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Abstract5

The evaluation of forecast performance plays a central role both6

in the interpretation and use the forecast system and in their devel-7

opment. Different evaluation measures (scores) are available, often8

quantifying different characteristics of forecast performance. The prop-9

erties of several proper scores for probabilistic forecast evaluation are10

contrasted and then used to interpret decadal probability hindcasts of11

global mean temperature. The Continuous Ranked Probability Score12

(CRPS), Proper Linear (PL) score, and IJ Good’s logarithmic score13

(also referred to as Ignorance) are compared; although information14

from all three may be useful, the logarithmic score has an immediate15

interpretation and is not insensitive to forecast busts. Neither CRPS16

nor PL is local; this is shown to produce counter intuitive evaluations17

by CRPS. Benchmark forecasts from empirical models like Dynamic18

Climatology place the scores in context. Comparing scores for fore-19

cast systems based on physical models (in this case HadCM3, from20

the CMIP5 decadal archive) against such benchmarks is more infor-21

mative than internal comparison systems based on similar physical22

simulation models with each other. It is shown that a forecast sys-23

tem based on HadCM3 out performs Dynamic Climatology in decadal24

global mean temperature hindcasts; Dynamic Climatology previously25

∗Part of the EQUIP special issue of Climatic Change
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outperformed a forecast system based upon HadGEM2 and reasons for26

these results are suggested. Forecasts of aggregate data (5-year means27

of global mean temperature) are, of course, narrower than forecasts28

of annual averages due to the suppression of variance; while the aver-29

age “distance” between the forecasts and a target may be expected to30

decrease, little if any discernible improvement in probabilistic skill is31

achieved.32

1 Introduction33

Decision making would profit from reliable, high fidelity probability forecasts34

for climate variables on decadal to centennial timescales. Many forecast35

systems are available, but evaluations of their performance are not stan-36

dardised, with many different scores being used to measure different aspects37

of performance. These are often not directly comparable across models or38

across different studies. EQUIP (the ‘End-to-end Quantification of Uncer-39

tainty for Impacts Prediction’ consortium project) aimed to provide guid-40

ance to users of information at the space and time scales of interest, and41

to develop approaches to enable evidence-based choice between alternate42

forecasting methods, based on reliable and informative measures of forecast43

skill. The intercomparison of simulation models is valuable in many ways;44

comparison of forecasts from simulation models with empirically-based ref-45

erence forecasts provides additional information. In particular it aids in46

distinguishing the case when each forecast system does well; and so the best47

system cannot be identified (i.e. equifinality) from the case in which each48

forecast system performs very poorly (i.e. equidismality) [1, 35]. Indeed49

some climate researchers have required the demonstration of skill against50

a more easily prepared reference forecast as a condition for accepting any51

complicated forecasting scheme as useful [34]. This raises the question of52

how exactly to quantify skill.53

Three measures of forecast system performance (hereafter, scores) are54

studied below and the desirability of their attributes is considered. It is55

critical to keep in mind that an entire forecast system is evaluated, not56

merely the model at its core. Each score in turn is then illustrated in the57

context of decadal forecasts of global mean temperature. Section 2 discusses58

several measures of forecast system performance, including the logarithmic59

score (Ignorance) [16, 27], the Continuous Ranked Probability Score (CRPS)60

[10, 14] and the Proper Linear score (PL) [13]. General considerations for61

selecting a preferred score are discussed; CRPS is demonstrated capable62

of misleading behavior. Section 3 then introduces the forecast targets and63
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forecast systems to be considered in this paper. Both empirical and simula-64

tion models are identified and the primary target, global mean temperature65

(GMT), is discussed. Section 4 considers the performance of probability66

forecasts (both empirical and simulation-based) on decadal scales in the67

light of each of these scores.68

2 Measuring forecast performance69

Several scores are available for the evaluation of probabilistic forecasts [4,70

14, 23, 21]; each quantifies different attributes of the forecast. While the71

importance of using proper scores is well recognised [4, 12], researchers of-72

ten face requests to present results under a variety of scores. Indeed in the73

context of meteorological forecast evaluation there are several recommenda-74

tions in the literature [24, 26, 39, 12, 15], although often with little discussion75

of which attributes different scores aim to quantify, or their strengths and76

weaknesses in a particular forecast setting. By convention, a lower score is77

taken to reflect a better forecast.78

A score is a functional of both the forecast (whose pdfs are denoted by79

either p or q) and the observed outcome (X). It is useful to speak of the80

“True” distribution from which the outcome is drawn (hereafter, Q) without81

assuming that such a distribution exists in all cases of interest. Given a82

proper score, a forecast system providing Q will be preferred whenever it83

is included amongst those under consideration.[4, 12] When this is not the84

case, then even proper scores may rank two forecast systems differently,85

making it difficult to provide definitive statements about forecast quality.86

There are, however, desirable properties of the scores themselves that may87

help to narrow down the set of scores appropriate for a given task.88

A score, S(p(x), X), is said to be ‘proper’ if inequality (1) holds for any89

pair of forecast pdfs, and ‘strictly proper’ when equality is implies p = q:90

∫

q(z)S(p(z), z)dz ≥

∫

q(z)S(q(z), z)dz. (1)

For a given forecast p, a score is itself a random variable with values that91

depend on the observed outcome X. One can calculate the expected score92

of the forecast p when X is actually drawn from underlying distribution q.93

A proper score does not, in expectation, judge any other forecast p to score94

better than q as a forecast of q itself. The interpretation of proper does95

not, however, require one to believe that a “True” distribution Q exists.96

While use of a proper score might be motivated by concerns of hedging [28],97
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proper scores are preferred even when there is no human in the loop, as in98

parameter selection [9]. For completeness, and without endorsement, the99

discussion below is not restricted to proper scores.100

2.1 RMSE of the ensemble mean101

The Root Mean Squared Error (RMSE) quantifies the distance between the102

ensemble mean, x̄(i) of the ith forecast and the corresponding outcome, X(i),103

defined as,104

RMSE(x̄, X) =

√

√

√

√

1

m

m
∑

i=1

(x̄(i)−X(i))2, (2)

Note that rather than provide a score for a single forecast RMSE summarizes105

m forecasts. Any of the wide variety of forecast distributions with the same106

mean will achieve the same score. An alternative summary score resembling107

the RMSE can be defined via108

SRMSE((p1, ....pm), (X1, ...Xm)) =

√

√

√

√

1

m

m
∑

i=1

(

∫

∞

−∞

(Xi − z)2p(i, z)dz. (3)

The original RMSE re-emerges by setting the forecast p as a delta function109

at the ensemble mean. The integral term is sometimes referred to as the110

Mean Squared Error (MSE). This score is not proper, and the lowest score is111

attained when the standard deviation of the forecast is zero - an unfortunate112

incentive for an imperfect probabilistic forecast.113

2.2 Naive Linear and Proper Linear scores114

The Naive Linear (NL) score is not proper. It is defined by:115

SNL(p(x), X) = −p(X). (4)

The NL score can be “made” strictly proper by the addition of an integral116

term over p to equation 4,117

SPL(p(x), X) = −2p(X) +

∫

∞

−∞

p2(z)dz, (5)

resulting in the Proper Linear (PL) score [13]. The PL score is related to118

the quadratic score, which is part of the power rule family that contains an119

4



infinite number of proper scores [28]. The popular Brier [3] and Continuous120

Ranked Probability scores [10] are also special cases of the quadratic scoring121

rule family [33]. The PL score itself rewards a forecast both for the proba-122

bility placed on the outcome (the first term in equation 5) and for the shape123

of the distribution (the second term in equation 5). Narrower distributions124

are penalised regardless of the outcome. Arguably the second term clouds125

the interpretation of the score, unless one has some particular incentive to126

minimize this integral. This illustrates a case where an intuitive score, the127

probability of the outcome, can be made to be proper at the cost of some128

immediate intuitive appeal. Alternatively, in cases where it is meaningful to129

speak of the distribution from which the outcome is drawn (referred to as130

Q above), then PL is simply related to the integral of the squared difference131

between the forecast p(x) and Q(x). This point is revisited in Section 4.132

2.3 Continuous Ranked Probability133

The Continuous Ranked Probability Score (CRPS) is the integral of the134

square of the L2 distance between the cumulative distribution function of135

the forecast p and a step function at the outcome [10],136

SCRPS(p(x), X) =

∫

∞

−∞

(
∫ x

−∞

p(z)dz −H(x−X)

)2

dx, (6)

where the Heaviside (step) function H is defined as follows:137

H(x) =

{

0 if x < 0

1 if x ≥ 0
(7)

CRPS can be interpreted as the integral of the Brier score over all threshold138

values; for point forecasts CRPS reduces to the mean absolute error. The139

CRPS rewards a forecast for both its calibration and shape, but unlike the140

PL score they are assessed simultaneously. A decomposition into reliability141

and resolution components is possible [19, 6]. The CRPS is sometimes said142

to assign a value to a raw ensemble of point forecasts [14, 11, 7]1; this claim143

is equivalent to interpreting the ensemble members as probability forecast144

consisting of a collection of delta functions. Given that ensemble interpre-145

tation, any probability scoring rule can be applied, of course. CRPS is146

1We note there are concerns regarding statistical consistency under this interpreta-
tion [7]
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somewhat more tolerant of weaknesses of this delta function ensemble inter-147

pretation than the other scores discussed here.2 The authors are unaware148

of an intuitive interpretation of the quantitative values of CRPS.149

2.4 Ignorance150

The Ignorance score [16, 27] is a strictly proper score defined as,151

S(p(x), X) = −log2(p(X)), (8)

where p(X) is the density assigned to the outcome X. It is the only proper152

local score, rewarding a forecast solely for the probability density placed153

on the observed outcome, rather than for other features of the forecast dis-154

tribution such as its shape. This makes computing the score significantly155

less computationally expensive. The Ignorance score corresponds to the ex-156

pected wealth doubling (or halving) time of a Kelly investment strategy, and157

can be expressed as an effective interest rate [18]. Kelly’s focus [22] was on158

information theory, specifically on providing a context for the mathematical159

results of Shannon while neither of them could define a “communication160

system” precisely. A gambling analogy was selected because it had the es-161

sential features of a communication system. Ignorance emerges as a natural162

measure of information content of probability forecasts in general.163

Selten [28] objects to the Ignorance score because it severely penalises164

forecasts that place very low probabilities on the observed outcome, and165

indeed Ignorance gives an infinitely bad score if an outcome occurs that the166

forecaster said was impossible. One of the present authors (TM) works in167

the insurance industry, however, and believes this to be a desirable property168

of a score – extreme model failure has been one of the key causes of distress in169

the financial services industry. Acknowledging unlikely possibilities as such170

and thereby avoiding the infinite penalty of having stated they were truly171

impossible might be seen as basic good practice (see, however, discussion by172

Borel (1962) regarding vanishingly small probabilities); adopting a minimum173

forecast probability to account for the imperfection of science is perhaps174

akin to adding a margin for safety in engineering terms. In the next section,175

CPRS is shown to be remarkably insensitive to outcomes in regions that176

2At the request of a reviewer we make this tolerance explicit. For a given forecast p(x)
, PL and IGN will give worse scores to an outcome X when p(X) is smaller, while CRPS
may award its best possible score to an outcome X which is deemed impossible by the
forecast PDF (that is p(X) = 0). Scores which systematically prefer forecasts which place
a lower probability on the outcome are called perverse.
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forecast to have vanishingly small or zero probability. No optimal balance on177

the the appropriate level of sensitivity of scores has been generally agreed.178

2.5 Comparing the behaviour of Ignorance and CRPS179

The Ignorance and CRPS scores corresponding to a variety of different out-180

comes given two bimodal forecast distributions are shown in Figure 1. Figure181

1a shows distributions with symmetric (thick blue) and asymmetric (thin182

red) shapes. Figure 1c compares the Ignorance (y) and CRPS (x) scores in183

the case of a symmetric bimodal distribution (the thick blue distribution in184

Figure 1a) as the observed outcome moves across the forecast distribution185

from large negative values of x, through x = 0, to large positive values of x.186

The minimum (best) CRPS score is achieved by an outcome at the median187

of the underlying distribution, that is at x = 0 in the symmetric (thick blue)188

case, and near x = 0.7 in the asymmetric (thin red) case marked as a vertical189

line in Figure 1a and as a black star in Figure 1b. Ignorance is minimised190

when the outcome is at the mode of the forecast distribution (the green star191

in Figure 1b). These two points do not correspond to the same outcome.192

This example shows that the CRPS score can rate an outcome from a193

structurally flawed forecast system highly even when both (a) the outcome194

is repeatedly observed where the forecast system has assigned a small prob-195

ability and (b) the forecast repeatedly places significant probability mass196

in regions of vanishingly small (or zero) probability of occurring; Ignorance197

would penalise such forecast systems severely. Consider a bimodal fore-198

cast like the thick blue distribution in Figure 1 (for example, strong winds199

forecast from either east or west but the direction is uncertain), and an200

underlying Q distribution which is unimodal with low variance centred at201

zero. The outcome is almost certainly close to zero, which is in a region202

where the forecast ascribes very low probability density – hence, the Igno-203

rance score will heavily penalise the system producing the bimodal forecast.204

The CRPS however will give the forecast the best possible score when this205

outcome occurs. Figure 1c shows the IGN (thick green) and CRPS (thin206

black) as a function of the outcome corresponding to the asymmetric case in207

Figure 1a above it. IGN(x) returns large (poor) values for outcome far from208

one or the other mode. CRPS(x) returns large values for outcome far from209

zero, but for values of x near zero low (good) scores are returned. Figure210

1d reflects a case similar to 1c, where the width of each mode is halved:211

IGN returns low values on a more narrow range, while CRPS again returns212

a similar (low) score for points in the central low probability region. These213

two scores would give rather different impressions of forecast quality when214
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evaluating this bimodal probability forecast when the outcome was gener-215

ated, say, by a Gaussian distribution, with zero mean. The fact that both216

scores are proper restricts their behaviour to agree when given Q, but not217

when given an imperfect probability forecast.218

Return to the symmetric (thick blue PDF) forecast in Figure 1a and219

consider all possible forecasts with this bimodal shape but centered at some220

value of x = c, where c need not be zero as it is in Figure 1a. Consider the221

case of an outcome at the origin, x = 0. Will IGN and CRPS rank members222

of this family of forecasts differently? Yes. IGN (and PL) will favour the223

forecasts that place higher probability on the outcome while CRPS will favor224

forecasts that have low probability on the outcome. In this case, IGN will225

favor (equally) the two forecasts with values of c such that a mode is at the226

origin, while CRPS will favor the forecast with c = 0 (shown), which has a227

local minimum of probability at the outcome. CRPS expresses a deliberate228

robust behavior scoring this family of forecasts in a way that is unreasonable229

if not unacceptable.230

Alternatively, one can view this effect in terms of the score as a function231

of the outcome. The thick blue curve in Figure 1b plots the two curves in232

Figure 1c against each other: the thick blue curve in Figure 1b traces the233

trajectory of the point (CRPS(x), IGN(x)) as x goes from −10 to +10. Note234

that the minimum IGN occurs at a different point along this trajectory than235

the minimum CRPS. Specifically IGN is minimal at x = −1 and x = +1,236

CRPS is minimal at x = 0. The thin red curve traces the trajectory in the237

case when the modes are asymmetric, specifically when they have weights238

.45 (left) and .55 (right). In this case IGN(x) is a minimal at x = 1 (the239

unique mode) and CRPS is minimal near x = 0.667. Thus IGN scores the240

forecast as better when the outcome corresponds to large p(x) as might be241

deemed desirable; CRPS does not. While it might be possible to construct242

a situation where these behaviors of CPRS are desirable, these examples243

suggest CRPS be interpreted with great caution, if used at all, in normal244

forecast evaluation.245

3 Contrasting the skill of decadal forecasts under246

different scores247

In this section the behaviour and utility of different scores are contrasted248

by evaluating the performance of probabilistic decadal hindcasts of global249

mean temperature (GMT) from a simulation model (HadCM3) and from two250

simple empirical models (Static Climatology and Dynamic Climatology).251
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Such evaluations allow comparisons of the relative skill of large simulation252

models against simple, computationally inexpensive, empirical models. The253

interpretation of that comparison, and its value, will vary with the score254

used.255

3.1 Simulation-based hindcasts256

The simulation based forecast system uses simulations from the UK Met257

Office HadCM3 model [17], which formed part of the CMIP5 decadal hind-258

cast experiment [36]. The forecast archive consists of a series of 10-member259

initial condition ensembles, launched annually between 1960-2009, and ex-260

tended out to a lead time of 120 months. This HadCM3 forecast archive261

was from the CMIP5 library (last downloaded on 07-04-2014). Even so,262

the small forecast-outcome archive is a limiting factor in the analysis, es-263

pecially since generating probabilistic forecasts from the ensemble members264

[5, 35] and the subsequent evaluation must be done in such a way as to265

avoid using the same information more than once (hereafter, information266

contamination) [37, 32].267

Figure 2 shows the 10-member ensembles of simulated GMT values for268

every tenth launch year over the full hindcast period; HadCRUT3 obser-269

vations [8] are shown for comparison. It is clear that the HadCM3 en-270

semble members are generally cooler than the observed temperatures from271

HadCRUT3 and would perform poorly if this systematic error were not ac-272

counted for. Unless otherwise noted, the ensemble interpretation applied273

below uses a lead-time dependent offset to account for this systematic error274

in HadCM3 simulations; the translation of model-values in the simulation275

into target quantities in the world is an important feature of the forecast276

system. Unless otherwise stated the ensemble is interpreted as a probability277

forecast, using the Ignorance score to determine the lead-time-dependent278

kernel offset and kernel width parameters under cross-validation. This pro-279

cedure is described further in [5, 35, 32].280

3.2 The Dynamic Climatology empirical model281

The Dynamic Climatology (DC) is an empirical model [31, 35] which uses282

the observed GMT record. At each launch time, the GMT value is ini-283

tialised to its observed value from the HadCRUT3 record. An ℓ-step ahead284

ensemble forecast is generated by adding the set of observed ℓth differences285

(across the observed GMT record) to the initialised GMT value at launch,286

leaving out the period under consideration itself, (that is, adopting a cross-287
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validation approach). For example a one year ahead forecast made in 1992288

for the year 1993 is generated by adding each of the annually averaged con-289

secutive year temperature differences between the years 1960-2012, except290

for the 1992-93 difference itself, to the observed annual average GMT value291

for the year 1992. Similarly, an n year ahead forecast is generated from the292

observed 1992 temperature and all the n year temperature differences over293

the hindcast period except for an interval3 about the point being forecast,294

this is a direct DC model. In general, one expects the dynamics of uncer-295

tainty to vary with initial condition [30], this version of DC does not exploit296

that expectation: for a given lead time the same distribution of change in297

GMT is forecast each time. Note that if only non-overlapping intervals are298

considered, then these ensemble members are independent, as opposed to299

the HadCM3 ensembles which are ten internally consistent trajectories and300

are artificially enhanced by access to information from events during that301

period (volcanos, for example). Generating trajectories from iterated DC302

models based on a sum of repeated draws from the distribution of one-year303

differences is also possible; doing so would require assumptions on temporal304

correlations, and the simpler direct DC scheme is adopted here as it already305

provides an interesting baseline for comparison with simulation models. A306

Static Climatology (SC) distribution is also generated as a reference forecast307

by directly kernel density estimation [29, 5] the observed GMT values over308

the period 1960-2009.309

DC hindcasts are generated for every year in the period 1960-2009 for310

comparison with HadCM3. HadCM3 ensembles, each with 10 members, are311

available for every year from 1960 until 2009. Given that a ten year forecast312

evaluated with the target observed in year y shares 9 common years with313

the target in year y− 1 and that in year y+1, information contamination is314

unavoidable if information involving these three years (y − 1, y, and y + 1)315

is treated as independent. For this reason4, the experiment was repeated316

independently starting in 1960, 1961, 1962, 1963, and 1964; for HadCM3317

forecast systems the scores shown in the figure 3 reflect the average of the318

3For n = 1, only the target difference is omitted; for other values of n the interval is
centered on the target difference and ranges from minus nomit to plus nomit, where nomit

is the largest integer less than or equal to n

2
.

4If a ten year DC forecast launched in 1961 was to include information from a ten year
forward difference from 1960, it would be artificially skilful as the temperature difference
between 1970 and 1960 is certain to resemble the target difference (between 1971 and
1961). More generally, the score of a ten year forecast for a slowly varying quantity
launched in 1960 is not independent of skill of the same forecast system applied to 1961.
Even without any direct information contamination from the use of overlapping windows,
this serial dependence complicates the interpretation of the cumulative score. [38, 20]
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result and the max-min range when the vertical bars have no caps. For319

the Static Climatology, bootstrap resampling bars are shown, with caps at320

the 10% and 90% range (as in Figure 3a). Forecast system under both321

approaches are shown from DC in Figure 3; note the results are similar322

except for the expected increase due to smaller samples in the independent323

experiment case (with caps).324

4 Interpreting probabilistic forecast skill scores325

In this section, the evaluation of probabilistic hindcasts from the HadCM3326

and DC models under different scores are interpreted and contrasted. The327

Static Climatology is taken as a reference forecast. Given the evident (phys-328

ically expected and causally argued prior to 1960) upward drift in GMT, DC329

would be expected to provide a more relevant reference forecast. [35]330

The top three panels of Figure 3 show skill according to the three different331

scores as a function of lead time. Sampling uncertainty in the skill score332

(due to the limited number of forecasts considered) is reflected in bootstrap333

resampling range (plotted as vertical bars with caps) of the scores for each334

lead time, with the 10%-90% resampling intervals. The bootstrap resamples335

with replacement from the sample of forecast values; when the sample size336

is small these ranges can be large due merely to a few poor forecasts. This337

is a property of the size of the forecast-outcome archive, and may happen338

even when the outcome is drawn from the forecast distribution (that is, Q339

above), although this may be unlikely to happen. These resampling bars340

(with caps) are shown in figure 3 for the SC scores (black dotted) and the341

traditional unified DC scores (green dashed) [35]; in these cases the sample342

size is relatively large. The outcomes of two ten year forecasts initiated343

in consecutive years are far from independent (as they have nine years in344

common). For this reason five evaluation experiments were considered, with345

consecutive initial conditions within each experiment separated by a period346

of five years (that is, 1960, 1965, 1970 ...). The vertical bars without caps in347

figure 3 reflect the results of repeating the entire forecast evaluation 5 times,348

one experiment initialized in each of 1960, 1961, 1962, 1963, and 1964. The349

vertical bars (without caps) show the range of these experiments, the solid350

line connects their mean.351

It is clear that the different scores lead to different estimates of the rel-352

ative skill provided by the alternate models. When the multiple-realization353

bars (no caps) overlap, then there is at least one set of experiments in which,354

at that lead time, the forecast system judged better on average performs less355
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well than the forecast system which does less well when the results are av-356

eraged. Overlap between HadCM3 and DC is common under each score.357

Looking at the relative Ignorance directly (Figure 3d) shows that HadCM3358

outperforms DC in every individual case for lead times of 1, 2, 3 and 4 years.359

The extent to which the absolute values are meaningful varies with the score360

considered. In the case of the Ignorance score, the difference between two361

forecast systems reflects the number of additional “bits of information” in362

the better forecast: a difference of 2 bits corresponds to the better forecast363

system placing (on average, 22 =) 4 times more probability on the outcome364

than the alternative forecast system, while a relative IGN of 4 bits would365

correspond to a factor of 16 and a difference of 0.5 a factor of roughly 1.41366

(that is 21/2), in other words half a bit corresponds to a gain of about 41%.367

For the other scores, the authors are not aware of any clear interpretation of368

the absolute value of the score. In some cases it makes sense to consider an369

integration over the “True” distribution (Q, above); in that case the expec-370

tation of the PL is the mean square difference between the forecast density p371

and the density from which the outcome is drawn Q. The interpretation of372

the expectation with respect to Q is cloudy in weather-like forecasting sce-373

narios, where the same Q distribution is never seen twice over the lifetime374

of the system.5 The Proper Linear score could be interpreted in cases where375

the second term in its definition (equation 5) is motivated by the application376

(not merely for the sake of “making” the naive linear score proper).377

Each score considered indicates that HadCM3 and DC consistently out-378

perform the Static Climatology. The Ignorance score allows the simple in-379

terpretation of Figure 3d that on average the HadCM3 ensemble decadal380

forecasts place about 70% more probability on the outcome as DC in year381

one, then just over half a bit (∼41% more) at longer lead times. Figure 3c382

shows that both the HadCM3 and DC models consistently place significantly383

more probability on the outcome than the Static Climatology.384

Note that SC is roughly constant across lead times, which is to be ex-385

pected as the same forecast distributions is issued (ignoring cross validation386

changes and the effect of the trend) for all lead times. Note also that this387

HadCM3 forecast system outperforms DC, while the HadGEM2 forecast sys-388

tem reported in [35] did not outperform DC. Detailed reasons why this is the389

case are beyond the scope of this paper, nevertheless note (i) the HadCM3390

system considered in this paper had ten ensemble members launched annu-391

ally; whereas the HadGEM2 forecast system had only 3 members launched392

5We thank an anonymous reviewer for stressing the relevance of this interpretation.
The result follows from a calculation similar to that found in [6].
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every 5 years. (ii) some6 CMIP5 models are forced by major volcanos, while393

the DC is not (the hindcasts for the GCMs include specific information on394

specific years, this version of DC does not), (iii) the multiple-realization395

bars (no caps) of HadCM3 and DC often overlap in CRPS and PL while the396

relative IGN in panel d shows a clear separation out to lead time five years397

or more; on average HadCM3 consistently scores just over half a bit better398

than DC.399

One expects that as simulations, observations, models and ensemble ex-400

perimental designs improve, the simulation forecast systems will outper-401

form DC even more clearly. Future work will consider the design of better402

benchmark empirical models, accounting for (and quantifying) the false skill403

in forecast systems based upon CMIP simulations arising from their fore-404

knowledge of events (volcano-like information), and relative skill in higher405

resolution targets (finer resolution in space and/or time).406

Climate models are sometimes said to show more skill over longer tem-407

poral averages; the basis of this claim is unclear. Forecasts of five-year time408

averages of GMT from the HadCM3 and DC models (not shown) have simi-409

lar levels of relative probabilistic skill to those of one-year averaged forecasts.410

The variance in “temperature” decreases when five year means are taken,411

and the apparent RMS error may appear “smaller”. Note, however, that412

the metric has changed as well, hence the scare quotes. The probability of413

the outcome in the two cases changes only slightly, indicating that in this414

case at least, the suggested gain in skill is a chimera.415

5 Conclusions416

Measures of skill play a critical role in the development, deployment and417

application of probability forecasts. The choice of score quite literally de-418

termines what can be seen in the forecasts, influencing not only forecast419

system design and model development, but also decisions on whether or not420

to purchase forecasts from that forecast system or invest in accordance with421

the probabilities from a forecast system.422

The properties of some common skill scores have been discussed and423

illustrated. Even when the discussion is restricted to proper scores, there424

remains considerable variability between scores in terms of their sensitivity425

to outcomes in regions of low (or vanishing) probability; proper scores need426

not rank competing forecast systems in the same order when each forecast427

6A comparison contrasting forecast systems which include this information from those
which do not will be reported elsewhere.
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system is imperfect. In general, the Continuous Ranked Probability Score428

can define the best forecast system to be one which consistently assigns zero429

probability to the observed outcome, while the Ignorance score will assign an430

infinite penalty to an outcome which falls in a region the forecast states to431

be impossible; such issues should be considered when deciding which score432

is appropriate for a specific task. Ensemble interpretations [5] which inter-433

pret a probability forecast as a single delta function (such as the ensemble434

mean) or as a collection of delta functions (reflecting, for example, the posi-435

tion of each ensemble member) rather than considering all the probabilistic436

information available may provide misleading estimates of skill in nonlinear437

systems. Scores can be used for a variety of different aims, of course. The438

properties desired of a score for parameter selection [25, 9] can be rather439

different from those desired in evaluating an operational forecast system.440

A general methodology has been applied for probabilistic forecast eval-441

uation, contrasting the properties of several proper scores when evaluating442

forecast systems of decadal ensemble hindcasts of global mean temperature443

from the HadCM3 model (part of the CMIP5 decadal archive). Each of444

the three proper scores in Section 2 were considered for evaluation of the445

results. The Ignorance score was shown to best discriminate between the446

performance of the different models. In addition, the Ignorance score can be447

interpreted directly, indicating, for example, that on average the HadCM3448

forecast system places about 40% more probability on the outcome (half449

a bit) than DC. Observations like these illustrate the advantages of scores450

which allow intuitive interpretation of relative forecast merits.451

Enhanced use of empirical benchmark models in forecast evaluation and452

in deployment can motivate a deeper evaluation of simulation models. The453

use of empirical models as benchmarks allows the comparison of skill be-454

tween forecast systems based upon state-of-the-art simulation models and455

those using simpler, inexpensive alternatives. As models evolve and improve,456

such benchmarks allow one to quantify this improvement: the HadCM3 fore-457

cast system in this paper out-performs DC, whereas a HadGEM2 forecast458

system (with its smaller ensemble size) did not [35]. This cannot be done459

purely through the intercomparison of an (evolving) set of state-of-the-art460

models. The use of task-appropriate scores can better convey the informa-461

tion available from near-term (decadal) forecasts to inform decision making.462

It can also be of use in judging limits on the likely fidelity of centennial463

forecasts. Ideally, identifying where the most reliable decadal information464

lies today, and communicating the limits in the fidelity expected from the465

best available probability forecasts, can both improve decision making and466

strengthen the credibility of science in support of policy making.467
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[5] J. Bröcker and L. A. Smith, From ensemble forecasts to predictive486

distribution functions. Tellus A 60:663-678 (2008).487
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Figure 1: An example comparing the sensitivity of IGN (thick green) and CRPS
(thin black) scores for outcomes in different regions of a forecast probability dis-
tribution. (a) Two bimodal forecast distributions, one symmetric (thick blue) and
one asymmetric (thin red). (b) The Ignorance (y-axis) and CPRS (x-axis) scores
given to each forecast distribution as the observed outcome moves across the range
of each distribution. Note that minimal (best) scores occur for CRPS when the
outcome falls at the median of the forecast distribution, while Ignorance is minimal
when the outcome falls at a mode of the forecast distribution. Panels (c) and (d)
show the Ignorance score (thick green) and CRPS score (thin black) as a function
of the outcome given a symmetric bimodal forecast distribution. All forecast dis-
tributions consist of the sum of two Gaussian distributions, one centred at −1, the
other at +1. Panels (a), (b) and (c) reflect the results where each component has a
standard deviation of 0.25. In panel (d) each component has a standard deviation
of 0.125 . In the symmetric forecasts, each component is equally weighted, while in
the asymmetric forecast (reflected in the thin red curves of panel (a) and (b) the
left component has weight 0.45 and the right 0.55.
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Figure 2: Individual HadCM3 ensemble members (thin grey) and HadCRUT3
observations (thick black) of global mean temperature (GMT) between 1960 and
2010. For clarity, only every tenth launch date of the HadCM3 simulations are
shown.
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Figure 3: Performance of HadCM3 and DC forecast systems as a function of lead
time under different skill scores: (a) PL score, (b) CRPS, (c) IGN relative to the
Static Climatology and (d) IGN relative to DC. In panels (a), (b), and (c) the
Static Climatology (SC) is shown for comparison; in panel (c) both HadCM3 and
DC perform substantially better than SC on average; multiple-realization sample
bars (vertical bars, no caps) show that this is the case in almost every realization.
A unified DC forecast system (green dashed) is shown for comparison; traditional
(10%-90%) bootstrap resample ranges (green dashed, with caps) reveal a similar
result with somewhat improved sampling uncertainty. In Panel (d) the red dash-
dotted line fluctuates between -0.25 bit to -0.75 bit indicating that on average
the HadCM3 forecast system clearly outperforms the unified DC, placing between
∼20% and 60% more probability on the outcome than DC at various lead times.
Some of the multiple-realization sample bars (no caps) reach zero in panel (d),
indicating that in some realizations the DC outperforms HadCM3.
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