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Abstract
In the presence of noise and imperfect understanding of a forecasted system,

models are destined to be wrong. Given a core forecasting model Φ, [2] suggest
correcting for the systematic error in the core model by applying a second model
Ψ which aims to minimize the root mean square error of the ΨΦ forecast. In
this poster, we revisit their approach and consider both the aim and the means
of this suggestion. First we suggest a new approach that iteratively corrects the
core model Φ. We call this approach the Predictor-Corrector (PC). Then we
follow by a discussion of whether or not RMS error represents effective means
of evaluation in nonlinear forecasting. We conclude that it does not.

1 Additive vs. Iterative Corrector

When attempting to correct for a systematic model error of a core
model Φ, [2] suggest to construct a separate model Ψ, which estimates
the in-sample systematic error at each lead time. In the forecasting
mode, the Ψ model is used to provide a forecast of the out-of-sample
error. The error forecast is then added to the forecast produced by
the core model Φ, yielding a corrected forecast ΨΦ. The basic idea
is illustrated in the left panel of Fig: 1. The core model Φ forecast
(green) is corrected by in-sample error estimate (red arrows) to obtain
the corrected ΨΦ forecast (blue). The Ψ model can be constructed in a
number of ways. In this poster we choose two different Ψ models used
in [2]. The first is based on the linear model while the second makes
use of Radial Basis Functions.

An alternative to ΨΦ approach is to use a separate model to estimate
the in-sample systematic error of 1-step ahead forecast only, and then
keep correcting forecasts produced by the core model Φ at each step.
We illustrate the idea in the right panel of Fig: 1. Consider, an initial
observation being input into the core model Φ to generate leadtime 1
forecast (green line on the (0, 8) interval). Using a forecast of a 1-step
ahead systematic error (red arrow at x = 8), produced by a sepparate
model, we correct the 1-step ahead forecast. As a result we obtain a
leadtime 1 PC forecast (blue). The leadtime 1 PC forecast is then
directly input into the core model to produce leadtime 2 forecast.
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Figure 1: Contrasting ΨΦ and PC approaches: Left top panel shows a
schematic of the ΨΦ approach. An iterative forecast of the core model Φ (green
arrows) is initialized at a current observation (red dot) and produces forecasts for
all leadtimes. In the next step the Ψ model produces forecasts of the systematic
error (red arrows) for each leadtime based on the output of the Φ model. The
error estimates are then added to the Φ forecast to obtain final ΨΦ forecast
(blue vertical line). Top right panel shows the PC approach, where one-step
ahead forecast (1st green arrow) of the core model is immediately corrected to
obtain final PC forecast at the leadtime 1. The leadtime 1 forecast is then input
into the core model producing leadtime 2 forecast (2nd green arrow), which
is immediately corrected yielding PC forecast at leadtime 2. This process is
repeated for required number of leadtimes. The bottom panels demonstrate the
two approaches on real data, where they forecast 40 hours of the Lorenz 84
system. The pale red line represents the verifications.

2 Forecast evaluation

The value of a forecast can be quantified by comparing it with a ref-
erence forecast. In this poster, skill is reported using the log p score
called ignorance Ignorance (IGN) [5], which is the only proper, lo-
cal skill score [1] for continuous distributions. Ignorance is defined as

I = 1
T

∑T
t=1 −log2(p(yt)), where p(yt) is a probability assigned by

the model to the verification. The mean is taken over an archive of
past forecast-verification pairs recorded at time t = 1, . . . , T . Rel-

ative ignorance determines skill relative to some reference forecast,
IR = Iforecast − Ireference, by convention the lower the value of IGN
the better the forecast. Using log with base 2 expresses ignorance in
bits: if the relative ignorance is −1 then on average the forecasting
model places twice (21) as much probability on the verification as the
reference. Likewise, IR = −2 means that the reference forecast puts 22,
or 4 times more, while IR = 0.5 would mean sqrt(2) ∼ 1.4, or about
40% more.

3 Forecasting Lorenz 84/63

We have applied both the PC and the ΨΦ approaches to several systems.
In this poster we present forecasting results for the x-variable of Lorenz
84 system [4] and the Lorenz 63 system [3]. The Lorenz 84 system is
sampled at 8 hours of the system time with the noise level set to 0.5%
of the range of a given variable. Lorenz 63 system is sampled at 0.032
seconds and is also obscured with the noise level of 0.5% of the range.

In both cases we have used training, evaluation and testing sets of equal
size. The testing sets consist of 1200 segments of significant length:
100 days (300 leadtimes) in the case of Lorenz 84 and 10 seconds (also
300 leadtimes) in the Lorenz 63 case.

We first focus on the Lorenz 84 system and use 5 different models to
forecast the evolution of the x variable. The models are: Perfect model
(PMS), core model (Φ), predictor-corrector (PC), ΨΦ model based on
linear model (ΨΦ LSQ) and ΨΦ model based on radial basis functions
(ΨΦ RBF). Note, that the PMS is used namely for benchmarking pur-
poses.
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Figure 2: Lorenz 84 forecasts: From top to bottom, PMS, non-corrected
core model Φ, PC, ΨΦ RBF and ΨΦ LSQ forecasts of a selected 100 hour
long segment of the Lorenz 84 system. The PC outperforms all the other 4
(imperfect) models. The ΨΦ LSQ quickly resorts to forecasting the mean of x,
the non-corrected Φ model looses skill after 20 hours. The ΨΦ RBF marginally
improves the particular forecast.

In Fig: 2 we present results for a selected forecast for illustration. In this
particular case we see that the non-corrected core model looses forecast-
ing skill after about 15 hours. The PC method improves the forecast
massively as several ensemble members stay close to the verification (red
line) for all 100 hours. The ΨΦ RBF also positively improves the core
model’s forecast but not as significantly as PC. The ΨΦ LSQ correction
have negligible impact, the forecasts quickly converge to the mean.
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Figure 3: Lorenz 63 Forecasts: Same models as in Fig: used to generate
forecasts of x variable of the Lorenz 63 system 10 seconds ahead. The non-
corrected model looses skill after 1.5 seconds. PC performs very well, while ΨΦ
LSQ converges to mean rapidly.

Next, we look at the forecasts of the Lorenz 63 system, Fig: 3. The ΨΦ
LSQ forecast converges to the mean after 1.5 seconds. The ΨΦ RBF
somewhat converges to the mean although the effect is not pronounce.
The PC performs very well.

4 Evaluating the correctors:

In Fig: 4 we evaluate the Lorenz 84 forecasts using Relative Ignorance.
The non-corrected Φ model (green) looses skill before leadtime of 5 days.
The Ignorance of the ΨΦ LSQ shows that the linear based corrector
does not really improve the core model. The PC produces very good
corrections maintaining skill up to 60 days, i.e. about double of the ΨΦ
RBF and 10 times longer then the non-corrected Φ model.
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Figure 4: Evaluation by Ignorance. Based on Ignorance the best performer
of the 4 imperfect model is the PC (blue) followed by the ΨΦ RBF (magenta)
which has also significantly improved the core model and at very short leadtimes
up to 2 days outperforms the PC. Both the non-corrected Φ model and the ΨΦ
LSQ quickly loose forecasting skill beyond leadtime of 2-3 days. The Ignorance
of PMS (gray) is shown for comparison.

5 RMS evaluation can be misleading

Scoring rules are used to (a) evaluate the forecasting model performance
and to (b) select the best performer if several models are available.
Despite the analytically proved drawbacks of the root mean square error
(RMS) in non-linear setting [1], RMS remains to be frequently used
when evalulating non-linear forecasts. In the following we demonstrate
that when used for model selection in non-linear applications, the RMS
may misslead the forecaster into choosing a model that is more wrong
than it’s alternative(s).
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Figure 5: Scrutinizing RMS evaluation. Based on Ignorance the best
performer of the 4 imperfect model is the PC (blue) followed by the ΨΦ RBF
(magenta) which has also significantly improved the core model and at very
short leadtimes up to 2 days outperforms the PC. Both the non-corrected Φ
model and the ΨΦ LSQ quickly loose forecasting skill beyond leadtime of 2-3
days. The Ignorance of PMS (gray) is shown for comparison.

In Fig: 5 we zoom on the evaluations of the first 8 seconds of the 1200
forecasts of x variable of the Lorenz 63 system. In the top panel Igno-
rance is used to evaluate the model performances. In the bottom panel
the RMS is used. There is a clear contradiction. RMS suggests that
the ΨΦ LSQ is significantly better then the non-corrected Φ model and
potentially comparable to both the ΨΦ RBF and the PC. The ΨΦ LSQ
forecast of the Lorenz 63, Fig: 3, demonstrates that the model is not
very usefull as it quickly resorts to forecasting the mean. Despite the
model’s disappointing performance the RMS evaluation suggests per-
formance comparable with the alternative models. Using RMS one may
end up choosing ΨΦ LSQ over it’s competitors. Ignorance based evalu-
ation, detects the poor performance of ΨΦ LSQ and correctly ranks it
as the worst performer.

6 Discussion

We have contrasted ‘ΨΦ’ corrector with a new iterative approach called
PC. We have shown that PC method can significantly outperform the
ΨΦ approach when considering probability forecasts. We have also ar-
gued that probability based evaluation is more useful way of evaluating
nonlinear models. Using forecasts of the Lorenz 63 system we have
demonstrated that scores based on least squares minimization may be
potentially dangerous and lead to incorrect model selection. Although
all models remain wrong, we can see more clearly which are useful.
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