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1  | INTRODUC TION

In most forecasting tasks, predictions for the future values of some 
variable are based on a record of previous values of that variable (the 
data series). For example, in demand forecasting for supply chain 
management, forecasters predict future sales of products from the 
past sales of those products. Forecasts are produced in one of three 
ways. In computer‐based forecasting, a formal (e.g., statistical) pro‐
cedure realized on a computer is used to produce the forecasts by 
processing the data series; judgment plays no role. In judgmental 
forecasting, unaided human judgment is used to analyze the data 
series and produce the forecasts from it. In computer‐aided fore‐
casting, a formal computer‐based procedure and human judgment 
are combined in some way. For example, the average of the two 
forecasts independently produced by these methods may be used as 
the final forecast. Alternatively, the forecaster may use judgment to 
make an adjustment to the formal forecast.

Fildes and Goodwin's (2007) large scale survey of company fore‐
casting indicated that computer‐based forecasting was employed 
in about a quarter of cases, judgmental forecasting was used in a 

further quarter of cases, and computer‐aided forecasting was ad‐
opted in the remaining cases. A more recent but smaller scale sur‐
vey by Fildes and Petropoulos (2015), showed no change in the 
frequency of computer‐based forecasting but a lower level (16%) 
of judgmental forecasting (and a correspondingly higher level of 
computer‐aided forecasting). Both surveys concur that judgment is 
involved in producing about three‐quarters of company forecasts. 
Here we describe studies of judgmental forecasting. However, our 
findings are likely to generalize to the judgmental component of 
computer‐aided forecasting.

1.1 | Judgmental forecasting

There is now a large body of work on judgmental forecasting. 
Findings have been thoroughly reviewed (Goodwin & Wright, 
1993,	1993,	1994;	 Lawrence,	Goodwin,	O'Connor	&	Ӧnkal,	 2006;	
Webby & O'Connor, 1996). It has become clear that, relative to 
the forecasts produced by statistical means, judgmental forecasts 
are biased in various ways. These biases include trend damping 
(Eggleton, 1982), elevation of desirable variables and depression of 
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undesirable ones (Lawrence & Makridakis, 1989), addition of noise to 
forecasts (Harvey, 1995), and misperception of sequential depend‐
ence (Eggleton, 1982). Here we focus on this last effect: mispercep‐
tion of sequential dependence.

In an un‐trended series of independent data points, a forecast 
should lie on the mean value of those points. However, it is typically 
found to be too close to the last point in the data series. This is where 
it ought to be when the series contains positive first‐order autocor‐
relation (i.e., sequential dependence). For example, for a series with 
an autocorrelation of 0.5, the forecast should be half way between 
the last data point and the mean of the series. Thus, it appears that 
people perceive independent series as if they were sequentially de‐
pendent. A process account of this phenomenon based on use of the 
anchor‐and‐adjust heuristic can be proposed. People anchor their 
judgment on the last data point and then adjust toward the mean of 
the series. Because, adjustment is insufficient when this heuristic is 
used (Tversky & Kahneman, 1974), the forecast is not as close to the 
mean as it should be.

1.2 | Format effects

Data series can be presented to forecasters in a tabular or in a 
graphical format. Within each of these broad categories, there are 
sub‐divisions: tables of data can be presented in a horizontal row or 
in a vertical column; graphs of data can be provided as line graphs, as 
point graphs, or as bars.

There is some consensus that graphical presentation produces 
better performance than tabular presentation when people are re‐
quired to use their judgment to analyze trends and to make forecasts 
(Coll, Thyagarajan & Chopra, 1991; Dickson, DeSanctis & McBride, 
1986; Tullis, 1988). Harvey and Bolger (1996) confirmed that graph‐
ical presentation is superior for this purpose when data contain 
trends and showed that this was because trend damping was much 
greater with tabular presentation.

Research on the effects of using different types of graphical pre‐
sentation	is	more	limited.	Newman	and	Scholl	(2012)	presented	peo‐
ple with bars representing the mean values of the data set and asked 
them to judge the likelihood that a point placed above or below the 
top of the bar was part of the underlying distribution. Participants 
gave higher values for this likelihood for a point below the top of the 
bar (i.e., within the bar) than for a point the same distance above the 
top of the bar (i.e., outside the bar). Okan, Garcia‐Retamero, Cokely 
and Maldonado (2018) showed that this bias could be markedly re‐
duced by presenting the mean values as points rather than as bars. 
This was so even though participants rated the bar graphs more pos‐
itively than the point graphs.

Harvey and Reimers (2012) required people to make forecasts 
from data series presented as bars, line graphs, or point graphs. 
Forecasts were systematically lower (and error in them was corre‐
spondingly higher) when series were presented as bars than when 
they were presented in the other formats. This bias was present for 
series containing upward trends and for those containing downward 
ones. It would counteract the effect of damping when data contain 

downward trends but would reinforce it when they contain upward 
trends. The effect was reversed with hanging bars: forecasts were 
then systematically higher with bars than with the other two for‐
mats. It therefore appears that bars draw people's attention toward 
them in a manner that other formats do not and that the way they 
position their forecasts is affected by this attentional displacement.

In summary, the above research indicates that presentation of 
data as bar graphs is associated with certain biases and that these 
biases can be reduced by using line graphs or point graphs instead. 
Here, we ask whether a difference between presenting data as line 
graphs and presenting them as point graphs also results in a differ‐
ence in the way that forecasts are made. To date, no such differences 
have been reported but research on graphical perception leads us to 
expect that this difference in graphical format will affect the degree 
to which sequential dependence is misperceived.

Bar graphs are recommended for use when the horizontal axis 
refers to discrete categories, such as male versus female. Line graphs 
are more appropriate when it refers to a continuum, such as age. 
In practice, these recommendations are not always followed. Zacks 
and Tversky (1999) presented participants with the same set of data 
displayed either in a bar graph or in a line graph. They were more 
likely to describe the relationship between x and y variables as con‐
tinuous when a line graph was used. For example, some participants 
presented with line graphs showing height on the y‐axis plotted 
against sex on the x‐axis, described the relationship as “The more 
male a person is, the taller he/she is”. In contrast, bar graphs merely 
led to the observation that, on average, men are taller than women. 
These findings suggest that people are more likely to group data to‐
gether and to see patterns in them when those data are presented 
in a continuous than in a discrete format. Conversely, the discrete 
format emphasizes the frequency and range of each category rather 
than the relationship between those categories.

We have seen that people overemphasize the relation between 
successive points in a time series: they anchor their forecasts too 
strongly on the last data point. Zacks and Tversky's (1999) findings 
show that use of a discrete format serves to de‐emphasize the rela‐
tion between successive data points. As a result, forecasts should be 
less strongly anchored on the last data point. Thus, when there is no 
autocorrelation in the data series, this should lead to forecast being 
more accurate when a discrete format is used to present data than 
when a continuous format is used.

1.3 | Hypotheses

Here, we compare forecasting from continuous line graphs with 
forecasting from discrete point graphs. We test the hypothesis (H1) 
that people make forecasts closer to the last data point when data 
series are presented as continuous line graphs than when they are 
presented as discrete point graphs. We also test the hypothesis (H2) 
that, in a series with no significant autocorrelation, this will result in 
more accurate forecasts with the discrete point graphs.

To ensure that our findings are generalizable, we test these hy‐
potheses in the three different types of forecasting task that are 
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commonly used by practitioners: point forecasting (Experiment 1), 
probability density function forecasting (Experiment 2), and predic‐
tion interval forecasting (Experiment 3).

1.4 | Experiment 1: Point forecasting

In point forecasting, predictions for the most likely value of a vari‐
able are made. Forecasts may be made just for the immediately up‐
coming period or for more distant forecast horizons as well.

1.4.1 | Method

Participants made predictions for the next five values of a 30‐point 
time series. Once they had done that, the time series rolled forward 
by one time‐period and this process was repeated for 13 trials. The 
time series were presented to participants as continuous line graphs 
or as discrete point graphs.

Participants
In total, 60 students (46 females) from the University College London 
acted as participants. Their mean age was 20 years. They were not 
paid for their participation.

Design
Thirty participants were randomly allocated to each group. The first 
group produced point forecasts from continuous line graphs while 
the second group made their predictions from unconnected point 
graphs.

Stimulus materials
The data series comprised a real‐life series from which forecast‐
ing practitioners have made predictions. The series described 
the annual number of hurricanes hitting the Atlantic coast of 
the USA from 1966 to 2012. All data were drawn from official 
sources	provided	by	the	USA	National	Oceanic	and	Atmospheric	
Administration	 (NOAA)	 Office	 of	 Oceanic	 and	 Atmospheric	
Research (http://www.aoml.noaa.gov/general/lib/lib1/nhclib/
mwreviews/mwreviews.html)1. In the current work, only a subset 
of this hurricane occurrences database was displayed (1966–2007) 
because satellite technology was available to accurately monitor 
hurricane	activity	only	from	this	period	onwards.	Neither	autocor‐
relation (AR1 = 0.04) nor global trends in the series reached sta‐
tistical significance.

On each trial, participants saw 30 years of this series. Thus, on 
the first trial, they saw the series of the number of hurricanes strik‐
ing the Atlantic coast of the USA between 1966 and 1995 and made 
predictions for 1996–2000. On the next trial, they saw the series for 
1967–1996 and made predictions for 1997–2001. This rolling pro‐
cedure continued until the 13th trial when they saw the series for 
1978–2007 and made predictions for 2008–2012.

In all displays, the y‐axis showed the number of hurricane oc‐
currences while the x‐axis represented time in years. In continuous 
line graph displays, the data points were connected by a continuous 

line (Figure 1, upper panel); in the discrete point graph displays, they 
were not (Figure 1, lower panel).

Procedure
Each participant performed the task individually on a computer. 
They read a short introduction and then entered their demographic 
details (age, sex). Instructions were as follows:

In this experiment, you will take the role of an advisor 
to a top‐level insurance company that specialises in 
home insurance pricing based on hurricane time‐se‐
ries data. As part of the induction process, you will 
be shown 13 hurricane time series, corresponding to 
real data from the Atlantic coast area. The time series 
represent annual numbers of hurricanes hitting the 
specific regions. Each time series contains 30 years of 
historical data for you to gain some knowledge of the 
time series' characteristics. Your task is to produce 
forecasts for the next 5 years. To indicate your fore‐
casts of hurricane numbers, click at the punctuated 
lines at the end of the graph. A dot will appear where 
you forecast. Further instructions will be provided at 
the top of the screen at each stage to prompt you for 
any actions required.

The experiment was coded in Javascript and performed as an on‐
line task. Each of the time series was displayed individually. The partic‐
ipants' task was to indicate their judgmental forecasts on the hurricane 
occurrences for the next 5 years on the five dotted lines presented at 
the end of each series. Once the five judgments had been made, partic‐
ipants clicked the “continue” button to proceed to the next trial. Each 
participant made five predictions on 13 trials and so produced a total 
of 65 forecasts. After completing the task, a question was displayed 
that asked participants about the strategy that they used to make their 
predictions; they typed their answers in a textbox.

For participants in the continuous “Lines” group, time series 
were presented as line graphs and, as forecasts were made, a blue 
line linked each new forecast with the last data point (forecast for 
horizon 1) or with the immediately preceding forecast (remaining 
forecasts). For participants in the discrete “Points” group, time series 
were presented as disconnected points and, as forecasts were made, 
no connection linked forecasts with the previous points.

1.4.2 | Results

To test H1, we extracted the mean absolute distance (MAD) of fore‐
casts from the last displayed point and then compared the size of this 
measure in Group 1 (continuous format) and in Group 2 (discrete for‐
mat). For the first horizon forecast, we took the difference between 
the forecast and the last data point. For later horizons, we took the 
difference between the forecast for step t + 1 and the forecast for 
step t (i.e., the anchor). MAD scores for the five horizons in each of 
the 13 trials are shown in Table 1 for the two display conditions.

http://www.aoml.noaa.gov/general/lib/lib1/nhclib/mwreviews/mwreviews.html
http://www.aoml.noaa.gov/general/lib/lib1/nhclib/mwreviews/mwreviews.html
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Forecasts from the hurricane time series producing the lowest 
error lie on its mean value because the series contained no signifi‐
cant trends or autocorrelation. Hence, to test H2, we measured fore‐
cast accuracy by extracting the absolute difference from the mean 
(ADFM) and compared the value of this measure in the two condi‐
tions to determine whether it was smaller in the group that saw the 
discrete graphical format. ADFM scores for the five horizons in each 
of the 13 trials are shown in Table 2 for the two display conditions.

MAD scores
Data were analyzed with a three‐way mixed model analysis of 
variance	 (ANOVA),	 using	display	 condition	 (continuous	 versus	 dis‐
crete) as a between‐participants factor and forecast horizon (1–5) 
and trial (13 sets of forecasts) as within‐participant factors. Here 
and	 later,	we	 adjust	 degrees	of	 freedom	 in	our	ANOVA	according	

to the recommendations of Greenhouse and Geisser (1959) when 
Mauchly's test indicated violation of sphericity.

This analysis revealed a main effect of forecast horizon (F [4, 
232] = 26.64; p < 0.001): MAD scores decreased from the first to 
the second horizon. Furthermore, an interaction between forecast 
horizon and display condition (F [4, 232] = 3.06; p = 0.017) showed 
that this decrease in MAD was greater and started from a higher 
initial value in the continuous display condition. The simple effect 
of display was significant only at the first forecast horizon (F [1, 
58] = 10.27; p = 0.002). This indicates that anchoring was greater 
with the continuous format and is consistent with H1. Figure 2 shows 
these effects: it depicts the MAD scores for the five horizons in the 
two display conditions. Also shown for comparison are MAD scores 
derived from forecasts obtained via exponential smoothing, the 
statistical forecasting approach most favored by practitioners (e.g., 

F I G U R E  1   Screenshot of hurricane series presented in the continuous line graph display (upper panel) and discrete point graph display 
(lower panel)
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Weller & Crone, 2012). (The α parameter used to produce these fore‐
casts was the one that minimized the absolute error in the forecasts.)

The analysis also showed a main effect of trial (F [12, 696] = 16.11; 
p < 0.001) and an interaction between that variable and horizon (F 
[48, 2784] = 6.48; p < 0.001). These effects arose because effects 
of anchoring varied systematically across trials only for forecasts for 
the first horizon (Table 1).

Absolute difference from the mean
Forecasting performance was better when participants saw data in 
the	discrete	data	format.	In	an	ANOVA	using	the	same	factors	as	be‐
fore, the overall effect of display condition was marginally significant 
in a two‐tailed test (F [1, 58] = 3.15; p = 0.85) but significant in a one‐
tailed test (p < 0.05) more appropriate for our directional hypoth‐
esis. The simple effect of display was significant for the first (F [1, 
58] = 6.79; p = 0.012) and second forecast horizons (F [1, 58] = 4.19; 
p = 0.045). Figure 3 shows these effects: it depicts the absolute dif‐
ference from the mean (ADFM) scores for the five horizons in the 
two display conditions. Also shown for comparison are ADFM scores 
derived from forecasts obtained via exponential smoothing.

The analysis also showed effects of trial (F [6.17, 357.75] = 12.46; 
p < 0.001) and an interaction between trial and horizon (F [21.63, 
1254.35] = 3.15; p < 0.001). As with the MAD scores, this interac‐
tion arose because effects of anchoring varied systematically across 
trials only for forecasts for the first horizon (Table 2).

1.4.3 | Discussion

Graphical presentation of the time series had an impact on the fore‐
casters' performance: forecasts for the first and second horizons 
were significantly inferior when data were presented in the continu‐
ous format. In line with Zacks and Tversky's (1999) arguments, the 
discrete format served to de‐emphasize the relation between suc‐
cessive points. As overall autocorrelation was close to zero in the 
hurricane series, this de‐emphasis was beneficial.

The first hypothesis was partially supported: format primarily in‐
fluenced forecasting for the first horizon. This implies that the effect 
of format identified by Zacks and Tversky (1999) resulted in the con‐
tinuous display emphasizing the relation between successive points in 
the data series; this affected forecasts for the first horizon. However, 

TA B L E  1   Experiment 1: Mean absolute deviation (MAD) scores of forecasts across the five horizons in the 13 trials in both display 
conditions

Display Trial Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Lines 1 3.66 2.15 1.79 1.49 1.73

2 2.68 1.56 1.68 1.00 1.62

3 1.58 1.40 1.99 1.81 2.07

4 3.59 2.09 1.39 1.60 1.72

5 2.17 1.85 2.11 1.59 1.49

6 1.06 1.77 1.82 1.71 1.63

7 1.79 1.96 1.44 2.09 2.24

8 1.93 1.74 2.17 1.97 1.80

9 2.15 2.25 1.55 1.64 1.91

10 2.03 1.60 1.92 1.44 2.03

11 4.46 2.52 2.60 2.08 2.07

12 2.86 2.52 2.61 2.67 2.65

13 2.24 2.33 1.93 2.78 2.43

Points 1 4.56 2.07 1.88 1.57 2.29

2 4.10 1.64 1.60 1.54 2.21

3 1.93 1.29 1.60 1.94 2.12

4 3.82 1.97 2.18 1.74 2.05

5 2.61 1.69 2.02 1.46 2.09

6 2.08 1.89 1.68 1.98 1.72

7 2.35 1.61 1.35 1.26 1.61

8 2.39 1.39 2.56 1.77 1.98

9 1.57 1.71 1.93 2.01 1.78

10 2.44 1.92 1.63 1.87 2.06

11 5.93 2.40 2.23 2.34 2.42

12 3.06 1.95 2.43 2.50 2.71

13 2.63 1.99 2.31 2.67 2.95
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the type of display had little effect on how people made forecasts for 
later horizons: this implies that it did not influence on how they per‐
ceived the relation between the last data point and the first forecast 
or the relations between successive forecasts. This is consistent with 
Bolger and Harvey's (1993) results that indicated a forecast for the 

first horizon and those for later horizons are made in different ways: 
forecasts for the first horizon are influenced by points in the data 
series, whereas those for later horizons are influenced primarily by 
the position of the immediately preceding forecast. Here we found 
that the format affected how people used previous points in the data 
series and so its beneficial effect was specific to the first forecast 

F I G U R E  2   Mean absolute deviation (MAD) scores for five 
forecasts in the two display conditions. Also shown are scores 
associated with forecasts obtained via exponential smoothing
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F I G U R E  3   Mean absolute distance from the mean (ADFM) 
scores for five forecasts in two conditions. Also shown are scores 
associated with forecasts obtained via exponential smoothing

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5

AD
FM

Horizon

Con�nuous (Lines) Discrete (Points) Exp Sm (alpha = 0.2)

TA B L E  2   Experiment 1: Absolute distance from the mean (ADFM) scores of forecasts across the five horizons in the 13 trials in both 
display conditions

Display Trial Horizon 1 Horizon 2 Horizon 3 Horizon 4 Horizon 5

Lines 1 3.04 2.16 2.13 1.50 1.77

2 1.71 1.72 1.90 2.38 2.42

3 1.31 1.34 1.82 1.91 2.06

4 2.50 1.76 1.42 1.57 1.70

5 1.31 1.47 1.72 2.07 2.12

6 2.26 2.10 1.77 2.60 2.42

7 3.00 2.57 2.18 1.88 2.59

8 1.62 1.92 2.14 1.94 2.19

9 2.58 2.23 1.65 1.59 1.76

10 2.26 2.13 1.92 2.01 2.64

11 4.96 3.15 2.80 2.82 3.23

12 2.25 2.95 2.83 3.04 2.34

13 2.02 2.81 2.66 2.72 2.04

Points 1 1.62 1.46 1.48 1.36 1.82

2 1.72 1.54 1.62 1.76 1.96

3 1.21 1.04 1.45 1.66 1.80

4 1.62 1.44 1.46 1.92 2.06

5 1.62 1.42 1.66 2.04 2.23

6 1.64 1.79 2.15 2.08 1.84

7 2.33 1.95 1.99 1.85 1.92

8 2.01 1.86 2.15 1.73 2.10

9 1.43 1.73 1.82 1.90 2.04

10 1.76 1.76 1.84 1.50 1.87

11 3.35 2.13 2.90 2.55 2.48

12 2.13 2.53 2.35 2.55 2.02

13 2.46 2.58 2.32 2.25 2.10
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(Figure 2). As a result, its effect on performance was maintained and 
increased only slightly for the second forecast and did not increase 
further over the remaining horizons. Had there been a beneficial ef‐
fect of format on degree of anchoring for every forecast horizon, the 
relative performance advantage of that format over the continuous 
one would have accumulated systematically over horizons.

Zacks and Tversky (1999) suggest that only continuous formats 
encourage people to impose patterns on the data, even where none 
exist. This proposal is in line with previous findings indicating that 
forecasters are prone to see non‐existent patterns in noisy (line dis‐
play) series and emulate them in their forecast sequence (O'Connor, 
Remus & Griggs, 1993). If such pattern imposition accounts for the 
difference between formats that we obtained, it is reasonable to 
expect that participants would mention it in response to the final 
question about their forecasting strategy. Indeed, 18 of the 30 par‐
ticipants in the continuous condition mentioned they followed the 
last segment pattern while only eight of the 30 participants men‐
tioned following a pattern from the last segment in the discrete con‐
dition (χ2 = 7.69; p < 0.01).

Finally, we should address a methodological issue. In the experi‐
ment, the observed time series was shifted forward by one period on 
each trial and participants were asked to make forecasts for five hori‐
zons. We adopted this procedure to ensure that our experiment closely 
matched the way in which practitioners re‐forecast from the same 
series after new data from the most recent time periods have been 
obtained. However, it meant that most values that were predicted by 
participants were forecast on five successive trials. It is possible that 
(some) people (sometimes) remembered the forecast that they gave for 
a given year on an earlier trial and used it again (or were influenced by 
it) when making a forecast for the same year on a later trial. However, 
to make the within‐participant comparisons reported above, we as‐
sumed independence of successive forecasts for the same year. It is 
possible that this assumption was not justified. Many other researchers 
into judgmental forecasting used a similar scroll‐forward procedure to 
ours (e.g., Angus‐Leppan & Fatseas, 1986; Kusev, van Schaik, Tsaneva‐
Atanasova, Juliusson & Chater, 2018; Lawrence, 1983) but, as far as we 
are aware, none tested this assumption of independence.

We took all 9 years (2000–2008) that were forecast five times, 
once at each of the five horizons. Then, for each horizon and assum‐
ing random intercepts and slopes, we fitted a multilevel linear model 
(Gellman & Hill, 2007), with forecasters as the level one variable and 
year as the level two variable. If independence holds, there should 
be no correlation between the 540 residuals from models for succes‐
sive horizons. However, the correlations between residuals for hori‐
zons 1 and 2, 2 and 3, 3 and 4, and 4 and 5 were 0.51 (t [538] = 13.76; 
p < 0.001), 0.41 (t [538] = 10.42; p < 0.001), 0.43 (t [538] = 11.05; 
p < 0.001), and 0.37 (t [538] = 9.24; p < 0.001), respectively. This 
means that the independence assumption was not justified, that 
the error terms for the within‐participant effects in our two mixed 
model	ANOVAs	are	likely	to	have	been	distorted,	and	that	any	ap‐
parent significance of those effects should be treated with caution. 
However, tests of our hypotheses did not depend on the significance 
or otherwise of these effects: they relied on comparisons between 

two independent groups. Our conclusions with respect to these hy‐
potheses remain valid.

1.5 | Experiment 2: Forecasting probability 
density functions

Participants were shown hurricane time series and were asked to 
place bets over the range of hurricane count values for the next year. 
This procedure enabled participants to generate probability density 
functions for one‐step‐ahead forecasts.

Based on Zacks and Tversky's (1999) findings, we expected that 
participants would anchor more on the last point when they saw the 
data series in continuous format. Hence, their probability distribu‐
tion functions (PDFs) and cumulative distribution functions (CDFs) 
would show a greater shift away from the empirically derived func‐
tions than when participants saw data in the discrete format. We ex‐
pect these shifts to be greater when the last data point is an outlier 
(distant from the series mean) than when it is not (H3).

1.5.1 | Method

Participants
Eighty university students, (59 females) participated in the experi‐
ment. Their mean age was 21 years. Forty participants were ran‐
domly allocated to each of the two groups. They were not paid for 
their participation.

Design
A 2 × 2 factorial design was adopted with the presentation format 
(continuous versus discrete) as a between‐participants variable and 
the proximity of the last data point to the series mean as a within‐
participants variable. (A last data point within one standard deviation 
of the mean of the empirical series was classified as close, whereas 
one outside that range was categorized as distant.) The dependent 
variable was participants' one‐step‐ahead probability density fore‐
casts obtained by measuring the spread of their bets across 20 avail‐
able bins. These 20 bins allowed only integer values for hurricane 
counts from a minimum of one up to a maximum of 20.

Stimulus materials
The experiment was a pen‐and‐paper task with stimuli presented 
in a booklet. Stimuli consisted of two hurricane time series graphs. 
Graphs were similar to those for 1975–2004 and 1976–2005 in 
Experiment 1 but with two differences. First, the years on x‐axis 
were replaced with numbers 1–30. Second, the five vertical, punctu‐
ated lines at the end of the x‐axis were replaced by a line of 20 bins, 
with the bin range corresponding to hurricane counts. For example, 
bin 10 from bottom corresponded to 10 hurricane occurrences.

Data were presented as continuous line graphs in one condition 
and as discrete point graphs in the other. These two different dis‐
plays are shown in Figure 4. Upper panels represent the pre‐2005 
series (close proximity) while lower panels represent the post‐2005 
series (distant proximity).
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These two data sets corresponding to the pre‐ and post‐2005 
exemplars (e.g., periods 1975–2004 and 1976–2005) shared sim‐
ilar characteristics: 29 of the 30 hurricane events were common. 
Only one new point (for 2005) appeared in the 1976–2005 series. 
Thus, any differences in bets between these two cases should be 
attributed to the value of the last data point in the series. This value 
was namely, nine hurricanes in 2004 (close to the series mean) and 
15 hurricanes in 2005 (distant from the series mean).

Procedure
The purpose of this experiment was to elicit density forecasts, gen‐
erate PDFs, and thence CDFs, of judgmental forecasts.

Each participant performed the task individually in a quiet lo‐
cation. Participants were first given the experimental booklet and 
asked to write their age and gender on the first sheet of the booklet. 
They then turned the first sheet over and saw the first hurricane time 
series. Instructions for the experiment were provided as follows:

In this experiment, you will take the role of an advisor 
to a top‐level insurance company that specialises in 
home insurance pricing based on hurricane time‐se‐
ries data. As part of the induction process, you will 
be shown two hurricane time series, corresponding 
to real data from the Atlantic and Pacific coast areas. 
The time series represent annual hurricane counts 
hitting the specified regions. Each time series con‐
tains 30 years of historical data.

In this task you are given £100 and you should allo‐
cate those to the 20 bins appearing at the right‐hand 
side of the given time series. Money allocation will be 
higher in the bins where you believe there is a greater 
probability for the next data point to occur and lower 
in bins where there is little chance for the next point 
to appear. To allocate your money, please enter your 
bets to each of the specified bins. You should allocate 
all £100. (If we played this for real, you would receive 
the money in the bin corresponding to the actual 
outcome.)

Thus, participants were endowed with a virtual sum of £100 and 
asked to allocate the whole amount to the 20 bins at the end of the 
time series. Both time series were presented either as continuous lines 
or as discrete unconnected points. To the right of historical data, a 
scale of 20 bins, ranging from 1 to 20 hurricanes, enabled participants 
to allocate their bets for the next year. Their money allocation (i.e., bet) 
had to be higher for a bin when they perceived the probability for the 
occurrence of number of hurricanes specified by that bin to be higher, 
and lower for a bin when they perceived the chance of the occurrence 
of the number of hurricanes specified by that bin to be lower. Once 
participants had read the instructions, they had the opportunity of ask‐
ing for further clarification of the task requirements. After completing 
the task for one time series, they proceeded to the second one. Upon 
completion of both graphs, they were debriefed and thanked. The ex‐
periment took approximately 10 minutes to complete.

F I G U R E  4   Hurricane series presented to the participants: continuous (left) and discrete (right) presentation formats with last data point 
close to (upper) and distant from (lower) the series mean
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1.5.2 | Results

For both the 1975–2004 (pre‐2005) and the 1976–2005 (post‐2005) 
series, bets were aggregated across participants to obtain the aver‐
age bets assigned to each of the 20 bins. The PDF and the CDF of the 
aggregated bets across the 20 bins were then constructed for each 
of the two exemplars in each condition.

Empirical distribution functions of bets were also created based 
on the time series of the hurricane occurrences given to participants. 
This was achieved by simply counting the number of hurricane oc‐
currences over the two periods (i.e., 1975–2004 and 1976–2005) 
and then assigning the corresponding proportion of the endowed 
sum to bets to each of the 20 bins. For example, if six hurricanes 
occurred on 3 of the 30 years, there was a 10% chance of six hurri‐
canes and so 10% of the £100 was assigned to the bin correspond‐
ing to six hurricanes. These empirical curves represented the best 
information available to participants for guiding their distribution of 
bets across the bins. The two curves for the pre‐2005 and post‐2005 
series were very similar because they contained 29 of the 30 hurri‐
cane events in common.

Continuous presentation format
The PDF and CDF of the aggregated results, together with the corre‐
sponding empirical data, are shown in Figures 5 and 6, respectively. 
The shift of the pre‐2005 functions to the right of the empirical ones 
indicates that the mean of the participants' bets was somewhat too 
high. Given that forecasters anchored on the last data point, this was 
to be expected because that last data point in the pre‐2005 series 
was well above the series mean. The shift of the post‐2005 functions 
even further to the right reinforces this interpretation because the 
last data point for that series was an outlier that was well above the 
series mean.

Discrete presentation format
PDFs and CDFs of the aggregated results, together with the empiri‐
cally derived functions, are shown in Figures 7 and 8, respectively. 
The curves for both pre‐2005 and post‐2005 series are shifted to 
the right of the empirically derived functions. However, the degree 
of shift is the same for the two series. This implies that the shift 
away from the empirically derived curves does not reflect an anchor‐
ing phenomenon (anchoring would produce a greater shift for the 

F I G U R E  5   Probability distribution 
functions (PDFs) derived from observed 
data (upper panel), from the continuous 
format group for pre‐2005 series (center 
panel), and from the continuous format 
group for post‐2005 series (lower panel)
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post‐2005 series). This implies that the rightward shift of both ex‐
perimental curves arises for another reason.

The elicited distributions appear to have a higher variance and to 
be less skewed than the empirical ones. These differences are likely 
to have arisen because the upward shift in the mean of the elicited 
distributions meant that the left tail of those distributions was not 
influenced by an end‐point effect (i.e., number of hurricanes could 
not be less than zero). This, in turn, implies that people have a ten‐
dency to produce symmetrical distributions when free of constraints 
imposed by end‐points.

Participants’ forecasts for the number of hurricanes were system‐
atically too high. One possible reason for systematic over‐forecasting 
is that the scenario led participants to assume asymmetric payoffs. 
They were told to assume that they were working for an insurance 
company: as a result, they may have assumed that under‐forecasting 
would cause the firm to lose money, whereas over‐forecasting would 
provide the firm with excess profits at the expense of householders 
who would have to pay higher premiums. Another possibility is that 
participants put their largest bets close to the mean (rather than the 
mode) of the empirical distribution and then imposed symmetry on 
their distribution of bets (as suggested in the previous paragraph).

The absence of a difference between the pre‐2005 series and 
the post‐2005 series with the discrete format but the presence of 
such a difference with the continuous format is consistent with H3. 
It indicates that presenting the data series using a discrete graphi‐
cal format serves to de‐emphasize the relation between successive 
points and, hence, reduces anchoring effects that are found when 
a continuous graphical format is used to present the data series.

To confirm these results, we carried out two analyses. First, 
we averaged the value of the bets that each participant allocated 
to bins with hurricane occurrence numbers 10–14 (i.e., extreme 
hurricane activity range, greater than one SD from the mean). Bets 
were averaged separately for the pre‐2005 series (1975–2004) and 
post‐2005 series (1976–2005) in both continuous and discrete dis‐
play	conditions.	We	then	ran	a	mixed	model	ANOVA	on	these	data	

using display condition (continuous versus discrete) as a between‐
participants factor and series (1975–2004 versus 1976–2005) as a 
within‐participants factor. This revealed the main effects of display 
condition (F [1, 78] = 10.84; p < 0.001) and series (F [1, 78] = 19.35; 
p < 0.001), together with an interaction between these factors (F [1, 
78] = 9.28; p = 0.003). This interaction occurred because the value 
of the bets in bins 10–14 was similar for both series with the discrete 
display and for the 1975–2004 series with the continuous display; 
however, it was very much higher for the 1976–2005 series with 
continuous display (Figures 5 and 7). Independent samples t tests 
showed no significant difference between the two display condi‐
tions for the 1975–2004 series (t [78] = 1.90; p = 0.17) but did show 
one for the 1976–2005 series (t [78] = 10.48; p = 0.002).

Second, we averaged the value of the bets that each participant 
allocated to bins with hurricane occurrence numbers 5–9 (i.e., av‐
erage hurricane activity range within one SD from the mean). Given 
that there was a greater betting on extreme bins in the continuous 
display condition with the 1976–2005 series (compared with the 
other display and series), we would expect less betting on average 
bins	with	that	display	and	series.	An	ANOVA	with	the	same	factors	
as before confirmed this. It again revealed main effects of display 
condition (F [1, 78] = 4.18; p = 0.044) and series (F [1, 78] = 40.84; 
p < 0.001), together with an interaction between these factors (F 
[1, 78] = 26.85; p < 0.001). This interaction arose because the value 
of the bets in bins 5–9 was similar for both series with the discrete 
display and for the 1975–2004 series with the continuous display; 
however, it was very much less for the 1976–2005 series with 
continuous display (Figures 5 and 7). Independent samples t tests 
showed no significant difference between the two display condi‐
tions for the 1975–2004 series (t [78] = 0.25; p = 0.62) but did show 
one for the 1976–2005 series (t [78] = 6.86; p = 0.01).

The results of these analyses reinforce the interpretation that we 
provided above. Consistent with H3, anchoring effects are reduced 
by using a discrete presentation format for data series.

1.5.3 | Discussion

Participants showed significantly greater anchoring on extreme 
values of the last data point when series were presented using a 
continuous graphical format than when they were presented using 
a discrete graphical format. This result serves to validate the conclu‐
sions of the first experiment within the context of a completely dif‐
ferent forecasting task.

The fact that density forecasts are strongly affected by display 
format, especially when recent data points are more than one SD 
from the series mean, has implications for real‐world hurricane fore‐
casting where probability density forecasting is often used.

1.6 | Experiment 3: Forecasting using 
prediction intervals

Prediction intervals are important in hurricane forecasting by practi‐
tioners2. These intervals specify upper and lower forecast boundaries 

F I G U R E  6    Cumulative distribution functions (CDFs) derived 
from the continuous format group and from the observed data
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within which the future value of the predicted variable is expected to 
lie with a specific probability. In hurricane forecasting, this probability 
is usually set at 70% but in other applications, such as demand fore‐
casting, it is often set at 90% or 95%. Prediction intervals are known to 
be too narrow (Lawrence & Makridakis, 1989; Lawrence & O'Connor, 
1993; O'Connor & Lawrence, 1989, 1992), suggesting overconfidence. 
It is likely that this phenomenon arises because participants anchor on 
the last data point and then adjust away from it in each direction to pro‐
duce the required interval (Harvey, 1997). Intervals are too narrow be‐
cause adjustment is typically insufficient (Tversky & Kahneman, 1974).

1.6.1 | Method

Participants were presented with the same historical hurricane time 
series data that were used in Experiment 1 but, in this experiment, they 
were requested to provide 70% prediction interval forecasts for the 

next 5 years. Based on Zacks and Tversky's (1999) findings and follow‐
ing the results obtained in Experiments 1 and 2, we expected partici‐
pants would be more overconfident in the continuous display condition 
(H4). This is because, in that condition, greater anchoring on the last 
data point to produce prediction intervals would produce less adjust‐
ment away from that point and hence result in narrower intervals.

Participants
Sixty students (40 females) from the University College London 
acted as participants. Their mean age was 20 years. They were not 
paid for their participation.

Design
Participants were randomly allocated to two groups, with the con‐
straint that there were 30 participants in each group. The first group 
(continuous representation) produced prediction intervals from 

F I G U R E  7   Probability distribution 
functions (PDFs) derived from observed 
data (upper panel), from the discrete 
format group for pre‐2005 series (center 
panel), and from the discrete format group 
for post‐2005 series (lower panel)
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continuous line graphs while the second group (discrete representa‐
tion) made their predictions from unconnected point graphs.

Stimulus materials
The time series used were the same as those in Experiment 1. At 
the end of the x‐axis of each one five vertical, punctuated lines were 
displayed at horizontal positions representing the next 5 years in the 
series. Participants marked their 70% prediction interval forecasts 
on these lines.

Procedure
Participants performed the task individually on computers. They 
read a short introduction and then entered their demographic de‐
tails (age, sex). Instructions were the same as in Experiment 1 except 
that, this time, instead of point forecasts, 70% prediction intervals 
were required. Thus, acting as insurance advisors, participants were 
requested to provide 70% prediction intervals of hurricane counts 
for the next 5 years based on 30 years of historical data. It was ex‐
plained to them that 70% prediction intervals meant that each future 
observation would fall into the corresponding forecasted interval 
with a 70% probability. The prediction intervals were marked by 
clicking twice on each of the five punctuated lines at the end of the 
graph to indicate the interval's upper and lower boundaries. After 
completing the forecasts for all 13 data series, participants were de‐
briefed and thanked.

1.6.2 | Results

We compared the mean width of prediction intervals across the 
two conditions. The size of the intervals was calculated by taking 
the difference between the upper and lower values of participants' 
responses.

According to H4, participants show more overconfidence (i.e., 
narrower prediction intervals) when given the continuous display 
than when given the discrete one. The data were consistent with 
this for all horizons (Figure 9).

We calculated the actual size of the 70% prediction intervals for 
each horizon in each series. We then subtracted these values from 
the corresponding ones estimated by each participant. This differ‐
ence score, averaged across horizon and series, provides a measure 
of the degree to which each participant tends to misestimate the 
width of prediction intervals. When it is negative, participants tend 
to underestimate prediction interval widths; when it is positive, they 
tend to overestimate them.

The mean value of the difference score in the continuous 
display	group	was	−1.25	with	a	SD	of	0.98.	This	mean	value	was	
significantly different from zero (t [29] = 7.02; p < 0.001), thereby 
indicating significant underestimation of prediction interval widths 
in this group. The mean value of the difference score in the dis‐
crete	display	group	was	−0.12	with	a	SD	of	1.74.	This	mean	value	
was not significantly different from zero (t [29] = 0.37; p = 0.71) 
and so there was no evidence of misestimation of prediction in‐
terval widths in this group. An independent samples t test (not 
assuming equality of variances) showed that the difference scores 
in the two display conditions were significantly different from one 
another (t [45.56] = 3.11; p = 0.003).

Figure 9 shows the degree of underestimation of the prediction 
interval widths in the two display conditions over each of the five 
horizons.	 A	 two‐way	mixed	model	 ANOVA	with	 display	 condition	
as a between‐participants factor and forecast horizon as a within‐
participants factor on these measures of underestimation of predic‐
tion intervals revealed only a main effect of display condition (F [1, 
58] = 9.13; p = 0.004).

1.6.3 | Discussion

Prediction intervals were narrower than the empirically derived ones 
with the continuous format but not with the discrete format. The 
difference in performance with different display formats can again 
be explained in terms of excessive anchoring and insufficient adjust‐
ment in the continuous format condition (Harvey, 1997) and amelio‐
ration of these problems by use of the discrete display.

Our findings replicate previous results obtained with continuous 
display formats (Lawrence & Makridakis, 1989; Lawrence & O'Connor, 
1993; O'Connor & Lawrence, 1989, 1992). Prediction intervals were 
too narrow. In the past, this has been taken as evidence that people 
are overconfident in their forecasts. However, simply by presenting 
data series in a discrete format, we can ensure that forecasters' judged 
intervals are well‐calibrated relative to empirically derived intervals. It 
seems unlikely that this change in format acts to reduce people's confi‐
dence in their forecasts. It is more likely that, consistent with Zacks and 
Tversky (1999), it acts to de‐emphasize the relation between successive 
points in the series and so reduces excessive anchoring.

1.7 | General discussion

Human judgments contribute a great deal to the accuracy of fore‐
casting but they are sometimes subject to certain systematic errors. 
Using uncorrelated and un‐trended real hurricane time series, the 

F I G U R E  8   Cumulative distribution functions (CDFs) derived 
from the discrete format group and from the observed data
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objective of the present study was to investigate judgmental biases 
in point forecasts (Experiment 1), density functions (Experiment 2), 
and prediction intervals (Experiment 3), and to study whether they 
can be ameliorated by changing the graphical format used to present 
the data series.

1.7.1 | Biases in judgmental forecasting

Lawrence and O'Connor (1995) found that the sort of under‐adjust‐
ment to be expected if judges use anchoring was not evident when 
judgmental forecasts were made from many real series (Makridakis 
et al, 1982). However, Reimers and Harvey (2011) argued that this 
does not mean that forecasts from real series are not subject to 
biases. Instead, it indicates that people are well‐adapted to series 
that are broadly representative of their real‐world environment. 
Moderate degrees of positive autocorrelation are typical of our en‐
vironment (Gilden, 2009) and when people forecast from such se‐
ries, they are unbiased. However, not all real series are typical. Some 
show higher levels of autocorrelation: they are forecast in a biased 
way that suggests that people perceive their autocorrelation as 
lower than it is. Other real series, such as the hurricane series used 
here, show very little autocorrelation3: they are forecast in a biased 
way that implies that people perceive their autocorrelation as higher 
than it really is. However, when we average over a whole set of real 
series with many different levels of autocorrelation, biases in differ‐
ent directions largely cancel each other out.

Thus, the anchoring effects that we have demonstrated with real 
series in our experiments are important. They show that the previous 
research with simulated series that has been used to argue judgmental 
forecasts are biased is indeed relevant to forecasting from real series. 
Biases appear with real series when those series are not typical of the 
series that people encounter in their environment. For example, some 
real series may contain atypically high or atypically low levels of auto‐
correlation: we can expect judgmental forecasting from those series 
to be biased. In other words, it is possible to be broadly well‐adapted 
to series encountered across the environment as a whole, but to still 
show some systematic biases when dealing with particular series.

Why do biases occur with series that have atypical levels of au‐
tocorrelation? People exposed to many series in the environment 

will gain some impression of the overall level of autocorrelation that 
they contain. When they encounter a new series, this average envi‐
ronmental autocorrelation can be regarded as an initial estimate for 
the autocorrelation in the new series. By processing the patterns in 
that series, they make an adjustment away from their initial estimate. 
However, because the data series are limited in length and noisy, 
their adjustment is only partial. Because it is only partial, the resid‐
ual influence of the environmental autocorrelation still has some ef‐
fect and this effect is what we label as a bias. Consistent with this 
account, biases are larger in noisier data (Harvey & Reimers, 2013; 
Reimers & Harvey, 2011). However, as this account makes clear, bi‐
ases are not to be regarded as signs that judgment is irrational: they 
can be produced by a process that can be characterized as close to 
a Bayesian one.

1.7.2 | Reducing forecasting biases

We know that various factors can influence the degree of bias that 
people exhibit. For example, Reimers and Harvey (2011) argued that 
people are constantly updating their estimates of the level of auto‐
correlation that is typical of their environment. They first presented 
people either with many series with low levels of autocorrelation or 
many series with high levels of autocorrelation. Then they required 
people to make forecasts from target series with moderate levels 
of autocorrelation. People who had previously seen many series 
with low levels of autocorrelation produced forecasts that indicated 
that they perceived a lower autocorrelation in the target series than 
people who had previously seen many series with high levels of 
autocorrelation.

Thus, the degree of autocorrelation that people perceive in 
a given series is labile. It can be influenced by previous experi‐
ence. The three experiments reported here demonstrate that it 
is also influenced by the way series are presented. Lines linking 
successive points serve to imply that there is a relation between 
those points that is inconsistent with their independence. To im‐
prove judgmental forecasting from independent points, we should 
present data series as unconnected points. Conversely, we would 
expect (though we have not shown it) that forecasting from points 
that are strongly sequentially dependent would be improved by 
presenting data series as line graphs rather than as unconnected 
points.

Many studies have shown that judgmental prediction intervals 
are too narrow. This can be explained in terms of anchoring: peo‐
ple anchor on the last data point and adjust away from it in both 
directions to produce the upper and lower bounds of the interval. 
Again, it appears that the degree to which they are “attracted” to 
the last data point is influenced by the graphical format in which 
the data series are presented. Line graphs emphasize connections 
(even when they are not logically or statistically present) between 
successive points, between the last data point and the first fore‐
cast (Experiment 1), and, apparently, between the last data point 
and the bounds of a prediction interval (Experiment 3). Simply 
by changing the data presentation format from continuous to 

F I G U R E  9   Underestimation of prediction interval widths in the 
two display conditions
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discrete, it is possible to eliminate this effect and thereby enable 
people to produce well‐calibrated intervals.

1.7.3 | Limitations and future work

First, it remains unclear whether the advantage of discrete graphs 
for forecasting purposes extends to other domains where se‐
ries show higher autocorrelation. There are reasons to suspect 
that they will not. With series showing a very high autocorrela‐
tion, the autocorrelation that people perceive (as implied by their 
forecasts) has been found to be less than it should be (Reimers 
& Harvey, 2011). For such series, continuous graphical formats 
that emphasize the relation between successive points are likely 
to produce better performance than discrete ones. Hence, future 
experiments should test real time series that have high levels of 
autocorrelation.

We also suspect that series with trends may not show the same 
advantage of discrete over continuous presentation format. Trends 
also depend on a relation between successive points and continuous 
presentation formats may serve to emphasize that relation. Harvey 
and Bolger (1996) have already shown that graphical presentation 
(via line graphs) reduces trend damping relative to tabular presen‐
tation (where, presumably, the relation between successive points 
is less salient).

We have studied only one element of the hurricane forecasting 
process. In future work, it would be useful to study how model‐
based forecasts are integrated with judgmental forecasts. In par‐
ticular, is the weighting given to model‐based forecasts influenced 
by the data format? Also, how is the integration process influenced 
by presenting model‐based forecasts not just for the future hori‐
zons that require forecasts but also for past time points for which 
the outcomes are known and displayed? With such a display, is the 
integration affected not just by the format in which the data are 
presented but also by the format in which past model forecasts are 
presented?

Our participants were not paid. Camerer and Hogarth's (1999) 
reviewed 74 studies that manipulated incentives: they were 
either absent, low, or high. Of the 59 studies in which perfor‐
mance accuracy could be assessed, incentives had no effect in 
27 of them, facilitated performance in 23 of them, and impaired 
performance in nine of them. For accuracy to be improved by 
incentives, the task had to be one in which increased mental 
effort would improve performance. Tasks in this category typi‐
cally involve memory encoding and recall (Kahneman & Peavler, 
1969); tasks that involve pattern perception are not included in 
it. Hence, it is unlikely that addition of incentives would have in‐
fluenced our results.
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NOTE S
1Hurricane forecasting is vital for ensuring that sufficient preparations 

and emergency procedures are in place in anticipation of hurricanes. 
One such preparation relates to the adjustment of pricings in the insur‐
ance	and	reinsurance	sector.	Every	year,	the	NOAA	Climate	Prediction	
Centre provides a formal, model‐derived seasonal outlook of the overall 
expected activity for the year's hurricane season. This information, to‐
gether with historical hurricane time series data, serves as the basis for 
the judgmental forecasts of the number of hurricanes in future years that 
are made by lay people and by practitioners, such as those working in the 
insurance industry. 

2Within	its	formal,	model‐derived	seasonal	outlook,	the	NOAA's	Climate	
Prediction Centre provides overall expected activity for the year's hur‐
ricane season in the form of prediction intervals. Statistical input from 
such formal models, along with the historic time‐series data that serve 
as a basis for forecasting the number of hurricanes in future years, are 
reviewed annually by insurers. They use their judgment to integrate all 
available information to set insurance prices. 

3Price changes in ideal markets are independent but those in real markets 
do not always fit this model (e.g., Bernard and Thomas, 1990). 
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