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Abstract4

The predictive skill of complex models is rarely uniform in model-state space; in weather5

forecasting models, for example, the skill of the model can be greater in the regions of most6

interest to a particular operational agency than it is in “remote” regions of the globe. Given7

a collection of models, a multi-model forecast system using the cross-pollination in time ap-8

proach can be generalized to take advantage of instances where some models produce forecasts9

with more information regarding specific components of the model-state than other models,10

systematically. This generalization is stated and then successfully demonstrated in a moder-11

ate (∼ 40) dimensional nonlinear dynamical system, suggested by Lorenz, using four imperfect12

models with similar global forecast skill. Applications to weather forecasting and in economic13

forecasting are discussed. Given that the relative importance of different phenomena in shap-14

ing the weather changes in latitude, changes in attitude among forecast centers in terms of the15

resources assigned to each phenomena are to be expected. The demonstration establishes that16

cross-pollinating elements of forecast trajectories enriches the collection of simulations upon17

which the forecast is built, and given the same collection of models can yield a new forecast18

system with significantly more skill than the original forecast system.19

Keywords : multi-model ensemble; data assimilation; cross-pollination; structural model error.20
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1 Introduction21

Nonlinear dynamical systems are frequently used to model physical processes including the evo-22

lution of the solar system, the motion of fluids and the weather. Uncertainty in the observations23

makes identification of the exact state of the system impossible for a chaotic nonlinear system.24

This suggests basing forecasts on an ensemble of initial conditions which reflects an inescapable25

uncertainty from the observations, thereby capturing the sensitivity of each particular forecast.26

When forecasting real systems like the Earth’s atmosphere, there is no reason to believe that a27

perfect model exists. Generally, the model class from which the particular model equations are28

drawn does not contain a process that is able to generate trajectories consistent with arbitrarily29

long time series of observations. In order to take into account both the structural model error30

and uncertainties in initial conditions, the multi-model and ensemble techniques can be combined31

into multi-model ensemble forecast systems. A novel approach to this task is presented in this32

paper.33

Multi-model ensembles [13, 17] have become popular tools to investigate, and to better ac-34

count for shortcomings due to structural model error, in weather and climate simulation-based35

predictions on time scales from days to seasons and centuries ([15, 17, 30, 31]). While there have36

been some results suggesting that the multi-model ensemble forecasts outperform the single-model37

forecasts in an RMS sense (for example, [15, 31]) Smith, et al. [24] challenged the claim that the38

multi-model ensemble provides a “better” probabilistic forecast than the best single-model. The39

current multi-model ensemble forecasts are based on combining single-model ensemble forecasts40

only by means of statistically interpreting ensembles of model simulations to form forecasts of41

the target system variables. To the extent that each model is developed independently, every42

single-model is likely to contain different local dynamical information from that of other models;43

the use of such information has not previously been explored as it is below. In typical statistical44

processing, such information is only carried by the simulations under a single-model ensemble: no45

advantage is taken to influence simulations under the other models. This paper presents a novel46

methodology, named Multi-model Cross-Pollination in Time, a multi-model ensemble scheme47

with the aim of integrating the dynamical information from each individual model operationally48

in time. The proposed approach generates model-states in time via applying data assimilation49

scheme(s) to pseudo-observations drawn from the multi-model forecasts. Illustrated here using50
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the moderate-order Lorenz model [16], the proposed approach is shown to allow significant im-51

provement both upon the traditional statistical processing of multiple, single-model trajectories52

and upon larger ensembles from the best single-model. It is suggested this illustration could53

form the basis for more general results which in turn might be deployed in operational forecast-54

ing. In weather forecasting, there is a tendency to focus on model performance locally: North55

America for National Centers for Environmental Prediction (NCEP), Europe for European Cen-56

tre for Medium-Range Weather Forecasts (ECMWF) and Eastern Asia for Japan Meteorological57

Agency (JMA). “Local” may correspond to such regional information, or to any neighborhood in58

a model-state space.59

The multi-model ensemble forecast problem of interest is defined, and traditional statistical60

processing approaches are reviewed, in Section 2. A full review of simple Multi-model Cross-61

Pollination in Time (CPT I) approach is presented in Section 3. An advanced Multi-model62

Cross-Pollination in Time (CPT II) approach is presented in Section 4. The experiment, based63

on a Lorenz 96 system-models pair is designed and the results are presented in Section 5. Section64

6 provides a discussion of wider applications and conclusions.65

2 Problem description66

Outside those problems defined within pure mathematics, there is arguably no perfect model for67

physical dynamical system [14, 25] evolving smoothly in time. Nevertheless, one may hypothesize68

a perfect model: a nonlinear system with state space R
m̃, and the evolution operator of the69

system is G̃ (i.e. x̃(t + 1) = G̃(x̃(t)) where x̃(t) ∈ R
m̃ is the state of the system). G̃, x̃, and70

m̃ are unknown. It is often useful to speak as if a mathematically well-defined system existed,71

regardless of whether or not one actually does exist. An observation of the system state at72

time t is defined by s̃(t) = h̃(x̃(t)) + η(t) where s̃(t) ∈ O, h̃ is the observation operator that73

projects the system state into observation space and η(t) represents the observational noise.74

What is in hand are M models, each of which approximates the system. Each model has the form75

x(t + 1; i) = Gi(x(t; i)), i = 1, . . . ,M , where x(t; i) ∈ R
m(i). R

m(i) is the model-state space of76

the ith model, Gi. In practice, model-state spaces usually differ from observation space, and it is77

likely that different models define different model-state spaces. The model-states can be projected78

into the observation space via an observation operator hi(·); different models may, of course, also79
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have different operators.80

Perhaps the simplest reaction to havingM models, each of which provides N-member ensemble81

forecasts, is to identify the best model, and discard the others. If the models are of comparable82

quality1, then it is likely that different models will tend to do better in different regions of state83

space (for weather models this could be either in different geographical locations or in different84

synoptic conditions or perhaps different variables). In part, this is due to variations both in tuning85

and in resource allocation during model construction, reflecting the particular processes that were86

considered most important.287

Let each model producing N-member ensemble forecasts by iterating an N-member initial88

condition ensemble forward. In practice, such a multi-model forecast system is evaluated using89

the observations not yet taken. The goal of this paper is to introduce a new multi-model ensemble90

forecast system (in time) to improve3 forecast of the future states.91

The Model Output Statistics (MOS) has a long and successful history of improving statistically92

single-model ensemble forecasts (see [32, 33] and references therein). For multi-model ensembles,93

statistical approaches have been proposed to combine ensembles of individual model simulations94

to produce a single, probabilistic, multi-model forecast distribution. Most of these approaches are95

based on weighting the model simulations according to some measure of past performance, see96

for example [5, 10, 19]. The output of these statistical processing approaches is a function of each97

individual forecast ensemble. Each single-model ensemble carries only the dynamic information98

as provided by that model forward in time. The multi-model ensemble framework is designed99

to reduce the impact of model inadequacy, as different models have different model structures;100

statistically processing the individual model outputs can not fully explore the local dynamical101

information available from each individual model. The extension of CPT presented in this paper102

integrates the dynamical information from each individual model in time; this results in new,103

truly multi-model trajectories which significantly increase the information in the ensemble of sim-104

ulations beyond that available from the original multi-model ensemble forecast. This is achieved105

1Or even in the case some models are inferior on average but more competitive on occasion.
2In practice, there is rarely enough data to identify which model will be the best in a particular (out of sample)

instance; one reasonable alternative is to compute M N-member ensembles (one ensemble under each model) and

treat each ensemble equally.
3The improvement is quantified by the information in probabilistic forecasts, as reflected in the Ignorance score

− log
2
(p(Y )) (see [9] and Section 5).
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by communicating information between different models regarding the likely future evolution of106

the system.107

3 Multi-model Cross-Pollination in Time I108

To the extent that the structural shortcomings of different models are independent, cross-pollinating109

trajectories between models to obtain truly multi-model trajectories can allow the ensemble of110

trajectories to explore important regions of state space that ensembles of individual models just111

can’t reach.112

Smith [23] introduced the Cross-Pollination in Time (hereafter CPT I) approach exploiting113

the assumption that all the models share the same model-state space4. Let ∆t be the observation114

time where every ∆t time step an observation is recorded. For simplicity, at every observation115

time all the models provide their model outputs5. Let τ be the cross-pollination time, that is, after116

each period of duration τ a cross-pollination event takes place. Given M N-member ensembles of117

trajectories, (one ensemble under each model), firstly consider the ensembles of states at t = τ as118

one large ensemble of N ×M states in a model-state space. Secondly, use some pruning scheme119

to reduce this large ensemble to N-member states in order to maintain a manageable ensemble120

size. While the optimal pruning scheme is, at best, an object of research, the simple approach of121

identifying the nearest pair of states, and then deleting from the pair the one member with the122

smallest second nearest neighbor distance has been found [23] to be more effective than random123

selection in some simple examples.6 In this paper, a pruning scheme based on the local forecast124

performance (see Section 5) is adopted to serve the purpose of demonstrating CPT II methodology.125

Thirdly, adopt this new set of N states as initial conditions at t = τ and propagate them forward126

under each of the M models to produce M N-member ensembles of trajectory segments from t = τ127

to t = 2τ , the next cross-pollination time. These three steps are repeated until the forecast time128

of interest is reached; then the ensemble can be interpreted for decision support, for example,129

providing probabilistic forecasts [4].130

4Or that there are known one-to-one maps which link their individual state space, given all the models are

iterated discretely.
5Note it is often the case that the model iteration (simulation) step is much smaller than the observation time,

and different models may have different iteration time steps and a different output frequency.
6Note that the aim of pruning is quite different than that of resampling from an estimated probability density

function [2].
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Inasmuch as the CPT I ensemble scheme contains all trajectories of each of its constituent131

models implicitly, the dynamical information of each model is explored and integrated individually.132

In practice, however, different models usually define different model-state spaces, and so one-to-133

one maps linking different model-state spaces may not exist. More relevant for the work below,134

however, is that CPT I traditionally considers the entire model-state, without careful regard for135

the fact7 that some models might forecast some components with greater skill. Under CPT I,136

each trajectory segment is a trajectory of one of the M models, the cross-pollination is one of137

trajectory segments; CPT II aims to use the information in the dynamics of each model more138

effectively. Another challenge for CPT I is that for each model, the initial conditions produced by139

other models are neither likely to be consistent with that model’s dynamics (not “on its attractor”140

if such a thing exists) nor to prove efficient in sampling initial conditions for the original model.141

Iterating initial conditions which are “out of balance” is expected to produce potentially odd,142

transient behaviour. The CPT II approach introduced in the next section frees the methodology143

from the assumptions above and overcomes some practical shortcomings as well.144

4 Multi-model Cross-Pollination in Time II145

The Multi-model Cross-Pollination in Time (CPT II) approach not only frees one from the as-146

sumption that all models share the same model-state space but also extracts and integrates the147

dynamical information from each model via exploring a sequence space.148

The CPT II approach consists of three steps:149

(i) Cast each trajectory in the multi-model ensemble into observation space, to create an en-150

semble of observation trajectories; these trajectories are then used to produce at least one151

sequence of states in the observation space.152

For each individual model, the forecast ensemble is obtained via iterating an initial condition

ensemble forward from t = 0 to t = τ , the first CPT time, thereby producing an ensemble

of model trajectory segments, from time t0 to t0 + τ . Although different models may define

different model-state space, every model-state can be projected into observation space using

the corresponding observation operator. A model trajectory segment of the ith model,

7CPT I could, of course, employ weighting and model skill explicitly in the pruning algorithm. CPT II takes a

much more considered approach.
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projected into observation space, becomes a series of points,

S(i) ≡ {hi(x(t0; i)), hi(x(t0 +∆t; i)), . . . , hi(x(t0 + τ ; i))},

where t0 is the initial time and x(t + ∆t; i) = G∆t
i (x(t; i)). As each of the M models has153

an N-member ensemble, construct one large ensemble of M × N observation trajectories154

S(i,j), i=1,. . . ,M and j = 1, . . . , N in the observation space. There are various statistical155

processing approaches to cast sequence states into the observation space; traditional MOS156

approach is one example. In order to maintain a manageable ensemble size, one may prune157

this large ensemble back into N sequences of states using some pruning scheme (the pruning158

scheme used in this paper is described in the following section), that is:159

{S(1, 1), . . . ,S(1, N)}

. . .

{S(M, 1), . . . ,S(M,N)}























→ {S⋆(1), . . . ,S⋆(N)} (1)

S
⋆ is the combined output of ensemble sequence states in the observation space,

S
⋆(j) ≡ {s⋆(t0; j), s⋆(t0 +∆t; j), . . . , s⋆(t0 + τ ; j)}

where s
⋆(t; j) ∈ O.160

(ii) Data assimilation of (future) observation sets (defined with a timing resembling actual161

observations) is made with consideration of the local skill of the model which generated it.162

For each observation, the model(s) with more skill with regard to each particular observation163

are favored.164

Given N sequences of states in the observation space, {S⋆(1), . . . ,S⋆(N)}, each individual165

model can apply a data assimilation scheme to each sequence of state to obtain a sequence166

of model-states in its model-state space; this corresponds to treating the sequence of states167

in the observation space as a sequence of observations (in the future):168

{S⋆(1), . . . ,S⋆(N)} →























{Z(1, 1), . . . ,Z(1, N)}

. . .

{Z(M, 1), . . . ,Z(M,N)}

(2)

Z(i, j) is the jth sequence of model-states in the ith model-state space,

Z(i, j) ≡ {z(t0; i; j), z(t0 +∆t; i; j), . . . , z(t0 + τ ; i; j)}
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where z(t; i; j) ∈ R
m(i). {Z(i, 1), . . . ,Z(i, N)} is obtained by applying a data assimilation169

scheme (using the ith model) to the observation trajectory {S⋆(1), . . . ,S⋆(N)}.170

It is not necessary for each model to apply the same data assimilation scheme (in practice,171

it is likely that each operational forecast system has a unique data assimilation scheme);172

using existing data assimilation schemes would clearly avoid an extra cost of implementing173

the CPT II approach. It is, however, noted that applying data assimilation here is crucial174

in order to extract dynamical information from the model. It is desirable to use a nonlinear175

data assimilation scheme which is robust (or as robust as currently possible) to structural176

model error; Pseudo-orbit Data Assimilation (see Du and Smith [6, 7]) is one such scheme.177

A brief description is given in Appendix A. As no model is perfect, the data assimilation178

scheme need not aim to obtain model trajectories, but merely pseudo-orbits [7]. Projecting179

the end component of the model pseudo-orbits, obtained from the data assimilation, into180

the observation space would provide N ×M states at t = t0 + τ .181

(iii) Iterate new states (from ii) forward.182

Take the end component of Z(i, j), specifically the point z(t0 + τ ; i; j) to be the initial183

condition for the jth ensemble member under the ith model, and iterate it forward using184

the ith model until the next cross-pollination time t0 +2τ . Repeating this over N members185

produces an ensemble of model trajectory segments, from time t0 + τ to t0 + 2τ .186

Repeat steps (i),(ii) and (iii) above starting at t = t0+τ to provide forecast states at t = t0+2τ187

and so on, providing an ensemble of future model-states at t = t0 + kτ , k = 1, 2, ....188

Cross-Pollination in Time [23] differs fundamentally from other “forecast assimilation” tech-189

niques. Stephenson et al. [28] for example introduced a novel approach to forecast assimilation190

which generalizes earlier calibration methods including model output statistics (see [34]). This191

approach provides a map from the space of model simulations to the space of observations. In192

general, any map from the model-state space to the target observable space which uses (only)193

information available at the time the forecast simulations were launched is admissible. Van den194

Berge, et al. [29] introduced a multi-model ensemble approach that combines imperfect models195

into one super-model through the introduction of linear connection terms between the model equa-196

tions (see Duane [8] and Shen et al. [22] for recent applications). Note that this “super-model”197

approach builds connections between imperfect models by modifying the model’s equations while198
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CPT II creates the communications between models via data assimilation. Brocker and Smith [4]199

discuss other approaches to ensemble interpretations. None of these papers8, however, enable the200

feedback of forecast-simulation information into the dynamics of the forecast itself. CPT II does201

precisely this.202

5 Experiments based on Lorenz96203

A system of nonlinear ordinary differential equations (hereafter, the Lorenz96 System) was in-204

troduced by Lorenz [16]. For the system containing n variables x1, ..., xn with cyclic boundary205

conditions (where xn+1 = x1), the equations are206

dxi
dt

= −xi−2xi−1 + xi−1xi+1 − xi + Fi, (3)

Lorenz initially reported [16] the case where Fi = Ffix for all i. The variation of F with i was207

a consideration at that time (Lorenz 1995, personal communication). The system represents208

a one-dimensional atmosphere; the n variables x1, ..., xn are identified with the values of some209

unspecified scalar atmospheric quantity at n equally spaced points about a latitude circle called210

grid points. Ffix is a positive constant. It was also found [16] that for n > 12, Equation (3) are211

chaotic when Ffix > 5.212

The true system (hereafter, system) used in the following experiments, contains 40 variables,213

n = 40, and the values of the parameter Fi varies with locations, i.e. Fi = 8 for i = 1, . . . , 10;214

Fi = 12 for i = 11, . . . , 20; Fi = 14 for i = 21, . . . , 30; Fi = 10 for i = 31, . . . , 40. Four models are215

each defined using the same dynamical equation as the system but with fixed value of parameter216

Fi, that is: model I, Fi = 8 for all i; model II, Fi = 12; model III, Fi = 14 and model IV, Fi = 10.217

Both the system and the model are integrated using a standard fourth-order Runge-Kutta218

numerical simulation. The simulation time step is 0.01 time unit and the model time step ∆t is219

0.05, that is each model time step is conducted by 5 integration steps. Observations s(t) ∈ R
40

220

are generated by the system plus IID Gaussian noise, N(0, σ2
Noise), σNoise = 0.2, at every system221

8The super model approach modifies the dynamics through altering model structure to improve forecasts using

information from a global linear fit; it does not, however, blend dynamic forecast-simulation information so as to

alter the dynamics of the individual simulations.
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time step (0.05 time unit).9 The cross-pollination time τ = 0.4 corresponds to 2 days10.222

For a forecast initial time t0, a simple inverse noise method11 is adopted to generate a 9-223

member initial condition ensemble for all the models, IC(t0) ≡ {x(t0, j) ∈ R
40, j = 1, ..., 9}.224

The initial condition ensemble is evolved forward under each of the four models to time t0 + τ .225

This gives a 9-member ensemble of model trajectories for each model; for example, for model226

I: {S(I, 1), . . . ,S(I, 9)} where S(I, j) ≡ {x(t0; I; j),x(t0 + ∆t; I; j), . . . ,x(t0 + τ ; I; j)}, x(t +227

∆t; I; j) = G∆t
I (x(t; I; j)) and x(t; I; j) ≡ {x1(t; I, j), x2(t; I, j), . . . , x40(t; I, j)} ∈ R

40 .228

To demonstrate that the proposed CPT II approach is both effective and robust, a long time229

series of observations are generated using the true system plus IID Gaussian observational noise;230

the true states of the system are also recorded for the evaluation phase of the experiment. For each231

model, a large set of pure model ensemble forecasts is obtained by launching ensemble forecasts232

using the inverse noise initial condition ensemble [12] at different observational times. To assess233

each model’s forecasts at various lead-times, the forecast ensemble is translated into a predictive234

distribution function by kernel dressing and blending with climatological distribution (for a full235

description see [4], and Appendix B). The interpretation-parameter values required for ensemble236

interpretation (including kernel width and blending weight, see Appendix B) are fitted using a237

training set of 2048 ensemble forecasts. The forecast skills of each model is assessed out-of-sample238

using an independent set of 2048 forecast-outcome pairs.239

The forecast performance is evaluated with IJ Good’s logarithmic score, Ignorance [9, 20].240

Ignorance is the only proper local score for continuous variables [1, 3, 18]. Although there are241

other nonlocal proper scores, the authors prefer using Ignorance since it is both local and has a242

clear interpretation in terms of information theory (it can also be easily communicated in terms243

of an effective interest rate of return [11]).12 Ignorance is defined by:244

S(p(y), Y ) = − log2(p(Y )), (4)

9In this setting, the model-state space, system state space and the observation space are identical, although as

proposed, CPT II is not constrained to operating in this setting.
10Assuming 1 time unit is equal to 5 days, the doubling time of the Lorenz96 system roughly matches the

characteristic time-scale of dissipation in the atmosphere (see Lorenz [16]).
11Given a model of the observational noise, one can add random draws from the inverse of the observational noise

model to the observation to define ensemble members [12]. As each ensemble member is an independent draw from

the inverse observational noise distribution, each ensemble member is weighted equally.
12There are no compelling examples in favor of the general use of nonlocal scores and some nonlocal scores have

been shown to produce counter-intuitive evaluations [27].
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where Y is the outcome and p(Y ) is the probability of the outcome Y . The empirical average245

Ignorance of a forecast system given K forecast-outcome pairs {(pi, Yi) | i = 1, . . . ,K} is then246

SE(p(y), Y ) =
1

K

K
∑

i=1

− log2(pi(Yi)), (5)

Relative Ignorance reflects the performance of (a set of) forecasts from one model relative to247

those of a reference forecast pref :248

Srel(p(y), Y ) =
1

K

K
∑

i=1

− log2[(pi(Yi))/prefi(Yi)]. (6)

The relative Ignorance of two forecast systems quantifies the information gain (in bits) the model249

forecast system provides over the reference system. In other words, Ignorance reflects the (average)250

increase in probability density that the model forecast placed on the outcome relative to that of251

the reference forecast. By convention, Ignorance is a negatively oriented score, which means the252

smaller (the more negative) the score the more skillful the forecast system.253
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Figure 1: Ignorance score of forecasts as a function of location (model-state component) at lead-

time τ = 0.4 time unit, a) forecasts from each individual model, b) pure multi-model forecast

(Black) and CPT II forecast (Cyan).

Figure 1a, 2a and 3a shows the empirical Ignorance relative to climatology13 for forecasts254

made by each model at different locations (model-state component) at lead-time τ , 2τ and 3τ .255

The empirical Ignorance is calculated based on 2048 forecast-outcome pairs and the climatological256

distribution is estimated using an independent 2048 historical observations.257

13A climatological forecast (see [4]) based on the distribution of historical observations serves to define a zero-skill

reference.
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Figure 2: Ignorance score of forecasts as a function of location (model-state component) at lead-

time 2τ = 0.8 time unit, a) forecasts from each individual model, b) pure multi-model forecast

(Black) and CPT II forecast (Cyan). Note that, as expected, the improved skill under CPT II is

greater at this longer lead-time.
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Figure 3: Ignorance score of forecasts as a function of location (model-state component) at lead-

time 3τ = 1.2 time unit, a) forecasts from each individual model, b) pure multi-model forecast

(Black), pure multi-model forecast with 36-member ensemble from each model (Brown) and CPT

II forecast (Cyan).

The four imperfect models each produce a (9-member) ensemble of forecast trajectories, thus

there are 36 forecast trajectories in total. To conduct cross-pollination, a simple pruning algo-

rithm, based on local forecast performance, is adopted to maintain a manageable ensemble size.
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Define the pruned ensemble observation trajectories to be {S⋆(1), . . . ,S⋆(9)} where

S
⋆(j) ≡ {s⋆(t0; j), s⋆(t0 +∆t; j), . . . , s⋆(t0 + τ ; j)}

and s
⋆(t; j) ≡ {y1(t; j), y2(t; j), . . . , y40(t; j)} ∈ R

40. Assign the value of xi(t, B, j) to yi(t; j),258

where B is historically the local most informative model among (I, II, III, IV) (the one that259

produced lowest Ignorance forecasts at lead-time τ for model-state component location i in the260

training set). A probabilistic approach selecting the most informative model dynamically is easily261

implemented. The proposed pruning algorithm therefore prunes 36 forecast trajectories into a262

9-member ensemble of observation trajectories.263

To demonstrate the CPT II approach, the outputs from the pure model approach are compared264

with the results from the CPT II approach at lead-time τ , 2τ and 3τ . Note that both the outputs265

from pure model simulations and those from the CPT II approach at any lead-time t form a multi-266

model ensemble (the CPT II ensembles are obtained by pruning the model forecast trajectories267

and then conducting data assimilation). The multi-model ensemble is interpreted by combining268

the forecast distributions, generated from ensembles of individual model outputs to produce a269

single probabilistic multi-model forecast distribution for evaluation. A linearly weighted approach270

is adopted to combine the single-model forecast distribution (the model weights are determined271

using the training set, for a full description see [26], and Appendix C). All evaluation is out-of-272

sample.273

Figure 1b, 2b and 3b compares the probabilistic forecasts from the pure multi-model outputs274

(Black) with those from CPT II (Cyan) at lead-time τ , 2τ and 3τ . At lead-time τ , the dynamical275

information from each of the individual trajectory are combined and embedded into the forecasts,276

which are also the initial states of the forecasts for the next cross-pollination period. Such ad-277

ditional information in the initial conditions reveals its value at the next forecast period, where278

significant14 improvement in skill is shown at lead-time 2τ and 3τ . Note in Figure 3b that the279

CPT II forecast also significantly outperforms the pure multi-model forecast (Brown) based on an280

ensemble four times larger (this allows a comparison when each forecast is based on a 36-member281

ensemble).282

Is CPT II also an improvement on CPT I? Figure 4 shows the forecast skill of CPT II (Cyan)283

and CPT I (Purple) relative to the probabilistic forecasts from the pure multi-model outputs at284

14The resampling bars in each figure represent 10%− 90% bootstrap resampling intervals.

13



lead-time 2τ and 3τ . Both CPT II and CPT I forecasts improve significantly the forecast skill285

over that of the pure multi-model forecast, while CPT II places an additional 5% more probability286

mass (a difference of ∼ 0.065 bits in expected Ignorance) on the outcomes than CPT I.287
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Figure 4: Ignorance score of forecasts from CPT II (Cyan) and CPT I (Purple) relative to pure

multi-model forecast (Black dashed zero line) as a function of location (model-state component)

at lead-time a) 2τ = 0.8 time unit and b) 3τ = 1.2 time unit.

CPT II successfully exploits the sophisticated aspects of the PDA data assimilation scheme [6,288

7] to allow selective inclusion of locations (state space components) in the forecast simulation of289

each model. Doing so allows the CPT forecast system to generate forecasts with support beyond290

that of any single-model forecast systems and also beyond any traditional multi-model forecast291

systems. As demonstrated above, CPT II can increase forecast skill.292

6 Conclusion293

Suppose, for a moment, one has two models which simulate supply and demand, given the current294

supply and demand. Model A produces significantly better forecasts of supply, while Model B295

yields significantly better forecasts of demand. The traditional multi-model approach is to consider296

an ensemble of simulation under Model A and a second, independent, ensemble of simulations297

under model B. In this case, the specific model inadequacy of each model will result in a decay in298

the relevance of the probabilistic forecasts with lead-time. Cross-Pollination in Time II aims to299

forestall this decay, extending the lead-time on which forecasts are informative, by assimilating300

forecasts of the near-term future to generate an enhanced ensemble of forecasts in the medium301
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range, and iterating the process into the long range. In this simple case, taking the “supply”302

forecast from Model A and the “demand” forecast from Model B would produce a new initial303

condition to be folded into the forecast ensembles of each model at lead-time one, and propagated304

into the future, improving forecast skill while using only the models already in hand.305

By contrast, the state of a modern weather model consists of (more than) ten million com-306

ponents, and no two operational models need actually share the same model-state space. As307

implemented above, CPT II overcomes this challenge by using a data assimilation algorithm308

designed to start with a pseudo-orbit, and an initial pseudo-orbit extracted from the initial sim-309

ulation trajectory of each model. Here, CPT II yields probabilistic forecasts more skillful than310

traditional approaches, even when the ensemble size of the traditional approach is increased by a311

factor of four (the number of models used above). As noted above, challenges remain in deploying312

and interpreting CPT II forecast systems; this concrete example of success is intended to motivate313

exploration of more realistic cases.314

APPENDIX315

A Pseudo-orbit Data Assimilation316

A brief description of the PDA approach is given in the following paragraphs (more details can be317

found in Du and Smith [6, 7]). Let the dimension of the model-state space be m and the number318

of observation times in the assimilation window be n (for experiments presented in this paper,319

n = τ
∆t

). A pseudo-orbit, U ≡ {u
−n+1, ...,u−1,u0}, is a point in the m× n dimensional sequence320

space for which ut+1 6= G(ut) for any component of U. Define the component of the mismatch of321

a pseudo-orbit U at time t to be et =| G(ut)− ut+1 |, t = −n+ 1, ...,−1 and take the mismatch322

cost function to be323

C(U) =
∑

e
2
t (7)

The Pseudo-orbit Data Assimilation minimizes the mismatch cost function for U in the m × n324

dimensional sequence space. In this paper a gradient descent (GD) minimization algorithm is used.325

For CPT II, such minimization is initialized with the combined model output of sequence states326

in the observation space, S⋆(j) in Equation (1) and (2). An important advantage of PDA is that327
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the minimization is done in the sequence space: information from across the entire assimilation328

window is used simultaneously.329

The pseudo-orbit U is updated on every iteration of the GD minimization. Call these steps330

along GD minimization α
U, where α indicates algorithmic time in GD. Due to model imperfection,331

the minimization is applied with a stopping criteria in order to obtain more consistent pseudo-332

orbits [7]; this is because the mismatches will reflect the point-wise model error when the model333

is imperfect. In the experiments presented in this paper the stopping criteria targeted forecast334

performance at lead-time τ , 2τ and 3τ .335

B Ensemble Interpretation336

An ensemble of simulations is transformed into a probabilistic distribution function by a com-337

bination of kernel dressing and blending with climatological distribution (see [4]). Denote an338

N -member ensemble at time t as Xt = [x1t , ..., x
N
t ], where xit is the ith ensemble member. For339

simplicity, all ensemble members under a model are treated as exchangeable. Kernel dressing340

defines the model-based component of the density as:341

p(y : X,σ) =
1

Nσ

N
∑

i

K

(

y − (xi − µ)

σ

)

, (8)

where y is a random variable corresponding to the density function p and K is the kernel, taken342

here to be343

K(ζ) =
1√
2π

exp(−1

2
ζ2). (9)

Thus each ensemble member contributes a Gaussian kernel centred at xi − µ. Here µ is an offset,344

which accounts for any systematic “bias”. For a Gaussian kernel, the kernel width σ is simply345

the standard deviation.346

For any finite ensemble, there remains the chance of ∼ 2
N

that the outcome lies outside347

the range of the ensemble even when the outcome is selected from the same distribution as the348

ensemble itself. Given the nonlinearity of the model, such outcomes can be very far outside349

the range of the ensemble members. Not only is N finite in practice, of course, but also the350

simulations are not drawn from the same distribution as the outcome; the ensemble simulation351

system is not perfect. To improve the out-of-sample skill of the probabilistic forecasts, the kernel352

dressed ensemble is blended with an estimate of the climatological distribution of the system353
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(see [4] for more details, see [21] for alternative kernels and see [18] for a Bayesian approach). The354

blended forecast distribution is then written as355

p(·) = αpm(·) + (1− α)pc(·), (10)

where pm is the density function generated by dressing the model ensemble as in Equation (8)356

above, and pc is the estimate of climatological density. The blending parameter α determines357

how much weight is placed in the model. Specifying the three values (the offset µ, the kernel358

width σ, and the blended parameter α) defines the forecast distribution. These parameters are359

fitted simultaneously for each forecast system by optimizing the empirical Ignorance score in the360

training set.361

C Weighting Multi-model Ensemble362

There are many ways to combine forecast distributions generated from ensembles of individual363

model simulations in order to produce a single, probabilistic, multi-model forecast distribution.364

One approach is to assign equal weight to each model and simply sum the equally weighted365

distributions generated from each model to obtain a single probabilistic distribution (see [10]).366

In general, different forecast models do not provide equal amounts of information; more skillful367

forecasts are obtained by weighting the models according to some measure of past performance,368

see, for example, [5, 19]. The combined multi-model forecast is the weighted linear sum of the369

constituent distributions,370

pmm =
∑

i

ωipi, (11)

where the pi is the forecast distribution from model i and ωi its weight, with
∑

i ωi = 1. The371

weighting parameters may be chosen by minimizing the Ignorance score, for example; although372

fitting ωi in this way can be costly, other approaches are typically complicated by different models373

sharing information. The weights of individual models are, of course, expected to vary as a374

function of lead-time.375

To avoid poorly determined weights, a simple iterative method to combine models is adopted376

avoiding any attempt to determine all the weights simultaneously. For each lead-time, the best377

(in terms of Ignorance) forecast system is first combined with the second-best forecast system378

to form a combined forecast distribution (by assigning weights to both models). The combined379
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forecast distribution is then combined with the third-best forecast system to update the combined380

forecast distribution. Repeat this process until the least skillful model has been considered.381
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