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a b s t r a c t

Performance measures of point forecasts are expressed commonly as skill scores, in which
the performance gain from using one forecasting system over another is expressed as
a proportion of the gain achieved by forecasting that outcome perfectly. Increasingly, it
is common to express scores of probabilistic forecasts in this form; however, this paper
presents three criticisms of this approach. Firstly, initial condition uncertainty (which is
outside the forecaster’s control) limits the capacity to improve a probabilistic forecast, and
thus a ‘perfect’ score is often unattainable. Secondly, the skill score forms of the ignorance
and Brier scores are biased. Finally, it is argued that the skill score form of scoring rules
destroys the useful interpretation in terms of the relative skill levels of two forecasting
systems. Indeed, it is often misleading, and useful information is lost when the skill score
form is used in place of the original score.
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1. Introduction

Forecasting is a common endeavour in a wide range
of disciplines, and as a result, the question of how fore-
casts can best be evaluated is of fundamental importance
to much of the scientific community and beyond. One of
the most common fields in which forecasting is deployed
is weather forecasting, in which deterministic models of
the atmosphere are used to simulate the future. Simi-
lar approaches are used in ecology (Hastings, Hom, Ell-
ner, Turchin, & Godfray, 1993), hydrology (Smith & Beven,
2014) and biology (Strogatz, 2018), among other fields. In
other areas, such as tourism (Smith, 1993), economics (Katz
& Lazo, 2011) and agriculture (Hansen, Mason, Sun, & Tall,
2011), more statistical approaches tend to be taken, in
which the key driving variables of some particular depen-
dent variable are sought and used to make out-of-sample
predictions. However, the issue of forecast evaluation is
a more general one. Originally suggested as a means of
comparing point forecasts, the skill score form of a forecast
evaluationmetric is an approach that expresses the relative

E-mail address: e.d.wheatcroft@lse.ac.uk.

skill levels of two competing forecasting systems (Murphy
& Daan, 1985). This paper identifies a number of weak-
nesses of this approach and suggests an alternative ap-
proach.

In weather forecasting, as well as in the forecasting of
other physical systems, deterministic models are used to
simulate the underlying system. The dynamics of systems
such as the atmosphere are often highly nonlinear (Lorenz,
1963), and thus, such physical models generally also have
nonlinear, or even chaotic, dynamics. Combined with the
fact that observations of physical variables are usually both
incomplete and obscured by measurement error, a single
model trajectory launched from a noisy observation would
diverge from the truth even if the model reproduced the
underlying dynamics perfectly. Thus, in general, a noisy
observation of the initial condition can yield, at best, a set
of model trajectories, called an ensemble, that are all con-
sistent with that observation. Whilst accounting for obser-
vations stretching into the past can discount some of these
trajectories, in a chaotic system it is never possible to nar-
row this set down to just the true initial condition (Smith
& Judd, 2001, 2004), and thus, the best possible forecast
of a nonlinear system is probabilistic, at best, even if the
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underlying model/system dynamics themselves are deter-
ministic. Thus, it is common to use ensembles to construct
forecast probabilities (for discrete events) or probabilistic
forecast densities (for continuous events); see Bröcker and
Smith (2008).

Probabilistic forecasting is also used widely in appli-
cations in which purely statistical models, such as linear
regressions, are utilised. For example, in sales forecasting,
it is common to use regression models to identify key driv-
ing factors for sales and to use these to make predictions
regarding future sales patterns (Böse, Flunkert, Gasthaus,
Januschowski, Lange, Salinas, et al., 2017). In sports fore-
casting, there is typically some rating applied to each team,
after which a statistical approach is used to relate those
ratings to forecast probabilities (Constantinou, Fenton, &
Neil, 2012). Statistical approaches are also often used in
energy price forecasting (Ziel & Steinert, 2018) and pop-
ulation forecasting (Alkema, Gerland, Raftery, & Wilmoth,
2015), among many other fields.

A scoring rule is a function of a probabilistic forecast,
and its corresponding outcome is intended for measuring
predictive performances. Due to the probabilistic nature of
the forecasts, though, the scores are onlymeaningful when
multiple forecasts and outcomes are considered. Thus, it is
common for themean ormedian score to be given and used
for comparison purposes.

A skill score is defined as the gain in forecast accuracy,
given some measure, as a proportion of the total gain
in accuracy that would be possible were a perfect point
forecast to be issued; i.e., were the forecast able to predict
the outcome perfectly (Murphy & Daan, 1985). The aim of
a skill score is to give some context to the gain in skill that
is achieved by using a given forecasting system over some
other reference one.Whilst the skill score form of a scoring
rule is intended to yield an intuitivemeasure of the relative
skill levels of two forecasting systems, this paper argues
that a number of shortcomings of this approach tend to
outweigh the benefits of taking it.

In theweather forecasting literature, the scores of prob-
abilistic forecasts are often converted into skill score form
(Christensen, Moroz, & Palmer, 2015; Siegert, Bröcker, &
Kantz, 2011; Weigel, Liniger, & Appenzeller, 2007; Wilks,
2001) before they are presented. This approach is also
used commonly in operational weather forecasting. For
example, skill scores are used as headline evaluation tools
at both the European Centre for Medium Range Weather
Forecasting (ECMWF)1 and the UK Met-Office.2 Although
skill scores are used most commonly in the forecasting
of physical systems such as the weather, they have also
been used in a wide range of fields such as macroeco-
nomic forecasting (Bluedorn, Decressin, & Terrones, 2016;
Lahiri &Wang, 2013), the forecasting of baseball (Richards,
2014) and association football (Haave & Høiland, 2017),
and medicine (Karoly, Ung, Grayden, Kuhlmann, Leyde,
Cook, & Freestone, 2017).

This paper starts by arguing that, since the presence of
observational uncertainty in an initial condition makes a

1 See https://www.ecmwf.int/en/forecasts/quality-our-forecasts.
2 See the MOSAC-21 Annex II: forecast accuracy, https://www.

metoffice.gov.uk/binaries/content/assets/mohippo/pdf/library/mosac/
2016/mosac21_annex_ii_forecast_accuracy.pdf.

perfect point forecast impossible in the context of simula-
tionmodels, the skill score formof a scoring rule represents
the gain in skill as a proportion of the total possible gain
were a perfect forecasting system available and no obser-
vational uncertainty present in the initial condition from
which the forecasts were launched. It is therefore argued
that this is not a useful measure, as the observational noise
is usually outside the control of the forecaster. Next, using a
number of examples,we show that the skill score forms of a
number of scoring rules are biasedwhen a finite number of
forecasts and outcomes are evaluated. This particular crit-
icism is common to both point and probabilistic forecasts,
and is demonstrated in both cases. Finally, we question
whether the proportion of possible skill gained has a useful
interpretation regarding the relative value of two given
forecasting systems.

This paper is organised as follows. Section 2 presents
the background methodology describing the scoring rules
and skill scores. Section 3 discusses the relevance of the
‘optimal’ score that is necessary for calculating the skill
score form and argues that the optimal score renders the
skill score formunusable in some cases andunachievable in
many cases unless the accuracy of the observations can be
improved (which is not usually an option for a forecaster).
Section 4 demonstrates analytically that the skill score
form of the mean squared error (for point forecasts) can be
biased. Using an empirical example, it then shows that the
skill score forms of the ignorance and Brier scores can also
give biased results. Section 5 discusses whether the skill
score forms of scoring rules have useful interpretations,
and Section 6 provides discussion and conclusions.

2. Background definitions

2.1. Evaluating point forecasts

Although this paper is concerned mostly with proba-
bilistic forecasts, some of the issues raised also apply to
point forecasts, and these are demonstrated using the two
measures of point forecast accuracy given below. The two
measures considered are the mean squared error, defined
as

MSE =
1
N

N∑
i=1

(fi − Yi)2, (1)

and the mean absolute error, defined as

MAE =
1
N

N∑
i=1

|fi − Yi|, (2)

where fi and Yi represent the point forecast and the out-
come for the ith period, respectively.

2.2. Scoring rules

A scoring rule is a function of a probabilistic forecast and
its outcome that evaluates forecast performances. Since
scoring rules consider only probabilistic forecasts, this
means that measures of the performances of point fore-
casts, such as the mean squared error, do not fall under
the definition of a scoring rule. By convention, scoring rules
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are defined to be oriented negatively; that is, lower scores
imply better forecast accuracies. Many different scoring
rules have been proposed over the years, and the decision
as to which to use to evaluate a set of forecasts is of great
importance.

A scoring rule is proper if it is optimised in expecta-
tion by a perfect probabilistic forecast; that is, the true
distribution from which the outcome was drawn. To be
useful, a scoring rule should always be proper, otherwise
there would be no incentive to choose a perfect forecasting
system if one was available. In addition, under a perfect
model with some well-defined but unknown parameters,
optimising those parameters with respect to an improper
scoring rule would result in convergence to the wrong
values. For these reasons, this paper considers only proper
scoring rules. One particular score that fits this require-
ment is the ignorance score, introduced by I.J Good in
1951 (Good, 1952; Roulston & Smith, 2002) and defined for
discrete forecasts as

IGN = − log2(p(Y )), (3)

where p(Y ) represents the probability placed on the out-
come by the forecast. In the continuous case, the proba-
bility is replaced by the probability density, meaning that
ignorance is defined as

IGN = − log2(f (Y )), (4)

where f (Y ) is the forecast density placed on the outcome Y .
Another proper scoring rule is the Brier score (Brier,

1950), which is defined so as to evaluate the performance
of binary probabilistic forecasts. It is given3 by

BS = (p(Y ) − Y )2, (5)

where p(Y ) represents the forecast probability and Y is one
(zero) if the event occurred (did not occur). The Brier score
is bounded between zero and one, with a score of zero
corresponding to the case in which a probability of one is
placed on the eventual outcome and a score of one if the
probability placed on the outcome is zero.

2.3. Skill scores

It is commonly argued that measures of the forecast
accuracy should be expressed in the form of a skill score
(Christensen et al., 2015; Murphy & Epstein, 1989; Siegert
et al., 2011; Tödter & Ahrens, 2012). A skill score is defined
as

SS =
Af − Ar

Ap − Ar
, (6)

where Af and Ar represent the ‘accuracy’, according to
some given measure, of the forecasting system of interest
and some reference forecasting system, respectively. The
quantity Ap represents the optimal value of the measure;
that is, the value of the metric if the outcome were known
perfectly. The value of SS can be interpreted as the increase

3 Note that the Brier score is often defined as an average over N
forecasts and outcomes. Here it is defined for one particular forecast and
outcome, for the sake of consistency with the definition of the ignorance
score.

Table 1
Values of Ap for discrete and continuous (where applicable) forecasts for
the scoring rules considered in this paper.
Scoring rule Discrete forecast Ap Continuous forecast Ap

Ignorance 0 ∞

Brier score 0 NA

in accuracy achieved by using some forecasting system of
interest, as a proportion of the total possible increase in
accuracy. The reference forecasting system could be either
a competing forecasting system over which improvement
is sought or some benchmark forecasting system such as a
climatology (a forecast based purely on past states).

3. Defining a ‘perfect score’

The skill score representation of a measure of the fore-
cast accuracy, as defined in Eq. (6), can be interpreted as
the improvement in accuracy, according to the measure,
as a proportion of the total possible improvement if the
true outcome were known perfectly. The value Ap does not
depend on the forecast, but is in fact a property of the
accuracy measure itself. The values of Ap for discrete and
continuous (where applicable) forecasts for each scoring
rule considered in this paper are shown in Table 1. Note
that, for the ignorance score, Ap is infinite in the continuous
case, and thus the skill score representation is not informa-
tive in this case. The Brier score is defined only for binary
categorical forecasts.

When forecasting is performedusing deterministic sim-
ulation models, the existence of observational uncertainty
in an initial condition prevents the point forecasts from be-
ing perfect (i.e., predicting the exact outcome consistently),
regardless of the accuracy of the forecasting system. In
addition, all real-world models contain some degree of
structural error. Inasmuch as observational uncertainty can
be considered an unavoidable feature of the real world, it
can be argued that any limitations to predictability that
result from this factor should be differentiated from those
that stem from the forecasting system itself. If this is not
done, the impression that the forecasts could be improved
upon further might be given even if the forecasting sys-
tem is already as informative as it can possibly be, given
the information available. In the presence of observational
noise, the best possible forecast will be a probability dis-
tribution, henceforth referred to as a perfect probabilistic
forecast. Since the only uncertainty is in the initial condi-
tion, a perfect probabilistic forecast can be considered to
be the distribution from which the eventual outcome is
drawn, given only the initial condition uncertainty. This is
achieved by evolving forward the distribution of possible
initial conditions that are consistentwith both the observa-
tion of the initial condition and the system dynamics. Thus,
some uncertainty regarding the outcome will remain, and
as a result, the best possible score given the observations
available will come from a perfect probabilistic forecast
rather than a perfect point forecast, meaning that the opti-
mal score Ap will be unattainable. A more useful quantity,
if available, would be

SSprob =
Af − Ar

App − Ar
, (7)
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where App represents the score achieved with a perfect
probabilistic forecast. This quantity represents the skill
gained over the reference forecast as a proportion of the
total possible gain in skill, given the observation and the
distribution of the observational uncertainty. In practice,
though, SSprob is never available, since the skill of a perfect
probabilistic forecast is never expected to be known. Thus,
the proportion of potential skill gained is not expected
ever to be available for probabilistic forecasts. This calls
into question the value of the skill score representation of
scoring rules.

Some studies and applications calculate the ensemble
mean and treat it as a point forecast, rather than using
ensembles to construct probabilistic forecasts. It could be
argued that such an idea is ill-advised, since the approach
discards important information regarding the shape of the
distribution. Worse still, the mean of the forecast distribu-
tion is often an unlikely quantity when the dynamics of the
model are nonlinear. Consider a forecast distribution of the
waiting time between eruptions of the Old Faithful geyser
in Yellowstone National Park in the USA, which famously
has a bimodal distribution (Rinehart, 1969). A probabilistic
forecast distribution may suggest that either a relatively
long or a relatively short waiting time is likely. A point
forecast based on the mean, on the other hand, would
make a prediction somewhere between the two, which is
a relatively unlikely outcome. Nonetheless, it should be
pointed out that, since the outcomes in such situations
will be drawn from some underlying distribution and the
forecast will, at best, represent the mean of that distri-
bution, the initial condition uncertainty that differentiates
the ensemble members means that perfect point forecasts
(i.e., forecasts that always coincide with the outcome) are
not attainable, and the arguments presented above still
apply.

The arguments above consider the case in which fore-
casts are generated using deterministic simulation mod-
els. In many applications, though, it is actually statistical
models that are applied; for example, with linear regres-
sion, the resulting forecast is a single point estimate that
forms the mean of some Gaussian forecast distribution.
However, the simulation model approach taken in numer-
ical weather prediction could theoretically be applied to
such cases, though in practice statistical models may be
deemed more effective in relating important variables to
the predictand (economic data to sales volumes, for ex-
ample). Whilst one can never expect statistical models to
yield perfect point forecasts, in theory the deterministic
modelling approach could be taken (though building such
amodel may be highly impractical). Consider, for example,
making a forecast of the outcome of a football match. In
general, forecasting of this kind is done using statistical
approaches, but if one knew the dynamics of the world
perfectly and had perfect observations of its exact state at
a given time, theoretically it would be possible to make a
perfect point forecast of the state of the world (Laplace,
2012), and therefore of the outcome of that match. How-
ever, once the assumption that perfect observations are
available is removed, the very best forecast of that match
would be a probability distribution again, even with a
perfectmodel (Frigg, Bradley, Du, & Smith, 2014). Of course,

obtaining perfect observations of the world is out of the
control of the forecaster (and impossible in practice), and
thus, as discussed above, skill scores do not represent the
proportion of the possible skill achieved by the forecaster.

4. Sampling distributions

So far, we have considered only the general properties
of scoring rules and their skill score form, but the question
of how each behaves in the context of a finite sample is
also of importance. In practice, anymeasure of the forecast
accuracy is calculated over a finite sample of forecasts
and outcomes. The skill score form of a scoring rule aims
to provide a direct comparison of the skill levels of two
forecasting systems. However, this section shows that the
skill score form of a measure of forecast accuracy can be
biased for finite samples. We start by demonstrating this
analytically using a point forecasting example in which the
mean squared error is used as the measure of accuracy.
We then demonstrate it using the skill score form of scor-
ing rules in the context of probabilistic forecasts. This is
compared with an alternative approach to expressing the
relative skill levels of two forecasting systems that is shown
to be unbiased.

An alternative statistic to a skill score for comparing the
performances of two forecasting systems is defined as

Arel = Af − Ar , (8)

whereArel will be referred to as the relative skill. The relative
skill is related closely to a skill score, since

SS =
Arel

Ap − Ar
, (9)

and, when Ap = 0,

SS = −
Arel

Ar
. (10)

Thus, the skill score form of a measure of accuracy is a
simple transformation of the relative skill, which is an un-
biased estimator of the actual difference in skill. However,
it is shown that the skill score form is not necessarily an
unbiased estimator of the underlying skill score (that is,
the skill score that would be obtained from an infinite
number of forecasts and outcomes). We demonstrate this
by presenting a simple example using point forecasts.

Consider a simple case in which, for each outcome Yi,
both the forecasts from the forecasting system of interest
uf ,i and the reference forecasting system ur,i are created by
taking random draws from a Gaussian distribution N(Yi, 1)
that is centred on the outcome Yi. Thus, both forecasting
systems are expected to have the same mean squared
errors, on average. The mean squared error skill score in
this case is given by

MSESS = 1 −

1
N

∑N
i=1(uf ,i − Yi)2

1
N

∑N
i=1(ur,i − Yi)2

. (11)

Note that
1
N

∑N
i=1(uf ,i−Yi)2

1
N

∑N
i=1(ur,i−Yi)2

∼ F (v1, v2), where v1 = v2 = N .

Since the mean of an F distribution is v2
v2−2 , the expected

value of the skill score for this special case is E(MSESS)
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Fig. 1. The estimated bias of the relative skill (red) and the skill score forms (blue) of the ignorance (top panel) and Brier (lower panel) scores as a function
of the sample size. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

= 1−
N

N−2 . Since the two forecasting systems are defined to
have the same mean squared errors, on average, the mean
squared error skill score is biased.

In the special case outlined above, the sampling dis-
tribution was derived analytically under some strong as-
sumptions. In most cases, the sampling distribution will
not be known; however, it can be estimated. This is now
done for both the ignorance and Brier scores in a special
case in which the two probabilistic forecasting systems
are expected to have the same skill levels. Define pf =

pf ,1, . . . , pf ,N and pr = pr,1, . . . , pr,N as two sets of iid ran-
dom draws from a standard uniform distribution U(0, 1).
Let pf ,i and pr,i represent two different probabilistic fore-
casts of the same binary outcome Yi, such that each one
represents a single forecast probability. The distribution of
the outcome Yi is then defined to be Bernoulli, with the
parameter randomly chosen to be pf ,i or pr,i with equal
probability. The outcome Yi is then a random draw from
the randomly selected true distribution. This means that
each of the forecast probabilities have equal chances of
coinciding with the true probability. Given that it is not
known with what probability the outcome was drawn, the
result is that pf and pr represent equally useful probabilis-
tic forecasts, on average. For an infinite number of forecasts
and outcomes, the relative skill and the skill score form of
any evaluation measure are both zero. We test whether
there is any bias in either measure for finite samples, by
randomly drawing sets of forecasts and outcomes of size
N and calculating both the relative skill and the skill score.
The mean of each is then calculated to give an estimate of
the expected value, and thus of the bias. This is repeated
for various values of N . The results of the experiment are
shown in Fig. 1. The top panel shows the estimated bias of

the relative skill and the skill score form of the ignorance
score, whilst the lower panel shows these for the Brier
score. It is clear here that the skill score forms of both
scoring rules are biased, whilst such does not appear to
be the case for the relative skill. The bias appears in the
skill score because of the quotient that is required in its
calculation.

The bias in the skill score also has an impact on tests of
whether there is a significant difference between two fore-
casting systems. For the relative skill, bootstrap resampling
can be applied to the differences to infer whether themean
difference in skill is significant. This is a reasonable thing to
do because the relative skill is an unbiased estimator of the
underlying difference in skill between the two forecasting
systems. Whilst something similar could be applied to the
skill score form, the bias means that there would be an
overinflated probability of finding the reference forecast-
ing system to be superior to the forecasting system of
interest.

5. Interpreting and comparing skill scores

The skill score form of a measure of accuracy gives
a scaling between 1 and −∞, and measures the gain in
skill, according to some measure, as a proportion of the
total possible gain. For example, a skill score of 0.5 means
that half of the total possible increase in the measure of
accuracy has been achieved. In probabilistic forecasting,
the measure of accuracy usually consists of a scoring rule.
However, the skill score form of a measure of accuracy, as
described in Eq. (6), was suggested initially for the evalua-
tion of point forecasts (Murphy & Daan, 1985). Although
this paper is concerned mostly with skill scores in the
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context of probabilistic forecasts, it is useful to illustrate
the intended interpretation of skill scores in the context of
point forecasts, for comparison. Consider themean squared
error and mean absolute error, defined in Section 2.1. In
both cases, the value Ap in Eq. (6) is zero, since the fore-
cast and the outcome for an optimal point forecast would
coincide. If the mean absolute errors achieved from the
forecasting systemof interest and the reference forecasting
system are 3 and 4 respectively, the skill score form of the
mean absolute error would be MAESS =

3−4
0−4 = 0.25,

which can be interpreted as a reduction of 25% in the
mean distance between the forecasts and the outcomes.
This is an intuitive measure of the difference in accuracy
between two forecasting systems. The value of using the
skill score form of the mean squared error is less obvious.
Consider for example a similar case in which the mean
squared errors of the forecast system of interest and the
reference forecasting systemare again 3 and 4 respectively.
The mean squared error skill score would then be 0.25
again. However, a 25% reduction in themean squared error
is harder to interpret than a 25% reduction in the mean
absolute error. It could be argued that this is because the
mean squared error has a less intuitive interpretation in
the first place, so forcing it into skill score form adds little
or nothing of value and potentially even makes it still less
intuitive.

The nature of probabilistic forecasts means that the
evaluation techniques described above cannot be applied
without compromising the information content of the fore-
cast, and thus, a scoring rule is required. While the skill
score forms of some distance metrics like the mean abso-
lute error can have simple and useful interpretations, as
has been discussed, such is not necessarily the case for
scoring rules. Consider for example the ignorance score.
The relative skill of the ignorance score, as described in
Section 4, can be interpreted as the mean bits of infor-
mation gained from using one forecasting system over
some reference forecasting system (say, the climatological
distribution). This can then be converted back in order
to infer how much more density or probability is placed
on the outcome, on average. The skill score form can be
interpreted as the number of bits of information gained
over the total possible gain. However, the proportion of
possible bits gained should not be considered a linear gain
in value. In fact, the gain in probability or density placed on
the outcome by using one forecasting system over another
cannot be recovered using the skill score form alone. Thus,
it does not seem to make sense to express the ignorance in
the skill score form at all.

The Brier score can be interpreted as the mean squared
distance between the probabilities and the outcome (either
a one or a zero) in a binary probabilistic forecast. Similarly
to the ignorance score, an increase or decrease in the Brier
score does not correspond to a linear increase or decrease
in the utility of the forecasts (this will depend on how
the forecasts are to be used) in any conceivable way. It
could be argued that one weakness of the Brier score over
the ignorance score is that the former has a far less clear
interpretation, and transforming the score into a skill score
form will not create a useful interpretation if there is none
in the first place.

Scoring rules such as the ignorance and Brier scores
are clear, mathematically precise and informative scores.
Forcing them into a skill score form destroys this utility,
and there is no persuasive argument establishing any ben-
efit from doing so anyway. It should also be clear from
the discussion above that skill scores based on different
measures of accuracy cannot be compared directly, even
though they are required to be on the same scale.

6. Discussion

The skill score form of a forecast evaluation metric is
designed to provide an intuitive measure of the gain in
skill that can be achieved by using one forecasting system
over another. However, while a skill score represents the
mean gain in accuracy that can be achieved by using one
forecasting system over another as a proportion of the total
possible gain given a perfect point forecast, care needs to be
taken to interpret this as an achievable gain in skill. When
observational noise is present in the initial condition, even
a perfect forecasting system cannot yield perfect point
forecasts, and thus the skill score does not represent the
proportion of the possible skill that could be obtained by
improving the forecasting system. In addition, even if it
were possible for the forecasting system to yield perfect
point forecasts, it is not clear whether the proportion of
the potential skill gained represents a useful indication
of the proportion of the actual value that can be gained
by using the forecasting system of interest. It has been
shown that the skill score form of an unbiased measure of
accuracy is not necessarily unbiased itself, due to the ratio
that is introduced into the formula. The skill score form of a
measure of accuracy is intended to give some context to the
gain in skill obtained by using one forecasting system over
another. Inmany cases, it could be argued that the intended
interpretation is misleading as ameasure of the proportion
of the possible skill gained. Taken in combination with the
fact that the skill score form can introduce a bias to the
score, it should be treatedwith caution. Pressure to express
the forecast system evaluation in terms of skill scores is
found to bemisplaced; in the absence of better motivation,
the forecast evaluation can bemore effective when consid-
ered in terms of raw scores with more meaningful units.
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