempt to estimate the distribution

of the outcome [45, 19]. Following [19] we now describe an approach to constructing

forecast densities called kernel dressing. Forecasts formed using kernel dressing take

the form

p(y|x, a, o, σ) =
1

nσ

n∑
i=1

K
(y − axi − υ

σ

)
, (3.17)
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where K is a kernel function which, we will take to be Gaussian of the form

K(u) =
1√
2π
e−

1
2
u2

, (3.18)

Here x is the predictand, x1, .., xn is an ensemble, a is a scaling parameter, υ is

an offset parameter and σ is the kernel width, that is, the standard deviation of

the Gaussian kernel. The value of σ, which affects the shape of the distribution,

is chosen as that which optimises the mean performance, with respect to ignorance

score, over some archive of ensembles and corresponding outcomes. A new ensemble

is then dressed using the optimised kernel width σ.

Note that Binter [14] argues that kernel density is distinct from kernel density esti-

mation. The kernel density estimation approach aims to find the distribution from

which the sample was drawn. In kernel dressing, the underlying distribution of the

ensemble and the outcome are different, so the purpose of this procedure is to find

the most useful forecast with the respect to the scoring rule, not the distribution for

the next ensemble member.

3.6.3 Blending with climatology

As described in section 3.1, the climatology provides a benchmark for the perfor-

mance of a set of forecasts. The concept of blending [19] ensures that a set of fore-

casts is never expected to perform worse, on average, than the climatology. Blending

the climatological distribution of the system pc(x) with a distribution derived from

the model pm(x) yields a probability forecast

p(x) = αpm(x) + (1− α)pc(x), (3.19)
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where α ∈ [0, 1] is called a blending parameter. When used in conjunction with

kernel dressing, the blending parameter is optimised simultaneously with σ over the

ensemble-outcome archive.

The value of α provides an indication of the usefulness of the model-based forecasts.

When α is significantly greater than zero, the information in the model is useful

because it provides better forecast skill than purely using the climatology as the

forecast. At longer lead times, as the information contained in the ensemble decays,

we expect the blending parameter to approach zero2. In that case, the blended

forecast and the climatology coincide and the model forecasts no longer contain

useful information. Unless stated otherwise, all forecasts in this thesis have been

blended with a climatology.

3.6.4 Model selection techniques

Akaike’s Information Criterion (AIC) [9, 10] is a way of determining whether addi-

tional parameters are justified in a model structure. Following [24] Akaike’s Infor-

mation Criterion (AIC) is given by

AIC = 2r − 2 ln(L), (3.20)

where r is the number of free parameters fitted for the model to be assessed and L

is the maximised likelihood.

The model with the lowest AIC value is preferred. AIC penalises for adding addi-

tional parameters (the first term in equation 3.20) and rewards models with the best

2Note this is not necessarily true in the perfect model scenario in which, at longer lead times,
the ensemble can be considered to be drawn from the system climatology. In this case, the optimal
value of α will depend on the size of the ensemble.
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fit as measured by the log-likelihood function (the second term in equation 3.20).

AIC is used in section 5.2.2 in order to determine when the model contribution

should be set to 0.

3.6.5 Cross-validation

An alternative approach to model selection is to use cross-validation. In cross-

validation, parameters are optimised over subgroups of some set and the performance

tested over others. Parameters of the model are robust if they perform well out-

of-sample. Throughout this thesis we use a leave-one-out cross-validation which is

defined below.

Leave-one-out cross-validation

In leave-one-out cross-validation, the parameters are optimised over all but one data

point and the performance evaluated over the remaining point [54]. This procedure

is repeated by leaving out testing on each of the points exactly once. The method

can be computationally expensive, as it requires to carry out optimisation many

times. In this thesis the climatological distribution is formed using kernel density

estimation and the kernel width is estimated using leave-one-out cross-validation

minimising the mean ignorance score.

3.7 Conclusions

This chapter has introduced a number of concepts and measures for quantifying

predictability that are developed and deployed throughout this thesis. Methods of

converting ensembles into probability forecasts are described and methods of model

selection are defined. While no new theory is introduced in this chapter, its novelty
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goes beyond only presentation. A novel distinction has been made between two

different approaches of normalising the Ignorance score and the Information Deficit.

One method of normalisation is concluded to be superior to the other and it is

suggested that the alternative approach is dropped.



Chapter 4

Distinguishing model inadequacy

from chaos in nonlinear simulation

This chapter addresses the question of distinguishing model inadequacy from chaos

in a nonlinear simulation. Sensitivity to initial conditions complicates the forecasting

of chaotic dynamical systems, even when the model is a perfect representation of

the system generating the observations [103]. Structural model inadequacy is a

distinct source of forecast failures, although it is sometimes questionably used as

in an example [77] to be due to uncertainty in the initial condition. The resource

allocation in treatment of these two limitations of predictability is very different. To

reduce the impact of model inadequacy, one can improve the existing model, build

an independent model or combine a collection of models [82, 30, 60]. To cope with

uncertainty in the initial condition, we could lower the noise level, build a larger

ensemble [73, 66] or use some data assimilation technique [32, 33].

In this chapter we make a clear distinction between model inadequacy and chaos

33
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and study those differences.

This chapter is structured as follows. In section 4.1, the effects of model inade-

quacy and chaos are visualised using the extremely similar nonlinear dynamics of

the single and double precision Henon Maps. In section 4.2, an experiment to dis-

tinguish model inadequacy and chaos is carried out on the Henon Map as a model

of its more mathematically complicated version - the Senon Map [93]. Here, we

investigate the evolution of the Relative Entropy of the same initial distributions of

ensembles under the system and the model. Weather-like and climate-like analogies

are explained. Next, the System-Model pair considered in section 4.3 are the Ikeda

Map and truncated Ikeda Map. Again the distinction between model inadequacy

and chaos is made and the impact of the location on the system attractor of the

two initial conditions is illustrated. Finally, section 4.4 presents conclusions for this

chapter.

4.1 Illustration with Henon Map: single and dou-

ble precision

4.1.1 Divergence of specific Initial Conditions

First we demonstrate the concept of sensitive dependence on the initial condition.

Small errors such as noise or computer roundoff can change the final solution signifi-

cantly. As an illustration of this, Fig.4.1 shows the results of a computer experiment

on the two-dimensional Henon Map, which is defined in Appendix A.1.

In each chart in Fig.4.1 the green points show the position of the 32nd to 42nd states

from two trajectories initialised with two slightly different initial conditions (black
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dots) with the double precision Henon Map. The blue dots represent randomly

drawn points from the attractor. In the top chart, the initial condition is a transient

state far from the attractor whilst in the lower chart, the initial condition is taken

from the attractor. The distance between two green points (straight black line)

depends on where on the chaotic system the initial condition is located.
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Figure 4.1: The two panels show two trajectories with slightly different initial con-
ditions iterated under the same dynamics. The separation between these initial
conditions is ε = (2−10, 2−10). After 32 to 40 iterations the trajectories look very
different. The distance between a pair of points (black line), depends on the location
of the initial condition. For example distance at lead time 40 is bigger in the bottom
chart than in the top one.

The effect of model inadequacy is exemplified in Fig.4.2. Here, the same initial
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condition was evolved with two different sets of dynamics: the Henon Map in single

precision and in double precision. The yellow and red circles show the 32nd to 42nd

iterates of the single and double precision trajectories respectively. The IC has a

large effect on the distance between the states of the two trajectories.
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Figure 4.2: The same Initial Condition (IC) was evolved under two different dynam-
ics: single (yellow) or double (red) precision Henon Maps. Somewhere between 32
and 40 iterations later both trajectories originating from the same initial condition
are far apart. The distance between points (black line), depends on where on the
chaotic system the initial condition is built.
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4.1.2 Divergence averaged over the attractor

We have shown that the distance between two trajectories varies with the location

from which the initial condition is drawn. Now, we consider a larger number of

initial conditions to demonstrate how, on average, this distance changes with time.

Fig.4.3 shows the base 2 log of mean Euclidean distance d between 8196 pairs of

points generated using single and double precision Henon Maps. This is shown as a

function of time in the top left chart of Fig.4.3. The top right panel illustrates the

same, but with both trajectories generated using double precision with the initial

separation of ε=2−24 units. For clarity, the lower panel shows the difference between

the two. The average distance between trajectories in both cases is growing with

time, from 2−24 at early lead times to around 2−1 at longer lead times.

These results demonstrate that model inadequacy and uncertainty in the initial con-

dition are two different limitations in forecasting. This distinction is important, both

in terms of model development and in terms of resource allocation, for improving

observations in operational forecasting.
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Figure 4.3: Mean Euclidean distance between trajectories originating from many
distinctly located initial conditions of a pair of points as a function of lead time
in a situation of model inadequacy (top left) and chaos (top right) as illustrated in
Figs.4.1 and 4.2. Bars along the green and the red curves represent 95% re-sampling
intervals of the mean. As shown in the top charts, the divergence of the trajectories
increases with time in a different way. The bottom chart illustrates the difference
between the two charts at the top. These results demonstrate that model inadequacy
and chaos are two different sources of forecast failures and should be distinguished
when considering future resource allocation.
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4.2 Illustration with Henon Map and Senon Map

The previous section 4.1 illustrated the effect of model inadequacy and initial con-

dition uncertainty using Henon Map. This time, the model is again defined as the

double precision Henon Map. The system, however, is the Senon Map introduced

by Smith in 2002 [93] and described in Appendix A.2. The attractors of these two

simple nonlinear two-dimensional chaotic maps appear remarkably similar, as shown

in Fig.A.1. In this section we carry out an experiment which aims to distinguish

model inadequacy from chaos.

4.2.1 Experimental design

The scheme of the experiment 4.A is illustrated in Fig.4.4, while the details are

given in a table 4.1.
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Figure 4.4: Processes in Experiment 4.A.

System Senon Map
Model Henon Map
A(x0,y0) (-0.514, 0.3215)
nens 1
nsets 2
m 4096
ts 64
Sd1 0.01
Sd2 0.001
Number of bins (RE) 64

Table 4.1: Experimental Design 4.A

In this experiment we derive an ensemble S, which is a Gaussian ball of points

built around a point A randomly drawn from the attractor. Different sizes of the
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Gaussian ball are considered with three different standard deviations (Sd): 0.01 and

0.001. Each ensemble consists of m members and is divided into two sets ‘1 and 2’,

of randomly chosen points as shown in Fig.4.5. Further, a model and a system are

used to evolve each set of initial points (S1 and S2) from each ensemble and their

positions are stored for each of the first 64 steps. In this experiment we only analyse

x variable. We define SS1 as set ‘1’ evolved on the system, SS2 is set ‘2’ evolved on

the system, MS1 is set ‘1’ evolved on the model and MS2 is set ‘2’ evolved on the

model.

(a) Sd1
= 0.01 (b) Sd2

= 0.001

Figure 4.5: Sets of points ‘1’ (yellow) and ‘2’ (black) within a Gaussian ball for each
standard deviation (Sd). Note the charts have different scales on their X and Y axes.

To capture the model inadequacy, we analyse how one set of points behaves under

the model and the system at different time steps. In this case we will compare (SS1

to MS1) or (SS2 to MS2) for each time step. To capture the effects of chaos we

analyse how set ‘1’ and set ‘2’ act under the same dynamics. In this case we will

compare (SS1 to SS2) or (MS1 to MS2) for each time step.
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4.2.2 Results

The question of interest in this experiment is whether the points evolved in time can

be distinguished in a way that allows us to identify which mathematical structure

they are being evolved under.

The relative entropy, defined in section 3.5 is used to measure the difference between

the sets. Fig.4.6 illustrates relative entropy calculated using 64 equally likely bins,

plotted at the first 16 steps (left panel) and 64 steps (right panel). The System-

Model series (yellow, black lines) show how each set of initial conditions behave

under the system and the model. This allows us to capture the effect of model

inadequacy. Two slightly different sets of points, evolved using the same dynamics

of the system or model, are represented using red and blue lines respectively. These

illustrate the initial condition uncertainty. The lower panel shows a zoom of the

red and blue lines. Fig.4.6 is the same as Fig.4.7, but concerns a smaller noise level

(Sd = 0.001).
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Figure 4.6: RE as a function of lead time for the first 16 time steps (left panel) and
64 time steps (right panel) in Experiment 4.A, for Sd = 0.01. The yellow and black
lines show how one set of initial conditions behave differently under the different
dynamics of the system and the model. The RE of S1 and S2 developed using the
dynamics of the system or model is illustrated with red or blue lines respectively.
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Figure 4.7: This figure is the same as Fig.4.6, but concerns smaller noise level
(Sd = 0.001).

When the two dynamics are different, the RE starts at zero, grows relatively large

and then converges back close to zero again. This is because the ensembles diverge

over time and then approach their respective climatologies.

When the dynamics are the same but the sets of initial conditions are different, the

ensembles do not diverge as much as when the dynamics are different.

When the noise level is lower, the ensembles take longer to approach their respective

climatologies and hence the RE is higher for longer.
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4.2.3 How does this relate to a weather-like climate-like con-

text?

One way to think about predictability in nonlinear systems is to think about weather

forecasting.

• In the short range (steps 1-7) the model is useful and reflects reality. The

behaviour of the actual weather and the ensemble are hard to distinguish.

• In the medium range (steps: 8-20, a few days ahead in terms of weather

forecast) the model cannot capture the true dynamics. The relative entropy,

gives a very bad score for that.

• In the long run (steps 20+) the RE is smaller but the model is not likely to

be any more useful than the system climatology, which in weather forecasting,

is usually attainable from past observations. At this stage, the model is no

longer likely to be informative.

4.3 Illustration with Ikeda Map

Next, we carry out an experiment on the Ikeda Map, which is structurally more

complex than the Henon Map. In this experiment we forecast x variable. The

details of Experiment 4.B are in Table 4.2, and the System-Model pair used here is

presented in Appendix A.3. Similarly to the experiments described in the previous

sections of this chapter, we first evolve a pair of the same initial conditions using two

slightly different dynamics (that is the Ikeda Map and the Truncated Ikeda Map)

to demonstrate model inadequacy. To demonstrate chaos, two initial conditions



4.3. Illustration with Ikeda Map 48

separated by a very small distance ε are iterated forward using the same model

dynamics (that is the Truncated Ikeda Map). Then we evolve a pair of initial

conditions (for ts time steps) and measure the Euclidean distance between many

(nic) pairs of points evolved at each time step. The threshold of our interest is time

step when these points separate by 1.5 units.

System Ikeda Map
Model Truncated Ikeda Map
nic 8192
ts 50

Table 4.2: Experimental Design 4.B

Given that model uncertainty and initial separation are arbitrary a direct compari-

son between the time until the threshold is exceeded for model error and chaos is not

possible. We note that the separation in model inadequacy case can be measured

from time step one, at the initial time step there is no separation. To make analysis

between model inadequacy and chaos directly comparable, the separation ε between

two initial conditions at time step one in model inadequacy case is taken to be the

same as separation between initial conditions at time step zero in chaos case.

In the upper panel of Fig.4.8, 8192 points from the model attractor are shown

coloured according to the time taken for the model and system trajectories initiated

at each location shown on the Ikeda Map to exceed 1.5. The lower panel shows the

same, but for a case in which two trajectories are initialised with the same model

dynamics using the point shown and another point with ε added to coordinates of the

initial point. The threshold used is arbitrary, selected to give an indication of when

two points are clearly far apart. Both diagrams relating to (a) model inadequacy

and (b) chaos yield different results, which suggests that discussed concepts are

different. The median in diagram (a) is 20, while in case (b) it is 6, thus a greenish
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and redish colour is respectively dominant. Also, pattern on the attractors shows

how the location of the initial conditions affects the time taken for the trajectories

to diverge.

Figure 4.8: Chart (a) illustrates model inadequacy, chart (b) chaos in Experiment
4.B. For the initial conditions represented by dots shown on the Ikeda attractor,
the colour indicates time steps until the Euclidean distance between trajectories
originated from this location is greater than or equal to 1.5 units. The time taken
to reach this threshold varies depending on the position of the initial condition on
the attractor, thus we observe different patterns in each chart. The effect of model
inadequacy and chaos is different, which is highlighted by the different overall pattern
of colours of both diagrams.



4.4. Conclusions 50

4.4 Conclusions

In this chapter, we demonstrated that model inadequacy and chaos represent two

different limits to predictability in nonlinear chaotic systems. This clear distinction

has been studied using the Henon Map as shown in Fig.4.2 and the Ikeda Map in

Fig.4.8. It has been demonstrated that these results vary by the location of the

initial condition ensemble.

Other new aspects of this chapter are: an investigation of decay of predictability

and distinguishing the effects on relative entropy of model inadequacy and chaos as

shown in Fig.4.6. While Judd and Smith [95, 96] looked at the separation of points

they did not analyse how decay of predictability varies the way it has been done in

this chapter.



Chapter 5

The Decay of Predictability

The main focus of this chapter is to explore and expand the novel use of a measure

called the Information Deficit in forecast evaluation. Here we also apply other

predictability measures introduced in section 3.3, namely the Empirical Ignorance,

and the Model Implied Ignorance, to demonstrate the decay of information in the

context of mathematical low-dimensional system-model pairs.

In section 5.1, the model and the system are introduced and examined. Here, we

investigate the difference between the natural measure of the Logistic Map and the

Quartic Map as the magnitude of one of the parameters of the Quartic Map is

changed. This is the first time the Quartic Map has been explored in this way. In

section 5.2, we apply predictability measures defined in chapter 3 and examine how

they decay in time. Here, two alternative methods of normalisation are considered

(method D and method E). Several reasons are given to favour method E over

method D. After this section, method D is not used again in this thesis. In section

5.3, the experiment is repeated with alternative versions of the system. Conclusions
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for this chapter are presented in section 5.4.

5.1 Logistic and Quartic Maps

5.1.1 Model and System

Throughout this section, we define the model to be the Logistic Map. The Logistic

Map is defined as

xt+1 = rxt(1− xt), (5.1)

where x is the model state and xt ∈ (0, 1)∀t and r is a parameter on the interval

[0,4].

We define the system to be the Quartic Map, which is given by

x̃t+1 = (1− µ̃)r̃x̃t(1− x̃t) + µ̃
4

5
[r̃x̃t(1− 2x̃2t + x̃3t )], (5.2)

where x̃ is the system state, and µ ∈ [0,1] and r ∈ [0,4] are parameters. This was

described in ‘Laplaces Demon and the Adventures of His Apprentices’ by Frigg,

Bradley, Du, and Smith, 2014 [38].

When µ = 0 equation 5.2 is equivalent to equation 5.1 and so the model is perfect.

When µ = 1, equation 5.2 becomes

x̃t+1 =
4

5
[r̃x̃t(1− 2x̃2t + x̃3t )], (5.3)
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which we refer to as Full Quartic.

Model µ r Equation

Full Quartic 1 4 5.3

Quartic (0,1) 4 5.2

Pure Logistic 0 4 5.1

Table 5.1: These three maps will be repeatedly used in the chapter: Pure Logistic,
Full Quartic and the map that mixes both together, which is called Quartic.

To contrast the case in which µ=0, that is the Pure Logistic Map, and that in which

µ=1, we compare the invariant measure of each. To avoid making assumptions about

the shape of each of the invariant measures, we take a simple approach in which the

domain is divided into 64 equally spaced bins and the proportion of random draws

that fall into each is compared. To get random draws from the invariant measure we

use the following approach: take 32 random initial conditions uniformly distributed

on (0,1), iterate them for 128 steps to disregard transient states, continue for 1024

steps recording the states of x. This is done 4 times so that we have 4096 states

from each invariant measure in total. We refer to this experimental design as 5.A,

the details of which are listed in Table 5.2.

System Quartic Map
r 4
Number of bins (distribution) 64
Number of runs 4
IC U(0,1)
nic system 32
ts 1024
TRAN 128

Table 5.2: Experimental Design 5.A

In Fig.5.1, for each bin, we show the minimum, maximum and mean proportion of
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states falling into them over 4 different runs. This is done for a) µ = 0 (model is

Pure Logistic)1 and b) µ = 1 (system is Full Quartic). Here, we notice that both

distributions have more probability around zero and one in both cases. However, it

can be seen that each distribution is slightly different. For example, the proportions

falling in the first bin are noticeably different.

1Note that the natural measure for the Logistic Map with r=4 is analytically known. It is the
beta distribution with parameters a=0.5 and b=0.5. This is discussed in Appendix B.
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(a) µ = 0

(b) µ = 1

Figure 5.1: The minimum (blue), maximum (red) and the mean (black) proportion
of points falling into each bin over 4 sets of draws for a) µ = 0 and b) µ = 1 under
the experiment 5.A. Both distributions have greater probability near x=0 and x=1.
However the distributions are not the same. For example, there is a contrast between
the min, mean and max in the first bin at the lower edge of the range of x.
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5.1.2 Relative Entropy (RE) between the model and the

system

Relative Entropy was defined in equation 3.11. In this section, we investigate the

difference between the natural measures of the model and the system as the struc-

tural difference becomes smaller, that is as µ from equation 5.2 approaches 0. The

question of interest here is: what is the smallest µ for which the distributions of the

model and the system are distinguishable?

To answer this question, we compare the model and the system with different values

of µ when r = 4. Details of the experiment, which we call experiment 5.B, are listed

in Table 5.3.

System Quartic Map
Model Logistic Map
r 4
Number of bins (RE) 8
IC U(0,1)
nic model 2048
nic system 1024
ts 1024
TRAN 128
Number of runs 4
µ 0; 2n, where n= {−20,−19,−18, ..., 0}

Table 5.3: Experimental Design 5.B

The charts in Fig.5.2 show the RE, calculated using 8 equally likely bins in the

system (see section 3.5 for details about the equally likely grid), between the in-

variant measure of the Model (randomly drawn ICs evolved using Logistic Map)

and of the System (randomly drawn ICs evolved using Quartic Map) for µ = 2n,

where n = {−20,−19,−18, ..., 0}. This was repeated 4 times and therefore results

for run1, run2, run3 and run4 are shown on each chart. Chart 5.2 a) and b) show
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the RE between the model and the system for different ranges of µ. The dashed

lines illustrate the range of the RE between the model and itself for different sets of

model realisations from 4 different runs. This demonstrates the statistical variation

of RE when system and model equations are the same (when µ=0).

The conclusions from this subsection are:

1. When µ ∈ (2−4,20), the RE starts to increase. As expected, the RE is largest

when µ = 1 (or 20), because the system is the most different from the model.

2. When µ ≤ 2−4 there is no obvious change in behaviour from the perfect model:

the RE stays within the same range as the RE between the model and itself.

3. Points 1 and 2 above suggest that the system looks different from the model

roughly when µ > 2−4 and similar to the model when µ ≤ 2−4.
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(a)

(b)

Figure 5.2: The RE between the model and the system for different values of µ in
experiment 5.B. Note the different scale between chart (a) and (b). Each solid line
corresponds to a different model run. The RE is largest when µ = 1, which is when
when the system is fully quartic. For µ ∈ (2−4,20) RE increases quickly, for ≤ 2−4

it stays in a similar range. The dashed lines show the range of RE between model
and itself for different model realisations. For µ > 2−4 there is clear evidence that
the distributions of the model and the system are different.
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System Quartic Map
IC U(0,1)
r U(3.5,4)
nic 128
nr 1024
ts 512
TRAN 128
µ1 0
µ2 0.1
µ3 1

Table 5.4: Experimental Design 5.C

5.1.3 Bifurcation Diagram of the model and different ver-

sions of the system

In this section we illustrate additional properties of the model and the system.

We examine the similarity of the behaviour of the model and the system using

bifurcation diagrams. A bifurcation diagram shows the parameter r against values

of x on the system attractor with that value of r for different values of µ.

To generate the bifurcation diagrams, we drew 1024 random values of r from U

(3.5,4) and drew 128 random ICs which were then run forward for 128 time steps

(to ensure the states are not transient) and then iterated for another 512 time steps

for 3 values of µ. We refer to this experimental design as 5.C. The details are listed

in Table 5.4.

Fig.5.3 shows the bifurcation diagram for a) µ = 0 (Logistic Map), b) µ = 0.1 and c)

µ = 1 (Quartic Map). Here, periodic behaviour (when values of x oscillate around

for example 3 or 6 values) starts at different values of r for each case. The period-3

window is the most prominent [81]. It happens around r=3.83, where out of the

chaos, a stable 3-cycle appears. Here, this transition is shifted to the left between
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the top diagram and the bottom one. The period doubling cascade [81] is complete

before r=3.5 for µ = 1, unlike for µ = 0 and µ = 0.1, where this occurs in the range

shown. Here, we conclude that the system with µ = 0.1 is very similar to the model

(µ = 0), but when µ = 1, the behaviour is very different.
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(a) µ = 0

(b) µ = 0.1

(c) µ = 1

Figure 5.3: Bifurcation Diagrams for experiment 5.C, where a) µ = 0 (shown in
green), b) µ = 0.1 and c) µ = 1 (system is Full Quartic). Qualitative behaviour did
not change between diagrams a) and b). Diagram c) shows different behaviour. For
example, with µ = 1 the period doubling cascade is complete before r=3.5. Also,
the period-3 window (near r=3.83) shifts left from a) to c).
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5.2 Demonstrating the decay of information

In this section we demonstrate the decay of information using the Logistic Map

as a model of the Quartic Map. In section 5.2.1 we define the components of the

experiment: namely the climatology and the ensembles. Then we determine fitting

parameters of the kernel dressing to build forecast densities. Kernel dressing was

introduced earlier in chapter 3, section 3.6. Next in section 5.2.3, we compute mea-

sures of predictability such as the Empirical Ignorance, the Model Implied Ignorance

and the Information Deficit (as defined in sections 3.3 and 3.4). Two methods of

computing these measures (mD and mE) are presented and discussed.

5.2.1 Ensembles and Climatology

Details of experiment 5.D are given in Table 5.5. This yields the following datasets:

1. Climatology is built on nicclim = 211 Initial Conditions drawn from U(0,1)

as formed in the experimental design 5.A, which yields 222 points evolved on

system. The probability density for each bin of size of truncation between

zero and one is calculated. For more details about how the climatology was

calculated, see Appendix B.

2. 512 Initial Conditions form the in-sample set and another 512 the out-of-

sample set. A total of nic IC were found using experimental design 5.D. This

set is independent of that used as the climatology and constitutes target

forecasts (or outcomes).

3. Ensemble members are formed by taking the target forecast at ts0 truncated

to 2 decimal places, + rm/100, where rm is U(0,1). There are m (32) members
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in an ensemble and nens = 1024 ensembles (512 IC formed in-sample set and

512 formed out-of-sample set).

System Quartic Map
Model Logistic Map
r 4
µ 0.1
TRAN 128
nic 1024
nicclim 2048
nens 1024
IC U(0,1)
m 32
rm U(0,1)
ts (model) 15
ts (climatology) 2048
Truncation level 1/100
Size of climatology 222

Table 5.5: Experimental Design 5.D

Figure 5.4 illustrates an ensemble at lead time ts0. The blue stars represent the

initial condition ensemble and the red line the true initial condition (outcome).

The next step is to evolve all 1024 ensembles using the model and their 1024 target

forecasts using the system forward 15 time steps.
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Figure 5.4: An example of initial condition ensemble for the experiment 5.D. The
chart illustrates the location of 32 ensemble members. Each blue star represents an
ensemble member, while the red line represents the outcome. All ensemble members
will correspond to the same outcome.

5.2.2 Operational parameters for use in forecasting

We translate a given ensemble into a probability distribution using a combination

of kernel dressing and blending with climatology as described in section 3.6. We

estimate the operational parameters (kernel width σ and the weight α), which min-

imise Ignorance (the skill score). To do this we use the climatology and in-sample

set described earlier in experiment 5.D.

Optimization of the kernel dressing and blending is done using Matlab optimization
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routine fminsearch. To help ensure convergence to the global minimum, we use five

different starting points from a range of 0 and 1.

Figure 5.5 shows the operational parameters (kernel width σ and the weight α) as a

function of lead time2. The blending parameter α decreases from almost one at time

step one to zero at time step 9, with the biggest drop between time steps 5 and 8.

When α is large, the ensemble makes a major contribution to the forecasts. As for

σ, it increases over the first 7 time steps, because the ensemble spreads out further

over time. We note here the decrease of σ at time step 8. Later it fluctuates, but

this does not matter as α = 0 means that the forecast is equivalent to climatology.
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Figure 5.5: Operational kernel dressing parameters as a function of lead time in
experiment 5.D2. The red line shows the kernel width σ and the black line shows
the blending parameter α. For short lead times, α is close to one and hence the
ensembles make a larger contribution to the final forecasts. Since the ensembles will
spread out over time, a larger value of σ is required of larger lead times. Once α
approaches 0, however, the kernel width becomes irrelevant.

5.2.3 Decay of Information

To demonstrate the decay of information we use data independent of those used

to determine the operational parameters. We calculated the parameters over the

forecast-outcome archive. To evaluate the forecast system we compute the Empirical

2An alternative way of looking at the right side of this plot is to consider it from the model
selection perspective. In this case, from time step 9 the dressing and blending model is unnecessary
and we go straight into climatology.
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Ignorance, the Model Implied Ignorance and the Information Deficit over the out-

of-sample set.

Selecting between two approaches to normalisation

Ignorance of the forecast

In this thesis, we express ignorance of a forecast relative to that of climatology. In

the literature, there are two ways of computing this, depending on which approach

is taken in considering the climatology, which was introduced in chapter 3.3.

The results of calculating the Climatological Ignorance are shown as a function of

lead time in Fig.5.6. Values of methods D (mD) and E (mE) defined in equations

3.3 or 3.7, of section 3.3 respectively, are in the same range.
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Figure 5.6: Climatological Ignorance using each method as a function of lead time.
Method D (mD) assumes that target forecasts are random draws from the climatol-
ogy. Method E (mE) is the Mean Ignorance when using climatology as a forecast.
Values of the Climatological Ignorance calculated in methods D and E are in a
similar range, but are not exactly the same.

There is not much difference in the Empirical Ignorance between both methods (see

Fig.5.7), but note that mD overshoots the zero line. There is a huge contrast in the

Ignorance of each forecast as shown in Fig.5.8. For method E (see right section on

Fig.5.8), the Climatological Ignorance brings the ignorance of all forecasts down to

zero from lead time 9. In method D, for longer lead times, the Ignorance stays in a

similar range, but does not reach 0. Some forecasts have a positive ignorance score.

This happens when the target forecast falls into part of the forecast density, which

has low probability. This is expected to happen sometimes. This issue is illustrated
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in Fig.5.9.

Mean Ignorance decays over time from around -5 bits at time step one to zero at

time step 9 (see Fig.5.7). This means that for the first 8 time steps the forecast has

skill, because it is different from the climatology. We notice the Mean Ignorance is

positive for mD (see the left panel) at time step 8, though it is zero relative to the

resampling interval.

Figure 5.7: Mean Ignorance as a function of lead time for two methodologies (mD
and mE), in experiment 5.D. It increases in the first 8 time steps and for method
E at the 9th lead time converges to 0. When the Empirical Ignorance is zero, the
forecast is equal to the climatology so it is not useful. There is no big difference
between mD (left panel) and mE (right panel). Here we note that method D is
positive at time step 8, though the resampling interval includes 0.
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Figure 5.8: Empirical Ignorance calculated using two methodologies (mD and mE)
for experiment 5.D. Each thin line shows the Ignorance of a different ensemble fore-
cast, whilst the thick line shows the Empirical Ignorance. Climatological Ignorance
in mE brings all forecasts to zero from time step 9 while in mD they do not converge.
At initial time steps, the Ignorance is often much greater than zero in both methods.
This is expected and explained in Fig.5.9.
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Figure 5.9: Examples of ensembles (blue crosses) and the outcomes (red lines) for
a case in which the outcome falls outside of the range of the ensemble (top) and
within the range of the ensemble (bottom). The ensemble at the top will tend to
result in a positive ignorance score (see Fig.5.8).

Model Implied Ignorance

Model Implied Ignorance tells us what the expected ignorance would be if the model

was perfect. The formula for calculating the Model Implied Ignorance was intro-

duced in chapter 3.3. There are two methods of calculating these measures: using

normalisation mD and mE. These give different results which are contrasted here.

Components that are subtracted when calculating the Model Implied Ignorance in

mD and mE in experiment 5.D are shown in Fig.5.11. Method E converges to
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method D from time step 9, that is when blending parameter α is 0.

There is some difference in the Model Implied Ignorance between both methods

(see Fig.5.10); the climatological part that is subtracted (see equations 3.6 and 3.9)

contributes to this difference (see Fig.5.11). Similarly to the Empirical Ignorance,

this increases quantity over the first 8 time steps and then converges toward zero.

We notice the Model Implied Ignorance is positive for mD at time step 8 (see the

left panel of Fig.5.10), and the resampling interval does not include zero, suggesting

it is significantly larger than zero.

Figure 5.10: Model Implied Ignorance as a function of lead time for method mD
(left) and mE (right) in experiment 5.D. Whilst method E always stays non-positive,
this is not the case for method D.
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Figure 5.11: Components that are subtracted (see equations 3.6 and 3.9) when
calculating the Model Implied Ignorance for method D (mD) and method E (mE)
as a function of lead time. mE converges to mD after 8 time steps.

There is a contrast between methods mD and mE when calculating the Model

Implied Ignorance. For example, between time steps 4 and 8 (see Fig.5.12) all

forecasts in method E are nonpositive, but the Climatological Ignorance in mD

takes some of the forecasts above zero. In both methods forecasts converge to zero

from time step 9. This is because the blending parameter α is zero and the forecast

is equal to climatology.
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Figure 5.12: Model Implied Ignorance calculated using two methodologies (mD and
mE), for experiment 5.D. Each thin line shows the Model Implied Ignorance for a
different ensemble, whilst the thick lines show the mean over all forecasts at each
lead time. In both methods, forecasts converge to zero from time step 9, since α
= 0. In mD the Climatological Ignorance takes the Model Implied Ignorance above
zero in some cases.

Information Deficit

Fig.5.13 shows the Empirical Ignorance, the Model Implied Ignorance and the Infor-

mation Deficit calculated using both method D and method E. At short lead times,

both the Empirical Ignorance and the Model Implied Ignorance are low; around

5 bits. This means that our forecasts are, on average, 5 bits better than the cli-

matology, that it they place 32 times more probability on the outcome than the

climatology does. In both cases, the Ignorance is negative for the first 8 lead times
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then converges to 0. The Information Deficit is positive when the Model Implied

Ignorance is better than the Empirical Ignorance. In that case the dashed line in

Fig.5.13 would be below the solid line. The Model Implied Ignorance is expected

to be less than the Empirical Ignorance, making the Information Deficit positive.

When the Empirical Ignorance and the Model Implied Ignorance are the same, the

Information Deficit is zero.

Here, in normalisation mE (see Fig.5.14), the Information Deficit is positive for short

lead times and eventually drops to zero, when the Model Implied Ignorance and the

Empirical Ignorance both converge to zero. Using normalisation mD (left panel) the

Information Deficit is positive for the first 4 lead times, but then drops below zero.

These negative values are surprising since the Information Deficit is expected to be

positive. The reason for this occurrence is explained in the next section, 5.2.4, in

which shortcomings of method D are exposed.
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Figure 5.13: Empirical Ignorance (solid line), the Model Implied Ignorance (dashed
line) and the Information Deficit (black line) as a function of lead time for methods
D (left) and E (right). Whilst the Information Deficit is non-negative for method
E, this is not the case for method D.
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Figure 5.14: Information Deficit calculated using method D (left) and E (right)
with 95% resampling intervals as a function of lead time. For method D, there is
significant evidence that the Information Deficit is negative in 4 lead times.

5.2.4 Shortcomings of normalisation method D

The Empirical Ignorance, and the Model Implied Ignorance, and hence the Infor-

mation Deficit, can be calculated using normalisation by method D or method E.

Method E uses the ignorance when the climatology is used as a forecast for the

actual outcomes whilst method D uses the expected ignorance of an outcome drawn

randomly from the climatology. We now summarise a number of shortcomings of

method D.
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1. Consider a forecast formed using blending in which the blending parameter α

is equal to zero. Since the forecast is equivalent to the climatology, it might

be expected that the ignorance will be zero in all cases. Defining Sclim to

be the expected climatological ignorance is confusing and may even give the

misleading impression that forecast skill is present for some forecasts. This

may lead the forecaster to attempt to separate forecasts with and without

skill, when there is, by construction, zero skill.

2. Method mD first assumes that outcomes resemble iid random draws from the

climatological distribution when, in reality, serial correlation in the outcomes

may mean that this is not the case. [55]

3. In general, the climatological distribution must be estimated from past ob-

servations. This means that, strictly speaking, the climatological distribution

estimated by the forecaster is not the precise distribution from which the out-

comes were drawn. Method mD acts as though the estimated climatological

distribution is perfect; mE does not.

For the reasons stated, the use of method D is not recommended and hence, for the

rest of this thesis we use method E.3

5.3 Logistic Map as a model for alternative sys-

tems

Next we repeat the experiment 5.D from the previous section for different values of

µ in the system. We consider four different values of µ. When µ = 0, the model is

3The originators of these different normalisation methods agree with the conclusions of this
section (H. Du, L.A. Smith and E. Wheatcroft, 2016 personal communications).
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perfect4. When µ = 0.01 we have shown that the model is close to perfect. When µ

= 0.1 or µ = 0.5 there is a larger difference between the model and the system. We

will refer to these experiments as Experiment 5.E. The details are listed in Table

5.6.

System Quartic Map
Model Logistic Map
r 4
µ1 0
µ2 0.01
µ3 0.1
µ4 0.5
TRAN 128
nic 1024
nicclim 2048
nens 1024
IC U(0,1)
m 32
ts (model) 13
ts (climatology) 2048
Truncation level 1/100
Size of climatology 222

Table 5.6: Experimental Design 5.E

Here we are investigating the value of the ignorance and the Information Deficit

in terms of demonstrating the decay of predictability. The Information Deficit has

been defined in a previous section of the thesis (3.4). If the Information Deficit

is negative, the model is under confident. This suggests we are missing something

obvious or have made a silly mistake and the Information Deficit might prove a useful

tool to indicate such problem. If the Information Deficit is positive, the model is

overconfident.

Initially, after experiment 5.E had been conducted, we found that the Information

4Note that when µ=0 the system is equivalent to the Logistic Map with r=4, which has a known
natural measure. This is discussed in Appendix B.
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Deficit was negative. This was surprising as the Model Implied Ignorance is expected

to be better than the Empirical Ignorance. We reviewed the method of calculating

the forecast and found an error when calculating the Empirical Ignorance, the Model

Implied Ignorance and the Climatological Ignorance. A feature of standard kernel

dressing is that it does not account for boundaries. System states of the Quartic

Map are known to be bounded above by one, and below, by zero. The integral of the

forecast density over the range (0,1) should therefore be one. This was not always

the case when the kernel smoothing function was applied. The forecast was putting

the probability outside the range of the map, so some of it was assigned to areas

in which outcomes could not fall. This was fixed by dividing each forecast by a

normalisation constant, but the Information Deficit was still negative for time steps

5, 6 or 7 in each considered case of the system. We checked, that for these time

steps there was a decrease in the blending parameter σ (bandwidth of the kernel).

Further examination showed that operational parameters were not optimised with

respect to the normalised Ignorance. As a result of all of these corrections, all

of the results are changed; the Model Implied Ignorance is now better than the

Empirical Ignorance and the Information Deficit is never negative (see Fig.5.15).

This investigation demonstrated that the Information Deficit can be a useful tool to

capture both errors in the code or costly assumptions in the forecast methodology.

Figure 5.15 shows the corrected Information Deficit for the first 13 time steps in

experiment 5.E. Each colour indicates a different parameter µ of the system. When

the model is perfect (µ=0) or the model imperfection is low (µ=0.01) the Information

Deficit is in a range of around 0.1 to 0.3 for time steps 2-6. The Information Deficit

tends to be larger when the imperfection is higher (when µ=0.5) for the first 4 time

steps. The black dotted line shows the Information Deficit for an unblended model
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5, when α is large (0.9922) and fixed for all time steps. Other models have a lower

Information Deficit after time step 4, which is due to blending with climatology.

The Information Deficit converges to zero at time step 8 when µ=0.5, in time step 9

for µ=0.1, in time step 11 when µ=0.01 and in time step 12 for µ=0. The blending

parameter α = 0 at these time steps and then the forecast and climatology coincide.

Figure 5.15: The Information Deficit as a function of lead time for different values
of µ. The Information Deficit is positive and larger, in general, for the highest level
of model imperfection. The larger the µ, the quicker the Information Deficit reaches
zero. This is because the blending parameter α decays to zero quicker. The dashed
line shows the Information Deficit when µ = 0.5 and the model is not blended with
climatology. The Information Deficit tends to be the largest in this case and never
reaches 0.

5Technically more accurate terminology would be ‘a not fully blended model’. A model is
unblended when α = 1.
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Next, we look more closely at the two components that go into the calculation of the

Information Deficit: 1) the Empirical Ignorance and 2) the Model Implied Ignorance.

The first tells us how much skill the model has and the second gives the expected

Ignorance, were the outcome drawn from the forecast itself. Fig.5.16 shows these

values for the case of µ = 0, µ = 0.01, µ = 0.1 and µ = 0.5.

Figure 5.16: Empirical Ignorance (solid line) and the Model Implied Ignorance
(dashed line) as a function of lead time for different versions of model. The Model
Implied Ignorance is better than the Empirical Ignorance. The gap between the two
types of Ignorance is the largest for the more imperfect model (when µ is 0.5, black
lines). The smaller the µ, the longer it takes for the Empirical Ignorance and the
Model Implied Ignorance to converge to 0. Both measures of predictability increase
as µ decreases.

At first, the Empirical Ignorance (solid line) increases very quickly. The decay of
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information then slows down as it approaches zero. At longer lead times, the forecast

distribution approaches climatology and no longer contains useful information. The

smaller the µ, the better the Ignorance relative to climatology and the longer before

the Ignorance decays to zero.

The Empirical Ignorance in Fig.5.16 was computed on the out-of-sample set. Oper-

ational parameters for each value of µ were calculated on the in-sample set. If we

plotted the Empirical Ignorance estimated on the in-sample and out-of-sample sets

on the same chart both curves would be hard to distinguish. The Empirical Igno-

rance is occasionally better for µ=0.01 than for the Perfect Model. Since it is the

system that changes there is no contradiction in the µ=0.01 being more predictable

than the µ=0 case.

Fig.5.17 shows Ignorance for each individual forecast for µ=0.5 and µ=0.01. The

Climatological Ignorance brings the Ignorance of all forecasts to zero from time step

8 when µ = 0.5 and 9 when µ = 0.01, because α=0 at these lead times and the

forecasts and climatology coincide. Some forecasts have positive ignorance. This

usually appears to happen when out-of-sample ensemble members are far from the

target forecast (Fig.5.9) and the kernel width is ‘too narrow’ to be effective in these

specific spaces. In that case, the Empirical Ignorance is sometimes a good deal

greater than 0. For µ = 0.01 (see left half of Fig.5.17) there are some forecasts with

the Empirical Ignorance greater than 10 at time step 3. The range of values of the

Empirical Ignorance is smaller for µ=0.5 than for µ=0.01.
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Figure 5.17: Empirical Ignorance when µ=0.01 and 0.5. Each thin line represents a
different forecast. The black thick curve shows the Mean Ignorance over all forecasts
with the error bars representing 95% resampling intervals of the mean. For longer
lead times, the Ignorance converges to 0. There are some bad forecasts (those with
the Empirical Ignorance well above 0) at the beginning of the simulation for each
of these two cases of µ. The score forecast is much worse for µ=0.01 than 0.5, with
the Empirical Ignorance being greater than 10 (see chart on the left). This happens
when, for example, ensemble members are far from the target forecast and the kernel
width is too small to capture them (see Fig.5.9). If operational parameters used to
calculate the forecast are modified as discussed in the text, the number of ‘bad’
forecasts decreases (see Fig.5.18).

If we calculate the Empirical Ignorance of the in-sample set in case of µ=0.01, the

number of ‘very bad’ forecasts at time step 3 is reduced from 6 to 3. Here we define

‘very bad’ forecasts to be those with the Empirical Ignorance greater than 5 bits;

this threshold is, of course, arbitrary. Increasing the kernel width by a factor of
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two or decreasing α by one eighth at each time step reduced forecasts with bad

predictability significantly in both cases (see Fig.5.18). For example, here at time

step 2, there are no very bad forecasts when σ is twice larger or when α is decreased.

The whole point of using an ensemble is to compensate for the odd, bad forecast. It

is understood that individual forecasts should never be used separately in any case.

Here we change the blending parameters α and σ in an ad-hoc way, just to explore

what the impact of that change would be.

Figure 5.18: Empirical Ignorance by time step for µ=0.01 calculated with modified
α and σ. This should be compared with the left panel of Fig.5.17. Doubling of the
kernel width σ or decreasing α by one eighth for each time step reduced the number
of ‘bad’ ensemble forecasts.
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5.4 Conclusions

Properties of the model (Logistic Map) and the system (Quartic Map) have been

compared for different levels of imperfection in the model caused by tweaking the

parameter µ which lies on the interval (0, 1) and is equal to the system when µ =

0. The similarity between the invariant measures of the model and the system

was demonstrated in Fig.5.1 and explored in more detail by comparing the relative

entropy of the two distributions (Fig.5.2). From this, it was concluded that the

system behaves notably differently from the model for values of µ greater than

approximately 0.06. This conclusion is reinforced by the dynamical similarity of the

behaviour of the model and the system shown by examination of the bifurcation

diagrams presented in Fig.5.3. To our knowledge, this is the first exploration of this

kind for the Quartic Map.

Next, we demonstrated the decay of information using the ignorance score to evalu-

ate the amount of useful information in the model relative to a baseline climatological

forecast. We showed, using the Quartic and Logistic Maps how the blending pa-

rameter α eventually approaches zero and thus the information contributed by the

model also approaches zero until no weight is placed on the model at all.

We then considered the use of Ignorance scores and compared two alternative ways

of calculating the Empirical Ignorance and the Model Implied Ignorance using nor-

malisation method D and method E. We demonstrated the calculation of the Infor-

mation Deficit with reference to the Logistic Map as a model of the Quartic Map.

Important shortcomings of method D, novel to this thesis, were identified and it was

concluded that method E should be used exclusively.

Next, we performed a novel exploration of the use of the Information Deficit and
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how the forecast never performs as well as it would, were it truly the distribution

from which the outcome was drawn. We also discussed that, when the blending

parameter is zero (that is, when no weight is put on the model and the forecast is

simply the climatology), by construction, the Information Deficit is always precisely

zero.

Finally, we described new attributes of the Information Deficit and demonstrated

its use as a diagnostic tool in identifying areas of improvement in the forecast-

ing methodology. The Information Deficit helped to capture a number of different

shortcomings: (i) Forecast density was routinely being placed outside of the possible

range of the outcome, (ii) bugs in the code, (iii) errors arising from the default set-

tings of some Matlab functions (for example, using too few points in the numerical

integration scheme).



Chapter 6

Modelling the real world:

Predictability in probabilistic

modelling of El Niño

In this chapter we apply measures of predictability developed earlier in this thesis

to a real-world model, which is much more complex than the mathematical low-

dimensional models discussed in the previous chapter. Here, our research concerns

the Cane-Zebiak model (C-Z model), which is used to model El Niño events [1].

El Niño has widespread socio-economic impacts hence improved predictions of its

behaviour would be of great value to society in terms of reducing damage costs

[42, 41]. This has motivated us to study predictability in the context of the C-Z

model. I received a scholarship 1 from the London School of Economics and Political

Science (LSE) to learn about this model at Columbia University in New York, where

the C-Z model was created and has been developed.

1Sep 2014-Nov 2014 Funded Partnership PhD Mobility Bursaries for LSE PhD students.
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In section 6.1, we define El Niño and explain its climate and socio-economic effects

both in the Pacific region and across the world. In section 6.2, we focus on the

C-Z model and demonstrate that it is an appropriate model for the application of

the non-linear methods which we have been developing in this PhD thesis. Next,

an original experiment in which the decay of information is demonstrated is carried

out. The predictand of our interest in this chapter is the Niño 3.4 index. Results on

the predictability of the model in a Perfect Model Scenario are discussed in section

6.3, and in an Imperfect Model Scenario in section 6.4. Here, as in the previous

chapter, we describe how the Information Deficit unearth practical difficulties in

section 6.3.4. Defining a climatology in the C-Z model is shown to present different

challenges than the mathematical model case (more about this is presented in section

6.3.2). Issues arising from not having a representative climatology are explained in

section 6.5. Section 6.6 summarises the conclusions and identifies which results are

new.

6.1 El Niño

6.1.1 What is El Niño?

Roughly speaking, El Niño is defined as the warming in the sea surface temperature

(SST) when compared with the averaged value, from the coasts of Peru and Ecuador

to the equatorial central Pacific Ocean [76]. The term was introduced by Peruvian

fishermen, who recognised that the appearance of large masses of warm water had

impacted their businesses, resulting in low catches. Since the warming begins around

Christmas, they called it El Niño, which is Spanish for the ‘Christ Child’.

There are four different Niño Regions in the Pacific (see Fig.6.1). This research
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mostly concerns the Niño 3.4 region bounded by 5◦N to 5◦S, and 170◦E to 120◦W.

The Niño 3.4 index may be regarded as the most appropriate ENSO index to use

[12], because of the dominant effect of SST variability within this region on the

global climate.

Figure 6.1: Graphical illustration of the four Niño regions in the tropical Pacific, by
NOAA Climate Prediction Center [7]. These are the regions used by the C-Z model.

Different countries use different indicators to identify the phenomenon in the trop-

ical Pacific. For example, the National Oceanic and Atmospheric Administration

(NOAA) uses the Ocean Niño Index (ONI), which defines an El Niño event as one

in which the 3-month average sea surface temperature (SST) anomaly in the Niño

3.4 region is equal to or exceeds 0.5◦C for 5 consecutive periods in a row. Further,

based on the magnitude of the SST change, weak (with a 0.5-0.9◦C SST anomaly),

moderate (1-1.4◦C), strong (1.5-1.9◦C) and very strong (above 2◦C) events can be

derived [4]. Fig.6.2 shows the ONI since 1950. Warm phases based on the threshold

0.5◦C are above the first red line. The most recent El Niño conditions occurred at

the beginning of 2015. Warm phases in 1982-3, 1997-8, and 2015-16 belong to the

very strong category.
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El Niño is the warm phase, while ‘La Niña’ is the cold phase of a larger irregular

and recurrent climate pattern called the El Niño-Southern Oscillation or ENSO. El

Niño occurs on average every 4 years, though it can occur between 2 and 7 years

apart. Larger events generally start around summer, reach their peak near the end

of the year and then weaken before the following summer during May-July. The

length of the phase is therefore around a year [90]. The El Niño evoluation pattern

described above is depicted in Fig.6.2 (Courtesy of NOAA [7]).
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Figure 6.2: 3-month average sea surface temperature (SST) anomalies in the Niño
3.4 region. The figure illustrates irregularity in the length and occurrence of the
events since 1950. The latest warm phase in 2015-16 was very strong with the
anomaly above the 2◦C threshold. (Courtesy of NOAA [7]).
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El Niño affects not only the climate of the Pacific Ocean region, but is also associated

with different temperature and precipitation patterns around the world, so called

‘teleconnections’ [43]. These can have various economic consequences. We will go

into greater detail about this later in the chapter.

6.1.2 El Niño in the Pacific

El Niño appears in the tropical Pacific. Fig.6.3 illustrates Ocean Temperature Pat-

terns, while Fig.6.4 shows precipitation in the first quarter of 1998 during which

a very strong El Niño occurred over that region. Across the eastern half of the

tropical Pacific, exceptionally warm waters (3-4◦C warmer than normal) coincided

with increased rainfall and thunderstorm activity. The right panel of Fig.6.4 shows

regions with twice the average tropical rainfall (dark green area). In contrast, over

the western equatorial Pacific rainfall was up to 600-800 mm less than normal (dark

grey/ yellow on the left chart), which suggests a large deviation from the average

conditions of that region.

This extreme dryness led to a series of major uncontrolled wildfires across Indonesia,

Malaysia, and Northern Australia [42]. El Niño completely changes this region’s

climate.
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(a) Total (◦C) (b) Departures (◦C)

Figure 6.3: Fig. a) shows average ocean temperature in the Pacific between Jan-
Mar of 1998 during a very strong El Niño. Fig. b) relates to that period and shows
departures2 from the long-term average. We see there, that temperatures were above
average by 3-4◦C across the eastern tropical Pacific. (Courtesy of NOAA [7]).

Figure 6.4: Map in the left panel illustrates total rainfall in Jan-Mar 1998, during a
very strong El Niño. The heaviest rainfall at that time is shown by the darker green
and blue colours. Analogically to Fig.6.3 the map on the right shows departures
(x100)mm from the average. The dark green in the right picture indicates 400 mm
more than average, so the rainfall was double the average in this region. By contrast,
the dark grey region of Indonesia has, on average, 800 mm and in Jan-Mar 1998 had
no precipitation at all, resulting in extreme dryness. (Courtesy of NOAA [7]).
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6.1.3 El Niño and the World

El Niño is thought to result in changes to precipitation and temperature patterns in

many parts of the world [86, 87, 61, 48]. In some regions the risks of floods and cold

weather is increased whilst, in others, there is an increase in the risk of wildfires,

droughts and heat waves. Impacts associated with the phenomenon depend on the

season. It must be stressed that while these effects are more likely to occur, they

are not guaranteed. Rather than going into detail about the effects in each region,

we simply summarise some of the most likely impacts of El Niño around the globe.

The two pictures in Fig.6.5 show global temperature and precipitation patterns

associated with El Niño during winter (Dec-Feb) and summer (Jun-Aug).
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Figure 6.5: Effects of El Niño on global climate in winter (top) and summer (bottom)
by NOAA [7]. Whilst these effects are more likely in El Niño years, they are not
guaranteed.

During winter in an El Niño year, wet and warm conditions in coastal Ecuador and

Peru are likely to occur. The phenomenon may also bring warmer winter tempera-

tures across southern Alaska, western Canada and the northern US. Excess rainfall
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is commonly observed with El Niño in eastern equatorial Africa and the southern

US, while drier than normal conditions become more likely over northern South

America, Central America and southern Africa between December and February.

El Niño may also bring lower temperatures along the Gulf Coast of the US.

During summer, a common El Niño effect is that Indonesia and parts of northern

South America tend to be drier than average, as does eastern Australia, Central

America and India. Excess rainfall in central Chile becomes more common with El

Niño between June and August. There is a tendency for above-average temperatures

at that time of the year in southeastern and northestern South America and Central

America, while the northern part of New Zeland may experience cooler and drier

than average conditions.

The overview above shows that El Niño works both locally in the Pacific, and around

the world, having widespread climate and socio-economic impacts. For example,

in the past El Niño was blamed for forest fires that created dangerously polluted

air in Indonesia, water shortages from drought in northern Brazil or massive fish

migration from the warmed waters along the coasts of Peru and Ecuador. These

had devastating economic consequences. However, in some cases El Niño conditions

appear to lead to benefits. For example, the phenomenon is associated with warmer

winters in the northern US, resulting in reduced energy use and therefore, lower

energy prices [23].

6.1.4 Predicting El Niño

El Niño is linked with impacts on many aspects of human life. It affects commodity

prices and the macroeconomy of many countries [20]. It appears to account for

changes in global crop production [52], price inflation and world economic activity.
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The phenomenon is associated with health impacts [62], such as increased risks of

malaria epidemics in parts of South Asia and South America or civil conflicts [51].

The number of climate disasters does not change between years with El Niño con-

ditions and neutral periods. However, the types of catastrophe to be expected are

more easily predicted in El Niño years allowing preparation for them [46]. Being

able to better foresee the phenomenon would help water, energy, and transportation

managers, and farmers, plan for, avoid or alleviate potential losses. As presented

earlier in this section, El Niño affects the agriculture, fishing, forestry and energy

sectors, as well as commodity prices. Improved climate predictions could have an

impact in these areas.

It would be of great value to humanity to be able to predict the phenomenon in

the Pacific. This motivates us to study predictability and makes it an important

statistical issue. We now move to mathematical details of dynamical systems and

predictability in the context of the Cane-Zebiak model, which is used to forecast El

Niño events.

6.2 Cane-Zebiak model

6.2.1 Information about the model

In the early 1980s, scientists based at Columbia University’s Lamont-Doherty Earth

Observatory constructed the first oceanic-atmospheric model, which aims to predict

an El Niño event [1]. The model computes anomalies of atmospheric and oceanic

fields, relative to a specified monthly mean climatology that is calculated from past

observations, for the tropical Pacific region [21].
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The C-Z model is a deterministic numerical model of the coupled ocean and atmo-

sphere, which is used to study ocean-atmosphere interactions in the tropics. C-Z

model produces recurring El-Niño events, irregular in both amplitude and spacing

[114]. See also Fig.6.6. They occur around every 3-4 years, with the largest growth

of Sea Surface Temperature during summer and autumn, lasting around a year,

which is in general agreement with the main features of observed El Niño events.

No statistical procedures are used in the forecasts [21]. Model variables evolve deter-

ministically according to physical principles thought to govern the atmosphere and

oceans. We do not review the physical laws used in the model’s equations; these are

presented in a paper ‘A Model El Niño-Southern Oscillation’ [114] written by the

authors of the model.

The C-Z model is written in Fortran. The model consists of fifteen different variables.

We restrict our interests to one - Sea Surface Temperature (SST). Later in this

chapter we analyse the Niño 34 index, which is the average SST anomaly within

the region 5◦S–5◦N, 170◦E–120◦W. Earlier in section 6.1.1 we introduced the Niño

regions and Niño 34 index. Niño regions used by the C-Z model are illustrated in

Fig.6.1.

Some model parameters are adjustable, but the integration time step and locations

of each grid box are fixed somewhere in the program. The default value of a time

step is 10 days. In the research we focus mostly on the Perfect Model Scenario. We

also consider an Imperfect Model Scenario, which is the C-Z model with a 5-day

time step as the model.

The standard grid for the SST physics and atmosphere model is 5.625◦ longitude

by 2◦ latitude. The model simulates the results for the area between 101.25◦E to

95.62◦W and 29◦N to 29◦S. In C-Z model the area of forecast is arranged as an array,
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which has index I corresponding to longitude running from west to east, and the

index J corresponding to latitude and running from south to north. I=1 corresponds

to 101.25◦E, with successive points 5.625◦ degrees apart. J=1 corresponds to 29◦N,

with successive points 2◦ degrees apart. The overall domain in C-Z model consists

of 1020 grid points - 30 different latitude boxes and 34 different longitude boxes.

This time, building the components of the research and running the simulation has

been more complicated and time consuming than in low-dimensional mathematical

model cases. (I am grateful for receiving training on this from colleagues from

the International Research Institute for Climate and Society (IRI) at Columbia

University in New York). For example, for the experiment described in section

6.3, the input size is around 3.7 GB and the time required to do the simulation

is approximately 16 hours. Input consists of 214 ICs, each IC is represented by a

file consisting of SST anomalies from the mean, for the total area of forecast in the

model, that is for 1020 grid points. Running the model and simulation requires a

Linux operating system.

6.2.2 Qualitative Behaviour

SST in the Niño 3.4 region

Fig.6.6 shows 64 years of output from the Cane-Zebiak model (C-Z model). The

red and blue lines illustrate the evolution of mean monthly sea surface temperature

anomalies in the Niño 3.4 region of the eastern tropical Pacific (also known as

NINO34 index) from two different initial conditions. For comparison, the black

dotted line shows observations between 1950-2014. It appears that the C-Z model is

able to simulate important aspects of interannual variations in the tropical Pacific

realistically. The time series of the model are aperiodic, with decades of irregular
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cycles of warm phases with an average period of 4 years.

Figure 6.6: Examples of time series of the monthly NINO34 index for 64 years from
the C-Z model (red and blue lines) vs. 1950-2014 observations by NOAA (black
dotted line)[7]. Initial conditions in the top and the bottom charts are different. In
both cases we observe aperiodic cycles of warm phases with an average occurrence
period of 4 years. The range of the index is between -2 and 3◦C. The model appears
to illustrate fluctuations in SST in the tropical Pacific reliably (see section 6.1.1
for more details). This behaviour is similar to observations, and the model looks
non-linear.

For the Perfect Model, the NINO34 index stays within the range between -2 and

3◦C. This is in contrast to output from the Imperfect Model (IM). Fig.6.7 shows a

time series of the 5-day model versus the time series with exactly the same initial

conditions for the 10-day model. Here we notice that the time series looks very

different after 4.5 years. A discrepancy of 0.5◦C (magnitude of El Niño threshold)
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is seen at that point. By contrast, after 1.5 years the difference is 0.1◦C.

Figure 6.7: Trajectories of the 10-day model (used in the Perfect Model Scenario)
and the 5-day Model (used in the Imperfect Model Scenario) of the C-Z model. Time
series of the Perfect Model (solid blue line) is evolved from exactly the same initial
condition as the Imperfect Model (dotted black line). The top chart illustrates the
first 16 years, while the bottom one zooms into the first 5 years. After 1.5 years, both
model types differ by 0.1◦C. After 4.5 years they diverge at the El Niño threshold
level of 0.5◦C. They start to look very different at that time.

Nonlinear behaviour

We introduced the theory of chaos earlier in chapter 2.3. Although we do not

attempt to show that the C-Z model is chaotic, in Fig.6.8 we demonstrate sensitivity

to initial condition error in the C-Z model. The green line shows the target forecast;

this is a time series of the NINO34 index. We introduce small changes to the initial
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condition. This results in large differences between the trajectories later in time.

Time series representing the smallest initial separation (red line) stays the closest

to the true trajectory the longest. The trajectory from the biggest noise level (blue

line) diverges the earliest of the three considered. The fact that the trajectories

eventually diverge, demonstrates that the C-Z model is sensitive to initial condition

error.

Figure 6.8: Trajectories of the NINO34 index of the C-Z model with 3 different
noise levels. Nearby initial conditions separate from the target forecast. At year 10
we observe that the time series representing the smallest noise level of 1/128 (red
dotted line) stays the closest to the outcome (green solid line). The biggest noise
level of 1/32 (blue dotted line) is the furthest from the target forecast.
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The analysis in this section shows that the C-Z model appears to embody the quali-

tative features of El Niño in the tropical Pacific. NINO34 index trajectories demon-

strate that there is sensitivity to initial conditions. This suggests that Columbia

Universitys model for El Niño is suitable for the application of non-linear analysis

methods, which I developed earlier in this thesis.

6.3 Decay of information in the Cane-Zebiak model

- Perfect Model Scenario

In the previous chapter, we demonstrated the decay using the Logistic Map as a

model of the Quartic Map. Here, again, we use the Ignorance score to demonstrate

for how long the average time for which model is informative. In addition we calcu-

late the Information Deficit and demonstrate how it can be used to find weaknesses

in the forecasting system (including bugs in the code). In this section, we focus on

the Perfect Model Scenario, where we use one form of the C-Z model as another

form of the C-Z model. First, in section 6.3.1, we describe the experimental design.

In section 6.3.2, we explore the behaviour of the climatology. We then determine

the operational parameters of the kernel dressing used to build forecast densities.

In section 6.3.4, results of the experiment are described and interpreted.

6.3.1 Generation of ensemble-based probabilistic forecasts

of the NINO34 Index

The concept of ensemble-based probabilistic forecasting (Monte-Carlo sample) was

introduced in section 2.6. The experiment on tracking the decay of information in

the C-Z model involves creating inverse noise ensembles, evolving them forward and
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extracting time series of the target values. Our variable of interest is the sea surface

temperature anomaly in the Niño 3.4 region which defines the Niño 3.4 index (or

NINO34 index). Both Niño 3.4 region and Niño 3.4 index were introduced earlier in

section 6.1.1. In C-Z model domain, the Niño 3.4 region is between latitude fields

(J) from 16 to 26 and longitude fields (I) from 13 to 18, the information about a

grid point in C-Z model is in section 6.2.1.

In the simulation we perturb the initial condition of the SST field only, by picking up

6×11 consecutive grid points from the domain of 12◦N to 1◦S and 130◦E to 115◦W.

That size of initial condition represents size of Niño 3.4 region in the model. The

location of the perturbed initial condition is close to the area defined by the Niño

3.4 region in the real world 5◦N to 5◦S and 170◦E to 120◦W.

First the input for the simulation is created. Details of the experiment, which we

call experiment 6.A, are listed in Table 6.1 and described below.

Variable to perturb SST (Sea Surface Temperature)
Number of grid points (total) 1020 (30×34)
Number of grid points (IC) 66 (11×6)
Index grid point (lon min) 13
Index grid point (lat min) 6
Mean SST 2
Noise level 0.01
Perturbation U (1,3)
nens 256
m 64

Table 6.1: Experimental Design 6.A

Assume we observe 66 grid points of SST anomaly from the mean, this is drawn

from 1020 grid points, and xi for i=1,...,66 are system variable on U(1,3), (as this

value could simulate the ocean warming near Niño 3.4 region). All other variables

are set to their climatological mean.
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We propagate this IC forward to generate system trajectory.

To generate an IC ensemble EnsICi,j we add Gaussian noise as

EnsICi,j = x0,i + εi,j, εi,j
iid∼ N(0, 0.012)

For i=1,...,66 and j=1,...,m

where εi,j is a vector of iid draws from a Gaussian distribution with mean 0◦C and

standard deviation Sd = 0.01◦C.

The input consists of nens = 256 ensembles, each consisting of m = 64 members.

After this step, each ensemble with perturbations is evolved forward in time using

the C-Z model. Details of experiment 6.B are given in Table 6.2. The lead time unit

is one month and the final output includes 64 years of the NINO34 index. During

this experiment climatology is also built, which is described in the next section.
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System C-Z model (integration time step 10 days)

Model C-Z model (integration time step 10 days)

nens 256

Noise level 0.01

m 64

Lead time unit a month

ts (model) 768 (64 years × 12 months)

ts (system) 768 (64 years × 12 months)

nicclim 8

TRANclim 1200 (100 years × 12 months)

ts (climatology) 22800 (1900 years × 12 months)

Number of climatologies 12 (for each month)

Size of climatology 15200 (1900 years× 8 IC)

Table 6.2: Experimental Design 6.B

Fig.6.9 shows an example of a Monte-Carlo sample developed with the C-Z model

for a period of 10 years. Most members stay close to the target forecast for the first

2 years and at years 3.5 and 5.5. That is when the forecast is good. After 10 years,

nearby initial conditions spread along the attractor.
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Figure 6.9: Example of an ensemble forecast of the NINO34 index evolved on the
C-Z model in experiment 6.B. There are 64 scenarios shown with black lines. The
green line is the outcome. Most members stay close to the target forecast for the
first 2 years, that is when the forecast is good. Then at year 3, if we turned nearby
initial conditions into a probability forecast it would be a bimodal pdf, because
members of the ensemble oscillate around two values. At year 3.5 there is a return
to a skill, when everything is back in the same place again. At years 4 and 5 we
have something bimodal, in year 5.5 all members are together again and we have
a good forecast. Then nearby initial conditions get separated along the attractor.
This behaviour would not be the same for every ensemble. This example illustrates
a sensitivity to initial condition.

6.3.2 Climatology for NINO34 for the C-Z model

Obtaining a climatology for NINO34 from the C-Z model
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Climatology was introduced in chapter 2.2. To derive a representative climatology

of the model, ideally, we would hope to be able to draw randomly from the model

attractor. We take nicclim = 8 initial conditions and evolve each of them forward

TRANclim = 100 years, such that each trajectory has had time to reach non-transient

state. We then evolve each of these states a further 1900 years in time and sample

each trajectory and use these points as our climatology. We recognise that this

approach is suboptimal in terms of selecting random points from the climatology,

but we expect this to give a reasonable representation. This was the approach

recommended by scientists from IRI at Columbia University in New York. (We will

refer to this set as Clim1).

Comparing 2048 Gaussian preturbations to Clim1 (experiment)

We compare Clim1 to an alternative method of creating a climatology, where the

input is nic (2048) Gaussian perturbations around one initial condition with standard

deviation Sd of 0.01◦C, evolved for 64 years in a specified month - May. We will refer

to this set as Clim2. Clim2 defines a model, while the Clim1 defines the system.

We will refer to this experiment as Experiment 6.C.
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System C-Z model (integration time step 10 days)

Model C-Z model (integration time step 10 days)

Time unit a month

Selected month May

Noise level 0.01

ts (system) 1900 (years)

ts (model) 64 (years)

nic (system) 8

nic (model) 2048

TRANsystem 100 (years)

Number of bins (RE) 8

Table 6.3: Experimental Design 6.C

To measure the difference between the two climatologies we use Relative Entropy

(RE) computed in two different ways: RE with equally likely bins and RE with

equally spaced bins, as discussed in section 3.5.

We now look at RE between 2048 Gaussian perturbations around one IC (model)

and Clim1 (system) defined earlier, for equally likely and equally spaced bins (see

Fig.6.10). The number of bins considered here is 8. RE approaches equilibrium

after 50 years (but does not approach exactly zero). Thus distributions of model

and system become similar after around 50 years and the climatological set defined

as Clim1 is right. Perhaps evolving points for only 50 years would not be enough.

Another observation that we make here, is that the RE curve in Fig.6.10(a) is flatter

than in Fig.6.10(b). In case (b) fluctuations of bins with fewer number of members
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would be bigger and RE is bigger. If all the bins have the same probability, then

variations are smaller and RE is smaller. Bins with fewer number of members in

bins for the system have low probability, so we divide by a small number and get

a large RE. We also notice here the zigzag shape of the RE curves. This reflects

the fact, that the NINO34 index is at its highest or lowest peak every two years

on average. When, the forecast is in states of climatology that are more likely to

happen, the RE is lower.
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Figure 6.10: Relative Entropy (RE) between two distributions of Clim1 and Clim2
in experiment 6.C. This is plotted for 64 years in May for (a -top chart) a case with
equally likely and (b -bottom chart) equally spaced bins. On a scale of 50 years
RE approaches the sampling error line, which means that probability distributions
representing both methods look similar after that time. We notice here, that the
shape of the RE curve is spiky. This happens when variation of bins with fewer
members is big, so the RE is big for those bins. In the cases of low state or high
state of the NINO34 index we have poor skill (high RE), in between (in the middle)
the skill is good and RE smaller, because that is what the climatology looks like.
Good skill happens every two years, which explains the zigzag shape of the RE
curve. In case (a) fluctuations are smaller and so the curve is less spiky than in case
(b).

Fig.6.11 shows distribution of the probability of model (Clim2) relative to system

(Clim1) by bin and year for May. For every year we colour each box representing

the bin, by the probability of a Clim2 being in these bins. Black colour means
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probability equals one, where all elements are in the box. Light yellow indicates less

likely bins. Each vertical slice adds up to one. Again, we consider two cases here:

(a) equally likely and (b) equally spaced bins. At the beginning of the simulation

all members are in the same box (because they were derived as many Gaussian

perturbations around one initial condition). They spread around all bins quicker

in case (a) than (b). At the end of the simulation in year 64, all boxes are light

yellow in Fig.6.11(a), as all bins are equally likely. This is different in Fig.6.11(b),

where box 4 is the most probable after 60 years. If we drew a frequency distribution

at year 64, its shape, as expected, would be flat in case (a); in case (b) it would

look like a climatology. The case with fixed bins has more noise than the one with

equally likely bins. The presence of orange stripes in almost every box means the

model did not converge to the system, and the information has not decayed here.
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Figure 6.11: Proportion of 2048 Gaussian perturbations around 1 IC (Clim2) relative
to a Clim1 in time and by bin, experiment 6.C. In fig.(a) equally likely, in (b) equally
spaced bins are shown. Colour relates to the proportion of model elements in that
box. Black means the most likely, light yellow indicates the least probable. Each
vertical slice adds up to one. At the beginning all elements are in the same box.
Here we start with all light yellow and one black box, which becomes lighter with
a time. Colour in boxes flickers with a time step. In case (a) with equally probable
bins, each box is the same at the end, because all elements are equally spread around
each bin. In case (b), box 4 is the most likely after 60 years. Fig.(a) decays flat
and fig (b) decays to climatology. Gaussian perturbations spread around all bins
quicker in case (a) than (b). There are still oscillations in almost every box (see
orange stripes across every bin), which suggests that the information has not been
lost.
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Now, we find an equilibrium (sampling error) to which RE approaches. This is

illustrated with a dotted black line in Fig.6.10. Details of the experiment, which

we call experiment 6.D, are listed in Table 6.4. We draw nic number of uniformly

distributed random numbers between 0 and 1, then divide them into k number of

bins and calculate the number of elements in each bin. We repeat this many times

(220, around million) and estimate the average RE for nic number of elements and

k number of bins. Two cases are considered: equally and unequally likely bins.

Here an equally spaced grid means that the bins have an equal probability of being

drawn. Unequally likely bins have intervals on the grid determined by the vector of

different fractions.

nic where nic = {128; 256; 512; 1024; 2048}

IC U(0,1)

k (number of bins) where k = {4; 8; 16; 32}

Number of draws (repetitions) 220

Table 6.4: Experimental Design 6.D

Results for nic and k for both methods are in Table 6.5 and Table 6.6. Here we

notice that RE decreases proportionally to the increase in the size of the sample

(nic). Also, the bigger the number of bins (k) the bigger the RE. The difference

between equally and unequally likely bins case is shown in Tab.6.7. For most (nic,k)

combinations RE is bigger for the unequally likely bins method.
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Size of the sample (nic)

128 256 512 1024 2048

Number of bins (k) 4 0.0118 0.0059 0.0029 0.0015 0.0007

8 0.0277 0.0138 0.0069 0.0034 0.0017

16 0.0601 0.0296 0.0147 0.0073 0.0037

32 0.1291 0.0621 0.0306 0.0152 0.0076

Table 6.5: Relative Entropy by size of the sample (nic ) and number of bins (k)
for equally likely bins case in experiment 6.D. Data was drawn from the uniform
distribution 220 times, values in the table show RE averaged over the number of
repetitions. The bigger the number of bins (k) the bigger the RE. It decreases
proportionally to the increase in the size of the sample (nic ).

Size of the sample (nic)

128 256 512 1024 2048

Number of bins (k) 4 0.0119 0.0059 0.0031 0.0015 0.0007

8 0.0275 0.0141 0.0069 0.0035 0.0017

16 0.0624 0.0301 0.0150 0.0075 0.0037

32 0.1269 0.0625 0.0303 0.0154 0.0077

Table 6.6: Relative Entropy by size of the sample (nic) and number of bins (k) for
unequally likely bins case in experiment 6.D. Data was drawn from the uniform
distribution 220 times, values in the table show RE averaged over the number of
repetitions. Here conclusions are the same as in Tab.6.5. The bigger the number of
bins (k) the bigger the RE. It decreases proportionally to the increase in the size
of the sample (nic ).
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Size of the sample (nic)

128 256 512 1024 2048

Number of bins (k) 4 -0.0001 -0.0001 -0.0001 0.0000 0.0000

8 0.0002 -0.0003 -0.0001 0.0000 0.0000

16 -0.0023 -0.0005 -0.0003 -0.0001 0.0000

32 0.0022 -0.0004 0.0004 -0.0002 -0.0001

Table 6.7: Difference in Relative Entropy by size of the sample (nic) and number of
bins (k) between 2 methods: equally and unequally likely bins in experiment 6.D.
Data was drawn from the uniform distribution 220 times, values in the table show
RE averaged over the number of repetitions. There is not much of a difference
between the methods. In most of the cases RE for unequally likely bins is bigger.

RE shown in Fig.6.10 is above the sampling error with 95% resampling intervals,

even after 60 years (see the zoom in Fig.6.12). This means that the probability

distributions of model and system are still different and perhaps the data in this

experiment is too short. As the number of time steps in the experiment increases

any pattern in bins would be lost and the RE curve will approach the sampling

error line.
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Figure 6.12: Tail of the RE curve shown in Fig.6.10. Here RE is above the sampling
error (calculated in Tables 6.5 or 6.6) with 95% resampling intervals for both (a)
equally likely and (b) equally spaced bins. This could mean that the data used
in the experiment 6.C is too short for the model to converge to the system, and
could explain the pattern across bins (orange stripes) in Fig.6.11, still visible after
60 years.

Climatology C-Z model vs. observations from the real world observa-

tions?

In chapter 5 we discussed the decay of predictability and showed the climatology

of a simple dynamical system (Logistic Map). One new aspect of the C-Z model

case, is that the model climate for each month can be estimated, so there are 12

different climatological states. In addition to this new feature, model climate can
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be compared to climatology estimated using 1950-2016 observations.

Fig.6.13 shows climatology for both model (solid line) and observations (dotted line).

These are typical values one can expect by running the model for a long time (in

this case 8 initial conditions for 1900 years) or by looking at old statistics (66 years

of observations). The red curve in Fig.6.13 (a) illustrates the calculated probability

density estimate of climatology for the NINO34 index in August, the blue one in

Fig.6.13 (b) represents December. The shapes of the lines look very different between

months. In August, the model tends to be in one state, somewhere around 0◦C of

a difference from the mean, while in December there is much more of a spread of

different possibilities in different years. This broadly agrees with observations that

in December the NINO34 index at its extremes, while in August it decays (this is

expressed by the narrower range of values on the X-axis in case (a), which gets wider

in case (b)).
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(a) August

(b) December

Figure 6.13: Climatology of NINO34 index for C-Z model (solid line) and 1950-
2016 observations by NOAA (dotted line). Shapes of probability density estimate
between (a) August and (b) December are very different. In case (a) the model is
around one state - 0◦C, while in case (b) it is spread around different possibilities.
This corresponds to the observations, as the NINO34 index reaches its extremes in
winter and diminishes in summer. In case (b) the model does not capture the entire
range of values.
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6.3.3 Adjusting parameters of kernel dressing of Niño 3.4

Index ensemble forecasts

In this section, we use the ensemble and climatology described in experiment 6.B

to build probability forecasts. As before, we use kernel dressing, optimising the

parameters over the ensemble-outcome archive, as introduced earlier in chapter 3,

in section 3.6. A different set of parameters are found for each month.

Fig.(6.14) shows the kernel width σ and the weight α for four chosen months (Jan,

Apr, Jul, Oct). In general, the value of σ increases very slowly over the first 10

years. The value of α is close to 1 at short lead times and tends to decrease. This

decrease is far less smooth than in the examples presented in chapter 5. When α is

large, the ensembles contribute significantly to the forecast and can be considered

useful.
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Figure 6.14: Operational kernel dressing parameters: the kernel width σ (red line)
and the weight α (black line) for four chosen months as a function of lead time
in experiment 6.B. Although α with lead time tends to decrease there is a wide
variation in this parameter value over time. The value of σ is also rather volatile.

Next we analyse the effect of changing the parameters (α, σ) on the mean Ignorance.

One would expect α to decrease with time. In Fig.6.14 we see that this is not always
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the case. For example, if we look at α in October in year 24, we notice that it is

higher than in previous steps and it is equal to 1. In the Logistic Map α decays

with lead time, as shown in Fig.5.5. In the C-Z model in October, in year 24 α

= 1, σ = 0.082 and mean Ign = -0.59. The mean Ignorance as a function of α

and σ over the in-sample and out-of-sample sets are shown in Fig.6.15. In both

cases, the red dot shows the point at which the mean Ignorance is minimised. In

case (b), the mean Ignorance with slightly different parameter values as is expected

through sample variability. Results are shown in Table 6.8. The black line shows

the minimum Ignorance for every value of α.

in-sample set out-of-sample set

α 1.00 0.89

σ 0.082 0.12

Ign -0.59 -0.58

Table 6.8: Operational parameters and Ignorance in October in year 24 derived
from the in-sample and out-of-sample sets in experiment 6.B. As expected, minimum
Ignorance and blending parameters between sets are different. These results are the
coordinates of the red dot in Figure 6.15 (a) and (b).
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(a) in-sample

(b) out-of-sample

Figure 6.15: Ignorance by weight (α) and kernel width (σ) at year 24 in Oct. The
mean ignorance of the in-sample set (top) and out-of-sample set (bottom) at year
24 in October, as a function of α and σ. The red dot shows the point at which the
mean ignorance is minimised in each case. The black line shows the lowest value on
this surface. This demonstrates how the optimised parameters can be sensitive to
the sample used.
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Fig.6.16 is a contour plot of α vs. σ, for the in-sample set. The plot is shown to

demonstrate the relationship between the parameters. Labels on the contour lines

show values of the mean Ignorance. When α increases and σ decreases the mean

Ignorance tends to decrease. This shows that, as we move to bigger α the kernel is

slightly increased to compensate.

Figure 6.16: Contour plot of mean Ignorance with α and σ. The Mean Ignorance
tends to decrease when α increases and σ decreases. Here, we also notice that as
we move to bigger α, the optimal value of σ tends to increase. The red dot shows
combination of α and σ that minimises the mean Ignorance as shown in Fig.6.15.

In order to understand the operational parameters shown in Fig.6.14 better, we com-

pare the forecast distribution with the climatological distribution. Fig.6.17 shows
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the Relative Entropy (RE) between these distributions for the month of May for 64

years with equally probable (Fig.6.17 top) and equally spaced bins (Fig.6.17 bot-

tom). These approaches for calculating RE were introduced in the section 3.5. The

blue line represents the RE between in-sample set and climatology while the red

line shows the RE between out-of-sample set and climatology (see Fig.6.17).

Initially (as expected), the forecast is very different from the climatology and RE is

the largest. At this stage blending parameter α is high. After 40 years the RE is low

(in all 4 cases, consistent with sampling error); this means the target forecasts and

climatology are very similar. When α is high then the climatology and the forecast

tend to be different (see the equation 3.19). Fig.6.17shows that after around 40 years

the target forecast and the climatology are not enough similar, for the predictability

to set α to non-zero.

As expected, the RE of in-sample set vs. climatological distribution (blue line) is

different from the out-of-sample set vs. climatology (red line). We notice here, that

the RE is smaller in case (a) than (b) in the first years of the simulation, because

fluctuations are smaller. In case (b) when bins are equally spaced, the variation of

bins with fewer members is big, so the RE is large for those bins.
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Figure 6.17: Relative entropy between the forecast and the climatology for May as a
function of lead time for equally likely (top) and equally spaced (bottom) bins for the
in-sample (red) and out-of-sample (blue) sets. After around 40 years, the forecasts
and the climatology are very similar and thus the RE is close to zero and around the
sampling error (calculated in Tables 6.5 or 6.6). As expected, the RE is smaller in
case (a) than (b) in the first years of the simulation, because fluctuations are smaller.
In case (b) when bins are equally spaced, variation of bins with fewer members is big,
so the RE is big for those bins. RE of in-sample set vs. climatological distribution
(blue line) is not the same as out-of-sample set vs. climatology (red line), as both
sets are different.

In Fig.6.18 we compare score for in-sample and out-of-sample ensemble forecasts.

Markers represent consecutive years in May in all 64 years. All points stay close

to diagonal, which means the Ignorance scores calculated on the two different sets

are generalising well. This helps to check that in-sample and out-of-sample sets are

similar and the derived operational parameters are robust.
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Figure 6.18: In-sample vs. out-of-sample Empirical Ignorance. Markers show con-
secutive years of May and stay near diagonal. This means in-sample and out-of-
sample sets are similar and the derived operational parameters are robust.

6.3.4 Predictability measures applied to the Perfect Model

To show the decay of predictability we use data independent of those used to cal-

culate the parameters. To evaluate the forecast system we compute the Empirical

Ignorance, the Model Implied Ignorance and the Information Deficit over the out-

of-sample set.

Ignorance of the forecast

Figures shown in this section concern four different months: January, April, July and

October, each representing a different season of the year. The Empirical Ignorance
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as a function of year for the four chosen months is shown in Fig.6.19. In general, in

all cases the Empirical Ignorance approaches 0 after around 30 years whilst, before

then, the forecast outperforms the climatology.

The Empirical Ignorance of each individual forecast for October is illustrated in

Fig.6.20. For longer lead times, the Empirical Ignorance is around 0 on average.

Similarly, to the mathematical model case presented in Fig.5.8, some forecasts have

a positive ignorance score. This happens when the target forecast falls outside of

the range of the ensemble. This issue is illustrated in the top chart of Fig.6.21.

The bottom chart of this figure demonstrates a situation when the target forecast

falls outside of the range of climatology. This resulted in a very high climatological

ignorance, which for example made the Empirical Ignorance exceptionally low after

50 years (see yellowish line in Fig.6.20).
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Figure 6.19: Empirical Ignorance as a function of year for Jan, Apr, Jul and Oct in
experiment 6.B with 95% resampling intervals. As the lead time increases, the Em-
pirical Ignorance tends to zero and thus the information in the forecast tends to zero.
The pattern of the decay is similar to the one on a low-dimensional mathematical
model (see Fig.5.16).
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Figure 6.20: Empirical Ignorance for each individual forecast for the month of Oc-
tober in experiment 6.B. Each thin line shows the Ignorance of a different ensemble
forecast, whilst the thick black line shows the mean Ignorance over all forecasts.
Some forecasts have Ignorance greater than zero for long lead times. This is ex-
pected and explained in the top chart of Fig.6.21.
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Figure 6.21: Top panel: example of ensemble probability density (blue line) and the
outcome (red cross) for a case in which the outcome falls outside of the range of
the ensemble. The ensemble at the top, resulted in a positive Ignorance score (see
red line at year 25 in Fig.6.20). The bottom chart shows the outcome (blue cross)
which falls outside the range of climatology. This resulted in a large Climatological
Ignorance, which made the Empirical Ignorance very low (see yellowish line at year
52 in Fig.6.20.)

The Model Implied Ignorance is shown as a function of lead time for forecasts of

the four chosen months of the year in Fig.6.22. The Model Implied Ignorance for

individual forecasts for the month of October are shown as a function of lead time

in Fig.6.23. The Model Implied Ignorance does not increase in a regular manner

as in the low-dimensional mathematical model case demonstrated in the previous

chapter (see method E in Fig.5.10 or Fig.5.12). At longer lead times, the Model
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Implied Ignorance tends to zero since all of our forecasts tend to the climatology.

The value of the Model Implied Ignorance sometimes falls instead of increasing in

the consecutive years. For example, when the ensemble forecast falls into states of

climatology that are less likely to occur, Climatological Ignorance is large and this

will decrease the Model Implied Ignorance. Fig.6.24 demonstrates such an example.
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Figure 6.22: Model Implied Ignorance as a function of lead time for four months of
the year in experiment 6.B. The Model Implied Ignorance is negative for shorter lead
times but tends to zero as our forecasts approach the clmatology. This pattern is
similar to the example shown using the simple mathematical model in the previous
chapter (Fig.5.10, for example). In contrast to that example however the Model
Implied Ignorance does not grow monotonically, but jumps up and down. This issue
is explained in Fig.6.24.
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Figure 6.23: Model Implied Ignorance as a function of lead time for the month of
October, experiment 6.B. Each thin line shows the Model Implied Ignorance for
an individual forecast, whilst the thick line shows the mean over all forecasts. For
longer lead times the Model Implied Ignorance converges to zero. In contrast to a
simple mathematical model (see Fig.5.12), here the Model Implied Ignorance does
not increase monotonically. This issue is illustrated in Fig.6.24. The shape of the
teeth is also due to the fact that model has regular oscillations as shown in Fig.6.6.
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Figure 6.24: Climatology in November (blue bars) and Ensemble forecast A (purple
dots) in November at year 1 and at year 2. Ensemble forecast A falls into a range
of climatology which puts high probability (top) and low probability (bottom). The
ensemble at the bottom resulted in a drop of the Model Implied Ignorance by 6 bits
from year 1 to year 2.

Information Deficit

The Information Deficit is the difference between the Empirical Ignorance and the

Model Implied Ignorance. The second measure is expected to be better (has lower

values) than the first one. In such cases the Information Deficit is positive. When the

Empirical Ignorance and the Model Implied Ignorance are the same, the Information

Deficit is zero.

The Information Deficit for four different months is demonstrated in Fig.6.25. The
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Information Deficit is small for each month. It decreases with increasing lead time

and then oscillates around 0 at longer lead times. If we ran the simulation for

longer, the Information Deficit would converge to zero. The Information Deficit is

never significantly different from zero (95% resampling intervals include zero). This

pattern is similar to analogical results based on the simple mathematical model

presented in sections 5.2 and 5.3. In the case when the model and the system are

the same (green line in Fig.5.15), the Information Deficit is never negative.

Initially however, the results at the beginning of the simulation, showed that the

Information Deficit was significantly different from zero, which was not expected.

We looked at this issue in a greater detail. First, in order to assess the impact of the

climatological part on the Information Deficit, the Empirical Ignorance (equation

3.4) and the Model Implied Ignorance (equation 3.6) were computed without being

relative to climatology. In that case the Information Deficit became larger, but it

was still negative in a few cases and significantly different from zero. This suggests

that error in the climatology is not the main source of error in the prediction.

Next we considered another line of investigation. If a number Y is a random draw

from some underlying PDF, the value of the CDF at Y is a random draw from a

standard uniform distribution. With this in mind, we can perform a diagnostic test

for the forecasts and outcomes in the test set. This is done by plotting a histogram

of the value of the CDF of each forecast density at its outcome. If the forecasts are

perfect, this histogram should resemble a standard uniform distribution. In fact,

although the model is perfect, we do not generally expect the forecast to be perfect

since other imperfections such as the ensemble formation scheme will take effect.

Nonetheless, we do not expect much deviation of this histogram from a standard

uniform distribution since the underlying system density and the forecast density
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are expected to be, at least, similar. On looking at the histogram, we noticed that

it did not resemble a standard uniform distribution. This helped us to realise that

we always defined the outcome as the 65th model run. It thus became clear that the

model runs are not exchangeable (i.e. order is important). To fix this, we decided

to draw the outcome randomly from the model runs instead. The results are shown

in Figure 6.25. This demonstrates how the information deficit can flag up problems

either in the forecast methodology or the underlying code.
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Figure 6.25: Information Deficit in Jan, Apr, Jul and Oct. The Information Deficit is
non-negative, as the 95% resampling intervals include 0. In general, the Information
Deficit is small, it decreases with years and stays around 0 for longer lead times.
If we had data for another 64 years, we would expect that the Information Deficit
would converge to 0, as it does in the mathematical model case (see green line in
Fig.5.15).
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6.4 Predictablity and Forecasting given an Im-

perfect Model

Here, we consider the Imperfect Model Scenario, presented earlier in 6.2.2. While

we talk more about the Imperfect model case in the Appendix C, here we note that

it requires the use of a C-Z model with a 5-day time step as the model, and not a

10-day time step (as is used in the Perfect Model Scenario).

We repeat an experiment analogical to 6.B described in section 6.3, but here the

ensembles are iterated on the Imperfect Model (5-day model) and each outcome is

randomly drawn from the ensembles iterated on the 10-day model. We will refer to

this experiment as Experiment 6.E. Details of this experiment are given in Table

6.9.
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System C-Z model (integration time step 10 days)

Model C-Z model (integration time step 5 days)

nens 256

Noise level 0.01

m 64

Lead time unit a month

ts (model) 768 (64 years × 12 months)

ts (system) 768 (64 years × 12 months)

nicclim 8

TRANclim 1200 (100 years × 12 months)

ts (climatology) 22800 (1900 years × 12 months)

Number of climatologies 12 (for each month)

Size of climatology 15200 (1900 years × 8 IC)

Table 6.9: Experimental Design 6.E

Fig.6.26 presents the kernel optimal width σ and the weight α for four selected

months: Jan, Apr, Jul and Oct. Contrasting Fig.6.26 with Fig.6.14 from a per-

fect model, we see that α decays faster than in the perfect model case since less

information can be extracted from the ensembles.
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Figure 6.26: Operational parameters for the months of Jan, Apr, Jul and Oct as a
function of lead time for the imperfect model case in experiment 6.E. The red line
shows kernel width σ and the black line the weight α. Here α decays faster than in
the perfect model case (see Fig.6.14).

The graph illustrating the first two predictability measures as a function of year



6.4. Predictablity and Forecasting given an Imperfect Model 143

looks similar to the corresponding PM graphs: (Fig.6.19 and Fig.6.22); however, in

the Imperfect Model case the Ignorance decays faster and values at the initial stages

of the simulation are larger (between -4 and -3 bits for the Imperfect Model case vs.

between -9 and -7 bits for the Perfect Model).

Similar findings were stated in the previous chapter about the decay of predictability

in the low-dimensional mathematical model. In section 5.3, it was concluded that in

case when the model and the system are the same, it takes longer for the Empirical

Ignorance and the Model Implied Ignorance to converge to zero, than when there is

a difference between the model and the system. Also, as shown in that section in

Fig.5.16, both Empirical Ignorance and Model Implied Ignorance are larger in the

Perfect Model case.

Information Deficit as a function of year is illustrated in Fig.6.27. It is non-negative,

it is larger at the beginning of the simulation and stays around zero for longer lead

times. If the data for another 64 years were used in experiment 6.B, we would

expect that the Information Deficit would converge to zero. Here, the Information

Deficit is larger than in a Perfect Model case. This finding is similar to the low-

dimensional mathematical model example discussed in the previous chapter, namely

that the Information Deficit is larger when the imperfection is higher, as is shown

in Fig.5.15.
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Figure 6.27: Information Deficit for January, April, July and October, Imperfect
Model scenario. Here the Information Deficit is larger than in the Perfect Model
scenario shown in Fig.6.25, but similarly, it is non-negative, decreases with years and
oscillates around 0 for longer lead times. If we ran the simulation for longer, the
Information Deficit would converge to 0. Fig.5.15 demonstrates a similar pattern
on the Logistic Map, that the Information Deficit is larger for the Imperfect Model
case than for the Perfect Model case (for example, compare green line - from perfect
model scenario with black line - imperfect model scenario).
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6.5 Effect of not having a representative climatol-

ogy

While calculating the results shown in sections 6.3.4 and 6.4 we encountered some

issues, relating to outcomes and some ensemble forecasts being outside the range of

the climatology.

Fig.6.28 shows the minimum and the maximum observed value of NINO34 centered

in the climatological set along with the minimum/maximum outcome in the out-of-

sample set, and the minimum/maximum ensemble member over all ensembles in the

out-of-sample set in the perfect and imperfect model cases by month in all years of

the simulation. If the climatology was good, then all red stars would be above red

diamonds and all blue stars would be below blue diamonds. However, we observe

that the climatological range does not systematically cover the range of forecasts or

outcomes.

This issue, for example required additional assumptions to be made while calculating

Model Implied Ignorance. If the probability density was estimated on the ensemble,

we could jump into the situation when log2pc(x) = 0 because the climatology is

in a smaller range than the ensemble, which results in
∫∞
−∞ pm(x)log2(pc(x))dx =

−∞. Hence the probability density is evaluated at climatological range. To take

into account the ensemble members that are outside the range of the climatology

the ensemble forecast is divided by the normalisation constant.
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Figure 6.28: Minimum and Maximum value of NINO34 by month for climatological
set against (from the left): min/max of outcomes, min/max of ensemble forecasts
(from PM) and min/max of ensemble forecasts (from IM). If the climatology was
good, we would see in the graphs that red stars are above red diamonds and blue stars
are below blue diamonds. However, we observe a different pattern. Climatological
range is often not covering the range of outcomes or ensembles. This could result
in a large value of Climatological Ignorances and requires additional assumptions
while computing the Model Implied Ignorance. Transient states contribute to this
difference.
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6.6 Conclusions

In section 6.1 we defined El Niño, a phenomenon which has widespread impacts on

the world’s climate and thus important socio-economic impacts. El Niño influences

many areas of human life, hence improved climate predictions could avoid potential

losses and damage. This motivated us to study predictability in the context of the

Cane-Zebiak model, which is used to forecast El Niño events.

In section 6.2, we focused on the properties of the Cane-Zebiac model which incor-

porates the basic features of El Niño in the tropical Pacific. The output of the model

(NINO34 index trajectories) demonstrates non-linear behaviour and sensitivity to

its initial conditions. This suggests that Columbia University’s model for El Niño

is suitable for application of the non-linear analysis methods, which were developed

in the thesis.

In chapter 5, we demonstrated the decay of predictability using low-dimensional

mathematical systems. In this chapter, we applied non-linear analysis methods on

the much more complex Cane-Zebiak model. In section 6.3, we demonstrated the

decay of information in the context of the C-Z model. First we focused on the

Perfect Model Scenario (PMS). This is the first time the decay of predictability

has been studied in detail in the PMS of the C-Z model. Building the components

of the research was far more complex and running the simulation took far more

computational time than for the low-dimensional models used in chapter 5.

Section 6.3.2 focused on the climatology of the C-Z model. Given the seasonal nature

of the oceans and atmosphere, a different climatology was used for each month.

This differs from the low dimensional model used in chapter 5 in which there is no

seasonal component. We examined the method of defining the climatology proposed
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by scientists from Columbia University. Our results showed that a long time series

of transient states is required before non-transient states are reached and suitable

to be used to build the climatology. We found that the transient period of 100 years

suggested is reasonable.

In section 6.3.3, we studied the kernel dressing parameters used to build probability

forecasts from ensembles of the C-Z model. The blending parameter (the weight

given to the model-based forecast) was found not to decrease smoothly in time.

This was different to the results found for the low-dimensional mathematical models

presented in chapter 5, in which the blending parameter drops fairly consistently

with the lead time. The reason for this difference is likely due, at least partly, to a

higher sampling rate of lead times, which makes sampling error more prominent.

The Information Deficit proved again to be a useful diagnostic tool, uncovering some

problems in the forecasting methodology. This time, the issue was caused by the

sampling of the outcomes and ensembles from the model output.

In section 6.4, we considered the Imperfect Model scenario in which the model and

system were defined with slightly different integration time steps. Whilst, previously,

the C-Z model has been studied in scenarios in which parameter error is introduced,

this is the first time an experiment has been conducted in a case in which the model

is designed to have structural model error. There were challenges with obtaining the

imperfect model which are briefly explained in the chapter. As expected, we found

that the decay of predictability in the IMS is faster than in the PMS.



Chapter 7

Dynamical downscaling of climate

model projections: consequences

for predictability

In this chapter we report on an exploratory study of the North American Regional

Climate Change Assessment Program (NARCCAP), comparing climate variables on

a coarse grid from global climate models (GCM) with the same variables on a finer

grid obtained by dynamical downscaling using regional climate models (RCM).

The aim of this work is to consider how the dynamical characteristics of these large

physically-based simulation models influence the potential predictability of climate

variables. In previous chapters, we have looked at highly simplified low-dimensional

mathematical models to illustrate the principles and methods; here we consider a

model class which may have tens of thousands of variables and parameters. The

initial plan for this work, to apply the methods described in the rest of the thesis,

149
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was cut short by some unexpected results which have generated new insight into

the downscaling procedures and a joint paper is in preparation [108] (joint work is

noted below).

This chapter is structured as follows. Section 7.1 gives a short overview of the NAR-

CCAP and the aims of climate simulations downscaling, and explains the concept of

RCM. Section 7.3 describes the data in NARCCAP. The main results are presented

and discussed in sections 7.4. Section 7.6 summarises the conclusions.

7.1 Introduction: Aims of dynamical downscaling

of climate simulations

Global Climate Models (GCMs) are widely applied to understand climate change.

Their usefulness is, however, limited for officials and the public because they provide

the climate projections at the large scale - hundreds of kilometres.

Policy decisions related to climate impacts would benefit from smaller scale pro-

jections if such information was reliable. For example, it would be of great use to

know whether rainfall in an area is likely to increase or decrease in future; or the ex-

pected rate of sea level rise in low-lying areas. This information would be extremely

valuable in informing decisions about infrastructure development or suitable policy

responses to change, but incorrect information is worse than no information at all,

when it leads to misguided decisions with major negative impacts.

GCMs give a global picture of the direction of climate changes, but they typically

have 100-200 km resolution (at best), and thus can not take account of local ge-

ographical features such as mountain ranges, large lakes, local vegetation patterns

(forests, deserts) or the detail of a coastline, all of which have significant influence on
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local climate. RCMs are often portrayed as if they act like a physics-based magnify-

ing glass of their driving models for a certain geographical area. RCMs can provide

high-resolution simulations, are capable of describing climate feedback mechanisms

at the regional scale, and can resolve processes that GCMs are parametrising on

their coarser grid. This is a process known as dynamical downscaling, which takes

the information provided by the global model in the region of interest and uses this

as a boundary condition for a finer-resolution regional model on a denser grid which

has more detail of local topography and can resolve dynamical features at a smaller

scale.

The regional models are usually driven by a global model in a one-way fashion:

no information from the regional model feeds back into the evolution of the global

model which drives it. This observation will be key to the discussion which follows,

in which we consider some physically significant climate variables and demonstrate

that for the models studied here, the regional model diverges from the imposed

boundary conditions to such an extent that the one-way driving method is simply

unsupportable. If the RCM and GCM were coupled and run together, such that the

output of the RCM were to feed back up the scale into the GCM as well as taking

the GCM outputs, then we would expect to see significantly different outputs from

both.

7.2 The NARCCAP downscaling project

The North American Regional Climate Change Assessment Program (NAR-

CCAP) is an initiative of the National Centre for Atmospheric Research (NCAR)

in the USA. NARCCAP provides a multi-model high resolution climate simulations

over a domain covering most of North America for current (1971-2000) and future
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(2040-2070) periods.

The international project NARCCAP provides multi-model output for present and

future climate at the model spatial scale of 50 km2 over the entire North American

continent and constitutes the object of our study [70]. The fundamental scientific

motivation of NARCCAP is to explore the separate and combined uncertainties in

regional climate change simulations that result from the use of different atmosphere-

ocean general circulation models (AO-GCMs) to provide boundary conditions for

different regional climate models (RCMs) [69]. The aspiration of NARCCAP is to

contribute to the research on the value of high-resolution information for prepar-

ing for climate change. The program has additional aims: to explore some of the

remaining uncertainties in regional climate modelling (e.g., importance of compati-

bility of physics in nesting and nested models); to generate climate change scenarios

for use in impacts research and to create a greater collaboration between the US,

Canadian and European climate modelling groups.

Phase I of the NARCCAP project provides information from RCMs run using

boundary conditions from the NCEP-NCAR reanalysis for a present-day climate

period 1979-2004. Reanalysis is a scientific method, which combines observations

and models to produce more detailed information about the recent climate than is

available from observations alone. Essentially, reanalysis is a process of generating

a climate model run which is consistent with all of the available observations, and is

a way of filling in the gaps between the observed points and of generating a gridded

data set suitable for use as an RCM boundary condition. More information about

the process of reanalysis, and about this reanalysis in particular, can be found online

[8] and in the literature [59].

Phase II provides information from RCMs run using boundary conditions from
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global climate models (from the CMIP3 1) for a present-day climate period 1971-

2000 (20th century simulations) as well as from a future time period 2041-2070

based on the SRES A2 emissions scenario for the 21st century. The A2 scenario,

which is at the higher end of the SRES emissions of carbon dioxide (CO2) and other

greenhouse gases scenarios, was chosen, as from an impacts and adaptation point

of view, it gives more information about the pattern of climatic changes than a low

emission scenario would. It results in a doubling of atmospheric CO2 concentrations

(as above, identified with a radiative forcing of approximately 3.7W/m2) well before

the end of the 21st century [75].

More information about the NARCCAP’s experiments can be found on its website

[6]. There is a comprehensive description of the program and its experiments, as

well as links to download data and some processed output.

7.3 NARCCAP data and definitions of study re-

gions

7.3.1 RCM/GCM pairs used

This research contrasts regional climate variables from a regional climate model

with projections for the same region made by the global model driving it. The

NARCCAP database is used as a source of our research [6]. Analyses of long term

and short term averages of atmospheric variables, such as radiation upwards (rlus),

and surface air temperature (tas), are from five of RCM/GCM pairs. These are:

a) Experimental Climate Prediction Center Regional Spectral Model forced by

1CMIP3 - Phase 3 of the Coupled Model Intercomparison Project [2]
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the Geophysical Fluid Dynamics Laboratory GCM (ECP2-gfdl),

b) Canadian Regional Climate Model forced by the Community Climate System

Model (CRCM-ccsm),

c) Canadian Regional Climate Model forced by the Third Generation Coupled

Global Climate Model (CRCM-cgcm3),

d) MM5 - PSU/NCAR mesoscale model forced by the Community Climate Sys-

tem Model (MM5I-ccsm),

e) Weather Research Forecasting model forced by the Third Generation Coupled

Global Climate Model (WRFG-cgcm3).

Detailed characteristics of the RCMs are summarised on the NARCCAP website

[6]. Two of them (RSM and CRCM) use spectral nudging, which provides infor-

mation from the nesting model not only at the boundaries and initial conditions,

but throughout the domain thus allows to constrain a regional model to be more

consistent with GCM behaviour. The GCM data come from CMIP3 [2].

All model outputs are saved in NetCDF files, which is a data format used for stor-

ing array-oriented scientific data. R has been used to process this data. For this

study, averages and totals have been derived from the archived 3-hourly data. A

typical NARCCAP output of 5 years for just one variable and only one RCM/GCM

combination, contains around 1 GB of raw data to process. For example, for the

calculations described in section 7.4.1, 10 GB of data was required.
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7.3.2 Definition of study areas

Analysis includes all 0.5 degree grid cells which fall within three areas: USA area,

North-West and South-East of the USA. Our region of study, which we refer to as

the USA area, encompasses the special domain from 123 ◦W to 70 ◦W and 26 ◦N to

52 ◦N. The United States, due to its size and range of geographic characteristics,

contains many climate zones and thus we also focused on smaller, homogeneous

regions. The area defined as North-West (NW) is the area ranging from 37 ◦N to

47 ◦N and from 120 ◦W to 110 ◦W. It experiences a wide variety of local climates:

Oceanic climate in most coastal areas, Alpine climate in high mountains, and Semi-

arid climate east of the high mountain ranges. The South-East (SE), which has a

warm to hot, humid, subtropical climate, is defined here as the area between 30 ◦N

to 37 ◦N and from 95 ◦W to 80 ◦W. Fig.7.1 shows the study regions.
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Figure 7.1: Maps showing the study areas as a grid on RCM. In this research we
refer to them as (from the top) USA area, South-East and North-West of the USA.
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7.4 Comparison of GCM and RCM output for the

same areas

This section focuses on investigating the consistency of regional climate projections

with the global conditions that stimulated them. To evaluate the significance of the

adjustments generated by RCM downscaling, we consider the difference in radiation

upward between regional model projections and the corresponding (forcing) global

model projections and compare it with the radiative forcing of approximately 3.7

W/m2 associated with doubled CO2 (as stated in Box 12.2 of the most recent IPCC

report [25] and in TFE.4 of the Technical Summary [106]).

Although local changes greater than this amount are to be expected due to local

topography, if the regional or continental average adjustments exceed this magnitude

then we would expect significant errors in ongoing forcing conditions due to the

neglected feedback effects.

We then consider comparison of precipitation. Again, we expect that the RCM

should provide local detail but not to make regional or continental scale average

adjustments greater than a small fraction of the total. Otherwise, this would suggest

that the large-scale transport and storage of moisture is significantly different.

7.4.1 Comparison of long-term (10-year) upward radiation

averages

First, long-term averages (over 1991-2000) of radiation upward are contrasted. Anal-

ysis for 10-year averages are carried out for five GCM-driven RCM simulations over

the same area of North America (USA area). Results are shown in Fig.7.2.
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Figure 7.2: Maps illustrate difference in long-term averages (over 1991-2000) of sur-
face radiation upward (variable ‘rlus’) between RCM output and its driving data by
the grid point. The results concern the following NARCCAP RCM-GCM pairings:
a) ECP2-gfdl, b) CRCM-ccsm, c) CRCM-cgcm3, d) MM5I-ccsm, e) WRFG-cgcm3.
The average difference for the USA area is: -8 W/m2; -3 W/m2; -4 W/m2; -16 W/m2

and -14 W/m2 respectively.
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We note the following observations:

1. The difference between regional and global model types, is positive for pairs

a), b) and d) over the area of lakes on in the North East of the USA. This is

expected and indicates that RCMs can be useful tools for capturing physical

features of the territory which are not currently resolved by GCMs.

2. In general, all RCMs have lower radiation compared to GCMs (this is expressed

by blue coloristics on each map). The average difference in long-term averages

of surface radiation upward between RCM and its parent GCM on the RCM

grid for the USA area are: a) -8 W/m2; b) -3 W/m2; c) -4 W/m2; d) -16

W/m2 and e) -14 W/m2. For comparison, as above, the net radiative forcing

due to a doubling of CO2 is 3.7 W/m2. This is a worrying observation because

it shows that the net energy balance within the region is very different in the

RCM from the GCM. A small difference (<0.01 W/m2) might be acceptable

but such a large difference is likely to violate conservation of energy principles

and would certainly cause changes in the GCM output if run in a coupled

mode.

3. For the pairs that have been examined, those with the spectral nudging feature

(cases b) and c)) show a lower difference in long-term averages of surface

radiation upward than other GCM/RCM pairs. This does make sense, because

the spectral nudging is effectively inserting the GCM data into the middle of

the RCM domain, not just at the edges, so it is plausible that this would

constrain it to be more like the GCM throughout. The averages are, however,

still unacceptably divergent even with this additional constraint.

4. The area of research contains many climate zones and, as expected, results
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vary by region. For example, for model combinations a), d) and e), RCM

averages differ from those of the parent GCMs over the area of Texas even by

as much as 30-40 W/m2. These large differences would not be unacceptable if

they were balanced out by opposite differences elsewhere in the study region,

but this is not observed. The RCM is not simply adding detail to an otherwise

equivalent regional average generated by the GCM; it is producing a climate

which is physically very different.
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7.4.2 Comparison of short-term (monthly) upward radia-

tion averages

For each region (USA area, NW, SE), for a single RCM/GCM pair (ECP2-gfdl),

monthly averages are computed for Jan, Apr, Jul, Oct in the 33-year time series. Fig

7.3 shows RCM value (x axis) against RCM/GCM ratio (y axis). This particular

pair has been chosen, because it does not use spectral nudging and is therefore more

representative of the dynamics of the RCM itself.

Looking at monthly averages, the same pattern is observed of systematically lower

radiation in the RCM than the parent GCM, since the majority of points lie below

the line of equality. As expected, given the heterogeneous climate of the area,

diagrams at region level (NW, SE) show bigger variation of results than output at

country level. The biggest discrepancies between models are during the summer

months, when the surface radiation is the highest. Plotting the full July time series

for each year (see Fig 7.4) shows that the downscaled RCM adjustments to the

GCM values are around 50-60 W/m2 in SE, an order of magnitude greater than

the effect of doubling global atmospheric CO2 concentrations. This difference is

fairly consistent over time, because the input GCM boundary conditions do not

take into account the feedback of the RCM. If run in coupled mode, over time the

RCM and GCM outputs might be expected to converge to a new equilibrium taking

into account both sets of dynamical processes (unless they were so different that it

caused unphysical errors, a runaway loss/accumulation of heat in certain grid cells,

or the termination of the model run).
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Figure 7.3: Each point in this diagram represents a single monthly average, is
coloured by the interval of simulation it falls into (beginning: 1968-1980 -black,
middle: 1981-1990 -blue, end: 1991-2000 -red), and its shape depends on the month
name. X axis shows RCM surface radiation upward value, Y axis shows RCM/GCM
ratio. Charts concern the following regions: US area, North West, South East. Data
Source: ECP2-gfdl, NARCCAP. Most points lie below the line of equality because
radiation in the RCM is generally lower than in its parent GCM. Results at regional
level are, as expected, more varied than at country level, but even over the whole
US area, there is a 2-5 % discrepancy in January, April and July on absolute val-
ues which are greater than 400 W/m2, so an absolute discrepancy of over 8 W/m2.
Summer months show the biggest difference in the radiation. For July time series
see Fig.7.4.
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Figure 7.4: July averages of surface radiation upward over 1968-2000 by region and
model type. Data Source: ECP2-gfdl, NARCCAP. Note the difference of 50-60
W/m2 between GCM and RCM in SE. At the country level radiation is on average
10 W/m2 lower in the RCM than the parent GCM.
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7.4.3 Comparison of short- and medium-term average pre-

cipitation (joint work with Dr Erica Thompson, LSE)

Note: the work described in this section has been undertaken jointly with Dr Erica

Thompson who produced Figure 7.5. We are working on a joint paper which will

discuss results shown in this chapter [108].

The surface radiation variable gives us an idea of the energy balance in each model,

which will have direct implications for the surface climate. We now consider an-

other variable, precipitation, which is also linked to a physical conservation law

(conservation of mass of water) and has strong implications for surface climate and

climate impacts. The difference between RCM and GCM output is shown for a

single month and a 5-year average in Figure 7.5 (top and middle). The lower panel

shows a monthly average precipitation over the whole study area for RCM and

GCM, which demonstrates that the RCM generates up to 20% more precipitation

than the GCM. This is an indication that the large-scale transport and storage of

moisture is significantly different. This in turn would influence the hydrological

cycle, local radiative forcing due to water vapour in the air, the growth patterns

of vegetation, and the flow of rivers and groundwater. Conservation of water mass

must be respected (to some extent), so if significantly more water is precipitating

out in a region according to the RCM, then it is either unphysically regenerated

downstream by the GCM, or is not available as water in the next grid box. In

any case, there is a large and physically important difference here which should be

resolved before either model’s output is employed quantitatively in science informed

decision-making about climate impacts.
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Figure 7.5: Difference between RCM and GCM for precipitation over the NARCCAP
study area, for a single month (January 1991), averaged over 5 years (1991-5), and
monthly averages over the whole study area. This figure was generated by Dr Erica
Thompson of LSE and is gratefully used with her permission [108].
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7.5 Does RCM improve GCM output towards the

real-world?

Comparison of annual temperature averages at single locations with ob-

served data

The additional computational effort of RCM simulation is usually justified on the

basis that it will give a more realistic output, which we take to mean that it will

be closer to observed data. Thus the next step is to compare regional model output

and its driving data with available observations, in this case for temperature.

The charts below (see Fig 7.6) illustrate annual temperature over the decade of

1991-2000 for four different locations in the USA. The data concerns one RCM-

GCM pairing (ECP2-gfdl) from NARCCAP and observed temperature data from

NOAA [7].

The centres of the RCM or GCM grids in most cases do not cover the coordinates

of the studied location. To find the best match, the nearest point on the grid of

the model from longitude and latitude of the place of interest is pinpointed. Fig.7.7

illustrates the studied location on the map (black rectangle) and the corresponding

grid centres on the RCM (yellow circle) and GCM (dark green triangle).
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Figure 7.6: Charts illustrate annual averages between 1991-2000 of surface temper-
ature by location. Black line relates to observations, yellow - GCM driven RCM,
green- GCM. Locations are: Austin in Texas, Boulder in Colorado, Jacksonville in
Florida and New York. Model: ECP2-gfdl, NARCCAP; Observations: NOAA [7].
For all locations, observed temperature was consistently higher than temperature
in the models. In addition, the difference in temperature between observations and
RCM was bigger than between observations and GCM boundry conditions. Criteria
for matching an observation point with the RCM, and GCM grids is explained in
Fig.7.7.
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Figure 7.7: Matching an observation point with RCM, and GCM grids. Here, Austin
Camp Mabry Texas, US (black rectangle) and the corresponding grid centres on the
RCM (yellow circle) and GCM (dark green triangle). RCM grid is illustrated by
grey circles, GCM grid by blue triangles. Note that the centre of RCM or GCM grid
do not cover the coordinates of the studied location. The best match is the nearest
point on the grid of the model from longitude and latitude of the place of interest.

For all locations considered, the observed temperature was higher than temperature

in the regional and its driving global models. In fact, for the four locations shown,

the RCM data are actually further from observations than were GCM boundary

conditions.
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7.6 Conclusions

There is a significant divergence between RCM and GCM estimates of both surface

radiation and precipitation. The RCM and GCM data deviate to such an extent

that the physical relevance of the forcing assumption must be questioned.

An average radiative discrepancy over the whole US above the level of 3.7 W/m2 is

thought to result in significant climatic changes since it is equivalent to the forcing

from a doubling of CO2, a relatively high climate change scenario. It is, there-

fore, likely to result in significant feedbacks if the RCM and GCM were coupled

rather than using the GCM only as a boundary condition. Similarly, a precipitation

discrepancy of up to 20% would, over time, result in a very different pattern of

vegetation, river flow, agricultural capabilities, etc.

The physical interpretation of output from either model should be approached with

caution, given the large sensitivity of the average output to the use of an alternative

model. Of course, this applies also at the smaller scale, where the RCM has better

representation of topography, but is still subject to an uncertainty in average condi-

tions similar to the range between the GCM and RCM values, which is many times

larger than the range generated by doubling CO2.

Comparison of another atmospheric variable - temperature, between real observa-

tions and regional and its driving global models has raised similar concerns to the

model-only consideration of radiation and precipitation. It has been shown that

RCM data are actually further from observations than were GCM boundary con-

ditions, further undermining the original justification for the downscaling exercise

and the associated computational expense.
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The original aim of this chapter was to find a time scale on which there is a consis-

tency between regional and global models. Our idea was to look at the lead time at

which regional and global models were no longer consistent and examine that period

to give an indication of the timescale for which we have reliable predictability. We

would then use some of the methods developed in the previous chapters of this thesis.

Unfortunately, as described above, the results of initial analysis precluded further

study, demonstrating that the surface energy emission between the two model types

is inconsistent on very short time scales (in month one).

If that period of consistency was 10 years, we would next have planned to investigate

an ensemble interpretation scheme compared with observations and used on the

future runs. We would have think about how to do the interpretation of the past,

where we actually have data, in order to interpret the ensemble and extract the

available information from it.

Under climate change scenarios, we depend on physical insight; we do not want

to find statistical ways of using the past and future unless they also have internal

physical consistency. Our study of NARCCAP shows we do not have this consis-

tency. The results of this chapter imply that the information we are looking for is

not to be found in this set of models. We have gained important information and

insight about the use of RCMs to downscale climate information from GCMs and

have shown that in the case of NARCCAP, the models are not yet good enough to

show any useful predictability horizon. More recent examples of downscaling are

available and the joint work with Dr Thompson will be continued, to assess whether

these examples show better consistency. In this case it will be possible to use other

methods developed in the chapters of this thesis.

The wider aim of this research was to assess the quality and reliability of climate



7.6. Conclusions 171

simulations and the effectiveness of various downscaling methods, in order to better

understand the relationship between climate model output, downscaled output, and

the climate system itself. We hoped that improving our understanding of these

relationships would (i) allow a more informed measure of the fidelity of climate

model simulations, (ii) assist in the development of more accurate models, and (iii)

aid scientific support for decision-making and policy. We now believe that there

are significant physical constraints on the consistency of the climate simulation and

downscaling methods employed by the NARCCAP project. We conclude that these

simulations, in their present form, can tell very little about future US climate and

are not a reliable source of information for policy decisions. More recent progress

in downscaling methods may address or resolve these consistency issues and this

will be investigated as ongoing future work. The results described above are to be

published as part of a joint paper [108].



Chapter 8

Conclusions

In this chapter, we review the main conclusions of the thesis and suggest further

work for this research.

The central theme of this thesis is quantifying predictability of nonlinear systems

through probabilistic forecasting. We use a measure of forecast skill called Ignorance

to access the performance of a variety of different models. Two distinct sources

that limit predictability of nonlinear systems, that is structural model error and

uncertainty in the initial condition, are identified and considered as separate issues

throughout the thesis. Theoretical concepts developed in my research were applied

both to a large scale model designed to forecast El Niño and to smaller scale low-

dimensional mathematical models such as the Henon Map, the Ikeda Map, the

Logistic Map and the Quartic Map.

Some of the most important novel results in this thesis are listed below:

1. Distinguishing model inadequacy and sensitivity to initial condition uncer-
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tainty in nonlinear systems. This was argued to be capable of leading to more

effective resource allocation in dealing with these two limits of predictability.

2. Demonstration of varying predictability of a chaotic system according to the

location on the attractor at the launch time. Identifying when a skillful forecast

can be expected a priori.

3. Recognition of shortcomings in the existing forecasting literature on quantify-

ing predictability. Proposal and demonstration of a new improved mathemat-

ically consistent approach.

4. Exploration of an existing measure called the Information Deficit and demon-

stration that it can be used as a diagnostic tool to identify potential improve-

ments to a forecasting system.

5. Studying the decay of predictability of a real-world operational model (Cane-

Zebiak model [21]) in both the perfect and imperfect model scenarios.

6. Showing that Regional Climate Models (RCM) are inconsistent with Global

Conditions that simulated them in NARCCAP [6] and thus that the output

from RCMs should be treated with a high degree of caution in decision making.

The following are some further directions of work that arise as a result of the research,

which could be pursued in the future:

1. Explore alternative methods to demonstrate differences between two attractors

such as minimum spanning trees (MST) [94] and shadowing times [40].

2. Apply the Information Deficit to forecasts of real world observations to quan-

tify the extent to which the skill of the forecast compares to that expected if
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the result were to be drawn from the forecast distribution. Aim to establish

guidance so that this could become common good practice.

3. Assess the performance of the C-Z model with real-world observations. Develop

a methodology to improve model based forecasts and better interpretation of

forecasts for decision support.

4. Develop a consistency test to identify the time scale on which there is consis-

tency between regional and global models to improve experimental designs for

potential future downscaling experiments.



Nomenclature

α blending parameter

S state space

σ bandwidth of a kernel

F̃ system dynamics

x̃ system state

ε distance between two points

d euclidean distance

F model dynamics

IC Initial Condition

IGN Empirical Ignorance

IGNClimD Climatological Ignorance method D

IGNClimE Climatological Ignorance method E

IGNMI Model Implied Ignorance
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InfDef Information Deficit

K kernel function

m number of ensemble members

n number of forecasts

nens number of ensembles

nicclim number of initial conditions climatology

nic number of initial conditions

nsets number of sets

p(.) forecast density

pc density of the climatological distribution

pm model density

q system density

RE relative entropy

S scoring rule

Sd standard deviation

TRAN duration of transient

ts time steps

Y forecast outcome

x model state



Appendix A

System-Model pairs used in

Chapter 4

A.1 Henon Map

The Henon Map [49] is a discrete-time dynamical system, originally introduced as a

simplified model of the Lorenz 63 system. The map takes a point xi, yi in the plane

and maps it to a new point as described in equations A.1 and A.2.

xi+1 = yi + 1− ax2i (A.1)

yi+1 = bxi (A.2)

The map depends on two parameters: a and b, which have the classical values a =

1.4 and b = 0.3. For these values, the Henon Map show chaotic behaviour. The
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attractor of the Henon Map is shown in Fig.A.1 (a).

A.2 Senon Map

The Senon Map is a modified version of the Henon Map, which includes a sea-

sonal cycle described by equations A.3 - A.5 in ‘What might we learn from climate

forecasts’ by L.A. Smith [93]. It is a simple non-linear two-dimensional chaotic map.

x̃i+1 = 1− a

(
c sin

(
x̃i
c

)2
)

+ ỹi + eṽi (A.3)

ỹi+1 = bic sin

(
x̃i
c

)
(A.4)

bi = b̄

(
1 + dcos

(
2πi

12

))
(A.5)

where a, c, d and e are parameters and ṽ is a random draw from a standard normal

distribution.

We consider a purely deterministic system by setting e=0 and set the other pa-

rameter values to a=1.4, b=0.3, c=10, and d=0. Note since we set d=0 there is

no seasonal factor in equation A.5. The attractor of the Senon Map with these

parameter values is shown in Fig.A.1 (b).
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(a) Henon Map (b) Senon Map

Figure A.1: Attractor of (a) classical Henon Map and (b) Senon Map [93] with
parameters as described above. These attractors look very similar, but yield different
results as described in experiment 4.A. on distinguishing model inadequacy and
chaos.

A.3 Ikeda Map

The Ikeda Map is a discrete-time dynamical system, originally introduced by Ikeda

[53] as a model of laser pulses in an optical cavity. It is described by the equations:

xi+1 = γ + u(xi cosφ− yi sinφ) (A.6)

yi+1 = u(xi sinφ+ yi cosφ) (A.7)

where φ = β − α/(1 + x2i + y2i ). For parameters α = 6, β = 0.4, γ = 1 and u = 0.83

the Ikeda Map is believed to be chaotic. Fig.A.2(a) shows the attractor of the Ikeda

Map with these parameter values.
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A.4 Truncated Ikeda Map

The truncated Ikeda Map can be used to obtain an imperfect model of the Ikeda

Map. It was defined by Judd and Smith [96] and it is formed by replacing trigono-

metric functions of Ikeda Map equations with truncated power series. In this thesis

the following truncations are used in experiment 4.B

cosφ = cos(ω + π)→ −ω + ω3/6− ω5/120 (A.8)

sinφ = sin(ω + π)→ −1 + ω2/2− ω4/24 (A.9)

The attractor of the Truncated Ikeda Map is shown in Fig.A.2 (bottom).
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Figure A.2: Attractor of Ikeda Map (top chart) and Truncated Ikeda Map (bottom
chart) with parameters as described above.



Appendix B

Climatology of the Quartic Map

Different ways of deriving climatology were considered in chapter 5.

1. Sample Climatology

In the experiments 5.D and 5.E climatology was derived as 2048 U(0,1) Initial

Conditions iterate them for 128 steps as a transient (using system equation 5.2

with different options of µ), continue for 2048 steps recording the distribution

of locations of x. This yields 222 number of points evolved on the system.

The probability density for each bin of size of truncation between 0 and 1 is

calculated. An example of the sample climatology for µ=0 and µ=0.5 is shown

in Fig.B.1.
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Figure B.1: Sample climatology when µ=0 and µ=0.5. There is a noticeable differ-
ence between probability density for both climatologies at the edges of x.

The system with r=4 and µ=0 is equivalent to the Logistic Map with r=4. In

this case if an initial state is in (0,1), the attractor is also the interval (0,1) and

the probability measure corresponds to the beta distribution with parameters

a=0.5 and b=0.5 [11]. This is an analytical form of what happens when the

distribution of points is evolved forward.

Fig.B.2 is a comparison of the analytical method and the sample climatology

when α is 0. The probability density looks similar in both cases, which justifies

the use of the sample climatology in experiment 5.D, instead of beta function

with a=0.5 and b=0.5 for the system with µ=0.
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This also demonstrates that when the climatology is calculated empirically it

does not represent true distribution of past states (’true climatology’). This

means that when using climatology as benchmark the forecast skill can be

overestimated. However, given that our ensemble size is large, this is unlikely

to make much difference to the results.

Figure B.2: Sample climatology when µ=0 vs. beta distribution with a=0.5 and
b=0.5. Colour of crosses show different runs of the sample climatology. The differ-
ence between runs is hard to distinguish. Stars show probability density by beta
function for x=0.01:0.01:0.99. Sample climatology is in line with beta function (red
curve). As expected, crosses which show probability density at the edges of each
bin, are on the beta function curve, in the middle between red stars.

2. Climatology derived by evolving initial conditions on the system for a long

time
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Another way to derive climatology is: derive 32 U(0,1) Initial Conditions,

iterate them for 128 steps (using system equation 5.2) to ensure the states

are not transient, then continue for 1024 steps recording the distribution of

locations of x. This yields 215 number of points evolved on the system. Then we

could estimate the probability density of the climatology using kernel density

estimation as shown in Fig.B.3.

We found that the sample climatology is better for further computations.

For example, to derive fitting parameters for kernel dressing using sample

climatology takes half as much time, than using climatology derived on the

system as described above.
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Figure B.3: Probability density estimate of climatology derived by evolving set of
points for a long time on the system. This was estimated using kernel density
estimation.



Appendix C

Details of Imperfect Model of C-Z

model

To obtain an Imperfect Model, the C-Z model is run with an integration time step of

5 days instead of the default 10 days. Scientists from Columbia University, who work

on this model did not recommend changing the default setting, as potentially some

parts of the code are hard-coded under the assumption that the integration time step

is 10 days. We ran a 7-day and 20-day model, but the output showed unreasonable

results, such as only zero values in the output of the simulation or extremely high

values of the NINO34 index time series. It was also suggested that an alternative way

of obtaining an Imperfect Model is to modify one of the parameters in the model, for

example the parameter affecting surface heat flux (a linear damping on sea surface

temperature anomaly). This, however, would not be an Imperfect Model, since the

model structure would remain unchanged. This would, in fact, be parameter error.
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C.1 Comparison with the 10-day model

We have already contrasted how the 10-day model and the 5-day model evolve in

Fig.6.7. Fig.C.1 illustrates an example of ensemble forecasts for 10-day and 5-day

models. For the 10-day model (top chart), the ensemble members start to spread

quicker than for the 5-day model (bottom chart). Also, the range of NINO34 values

is narrower in the bottom chart than in the top chart.

Figure C.1: Example of an ensemble forecast as a function of time for the 10-day
model (top chart) and the 5-day model (bottom chart), experiment 6.E. Ensembles
spread around different values of NINO34 index at different paces - quicker for the
10-day model and at different ranges - wider for the 10-day model.
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C.2 Additional analysis for section 6.4.

In the IMS the Empirical Ignorance was occasionally found to be positive. For

example, in years 2, 4-7, 13, 14, 18 or 19 the ensemble is far from the outcome (see

Fig.C.2) which makes the Ignorance positive.

Figure C.2: An ensemble forecast shown as a function of time in the Imperfect Model
scenario over 64 years in May along with outcome for each year. Each line shows
a member of the ensemble while a black star illustrates the outcome in each year.
In some years, the ensemble is far from the outcome, which results in the Empirical
Ignorance being positive.
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